Semantic Optimisation for CEP

Olga Poppe
Supervisor: François Bry
Institute for Informatics
University of Munich, Germany
poppe@pms.ifi.lmu.de

ABSTRACT
Semantic optimisation (SO) of database queries, i.e., the use of metadata for query optimisation, is well investigated and has led to significant performance gains. SO for databases is, to a large extent, applicable to complex event processing (CEP) when regarding events as data and complex event specifications as queries.

However, simply transferring database techniques does not unleash the full potential of SO for CEP. In contrast to database systems where incoming ad hoc queries are evaluated against known and finite data which is available at once, CEP applications permanently evaluate a known set of standing queries against event data arriving on potentially infinite streams. Therefore, in CEP, queries are usually optimised (not the data like in database systems) and more complex and expensive algorithms may be used in static SO of event queries than of database queries.

In CEP, constraints are valid and queries are satisfiable during particular application states. Therefore, a new kind of metadata capable of formalising states, expressing complex state-related dependencies, and representing an arbitrary number of parallel processes is required. To this end, Instantiating Hierarchical Timed Automata (IHTA) are introduced. For formulating constraints in the context of states, the Event Stream Constraint Language ESCL is presented. ESCL constraints are short but expressive logic formulas capturing cardinality, causal, temporal and other dependencies between events and states. Queries are optimised using IHTA and ESCL constraints by the SO algorithm for CEP. The approach is illustrated by use cases.

Categories and Subject Descriptors

General Terms
Theory, Algorithms, Languages, Experimentation

Keywords
Event processing, Semantic query optimisation, Models of application-specific knowledge, Constraints, Automata, Modularisation

1. INTRODUCTION
Integrity constraints are formulas describing the domain of a database. They were initially developed to validate changes to a database, i.e., to ensure that the state of the database after its update remains consistent. In the middle of 1970's, researchers recognised that semantic information stored in databases as integrity constraints could be used for query optimisation. The idea of semantically transforming a query into a more efficient form using metadata (such as integrity constraints) is called semantic query optimisation. The result of the transformation is a query that may be syntactically quite different from the original one, but is guaranteed to be semantically equivalent to the original query, i.e., to return the same results as the original query for all databases satisfying the metadata.

The idea of semantic optimisation (SO) is applicable to CEP. Indeed, many event-based applications have rich semantics defined either by application rules like in the auction use case or by physical laws like in the sensor network use case. Both use cases are considered in Section 3. However, SO of event queries differs from classical SO due to the following peculiarities of CEP:

1) Standing queries and moving data
In databases, evaluation is query-driven. Large (but finite) data is permanently saved, available at once and known. Ad hoc queries are evaluated once against the whole data. Query answers are expected almost immediately. (Standing queries are rather typical for a data warehouse than for a database.) Because of these reasons, in databases, data is usually optimised. Static SO of queries must be efficient.

In CEP, evaluation is data-driven. Standing known and available queries are continuously evaluated against events arriving on streams. Streams are unbounded, potentially infinite, never available at once and their contents is often unknown. Query answers are computed in multiple (possibly arbitrarily many) evaluation steps. Each step takes place as
soon as events become available. Ad hoc queries are not typ-
ical for CEP. They usually have to wait until relevant events
arrive. They cannot be evaluated immediately since (some)
past relevant events are probably already garbage collected.
Because of these reasons, in CEP, queries are usually op-
timised. Their static SO may rely on more complex and
expensive algorithms than static SO of database queries.

2) Time-awareness

In databases, tuples and integrity constraints are valid
until update.¹ Query satisfiability can be determined at
compile time.

In CEP, events occur, constraints are valid and queries
are satisfiable during particular periods of time. Occurrence
time of events and validity time of constraints is their in-
herent part. Validity time of constraints and time periods
during which queries are satisfiable can be determined by
application states, i.e. their exact duration is usually known
at runtime. Therefore, a new kind of metadata is required
for SO of CEP. This metadata must (1) formalise applica-
tion states to allow for formulating CEP constraints and
queries in the context of states to increase the expressive-
ness of constraints and queries, (2) capture complex tempo-
rals and causal relations between events and states as needed
in many various CEP applications, and (3) represent an
arbitrary number of parallel processes since in real life applica-
tions their number is not known beforehand. These require-
ments are illustrated by the use cases in Section 3. To cope
with them, Instantiating Hierarchical Timed Automata are
introduced in Section 4.

3) Materialised views

In databases, views are usually defined to keep queries
short and readable. View maintenance is rather expensive
because tuples of a view can be manually inserted, changed
and deleted. Therefore, views are usually not materialised
and, as a consequence, multi-query SO is limited.

In CEP, the relatively few results of all queries are usually
materialised in order to delete relatively many base events
and states. Derived events and states can be inserted, states
can be changed but neither events nor states can be manu-
ally deleted (they are garbage collected). Hence, view main-
tenance in CEP is cheaper than in databases and views are
usually materialised in CEP. As a consequence, multi-query
SO plays a more important role in CEP than in databases.

Summarising, SO of event queries differs from SO of data-
bases queries as follows: (1) Static SO of event queries may
rely on more complex and expensive algorithms than static
SO of database queries. (2) A new kind of metadata is
required for SO of CEP. (3) Multi-query SO plays a more
important role in CEP than in database systems.

Each section of this paper corresponds to a chapter of
the PhD work. They are related work (Section 2), use cases
(Section 3), HFTA (Section 4), ESCL (Section 5), constraint-
based subsumption (Section 6), the SO algorithm for CEP
(Section 7), and finally future work (Section 8). Each section
briefly describes overall ideas, done work and open issues.

2. RELATED WORK

Section 2.1 is devoted to the classification of the approaches
on SO of CEP according to four criteria. With the help of
these classifications, the approach presented in this arti-

cle is motivated. Section 2.2 briefly describes (Hierarchical)
Timed Automata upon which IHTA are based.

2.1 Approaches on SO of CEP

1) Regarding the way of expressing application semantics,
the approaches are divided into two groups, namely SO by
means of either constraints or queries themselves.

Constraints are formulated in DDL [22], DTD [37, 36],
[27, 28], [16], [24], [23], [32], as regular expressions [19], [18],
[21], [38], denial rules [17], or language independent formu-
las [37, 36], [16], [21], [8], [5], [39], [4, 33]. No approach uses
a constraint language which is tailored to the peculiarities
of CEP discussed in Section 1. Most approaches consider
particular kind(s) of constraints to a limited extent. These
kinds of constraints are conditions on event data [19], [18],
[5], [38], cardinality constraints [37, 36], [16], [22], [5], [39],
[4, 33], temporal [37, 36], [16], [19], [18], [21], [22], [8], [5],
[38], [17] and causal dependencies [37, 36], [17]. Constraints
are expressed only on events. They do not involve applica-
tion states.

Not only constraints but also queries capture application
semantics. Hence, they can be used for the SO of CEP as
done in [7], [20], [26], [13], [12], [30], [3], [9, 31].

No approach describes the application workflow by au-
tomata and uses the semantics captured by them (e.g., tem-
poral and causal dependencies, states) for SO of CEP.²

2) According to the time at which SO happens, the ap-
proaches are classified into static, dynamic, or both.

Most approaches are static [27, 28], [16], [32], [21], [26],
[22], [30], [9, 31], [7], [20], [13]. They rely upon applica-
tion semantics which is known at compile time and does not
change at runtime.

There are some dynamic approaches. In [5], constraints
are derived from the event stream. [38], [18] use constraints
arriving on streams. [39], [12], [4, 33] rely on stream rate.
In [17], [8], [24], constraints are known at compile time.
They do not change at runtime but they are applied at
runtime. [3] dynamically selects time intervals upon which
query results are shared.

[37, 36], [23], [19] allow both static and dynamic SO of
event queries.

3) Concerning language independency, there are numerous
specific and few general approaches in CEP.

Some approaches are specific for XML data streams and
XPath [24], [23] or XQuery [37, 36], [27, 28], [16], [32]. How-
ever the the ideas of these approaches are independent from
an event format or a query language. These approaches have
poor event concept. An event is an XML document (or even a
element) without occurrence time.

Other approaches are tailored to particular relational alge-
bra operator(s) and therefore to particular kind(s) of queries.
Much attention has been paid to join [19], [18], [8], [5], [22],
join combined with count [22], join combined with selection [13],
join or grouping [38], join, selection or projection [39],
equi-join or aggregation [21], sliding-window aggregates [30],
[3], event sequence or conjunction [17]. Join and aggregation
are expensive operations requiring storage of relevant events
and blocking of queries which cannot be evaluated as long
as not all events are available.

Few approaches are general [7], [20], [26], [9, 31], [4, 33].

4) With respect to the implemented SO technique, there

²[17], [32], [36], [23] transfer queries into finite automata and
evaluate the automata while events arrive.
are approaches aiming at:
- Load distribution [21], [26],
- Storage minimisation [27, 28], [5], [38], [12], [30], [9, 31],
- Efficient data structures [7], [20],
- Computation sharing [16], [13], [12], [30], [3],
- Efficient join algorithms [19], [18],
- SO heuristics such as join elimination [22] and detection of (temporary) unsatisfiable (sub) queries [37, 36], [24], [8], [38], [17],
- Query plan rewriting [39], [4, 33], and finally
- Query compilation [37, 36], [27, 28], [16], [24], [23], [32].

According to the above classifications this approach is characterised, flexible, readable, and their evaluation more efficient. It highlights the necessity of application states for the SO of CEP. States make queries and constraints more expressive, flexible, readable, and their evaluation more efficient.

According to the above classifications this approach is characterised as follows. It relies on Instantiating Hierarchical Timed Automata (IHTA) and constraints expressed in the Event Stream Constraint Language ESCL. IHTA formalise states and capture involved temporal and causal constraints for an arbitrary number of parallel processes. ESCL constraints are short but expressive logic formulas completing IHTA with additional knowledge about events and states. The approach is static and general. It aims at query plan rewriting involving the implementation of SO heuristics, computation sharing, and storage minimisation.

2.2 Timed Automata

Timed Automata [2], [6], [1], [29] are (finite) automata the edges of which are labeled with events and temporal constraints on local clocks. Event data and event occurrence time are neglected. Timed Automata have been initially developed for stream verification, in particular, for the expression of constant bounds on the delays between events [2]. Later, Timed Automata have also been used for solving scheduling problems [1]. To the best of our knowledge, they have not been considered as metadata for SO.

In contrast to Timed Automata, Instantiating Hierarchical Timed Automata (IHTA) introduced in Section 4 allow access to event data and define temporal constraints on the occurrence time of matched events. IHTA are more expressive, flexible, and readable than Timed Automata.

It is difficult, if not impossible, to model real life systems of a certain size and complexity using flat automata. Most systems can be divided into relatively independent manageable processes. To this end, Hierarchical Timed Automata (HTA) [15] have been introduced. They support hierarchy of states and therefore modularisation. HTA allow for modelling a fixed number of processes running in parallel. However in real life applications their number is often unbounded. Therefore, IHTA adapt many ideas and notions of HTA to an arbitrary number of parallel processes. IHTA are more expressive than HTA.

3. USE CASES

As illustrative examples of the approach, two substantially different use cases are considered, namely an online auction and a sensor network. The difference is that an online auction use case has a rather involved workflow determining the structure of the stream. This workflow consists of multiple relatively independent processes (or workflows) running either sequentially or in parallel. This workflow reflects the application logic determined by the rules according to which an auction takes place. In a sensor network use case in contrast, there is no complex workflow (but there are states such as normal, critical, emergency). The application logic is determined by the physical laws.

Let us consider an online auction system allowing an arbitrary number of auctions to run in parallel. Each auction runs without time limit (but with a finite number of items to present), independently from the other auctions and according to a predefined workflow. Bidders register during the first 20 minutes in each auction. Afterwards, if at least two bidders are enrolled, at least one item is presented and the registered bidders can bid for it. Items are presented and possibly sold one after another in each auction. A bid for an item must be higher than a previous bid for the item. Two bids or hammer beats for an item are called sequential if they are not apart by another bid or hammer beat for the item. Two sequent bids for an item are at most 30 seconds apart. If a bid is followed by no other bid within 30 seconds, a hammer beat takes place. After a hammer beat there might be further bids. In this case the auction proceeds as described above. If there are no bids within 30 seconds after a hammer beat, then a further hammer beat takes place. After three sequent hammer beats, the item is sold at the price of the last bid to the bidder who issued this bid. Afterwards, the auction proceeds with another item. If there are no bids within 30 seconds after an item is presented, the item is not sold, and the auction proceeds with another item. When all items of an auction have been presented, the auction terminates.

This use case inspired from [38] is interesting because it has a rather involved workflow with multiple states (bidder enrolments, item offers, etc.) during which different events arrive and numerous diverse and complex dependencies between events hold (like between bids and hammer beats). The use case demonstrates that events must be treated differently depending on states in which they occur. For example, for each hammer beat event for an item it is essential to know how many sequent hammer beat events for the same item precede it. Only after the third sequent hammer beat event for an item no further bid events for the same item may follow. All queries asking for bid events can compute their answers and irrelevant bid events can be deleted. One way to express this knowledge is to count the number of sequent hammer beat events for an item every 90 seconds. Such constraints are rather unreadable and in many cases even not expressible since the time window is often unknown. The way that we propose is to formalise the application workflow as timed automata (Section 4) and to put queries and constraints in the context of states in which they are satisfiable or valid (Section 5). Besides, this use case shows the need for modelling an unbounded number of parallel processes like bidder enrolments or auctions.

Of course, not all CEP applications have comparably complex workflows and dependencies. That is why a sensor network use case will be considered in the future.

4. INSTANTIATING HIERARCHICAL TIMED AUTOMATA (IHTA)

IHTA consist of states and transitions between them. Consider Figure 1 depicting the workflow of an online auction modelled as (simplified) IHTA.
Each state of IHTA is either atomic or non-atomic. Non-atomic states are IHTA themselves, e.g. the states Bidder enrolment, Item offer, Auction, and Online sale in Figure 1. All the other states are atomic. For the sake of readability, the bidder enrolment processes (which can be rather complex) are hidden within the state Bidder enrolment. Non-atomic states may contain other non-atomic states so that a hierarchy of states results (like in the considered use case).

Non-atomic states are modules allowing for readability, changeability, reuseability, and instantiation to model an arbitrary number of parallel processes as required in many applications. In the auction example, there is an arbitrary number parallel auctions with an arbitrary number of bidder enrolment processes running in parallel at the beginning of each auction. Every time a new auction or bidder enrolment begins, a new instance of the non-atomic state Auction or Bidder enrolment is created. Thus, an arbitrary number of instances of the same non-atomic state can exist at the same time, expressing that an arbitrary number of processes run in parallel. This feature of IHTA is new, not present in other formalisms [15], [25] allowing a fixed number of parallel processes to be modelled.

To represent the current state of each instance and thus the entire state of the application, automaton configuration is adapted from [15] to support an unlimited number of parallel processes. Automaton configuration is a dynamic structure containing the information about all running instances of non-atomic states, including the current state and the bindings of local variables of each instance.

The edges between states of IHTA are labeled by (1) incomplete and unordered event queries allowing access to data attributes and (2) temporal constraints on the occurrence time of events matched by the queries. (Event occurrence time is a time interval. Its bounds are saved as the values of time attributes of the respective tuple.) Both event queries and temporal constraints are expressed in ESCL (Section 5). Despite their expressiveness and flexibility, they are short and readable. These features of IHTA are new, not present in the other kinds of automata. Temporal constraints are omitted in Figure 1 for the sake of brevity.

Consider the transition between the states Bidder enrolment and 2 in Figure 1. Its incomplete and unordered query q = itemDescription(A*) → auctionID[unique Y*]) matches events of type itemDescription with attributes auctionID and itemID in arbitrary order since q is unordered (denoted by curly braces). Events matched by q may have other attributes besides auctionID and itemID since q is incomplete (denoted by double braces). auctionID and itemID are explicit attributes of q. Other attributes of events matched by q are implicit attributes of q. While matching, the variable Y* is bound to the value of attribute itemID of matched events and the variable I* to the whole term itemID[unique Y*]. The events matched by q must have the same value of the attribute auctionID as an event matched by the query auctionBegin{A* → auctionID[unique X*]} (consider Figure 1). A variable which is bound while matching is flagged with *, in contrast to a variable without * which is merely a place holder for its recent binding within an instance of the non-atomic state. The keyword unique means that its respective variable can be bound to a value only once.

IHTA are seen as a specification of the stream, i.e., no other events arrive during each state besides those described by IHTA. The automata capture the following kinds of constraints: (1) Cardinality constraints involving only explicit data attributes of the queries of IHTA. (2) Functional dependencies between time attributes. (3) Functional dependencies expressing equality of the values of explicit data attributes of the queries of IHTA. In some applications (like in the online auction) dozens of constraints can be automatically derived from IHTA. It is much easier, safer, and clearer for the user to specify IHTA instead of numerous complex constraints. Since the SO method for databases can be adapted to CEP (Section 7) and the method is based on constraints, constraints could be derived from IHTA and the adapted method could be applied to them. Alternatively an extra method working with IHTA directly could be developed. The choice depends on the efficiency of the evaluation method and is subject of future work as well as the formal semantics of IHTA and their translation into rules deriving states to allow queries and constraints on states.

5. EVENT STREAM CONSTRAINT LANGUAGE (ESCL)

To keep IHTA readable, only a part of the application semantics is expressed by them. Only those attributes of event queries of IHTA are explicit which allow to relate each event of the stream to at least one instance of non-atomic states. Therefore the following kinds of user-defined constraints complete the IHTA: (1) Cardinality constraints and functional dependencies involving implicit data attributes of the queries of IHTA. (2) Functional dependencies expressing other relations as equality of the values of the explicit data attributes of the queries of IHTA. These constraints will be expressed in ESCL, the constraint language tailored to CEP. ESCL constraints are logic formulas capturing complex cardinality, temporal, causal and other dependencies between events and states. ESCL constraints are defined in the context of states which brings the following advantages: (1) The same events are treated differently depending on the state in which they occur. Due to states simple but expressive

Figure 1: An online auction modelled as IHTA
constraints are possible because the user does not have to manually describe all possibly numerous and involved event sequences of an arbitrary length leading to a state. (2) States make SO of event queries more efficient since only those constraints are relevant for a query which are valid during the state(s) the query is specified (or is satisfiable) within.

The grammar and the declarative semantics of ESCL defined by a Tarski-style model theory are given in [35]. The operational semantics of the language is the SO algorithm briefly described in Section 7. It is a subject of future work.

6. CONSTRAINT-BASED SUBSUMPTION

The SO algorithm for CEP relies on constraint-based subsumption.

Definition 1. Let C be a set of constraints. Let Q_1 and Q_2 be conjunctions of incomplete and unordered event or state queries and conditions on events or states matched by them. Q_1 subsumes Q_2 if all events and states matching Q_2 are also matched by Q_1 for all streams satisfying C.

We are aiming at decidable constraint-based subsumption algorithm. Its formal definition and implementation are subjects of future work. This algorithm is different from the one used by the SO method for database queries [11] because of incomplete and unordered queries and consideration of a set of constraints. At the moment subsumption between two single incomplete and unordered queries is defined in [10]. The algorithm is in $O(n!^n)$ where n is the sum of sizes of two queries. A SO method with such a complexity is not advantageous. Whether the complexity of the subsumption algorithm can be improved will be investigated in the future.

7. SO ALGORITHM FOR CEP

The algorithm we are developing consists of two steps, namely query compilation and query choice. Query compilation is executed by the event residue method. For each initial query q the method extracts relevant portions of constraints, called residues, and uses them to generate a set of alternative semantically constrained queries. Each semantically constrained query q' is syntactically different from q but semantically equivalent to q (i.e. q' returns the same results as q for any streams satisfying the constraints) and can possibly be evaluated more efficiently than q. Whether a residue contributes to the optimisation of q is decided using SO heuristics. As the most overviews of SO techniques for database queries agree [11], [34], [14], there are the following six primary SO heuristics: result by contradiction, result by transformation, predicate elimination, predicate introduction, join elimination, and join introduction. SO of event queries can surely rely on these heuristics which are determined using cost models, and one of them with the lowest (estimated) evaluation cost is processed instead of q.

The formal definition and implementation of the SO algorithm for CEP is a subject of future work.

8. FUTURE WORK

The following research directions will be investigated:

1) Further differences between SO of database systems and SO of CEP besides those described in Section 1.
2) Elaboration of the sensor network use case.
3) Formal definitions and implementation of (3) IHTA, the constraint-based subsumption, and (5) the SO algorithm for CEP.
4) Dynamic SO of CEP, e.g. SO of queries at their runtime depending on current stream rate.
5) Query-based SO of CEP, i.e. SO of queries using queries themselves (consider the first classification in Section 2.1).
6) Constraint propagation.

As mentioned in Section 1, in databases, views are usually not materialised. Therefore, they are reduced to their base relations during SO and constraints are defined on base relations [11]. In CEP in contrast, views are usually materialised. Hence, constraints have to be defined for derived events and states as well. In order to reduce the number of manually defined constraints, some of them can be automatically propagated from base events and states to the derived events and states. For example, functional dependencies and cardinality constraints can be propagated. Some constraints can be derived from queries. This is a practically necessary and interesting future research direction. We are not aware of existing approaches to this topic.

9) Two-stage query answering, namely query answering using constraints and query answering using data. Consider the query asking for all bidders participating in an auction and being registered for this auction. Instead returning a long list of all registered bidders, the query could be first answered using the constraint stating that all bidders participating in an auction are registered for it. And then, if required by the user, the list of registered bidders can be returned. This more qualitative and informative query answering is subject of future work.

9. ACKNOWLEDGMENTS

We kindly thank S. Brodt, S. Giessl, S. Hausmann, and T. Dang for many suggestions for improvement of this work. This research is founded by the German Research Foundation (Deutsche Forschungsgemeinschaft) within the project “QONCEPT – Semantic Query Optimisation in CEP Technologies” under reference number BR 2355/1-1.

10. REFERENCES

