
Semantic Optimisation for CEP

Olga Poppe
Supervisor: François Bry

Institute for Informatics
University of Munich, Germany

poppe@pms.ifi.lmu.de

ABSTRACT
Semantic optimisation (SO) of database queries, i.e. the use
of metadata for query optimisation, is well investigated and
has led to significant performance gains. SO for databases
is, to a large extent, applicable to complex event process-
ing (CEP) when regarding events as data and complex event
specifications as queries.
However, simply transferring database techniques does

not unleash the full potential of SO for CEP. In contrast to
database systems where incoming ad hoc queries are eval-
uated against known and finite data which is available at
once, CEP applications permanently evaluate a known set
of standing queries against event data arriving on potentially
infinite streams. Therefore, in CEP, queries are usually op-
timised (not the data like in database systems) and more
complex and expensive algorithms may be used in static SO
of event queries than of database queries.
In CEP, constraints are valid and queries are satisfiable

during particular application states. Therefore, a new kind
of metadata capable of formalising states, expressing com-
plex state-related dependencies, and representing an arbi-
trary number of parallel processes is required. To this end,
Instantiating Hierarchical Timed Automata (IHTA) are in-
troduced. For formulating constraints in the context of
states, the Event Stream Constraint Language ESCL is pre-
sented. ESCL constraints are short but expressive logic for-
mulas capturing cardinality, causal, temporal and other de-
pendencies between events and states. Queries are optimised
using IHTA and ESCL constraints by the SO algorithm for
CEP. The approach is illustrated by use cases.

Categories and Subject Descriptors
H.2.1 [Information Systems]: Database management—
Logical design; H.2.4 [Information Systems]: Database
management—Systems; G.1.6 [Mathematics of Comput-

ing]: Numerical Analysis—Constrained optimisation; F.4.1
[Mathematical Logic and Formal Languages]: Math-
ematical Logic—Logic and constraint programming ; F.1.1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS 2011 New York, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

[Theory of Computation]: Models of Computation—Au-
tomata

General Terms
Theory, Algorithms, Languages, Experimentation

Keywords
Event processing, Semantic query optimisation, Models of
application-specific knowledge, Constraints, Automata, Mod-
ularisation

1. INTRODUCTION
Integrity constraints are formulas describing the domain

of a database. They were initially developed to validate
changes to a database, i.e., to ensure that the state of the
database after its update remains consistent. In the middle
of 1970’s, researchers recognised that semantic information
stored in databases as integrity constraints could be used
for query optimisation. The idea of semantically transform-
ing a query into a more efficient form using metadata (such
as integrity constraints) is called semantic query optimisa-
tion. The result of the transformation is a query that may
be syntactically quite different from the original one, but
is guaranteed to be semantically equivalent to the original
query, i.e., to return the same results as the original query
for all databases satisfying the metadata.

The idea of semantic optimisation (SO) is applicable to
CEP. Indeed, many event-based applications have rich se-
mantics defined either by application rules like in the auc-
tion use case or by physical laws like in the sensor network
use case. Both use cases are considered in Section 3. How-
ever, SO of event queries differs from classical SO due to the
following peculiarities of CEP:

1) Standing queries and moving data

In databases, evaluation is query-driven. Large (but fi-
nite) data is permanently saved, available at once and known.
Ad hoc queries are evaluated once against the whole data.
Query answers are expected almost immediately. (Standing
queries are rather typical for a data warehouse than for a
database.) Because of these reasons, in databases, data is
usually optimised. Static SO of queries must be efficient.

In CEP, evaluation is data-driven. Standing known and
available queries are continuously evaluated against events
arriving on streams. Streams are unbounded, potentially
infinite, never available at once and their contents is often
unknown. Query answers are computed in multiple (possibly
arbitrarily many) evaluation steps. Each step takes place as

soon as events become available. Ad hoc queries are not typ-
ical for CEP. They usually have to wait until relevant events
arrive. They cannot be evaluated immediately since (some)
past relevant events are probably already garbage collected.
Because of these reasons, in CEP, queries are usually op-
timised. Their static SO may rely on more complex and
expensive algorithms than static SO of database queries.
2) Time-awareness

In databases, tuples and integrity constraints are valid
until update.1 Query satisfiability can be determined at
compile time.
In CEP, events occur, constraints are valid and queries

are satisfiable during particular periods of time. Occurrence
time of events and validity time of constraints is their in-
herent part. Validity time of constraints and time periods
during which queries are satisfiable can be determined by
application states, i.e. their exact duration is usually known
at runtime. Therefore, a new kind of metadata is required
for SO of CEP. This metadata must (1) formalise applica-
tion states to allow for formulating CEP constraints and
queries in the context of states to increase the expressive-
ness of constraints and queries, (2) capture complex tempo-
ral and causal relations between events and states as needed
in many various CEP applications, and (3) represent an ar-
bitrary number of parallel processes since in real life applica-
tions their number is not known beforehand. These require-
ments are illustrated by the use cases in Section 3. To cope
with them, Instantiating Hierarchical Timed Automata are
introduced in Section 4.
3) Materialised views

In databases, views are usually defined to keep queries
short and readable. View maintenance is rather expensive
because tuples of a view can be manually inserted, changed
and deleted. Therefore, views are usually not materialised
and, as a consequence, multi-query SO is limited.
In CEP, the relatively few results of all queries are usually

materialised in order to delete relatively many base events
and states. Derived events and states can be inserted, states
can be changed but neither events nor states can be manu-
ally deleted (they are garbage collected). Hence, view main-
tenance in CEP is cheaper than in databases and views are
usually materialised in CEP. As a consequence, multi-query
SO plays a more important role in CEP than in databases.
Summarising, SO of event queries differs from SO of data-

base queries as follows: (1) Static SO of event queries may
rely on more complex and expensive algorithms than static
SO of database queries. (2) A new kind of metadata is
required for SO of CEP. (3) Multi-query SO plays a more
important role in CEP than in database systems.
Each section of this paper corresponds to a chapter of

the PhD work. They are related work (Section 2), use cases
(Section 3), IHTA (Section 4), ESCL (Section 5), constraint-
based subsumption (Section 6), the SO algorithm for CEP
(Section 7), and finally future work (Section 8). Each section
briefly describes overall ideas, done work and open issues.

2. RELATED WORK
Section 2.1 is devoted to the classification of the approaches

on SO of CEP according to four criteria. With the help
of these classifications, the approach presented in this arti-

1Disregarding soft constraints that are not necessarily al-
ways enforced.

cle is motivated. Section 2.2 briefly describes (Hierarchical)
Timed Automata upon which IHTA are based.

2.1 Approaches on SO of CEP
1) Regarding the way of expressing application semantics,

the approaches are divided into two groups, namely SO by
means of either constraints or queries themselves.

Constraints are formulated in DDL [22], DTD [37, 36],
[27, 28], [16], [24], [23], [32], as regular expressions [19], [18],
[21], [38], denial rules [17], or language independent formu-
las [37, 36], [16], [21], [8], [5], [39], [4, 33]. No approach uses
a constraint language which is tailored to the peculiarities
of CEP discussed in Section 1. Most approaches consider
particular kind(s) of constraints to a limited extent. These
kinds of constraints are conditions on event data [19], [18],
[5], [38], cardinality constraints [37, 36], [16], [22], [5], [39],
[4, 33], temporal [37, 36], [16], [19], [18], [21], [22], [8], [5],
[38], [17] and causal dependencies [37, 36], [17]. Constraints
are expressed only on events. They do not involve applica-
tion states.

Not only constraints but also queries capture application
semantics. Hence, they can be used for the SO of CEP as
done in [7], [20], [26], [13], [12], [30], [3], [9, 31].

No approach describes the application workflow by au-
tomata and uses the semantics captured by them (e.g., tem-
poral and causal dependencies, states) for SO of CEP.2

2) According to the time at which SO happens, the ap-
proaches are classified into static, dynamic, or both.

Most approaches are static [27, 28], [16], [32], [21], [26],
[22], [30], [9, 31], [7], [20], [13]. They rely upon applica-
tion semantics which is known at compile time and does not
change at runtime.

There are some dynamic approaches. In [5], constraints
are derived from the event stream. [38], [18] use constraints
arriving on streams. [39], [12], [4, 33] rely on stream rate.
In [17], [8], [24], constraints are known at compile time.
They do not change at runtime but they are applied at
runtime. [3] dynamically selects time intervals upon which
query results are shared.

[37, 36], [23], [19] allow both static and dynamic SO of
event queries.

3) Concerning language independency, there are numerous
specific and few general approaches.

Some approaches are specific for XML data streams and
XPath [24], [23] or XQuery [37, 36], [27, 28], [16], [32]. How-
ever the ideas of these approaches are independent from an
event format or a query language. These approaches have
poor event concept. An event is an XML document (or even
a single tag) without occurrence time.

Other approaches are tailored to particular relational alge-
bra operator(s) and therefore to particular kind(s) of queries.
Much attention has been paid to join [19], [18], [8], [5], join
combined with count [22], join combined with selection [13],
[12], join or grouping [38], join, selection or projection [39],
equi-join or aggregation [21], sliding-window aggregates [30],
[3], event sequence or conjunction [17]. Join and aggregation
are expensive operations requiring storage of relevant events
and blocking of queries which cannot be evaluated as long
as not all events are available.

Few approaches are general [7], [20], [26], [9, 31], [4, 33].
4) With respect to the implemented SO technique, there

2[17], [32], [36], [23] transfer queries into finite automata and
evaluate the automata while events arrive.

are approaches aiming at:
– Load distribution [21], [26],
– Storage minimisation [27, 28], [5], [38], [12], [30], [9, 31],
– Efficient data structures [7], [20],
– Computation sharing [16], [13], [12], [30], [3],
– Efficient join algorithms [19], [18],
– SO heuristics such as join elimination [22] and detection
of (temporary) unsatisfiable (sub) queries [37, 36], [24], [8],
[38], [17],
– Query plan rewriting [39], [4, 33], and finally
– Query compilation [37, 36], [27, 28], [16], [24], [23], [32].
The SO approach presented in this article is tailored to

data-driven, time-aware CEP relying on unbounded streams.
It highlights the necessity of application states for the SO
of CEP. States make queries and constraints more expres-
sive, flexible, readable, and their evaluation more efficient.
According to the above classifications this approach is char-
acterised as follows. It relies on Instantiating Hierarchical
Timed Automata (IHTA) and constraints expressed in the
Event Stream Constraint Language ESCL. IHTA formalise
states and capture involved temporal and causal constraints
for an arbitrary number of parallel processes. ESCL con-
straints are short but expressive logic formulas completing
IHTA with additional knowledge about events and states.
The approach is static and general. It aims at query plan
rewriting involving the implementation of SO heuristics, com-
putation sharing, and storage minimisation.

2.2 Timed Automata
Timed Automata [2], [6], [1], [29] are (finite) automata

the edges of which are labeled with events and temporal
constraints on local clocks. Event data and event occur-
rence time are neglected. Timed Automata have been ini-
tially developed for stream verification, in particular, for
the expression of constant bounds on the delays between
events [2]. Later, Timed Automata have also been used for
solving scheduling problems [1]. To the best of our knowl-
edge, they have not been considered as metadata for SO.
In contrast to Timed Automata, Instantiating Hierarchi-

cal Timed Automata (IHTA) introduced in Section 4 allow
access to event data and define temporal constraints on the
occurrence time of matched events. IHTA are more expres-
sive, flexible, and readable than Timed Automata.
It is difficult, if not impossible, to model real life systems

of a certain size and complexity using flat automata. Most
systems can be divided into relatively independent manage-
able processes. To this end, Hierarchical Timed Automata
(HTA) [15] have been introduced. They support hierar-
chy of states and therefore modularisation. HTA allow for
modelling a fixed number of processes running in parallel.
However in real life applications their number is often un-
bounded. Therefore, IHTA adapt many ideas and notions
of HTA to an arbitrary number of parallel processes. IHTA
are more expressive than HTA.

3. USE CASES
As illustrative examples of the approach, two substantially

different use cases are considered, namely an online auction
and a sensor network. The difference is that an online auc-
tion use case has a rather involved workflow determining the
structure of the stream. This workflow consists of multiple
relatively independent processes (or workflows) running ei-
ther sequentially or in parallel. This workflow reflects the

application logic determined by the rules according to which
an auction takes place. In a sensor network use case in con-
trast, there is no complex workflow (but there are states
such as normal, critical, emergency). The application logic
is determined by the physical laws.

Let us consider an online auction system allowing an ar-
bitrary number of auctions to run in parallel. Each auction
runs without time limit (but with a finite number of items
to present), independently from the other auctions and ac-
cording to a predefined workflow. Bidders register during
the first 20 minutes in each auction. Afterwards, if at least
two bidders are enrolled, at least one item is presented and
the registered bidders can bid for it. Items are presented
and possibly sold one after another in each auction. A bid
for an item must be higher than a previous bid for the item.
Two bids or hammer beats for an item are called sequent if
they are not apart by another bid or hammer beat for the
item. Two sequent bids for an item are at most 30 seconds
apart. If a bid is followed by no other bid within 30 seconds,
a hammer beat takes place. After a hammer beat there
might be further bids. In this case the auction proceeds as
described above. If there are no bids within 30 seconds after
a hammer beat, then a further hammer beat takes place.
After three sequent hammer beats, the item is sold at the
price of the last bid to the bidder who issued this bid. Af-
terwards, the auction proceeds with another item. If there
are no bids within 30 seconds after an item is presented,
the item is not sold, and the auction proceeds with another
item. When all items of an auction have been presented, the
auction terminates.

This use case inspired from [38] is interesting because it
has a rather involved workflow with multiple states (bidder
enrolments, item offers, etc.) during which different events
arrive and numerous diverse and complex dependencies be-
tween events hold (like between bids and hammer beats).
The use case demonstrates that events must be treated dif-
ferently depending on states in which they occur. For exam-
ple, for each hammer beat event for an item it is essential to
know how many sequent hammer beat events for the same
item precede it. Only after the third sequent hammer beat
event for an item no further bid events for the same item may
follow. All queries asking for bid events can compute their
answers and irrelevant bid events can be deleted. One way
to express this knowledge is to count the number of sequent
hammer beat events for an item every 90 seconds. Such con-
straints are rather unreadable and in many cases even not
expressible since the time window is often unknown. The
way that we propose is to formalise the application work-
flow as timed automata (Section 4) and to put queries and
constraints in the context of states in which they are satis-
fiable or valid (Section 5). Besides, this use case shows the
need for modelling an unbounded number of parallel pro-
cesses like bidder enrolments or auctions.

Of course, not all CEP applications have comparably com-
plex workflows and dependencies. That is why a sensor net-
work use case will be considered in the future.

4. INSTANTIATING HIERARCHICAL
TIMED AUTOMATA (IHTA)

IHTA consist of states and transitions between them. Con-
sider Figure 1 depicting the workflow of an online auction
modelled as (simplified) IHTA.

Figure 1: An online auction modelled as IHTA

Each state of IHTA is either atomic or non-atomic. Non-
atomic states are IHTA themselves, e.g. the states Bidder
enrolment, Item offer, Auction, and Online sale in Figure 1.
All the other states are atomic. For the sake of readability,
the bidder enrolment processes (which can be rather com-
plex) are hidden within the state Bidder enrolment. Non-
atomic states may contain other non-atomic states so that a
hierarchy of states results (like in the considered use case).
Non-atomic states are modules allowing for readability,

changeability, reuseability, and instantiation to model an
arbitrary number of parallel processes as required in many
applications. In the auction example, there is an arbitrary
number parallel auctions with an arbitrary number of bidder
enrolment processes running in parallel at the beginning of
each auction. Every time a new auction or bidder enrolment
begins, a new instance of the non-atomic state Auction or
Bidder enrolment is created. Thus, an arbitrary number of
instances of the same non-atomic state can exist at the same
time, expressing that an arbitrary number of processes run
in parallel. This feature of IHTA is new, not present in other
formalisms [15], [25] allowing a fixed number of parallel pro-
cesses to be modelled.
To represent the current state of each instance and thus

the entire state of the application, automaton configuration
is adapted from [15] to support an unlimited number of par-
allel processes. Automaton configuration is a dynamic struc-
ture containing the information about all running instances
of non-atomic states, including the current state and the
bindings of local variables of each instance.
The edges between states of IHTA are labeled by (1) in-

complete and unordered event queries allowing access to
data attributes and (2) temporal constraints on the occur-
rence time of events matched by the queries. (Event occur-
rence time is a time interval. Its bounds are saved as the
values of time attributes of the respective tuple.) Both event
queries and temporal constraints are expressed in ESCL
(Section 5). Despite their expressiveness and flexibility, they
are short and readable. These features of IHTA are new,
not present in the other kinds of automata. Temporal con-
straints are omitted in Figure 1 for the sake of brevity.
Consider the transition between the states Bidder enrol-

ment and 2 in Figure 1. Its incomplete and unordered query
q = itemDescription{{A, I*→itemID[unique Y*]}} matches
events of type itemDescription with attributes auctionID
and itemID in arbitrary order since q is unordered (denoted
by curly braces). Events matched by q may have other at-
tributes besides auctionID and itemID since q is incomplete
(denoted by double braces). auctionID and itemID are ex-
plicit attributes of q. Other attributes of events matched by
q are implicit attributes of q. While matching, the variable

Y* is bound to the value of attribute itemID of matched
events and the variable I* to the whole term itemID[unique
Y*]. The events matched by q must have the same value of
the attribute auctionID as an event matched by the query
auctionBegin{{A*→auctionID[unique X*]}} (consider Fig-
ure 1). A variable which is bound while matching is flagged
with *, in contrast to a variable without * which is merely
a place holder for its recent binding within an instance of
the non-atomic state. The keyword unique means that its
respective variable can be bound to a value only once.

IHTA are seen as a specification of the stream, i.e., no
other events arrive during each state besides those described
by IHTA. The automata capture the following kinds of con-
straints: (1) Cardinality constraints involving only explicit
data attributes of the queries of IHTA. (2) Functional de-
pendencies between time attributes. (3) Functional depen-
dencies expressing equality of the values of explicit data at-
tributes of the queries of IHTA. In some applications (like
in the online auction) dozens of constraints can be auto-
matically derived from IHTA. It is much easier, safer, and
clearer for the user to specify IHTA instead of numerous
complex constraints. Since the SO method for databases
can be adapted to CEP (Section 7) and the method is based
on constraints, constraints could be derived from IHTA and
the adapted method could be applied to them. Alternatively
an extra method working with IHTA directly could be devel-
oped. The choice depends on the efficiency of the evaluation
methods and is subject of future work as well as the formal
semantics of IHTA and their translation into rules deriving
states to allow queries and constraints on states.

5. EVENT STREAM
CONSTRAINT LANGUAGE (ESCL)

To keep IHTA readable, only a part of the application
semantics is expressed by them. Only those attributes of
event queries of IHTA are explicit which allow to relate each
event of the stream to at least one instance of non-atomic
states. Therefore the following kinds of user-defined con-
straints complete the IHTA: (1) Cardinality constrains and
functional dependencies involving implicit data attributes of
the queries of IHTA. (2) Functional dependencies expressing
other relations as equality of the values of the explicit data
attributes of the queries of IHTA. These constraints will be
expressed in ESCL, the constraint language tailored to CEP.
ESCL constraints are logic formulas capturing complex car-
dinality, temporal, causal and other dependencies between
events and states. ESCL constraints are defined in the con-
text of states which brings the following advantages: (1) The
same events are treated differently depending on the state
in which they occur. Due to states simple but expressive

constraints are possible because the user does not have to
manually describe all possibly numerous and involved event
sequences of an arbitrary length leading to a state. (2) States
make SO of event queries more efficient since only those con-
straints are relevant for a query which are valid during the
state(s) the query is specified (or is satisfiable) within.
The grammar and the declarative semantics of ESCL de-

fined by a Tarski-style model theory are given in [35]. The
operational semantics of the language is the SO algorithm
briefly described in Section 7. It is a subject of future work.

6. CONSTRAINT-BASED SUBSUMPTION
The SO algorithm for CEP relies on constraint-based sub-

sumption.

Definition 1. Let C be a set of constraints. Let Q1 and
Q2 be conjunctions of incomplete and unordered event or
state queries and conditions on events or states matched by
them. Q1 subsumes Q2 if all events and states matching Q2

are also matched by Q1 for all streams satisfying C.

We are aiming at decidable constraint-besed subsumption
algorithm. Its formal definition and implementation are sub-
jects of future work. This algorithm is different from the one
used by the SO method for database queries [11] because of
incomplete and unordered queries and consideration of a set
of constraints. At the moment subsumption between two
single incomplete and unordered queries is defined in [10].
The algorithm is in O(n!n) where n is the sum of sizes of
two queries. A SO method with such a complexity is not
advantageous. Whether the complexity of the subsumption
algorithm can be improved will be investigated in the future.

7. SO ALGORITHM FOR CEP
The algorithm we are developing consists of two steps,

namely query compilation and query choice. Query compi-
lation is executed by the event residue method. For each
initial query q the method extracts relevant portions of con-
straints, called residues, and uses them to generate a set of
alternative semantically constrained queries. Each seman-
tically constrained query q’ is syntactically different from q
but semantically equivalent to q (i.e. q’ returns the same
results as q for any streams satisfying the constraints) and
can possibly be evaluated more efficiently than q. Whether
a residue contributes to the optimisation of q is decided us-
ing SO heuristics. As the most overviews of SO techniques
for database queries agree [11], [34], [14], there are the fol-
lowing six primary SO heuristics: result by contradiction,
result by transformation, predicate elimination, predicate
introduction, join elimination, and join introduction. SO
of event queries can surely rely on these heuristics which
have to be slightly adapted to cope with states. No addi-
tional heuristics are required for the SO of CEP. The event
residue method is an adaption of the residue method for SO
of database systems [11] to CEP.
During query choice, the evaluation costs of all alternative

semantically constrained queries for q are determined using
cost models, and one of them with the lowest (estimated)
evaluation cost is processed instead of q.
The formal definition and implementation of the SO algo-

rithm for CEP is a subject of future work.

8. FUTURE WORK
The following research directions will be investigated:

1) Further differences between SO of database systems and
SO of CEP besides those described in Section 1.
2) Elaboration of the sensor network use case.
Formal definitions and implementation of (3) IHTA, (4) the
constraint-based subsumption, and (5) the SO algorithm for
CEP.
6) Dynamic SO of CEP, e.g. SO of queries at their runtime
depending on current stream rate.
7) Query-based SO of CEP, i.e. SO of queries using queries
themselves (consider the first classification in Section 2.1).
8) Constraint propagation.
As mentioned in Section 1, in databases, views are usually
not materialised. Therefore, they are reduced to their base
relations during SO and constraints are defined on base re-
lations [11]. In CEP in contrast, views are usually mate-
rialised. Hence, constraints have to be defined for derived
events and states as well. In order to reduce the number of
manually defined constraints, some of them can be automat-
ically propagated from base events and states to the derived
events and states. For example, functional dependencies and
cardinality constraints can be propagated. Some constraints
can be derived from queries. This is a practically necessary
and interesting future research direction. We are not aware
of existing approaches to this topic.
9) Two-stage query answering, namely query answering us-
ing constraints and query answering using data. Consider
the query asking for all bidders participating in an auction
and being registered for this auction. Instead returning a
long list of all registered bidders, the query could be first
answered using the constraint stating that all bidders par-
ticipating in an auction are registered for it. And then, if
required by the user, the list of registered bidders can be
returned. This more qualitative and informative query an-
swering is subject of future work.

9. ACKNOWLEDGMENTS
We kindly thank S. Brodt, S. Giessl, S. Hausmann, and

T. Dang for many suggestions for improvement of this work.
This research is founded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft) within the project
“QONCEPT – Semantic Query Optimisation in CEP Tech-
nologies” under reference number BR 2355/1-1.

10. REFERENCES
[1] Y. Abdeddaim, E. Asarin, and O. Maler. Scheduling

with Timed Automata. Elsevier Science, 2006.

[2] R. Alur and D. L. Dill. Automata for modeling
real-time systems. In Proc. Int. Conf. on Automata,
Languages and Programming, 1990.

[3] A. Arasu and J. Widom. Resource sharing in
continuous sliding-window aggregates. In Proc. Int.
Conf. on Very Large Database, 2004.

[4] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 2000.

[5] S. Babu, U. Srivastava, and J. Widom. Exploiting
k-constraints to reduce memory overhead in
continuous queries over data streams. ACM
Transactions on Database Systems, 29(3), 2004.

[6] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 87–124. Springer, 2004.

[7] I. Botan, G. Alonso, P. M. Fischer, D. Kossmann, and
N. Tatbul. Flexible and scalable storage management
for data-intensive stream processing. In Proc. Int.
Conf. on Extending Database Technology, 2009.

[8] F. Bry and M. Eckert. Temporal order optimizations
of incremental joins for composite event detection. In
Proc. Int. Conf. on Distributed Event-Based Systems.
ACM, 2007.

[9] F. Bry and M. Eckert. On static determination of
temporal relevance for incremental evaluation of
complex event queries. In Proc. Int. Conf. on
Distributed Event-Based Systems, 2008.

[10] F. Bry, T. Furche, and B. Linse. Simulation
subsumption or Déjà vu on the Web. In Proc. Int.
Conf. on Web Reasoning and Rule Systems, 2008.

[11] U. S. Chakravarthy, J. Grant, and J. Minker.
Logic-based approach to semantic query optimization.
volume 15, pages 162–207. ACM, 1990.

[12] J. Chen, D. J. DeWitt, and J. F. Naughton. Design
and evaluation of alternative selection placement
strategies in optimizing continuous queries. In Proc.
Int. Conf. on Data Engeneering, pages 345–356, 2002.

[13] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A scalable continuous query system for
Internet databases. SIGMOD Rec., 29(2), 2000.

[14] Q. Cheng, J. Gryz, F. Koo, T. Y. C. Leung, L. Liu,
X. Qian, and K. B. Schiefer. Implementation of two
semantic query optimization techniques in DB2
universal database. In VLDB, pages 687–698, 1999.

[15] A. David and M. D. Mölle. From HUPPAAL to
UPPAAL - a translation from Hierarchical Timed
Automata to Flat Timed Automata, 2001.

[16] Y. Diao and M. Franklin. Query processing for
high-volume XML message brokering. In Proc. Int.
Conf. on Very Large Data Bases, pages 261–272.
VLDB Endowment, 2003.

[17] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura,
W.-P. Hsiung, and K. S. Candan. Runtime semantic
query optimization for event stream processing. In
Proc. Int. Conf. on Data Engineering, pages 676–685.
IEEE Computer Society, 2008.

[18] L. Ding, N. Mehta, E. A. Rundensteiner, and G. T.
Heineman. Joining punctuated streams. In Proc. Int.
Conf. on Extending Database Technology, 2004.

[19] L. Ding, E. A. Rundensteiner, and G. T. Heineman.
MJoin: A metadata-aware stream join operator. In
Proc. Int. Workshop on Distributed Event-Based
Systems, pages 1–8. ACM, 2003.

[20] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, J. A.
Pereira, K. A. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast
publish/subscribe systems. 2001.

[21] P. M. Fischer, K. S. Esmaili, and R. J. Miller. Stream
schema: Providing and exploiting static metadata for
data stream processing. In Proc. Int. Conf. on
Extending Database Technology, 2010.

[22] L. Golab, T. Johnson, N. Koudas, D. Srivastava, and

D. Toman. Optimizing away joins on data streams. In
Proc. Int. Workshop on Scalable Stream Processing
System, pages 48–57. ACM, 2008.

[23] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In Proc. Int. Conf. on Database Theory, 2002.

[24] A. K. Gupta and D. Suciu. Stream processing of
XPath queries with predicates. In Proc. Int. Conf. on
Management of Data, 2003.

[25] D. Harel. Statecharts: A visual formalism for complex
systems. volume 8. Elsevier Science, 1987.

[26] T. Johnson, M. S. Muthukrishnan, V. Shkapenyuk,
and O. Spatscheck. Query-aware partitioning for
monitoring massive network data streams. In Proc.
Int. Conf. on Management of Data, 2008.

[27] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. FluXQuery: An optimizing XQuery
processor for streaming XML data. In Proc. Int. Conf.
on Very Large Data Bases, 2004.

[28] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. Schema-based scheduling of event
processors and buffer minimization for queries on
structured data streams. In Proc. Int. Conf. on Very
Large Data Bases, 2004.

[29] S. Lasota and I. Walukiewicz. Alternating Timed
Automata. volume 9. ACM, 2008.

[30] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A.
Tucker. No pane, no gain: Efficient evaluation of
sliding-window aggregates over data streams.
SIGMOD Record, 34(1):39–44, 2005.

[31] J. Liu, Q. Wu, and W. Liu. Temporal restriction query
optimization for event stream processing. In Advances
in Web and Network Technologies, and Information
Management, 2010.

[32] B. Ludäscher, P. Mukhopadhyay, and
Y. Papakonstantinou. A transducer-based XML query
processor. In Proc. Int. Conf. on Very Large Data
Bases, pages 227–238. VLDB Endowment, 2002.

[33] S. Madden, M. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 49–60. ACM, 2002.

[34] G. N. Paulley and G. K. Attaluri. Semantic query
optimization in object-oriented databases.

[35] O. Poppe and F. Bry. The grammar and the
declarative semantics of ESCL. Research report,
Institute for Informatics, University of Munich, 2011.

[36] H. Su, E. A. Rundensteiner, and M. Mani. Semantic
query optimization in an automata-algebra combined
XQuery engine over XML streams. In Proc. Int. Conf.
on Very Large Data Bases, 2004.

[37] H. Su, E. A. Rundensteiner, and M. Mani. Semantic
query optimization for XQuery over XML streams. In
Proc. Int. Conf. on Very Large Data Bases, 2005.

[38] P. A. Tucker, D. Maier, T. Sheard, and P. Stephens.
Using production schemas to characterize strategies
for querying over data streams. IEEE Transactions on
Knowledge and Data Engineering, 19(9), 2007.

[39] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proc. Int. Conf. on Management of Data, 2002.

