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Zusammenfassung

Die Farbkomposition ist eines der auffälligsten Merkmale, die an Kunstwerken wahrgenom-
men werden kann. Wenig überraschend verweisen Nutzer_innen des ARTigo Bildverschlag-
wortungs-Spiels sehr häufig auf Farbeindrücke um die visuellen Eigenheiten eines Kunst-
werks zu beschreiben. Diese Arbeit widmet sich der Entwicklung eines algorithmischen
Ansatzes zur Extrahierung von Farbpaletten aus Bildern von Kunstwerken zur automa-
tischen Verschlagwortung markanter Farben. Den Herausforderungen im Entwicklungspro-
zess folgend, wird zunächst auf die digitale Darstellung von Farbbildern und verschiedenen
Farb-Modellen eingegangen. Anschließend wird eine umfangreiche Analyse und Evaluation
aktueller Techniken zur Bildsegmentierung und Farbquantifizierung durchgeführt, mit deren
Hilfe die geeignetste Lösung mit Blick auf den Datenbestand von Kunstwerken ausgewählt
wird. Weiter wird die gewonnene Farbpalette auf kompositionale Eigenschaften überprüft,
unter Rückgriff auf die Farbkompositionstheorie des Kunst- und Farbtheoretikers Johannes
Itten. Abschließend werden die so gewonnenen Farbinformationen auf sowohl elementare
wie extensive Farbbegriffsmodelle abgebildet, wobei insbesondere auf das RAL Farbspezifi-
kationsmodell zurückgegriffen wird.

Abstract

The colour composition of an art image is one of the most prominent feature being recog-
nized. Unsurprisingly colour impressions are features users of ARTigo image tagging game
are very frequently using to characterize visual characteristics of art images. In this thesis
an algorithmic approach on extracting a colour palette has been developed, that allows
automatic labelling of prominent colours for art images. Following challenges in the devel-
opment process, first, the computational representation of colour images and different colour
representation models are addressed. Then, a comprehensive discussion and evaluation of
state-of-art image segmentation techniques and colour quantisation methods is conducted,
in order to select the best combination of techniques with regard to art images as objects of
analysis. The extracted colour palettes are further evaluated and filtered on compositional
importance by consulting colour composition theory from art theorist Johannes Itten. Fi-
nally the extracted colours are mapped on basic and extensive colour naming systems using
especially the RAL colour specification model.
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1 Introduction
A colour which would be ‘dirty’ if it were the colour of a wall,

needn’t be so in a painting

- Ludwig Wittgenstein, Remarks on Colour [WAMS07, p. 28]

As the British philosopher Ludwig Wittgenstein stated, the meaning of colours on paintings
or artworks, does not necessarily correspond to our ordinary approach on the importance
of colour perception. Artworks rather seem to attract special interest and attention on
chromatic experiences. This special interest on colours can be seen in the ARTigo1 art
image2 tagging game, where 5 of the 10 most used terms to describe art images are refer-
ring to chromatic features3. The interdisciplinary ARTigo research project [WBBL13] was
developed by researchers from the departments of art history and computer science at the
University of Munich (LMU) by implementing the games with a purpose approach (GWAP)
[vAD08] on key-wording art works. ARTigo provides a web platform for playing a variety of
image tagging games, motivating users through its gamification incentives, to provide rich
empirical keyword tagging on art images. Users thereby explore art history on a playful
way and can further investigate art history through semantic artwork search engines.
The dominance of colour to characterize images probably does not occur by incidence,
but due to the artists’ intentional application of colour as an instrument to achieve various
semantically enriched effects. Also there are multiple examples and dimensions in art history,
how colour was used to barrow semantical weight, like the representation of political power
with certain reserved colours, or liturgics’ colour usage principles. Therefore, a proper
indexing of art images with representative colour terms, that takes into account the specific
semantic role of colours in art images, provides a valuable understanding of themselves.
Due to the overwhelming amount of art images, an automatic colour analytic technique for
art images can support tedious work of spotting relevant colours terms, that provide high
recognition and suitable characterisation.
This thesis will therefore explore a technique for automatic colour extraction and indexing,
to support the tag based image classification platform ARTigo. Towards this goal, several
techniques will be explored, to build a colour index algorithm, that detects semantical
relevant parts of a art image, extracts feature colours on key regions, and eventually provides
a list of potential appropriate colour terms. This task is faced with several challenges how to
represent colour computationally in an appropriate manner (Section 3), how to efficiently
generate coherent colour segments (Section 4.1) and how to extract relevant palettes of
colours, to match a set of possible anticipated (basic) colour terms (Section 6.1). This thesis
will try to discuss selected solutions, suggested in relevant literature and hence describes a
implementation of a colour extraction algorithm, written in Python programming language,
that suggests and validates colour terms as tags for the ARTigo image database.

1http://www.artigo.org
2Here and in the following, the term artwork will be used to refer to the actual piece of art, while art image
denotes the visual representation of art works (computational in this context).

3black, blue, red, white and green are the five most assigned chromatic tags with black even providing the
second most used tag on the game
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On the side of developing algorithmic colour extraction and labelling, this project also gen-
erated lively techniques for colour space exploring, like 3-dimensional colour histograms (see
Section 3.2). These and further informative processing interim results have been provided
on a web-based interface. Users, interested in computer-assisted image analysis, thereby can
explore interactively algorithmic processing to gain semantic information based on colour
distribution (Section 7.1).
In order to meet art specific challenges on colour usage, colour composition theory has been
consulted as approach to discover prominent chromatic regions and improve the selection
outcome. Artists often accentuate the importance of specific regions or represented objects
by applying complementary colour composition to emphasize semantic weight. The colour
composition theory developed by art scientist Johannes Itten (Section 5.2) will be taken
into account, by providing a sophisticated framework that can be translated to algorithmic
colour analysis (Section 7.1).
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2 Related Work

In scientific literature the field of (semantically supported) colour extraction and segmen-
tation is widely discussed and different approaches have been developed and tested. The
following overview on selected research projects tries to apprehend the three major research
aspects that guided the development in this thesis: Colour extraction from research on
image retrieval, comparison of image segmentation and quantification approaches and the
choice of appropriate colour naming models
In general, most of colour interested research has been done for image retrieval, i.e. the
technique of indexing images for indexed features based queries, like the feature of a domi-
nant colour. A highly referenced work was published by John R. Smith and Shih-Fu Chang
from Columbia University, New York in 1995 [SC95], presenting an automatic single colour
extraction method for image query. They identified regions in images fitting to a predefined
colour set with further determination colour regions’ location and size. Thereby they offered
a enriched query on chromatic as well as spatial parameters regarding colour regions.
Another interesting approach was presented by Y. Liu, D. Zhang, G. Lu and W-Y. Ma
from Monash University, Australia in corporation with Microsoft Research Asia, China in
2004 [LY13]. They also developed a region-based image retrieval system, allowing to retrieve
images with high-level semantic colour names by segmenting images using HSV colour space.
They argue that HSV colour space (see Section 3.1.1.2) provides a proper colour model to
distinguish human perceptional qualities of colour separating hue, saturation and luminance.
The image query was done by selecting specific regions on images and retrieving similar
images with low distance both, colour location and colour value.
Y. Sirisathitkul, S. Auwatanamongkol and B. Uyyanonvara [SAU04] from Thammasart Uni-
versity in Bangkok, Thailand in 2004 further developed the segmentation tools being used
to improve colour constancy on quantisation processing by comparing several earlier and
state-of-art segmentation techniques. With few optimisations and pre-selecting colour on
variance, they achieve noticeable lower quantisation errors. The major profit of this work
thereby lies in its extensive discussion and comparison of “splitting algorithms” and “cluster-
based approaches”, which have been incorporated as quantisation and segmentation methods
in Sections 4.2 and 4.1. Another profound comparison of state-of-art image segmentation
algorithms was given by L. Lucchese and S.K. Mitra from University of California, Santa
Barbara in 2001 [LM01] providing an in depth analysis on segmentation strategies with
respective best-case recommendations.
Many colour analysis approaches took “real-world” images as a basis, with the advantage
of getting satisfactory training data for machine learning approaches. J. van de Weijer, C.
Schmid and J. Verbeek from University Grenoble, France [vdWSVL09] proposed a learning-
based colour naming method that used training data from ebay images, which usually show
good colour description. Although they could show that colour names learned from real
world images outperform colour names based on predefined colour sets, the machine learning
approach is not taken into account in this thesis. The main differences to [vdWSVL09] are
given with less reliable training data as well as art images as data basis with less clear-cut
colours represented than Weijer et al. were given using ebay images.
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The work of J.M. Corridoni, A. del Bimbo and E. Vicario from University of Florence,
Italy in 1997 [CDP99] bears more relevance. Corridoni, del Bimbo and Vicario developed
an image retrieval method, exclusively on paintings as data basis. They yet made use of
segmentation processing and used visual filters to character chromatic characterisations of
images, incorporating spatial features of colour composition into analysis. Most importantly,
they introduced the strategy to consult colour semantic theory from art theorists of the 20th
century to improve selection strategies for chromatic features. However, they provide less
information in implementation compared to the rich discussion on strategies accommodated
to analyse art-paintings in particular.
The European research group of K. Ivanova, P. Stanchev and K. Vanhoof from University of
Sofia, Bulgaria [ISD08, ISVD12, IS09, Iva11, ISV+12] provides very comprehensive research
on colour based analysis of art images. The research group developed a well-engineered
retrieval system APICAS (Art Painting Image Colour Aesthetics and Semantics), which
allows extraction of several high-level semantic visual features. APICAS provided colour
distribution analysis by quantisation of image colour in HSL colour space, a dominant colour
selector and colour layout as well as texture analysis. The leading analysis schema has been
adopted by MPEG-7 description system. A major knowledge gain of this research project
was given by identifying colour palette as powerful tools for creating profiles of art painting
images [ISV+12]. A similar approach is presented in Section 5.2 of this thesis.
The third aspect in relevant scientific literature affects the choice of appropriate colour
naming models, that allows to close the semantic gap between numerical colour specification
and semantical high-level colour naming practise. While many of the above mentioned
research approaches are relying on a singular colour naming model, many research projects
have been undertaken to obtain empirical approved identification of reliable colour name
models.
J. Heer and M. Stone from Stanford University in 2012 [HS12] developed a method for
constructing a probabilistic model of colour naming from a large, unconstrained set of
human colour name judgements. As importantly they also discussed several colour naming
models and palette designs on colour saliency and colour name distance. This analysis
allows to select a colour naming model suitable for respective requirement. More generally,
most of the colour naming studies have been devoted to the debate, whether the basic colour
term survey of B. Berlin and P. Kay [KF09] delivered a reproducible model, by defining 11
to 12 basic colour terms.
The study of V. Setlur and M. Stone [SS16] and D. Conway’s experimental comparison of
natural language colour naming models [Con92] approved Berlin and Key’s findings largely,
but also emphasised the need for further expansion of Berlin and Key’s limited list of colours
to include more colour hues like ‘teal’ or ‘apricot’. See Section 6.1 for further discussion on
colour naming models.
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3 Computational Representation of Colour and Colour
Distribution

The ARTigo database offers a collection of photographs and scans of art images, created by
artists using various materials and techniques. To explore the accurate sensation and appeal
an art work induces in human perception most accurately, one certainly has to refer to the
original material. But the image reproductions in the ARTigo image database also allows
to set different art works with various colour impressions in compilation and to compare
primary colour impressions. This opportunity promises new knowledge on colours as a
central and striking quality of art images and new perceptions on similarities, contrasts or
evolutions of colour characteristics. This section addresses first a discussion on how colour
is generally represented in digital images. Then, a section on the algorithmic approach on
how to process images, extracting primary and important colours follows, including insights
of colour modelling.

3.1 Digital Colour Images and Colour Spaces

Colour images are digitally represented in various ways. Depending on the intended appli-
cation field different techniques of colour image representation have been developed and are
still used simultaneously. Colour image representation techniques can be divided into two
classes with regard to their primitives used: pixel-based and vector-based images. [BB16]
Vector based colour images use assemblages of polygons assigned with style properties.
These style definitions allow to assign solid colour values as well as colour flows to polygons.
Pixel based colour images are made up by 2-dimensional arrays (corresponding length and
height of a picture) to store pixels as primitive elements. Every pixel defines its colour
information independently, with equally coloured image areas are assemblies of pixels with
equal or slightly varying colour information. Therefore, colours in pixel-based images are
distributed independently and any perceived coherence, e.g., solid colour areas or colour
flows, are information not stored in the picture primitives themselves but rather are the
result of unifying colour perception (see Figure 9).
Most of the pixel based colour images including JPEG [Itu93] and PNG [Duc03] are build
up by primary colours red, green and blue (RGB) [SBS99]. These image formats typically
take 8 bits for every component and therefore, require 3∗8 = 24 bit for each colour pixel. In
professional applications, colour depths of 30, 36 or even 42 bits per pixel are also common.
Most of the image formats make usage of 3 colour components per pixel, depending on the
used colour space, but there are also image formats common in pre-press application, which
represent colours with four or more components based on the subtractive CMYK colour
model. Another important technique to store colour information in pixel based images is
used in indexed or palette images. These images are restricted in the number of different
colours. Individual pixels are assigned to certain colours from the additionally given colour
table. This technique allows efficient storage but is less accurate in colour rendering. In an
indexed image the number of different colours is usually very restricted. The GIF image
standards allows up to 512 distinct colours, while a true colour image in 24 bit encoding
allows 224 = 16 Million distinct colours being represented [Inc90].
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3.1.1 Colour Models and Colour Spaces

Colour spaces contain the possible colour gamut, i.e., the range of definable colours, or-
ganised in specific mathematical models. These mathematical models, then called colour
models, define the way in which colours can be represented as numeric tuples. Usually
colour models define triples of numbers (e.g. RGB, HSV, HSB, CIE*L*a*b) or use quadru-
ples (e.g. CMYK). Well known colour spaces are either hardware oriented, such as RGB and
CMYK, or user-oriented, such as HLS, HSB, CIEL*a*b* and CIEL*C*h*. While hardware
oriented colour spaces are tightly bound to technical reproduction with light sources (RGB)
or mixture of pigment colours in printing (CMYK), the user oriented colour spaces are the
most suited to support human-like perceptive analysis.[CDP99, p. 176] The determination
of a specific colour model as the most suited for an specific application has to consider the
specific characteristics and advantages of the different colour models.

3.1.1.1 RGB Probably the most commonly known colour space is spread out by the RGB
colour model. The RGB colour model constructs colours as mixtures of three primary light
colours red, green and blue with varying intensities. RGB colour system is popular in
computer programming [BB16, p. 303], since it is simple to manipulate and maps directly
to typical display hardware. Colours in RGB space are represented as triples of numbers
corresponding to the three primary colour axes. With RGB colour images often use 24 bit
per pixel as colour value, the axis values are positive numbers and lie in the range [0, 255].
Every possible colour ci therefore corresponds to a point within the RGB colour cube of the
form Ci = (Ri, Gi, Bi).
Modification and colour distance measurement reveal some disadvantages of the RGB colour
system. As hardware oriented colour system the metric or measured distance within the
colour space doesn’t correspond proportionally to human perception of colours. Modifying
different colours in the RGB space by the same amount can cause very different changes in
colour. For example, a slight modification of the red component produces highly perceivable
changes. Modifying the green component by the same amount, non-noticeable effects for
human perception can be observed. Additionally, the brightness change in this colour system
is not perceived as linear. And as a final disadvantage, the RGB colour system represents a
hardware related component model which makes it difficult to select a colour from a human
perspective, since we usually do not relate to colours as compositions of red, green and blue
light, but rather use classifications similar to hue, lightness and saturation.

3.1.1.2 HSV and HLS In order to address these disadvantages of RGB colour space and
offer much more perceptional oriented colour models HSV and HLS have been developed.
These colour systems have been established in many applications as they provide a more
intuitive way of selecting colours [IS09]. HSV and HLS are both user-oriented colour systems
that specify colours by three components hue, saturation and luminance or value. Often
the HSV system is also called HSB to reference Adobe’s renaming of “value” to the more
descriptive “brightness”. The HSV colour space is usually shown as an upside-down pyramid
or cone (see Figure 2), where the vertical axes corresponds to the V (value or brightness)
axes, the horizontal distance from the S axes as colour saturation and the angle to the H
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Figure 1: Representation of RGB colour model as 3D cube and a table of several colours located
on vertices (B, M, W, C, Y, G, S and R) and selected colour shades. All shades of grey
with K as an example lie on the diagonal between S and W [BB16, p. 305]

(hue) value. The black point is located at the tip of the cone and the white point in the
centre of the layer with maximum of value/brightness. While the colour model in principal
allows a cylindric colour space, colours with decreasing saturation values are mapped to the
back point at the tip, where saturation value is dispensable.
The HSL colour system defined by components hue, luminance and saturation provides a
slight modification of HSV. While the hue-component in bot systems are identical, HLS
corresponds to HSV to the vertical axis and the radius respectively with defining these axis
differently. HLS constructs a double pyramid with the white point on one and the black
point on the opposing tip (see Figure 3).

Figure 2: HSV colour space as cone
[Shab]

Figure 3: HSL colour space as double cone
[Shaa]
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To convert RGB colour values to the HSV colour system first the saturation component is
calculated as [BB16, p. 308f]

SHSV =


Chigh−Clow

Chigh
Chigh > 0

0 otherwhise
(1)

with Cmax = max(R,G,B) and Cmin = min(R,G,B).
Then brightness (value) component

VHSV = Chigh
Cmax

(2)

with Cmax being the maximum component value (typically 255).
Finally the hue value HHSV is specified as 0 if all the RGB components have the same value
(R = G = B) and the corresponding colour is achromatic (grey). For C∆ = Chigh−Clow 6= 0
first each component of RGB is normalised:

R′ = Chigh −R
C∆

, G′ = Chigh −B
C∆

, B′ = Chigh −B
C∆

(3)

Then depending on which of the three colour components had the maximum value, the hue
H ′ is calculated as

H ′ =


B′ −G′ for R = Chigh

R′ −B′ + 2 for G = Chigh

G′ −R′ + 4 for B = Chigh

(4)

And with the resulting value for H ′ lying in the interval [−1, 5], the final hue value is
normalised to the interval [0, 1] with

HHSV = 1
6 ·
{

(H ′ + 6) H’ < 0
H ′ otherwise

(5)

The mapping from RGB to HSV is nonlinear with the RGB colour space is transformed
to a cylinder in HSV colour model by spreading out the black point completely across the
cylinder’s base. Figure 4 shows the mapping of some selected colours from RGB colour
space to HSV and compares their location in both spaces.

3.1.1.3 CIEL*a*b* The CIEL*a*b* [BG14] colour model was developed by the Com-
mission Internationale de l’Éclairage (International Commission for Illumination) in 1976
with the goal of linearising colour representation with respect to human colour perception.
This way the CIEL*a*b* colour model provides both a intuitive colour system as well as
linear colour distribution for human perception. The CIEL*a*b* colour model became a
popular and widely used colour system and is used in many professional image processing
applications standard model for converting between different colour spaces. To understand
CIEL*a*b* and to convert colour from RGB to CIEL*a*b* an understanding of the colori-
metric colour spaces is required.
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Figure 4: HSV colour cylinder as a result of transformation from RGB. The table lists selected
colour values with corresponding RGB und HSV values [BB16, p. 309].

All of the colour spaces discussed above are somehow related to physical properties of some
media devices, such as the luminance of LEDs on a LED matrix display. To describe colours
in a device-independent way which provides reliable colour transformation between different
media devices the CIE standardised the XYZ colour system in 1931. This colour system is
still the most used colourimentric colour system today [BB16, p. 344] and was developed
after extensive measurements of human visual perception. The CIEXYZ colour system is
based on three imaginary primary colours X,Y, Z which can be combined with positive
values to produce all visible colours. The three imaginary colours thereby spread out a
3D cone-shaped region, with the Y component corresponding to the perceived lightness or
luminosity of a colour. The CIEXYZ colour system still is nonlinear with respect to human
visual perception, but its device-independence justifies its status as reference colour system.
To describe pure colour hues and saturation in a convenient manner, the CIE system also
defined three chromacity values x, y, z.
[BB16, p. 346]

x = X

X + Y + Z
, y = Y

X + Y + Z
, z = Z

X + Y + Z
(6)

where x+ y+ z = 1 and thus one of the three component is redundant. Figure 5 shows the
resulting CIE chromacity diagram.
To realise device-independent and linear colour representation the CIE further developed
the CIEL*a*b* colour model. The CIEL*a*b* colour model specifies colours in three com-
ponents: L∗ (luminosity) and a∗ and b∗ (specifying hue and saturation along green-red and
blue-yellow axes, respectively). All of those three values are relative values and refer to a
specified white point Cref = (Xref , Yref , Zref ). Values on colour axes a and b vary in the
interval between -150 (green on axis a∗, yellow on axis b∗) and 100 (red on axis a∗, blue

15



Figure 5: CIEXYZ chromacity [Ben]
Figure 6: CIEL*a*b* colour space [Vie14]

on axis b∗), on L∗ axis between 0 (black) and 100 (white). Figure 6 shows the resulting
3-dimensional sphere.
A major advantage of CIEL*a*b* besides its device independence is the colour distance
measuring function ∆E∗ab (also referred as “Delta E function”) which provides linear colour
distance measurements regarding to human visual perception based on euclidean distance:

∆Ep,v =
√

(L∗p − L∗v)2 + (a∗p − a∗v)2 + (b∗p − b∗v)2 [SWD05] (7)

with several refinements and corrections defined in the L*C*h* colour space with differences
in lightness, chroma and hue calculated from L*a*b* coordinates. For a comprehensive
description of ∆E∗ab and its modifications to its present version CIEDE2000 see [SWD05].
To transform RGB colour space to CIEL*a*b* first a conversion from RGB to CIEXYZ
has to be done and second the CIEXYZ colours are translated to CIEL*a*b* colour space.
For transforming RGB colour information to device-independent CIEXYZ colour space, a
conversion matrix from sRGB colour space is provided among other. The sRGB standard
[Com99] (standard RGB) was developed by Hewlett-Packard and Microsoft to create a
precisely specified constitution of the RGB colour space independently from colour capturing
media. The sRGB system is the de facto standard for digital cameras and several standard
image formats, including EXIF (JPEG) and PNG are based on sRGB colour data. If image
data is given in standard image format, like JPEG, the colour information is transformed
to CIEXYZ with linear product with a colour matrix X

Y
Z

 =

 0, 4124 0, 3576 0, 1805
0, 2126 0, 7152 0, 0722
0, 0193 0, 1192 0, 9505

 ·
 RsRGB
GsRGB
BsRGB

 (8)

[SWD05]
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To finally convert CIE-XYZ coordinates to the CIEL*a*b* colour space a white point
Xn, Yn, Zn with

L∗ = 116 · 3

√
Y

Yn
− 16

a∗ = 500 ·
(

3

√
X

Xn
− 3

√
Y

Yn

)

b∗ = 200 ·
(

3

√
Y

Yn
− 3

√
Z

Zn

) (9)

[SWD05]

3.1.1.4 Other and Related Colour Systems Next to the colour systems and spaces dis-
cussed above, which cover main applications, other colour systems have been established to
meet application specific needs. Regarding encoding of television signals the colour spaces
YUV, YIQ and YCbCr play an important role as fundamental colour-encoding models for
NTSC, PAL and MPEG Video standard. All of these colour spaces have in common the
idea of separating the luminance component Y from two chroma components and, instead
of directly encoding colours, encoding colour differences. In this way, compatibility with
legacy black and white systems is maintained while at the same time the bandwidth of the
signal can be optimised by using different transmission bandwidths for the brightness and
the colour components. [BB16, p. 317]
Similar to CIEL*a*b* the International Commission on Illumination also defined the CIELUV
[Sch16] colour space, which is also constructed by transformation of the CIEXYZ space.
CIELUV is also attempted to provide perceptual uniformity and is primarily used for chro-
matic analysis dealing with coloured lights.

3.1.1.5 Colour Space Selection The colour extraction system of this thesis uses the colour
spaces RGB, HSV and CIEL*a*b* and thereby follows multiply recommended practice
[BB16, CCL+01, MHS02]. The images of ARTigo platform are provided as scans or pho-
tographs and are stored in JPEG files using the (s)RGB colour space. Since segmentation
and quantisation processes are done, a major requirement is to ensure, that these processes
follow the human perception of colours regarding perceived resemblance and distance com-
parison. Therefore„ the images are converted to CIEL*a*b* colour space, since CIEL*a*b*
offers appropriate perceptual uniformity. With the segmentation algorithms (see Section 4.1)
heavily relying on colour distances calculation, it is very important to measure distance ori-
ented on human perception of colour difference. The CIEL*a*b* colour space offers a colour
distance function ∆E∗ab which is used in its current standardised version CIEDE2000.
Thereby, it is assured that segmentation processing approximates human colour difference
perception and judgement
After the first segmentation process, the substitutional colours of image segments are ad-
justed by gamma correction on their colour saturation and brightness to react to aver-
aging effects (see Section 5.2). For this purpose the colours are intermediately converted
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to HSV colour space, providing separate saturation and brightness colour channels. Since
CIEL*a*b* allows conversion methods from and to common colour systems, these conver-
sions are without loss, so long as computational accuracy isn’t changed.
Perceptional uniform colour distance measurement is also a crucial, when extracted primary
colours are mapped to a pre-given colour term set. The ∆E∗ab colour distance function
provides a suitable metric for this task. In order to calculate the distances between a given
colour and the reference colours the CIEL*a*b* colour model is chosen as fundamental
colour space. A minimum in distance between extracted colour and reference colour can
therewith be interpreted as perceptional similarity.

3.2 Colour Histograms

A first approach to compare images with regard to their colours is often suggested by using
colour histograms. Colour histograms in general are frequency distributions of intensity
values occurring on an image. For monochromatic and grey-scale images, histograms provide
a useful analysing tool and allows to classify images on their characteristic distribution of
intensity values. For colour images usually the distribution of individual colour channels or
image intensity (luminance) is meant. Both, luminance and component histograms provide
useful information about contrast, lightning and dynamic range relative to individual colour
components. Figure 7 shows an image, which was chosen because of its great variety of
bright colours, next to its component colour histogram. But it is important to remember,
that they do not provide any information on the distribution of actual colours, since these
histograms are based on individual colour channels that in combination form the colour of an
individual pixel. A collection of colour images can have very similar component histograms
and still contain fully different colours. For example, an image with prominent yellow areas
will show peaks in red and green colour channels, as yellow appears as mixture of red and
green values in RGB. This image will show a very similar colour histogram compared with
images showing separated green and red spots, even though the appearance of the two
images differs greatly. Therefore„ for this thesis combined histograms are chosen to analyse
colour distribution in order to specify colour characteristics on images oriented on colour
appearance. Nevertheless, approaches to compare images and colour distribution based on
component histograms have been done in [CCL+01] and [LY13].
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Figure 7: Colour histogram on all three colour channels of RGB image. Image: Emil Nolde: “Flower
Garden (Marigold)” (“Blumengarten (Ringelblumen)”) 1919.

The colour extraction library developed in this thesis provides creation of combined colour
distribution histograms showing frequency of colours in a 3dimensional space in RGB, HSV
and CIEL*a*b* colour space. These diagrams accumulate colour values in given arrays and
plot spheres filled with respective colour and volume size linearly corresponding to frequency.
Figure 8 shows an example image from ARTigo image library after its first segmentation
process and its derived colour histograms in different colour systems. These histograms can
be explored interactively either with Matplotlib 3D plot application or on the web-interface
using plot.ly JS4 library.
Additionally, this project also provides a web interface allowing to comprehend the seg-
mentation and quantisation processes discussed in Section 4.2 and colour palette extraction
discussed in Section 4. Given an colour image from the ARTigo image data set, the original
image, the re-evaluated segmented image with its 3D histogram is shown as well as the
result of final quantisation and colour palette extracted.

4https://plot.ly/javascript/
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(a) Original image (b) RGB histogram

(c) HSV histogram (d) CIEL*a*b* histogram

Figure 8: 3D colour histograms with (a) original image, (b) RGB histogram, (c) HSV histogram
and (d) CIEL*a*b* histogram. Image: Emil Nolde: “Flower Garden (Marigold)” (“Blu-
mengarten (Ringelblumen)”) 1919.
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4 Image Processing for Colour Extraction

The colour images provided in ARTigo are digital JPEG images files. By the term “dig-
ital images” we understand a mapping function I mapping location coordinates of pixels
(Loc) on colour information values (Val): I : Loc → Val with Loc defined as the finite
set Loc = L1 × · · · × Ld and Val = V1 × · · · × Vk. The variable k defines the amount of
colour channels, which is set to 3 in (s)RGB JPG images and d specifies the number of
dimensions, which is 2 for 2-dimensional images. With 3 ∗ 8 = 24 Bits for encoding colour
information (V1, V2, V3) for every pixel, the JPEG encoding strategy theoretically allows
224 ≈ 16.7 Million distinct colour values to be shown on a single image. Of course this
specification of colour doesn’t yet describe the impression of colour produced by pixel adja-
cency. Adjacency in an image I : Loc→ V al is defined as binary, symmetric and reflexive
relation on Loc. Two pixel P, P ′ are called τ -adjacent (similar regarding their values) if
val(P ) τ val(P ′) applies. [Pri15, p. 66f]
When observing pixel images from a adequate distance those pixels where τ -adjacent holds
are perceived as distinct and coherent areas. This mathematical definition describes a well
known phenomenon of our daily experience on observing digital images. On a high resulted
pixel image the human visual perception constantly strives to (re)construct τ -adjacent colour
regions by aggregating colour impressions of separate pixels. With reducing resolution our
capability to define these coherent regions decreases. Figure 9 illustrates this phenomenon
by cutting out a region of an image and presenting this extract with reduced resolution by
scaling it larger. While we easily spot a coherent bright red colour in the left image, it seems
to be much more difficult to abstract this very distinctive colour on the right extraction.
This example illustrates a major challenge in extracting primary or important colours on
digital images: The coherency of colours perceived by human visual perception is not given
directly as information in a pixel-based digital image. We rather need a sound τ -adjacency
method, which reconstructs the human visual perception and produces chromatically co-
herent areas. This section will first discuss several methods that provide these adjacency
mappings by presenting superpixel generation algorithms. The second part then discusses
further processing to extract a limited set of representative colours. Finally the modula-
tion and implementation of the colour segmentation algorithm for ARTigo image pool is
presented.

4.1 Image Segmentation, Superpixel Generation

Superpixel segmentation describes the processing of images into local and coherent segments
preserving most of the structure necessary for segmentation at the scale of interest. [RM03]
While singular pixels merely provide colour information, superpixels are defined as a set
of pixels comprising further (colour) context information by segmenting the image in an
essentially smaller set of (super)pixels.
There are several methods and algorithms discussed in literature on how to generate super-
pixel segmentation (see [LM01] for a comprehensive overview on “state-of-art” segmentation
algorithms). Generally these algorithms can be classified into three classes: graph-based
methods, gradient-ascent-based methods and distance-based methods [VS08]. Graph-based
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Figure 9: Art image “Self-Portrait With Grey Felt Hat”, Vincent van Gogh, 1886/1887 with scaled
detail (marked with white dotted square). The scaling reveals a great variety on red
colour values corresponding to a perceptually even and similarly red coloured area on the
original image.

algorithms partition graphs of all pixels using contour and texture cues, gradient-based
algorithms analyse directional variations seeking for maxima in density functions. And dis-
tance based algorithms produce superpixels using clustering algorithms that use distances
of data points in geometry and colour as segmentation strategy. All three approaches have
been proved to produce segmentations that preserve most of the boundaries in the original
image [LM01]. These characteristics of superpixel segmentation algorithms let them fit well
to the task of getting colour related important regions which reflect the human perception
of colour regions from discrete pixels. In the following sections three of the most commonly
used algorithms are presented with Section 4.3 discussing modifications necessary for colour
extracting in art images.

4.1.1 Graph-Based-Segmentation: Felzenswalb

Felzenszwalb and Huttenlocher published the Efficient Graph-Based Image Segmentation
[FH04] algorithm developed using a graph-based algorithm. This sort of segmentation
algorithms takes up images as a constellation of vertices, forming an undirected graph
G = (V,E). The image pixels corresponds to a set of vertices vi ∈ V with edges (vi, vj) ∈ E.
Each edge has a corresponding weight w(vi, vj) which describes a non-negative measure of
the difference between neighbouring elements or pixels respectively. This measurement de-
fines a distance measure on the colour space, called l2-Norm. The segmentation algorithm’s
objective is to extract each connected component or sub-graph from the original Graph G
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with every node within a sub-graph is related to each other, but dissimilar to each of the
nodes in surrounding sub-graphs
Given a Graph G = (V,E), a partition P of nodes V is searched, whose components C ∈ P
are interconnected. Additionally it is required that edges between two vertices in the same
component shall have relatively low weight and and edges between vertices in different
component relatively higher weight. To decide on the weight between two components
we first have to evaluate the weights of edges within these components. This is done by
determining the minimal spanning tree MST (C,E) of a component. The internal difference
between two components C ⊆ V then is defined as the largest weight in MST (C,E):
[FH04]

Int(C) = max
e∈MST(C,E)

w(e) (10)

The difference between two components C1 and C2 consequently is defined as the lowest
weight on edges between the components:
[FH04]

Dif (C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj) (11)

If there is no edge connecting C1 and C2 the difference is set to Dif (C1, C2) = ∞. The
minimum weight is chosen, in favour of other possible quantiles like the median weight, to
prevent the problem of finding a good segmentation NP-hard (see Appendix of [FH04]).
To check if there is evidence for a boundary between a pair of components the region
comparison predicate evaluates the difference between the components Dif (C1, C2) on being
relative large to the internal difference within at least one of the components, Int(C1) and
Int(C2). To control the degree to which the difference between components must be larger
than the minimum difference, the pairwise comparison predicate is defined as,
[FH04]

D(C1, C2) =
{
true if Dif(C1, C2) > MInt(C1, C2)
false otherwise

(12)

with the minimum internal difference MInt defined as,
[FH04]

MInt(C1, C2) = (min)(Int(C1) + τ(C1), Int(C2) + τ(C2)) (13)

The threshold function τ controls to which degree the difference between components is
greater than internal differences, for being evidence that there is a boundary between them
(D is true). It is based on the size of a component, respectively the amount of |C|, since
Int(C) isn’t a good estimate of local characteristics. For example if in the extreme case
|C| = 0 then Int(C) = 0. Therefore, the threshold function includes |C| and k as constant
parameter:
[FH04]

τ(C) = k/|C| (14)
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with k putting weight on MInt (minimal internal difference) and Therefore, k causes a prefer-
ence for larger components. Larger k factors allows the segmentation to larger components.
But the k factor doesn’t provide a measurement for minimum component size, since smaller
components are still allowed, if there is a large difference between neighbouring components.
The segmentation algorithm them is implemented in the following scheme [FH04, p. 11]:

Input: graph G = (V,E) with n vertices and m edges
Output: segmentation of V into components S = (C1, . . . , C2)

1. Sort E into π = (o1, . . . , om) by non-decreasing edge weight
2. Start with segmentation S0 , with each vertex vi is its own component
3. Repeat for q = 1, . . . ,m

• Construct Sq with oq = (vi, vj)
• if vi and vj in different components C1, C2 and D(C1, C2) is true
• then merge the two components otherwise do nothing

4. Return S = Sm
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Figure 10: Felzenszwalb superpixel algorithm on three test images from ARTigo data set. Seg-
ments’ colours are average of pixels in each segment. The images on second row show
the segments’ boundaries detected on the image.
Images (from left to right): Giorgio de Chirico: “Metaphysical Composition”, 1914;
Herman Henstenburgh: “Still Life of Fruits With Finch” (“Früchtestilleben mit Fink
und maritimen Schneckenhäusern”), around 1700; Vincent van Gogh: “Self-Portrait
With Grey Felt Hat”, 1886/1887.
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4.1.2 Gradient-Ascent-Segmentation: Quick Shift

Another segmentation algorithm that became popular recently in computer vision pro-
gramming is described by [VS08] as Quick Shift segmentation in 2008 at the University of
California. The Quick Shift segmentation algorithm belongs to gradient-ascent-based meth-
ods and its fundamental idea is based on the Mean Shift segmentation method, introduced
by [Che95] in 1995 at the University of Cincinnati, Ohio. To understand the Quick Shift
method, first Mean Shift will be introduced in the following paragraphs.

Mean Shift Mean Shift algorithm belongs to mode seeking clustering algorithms. Mode
here denotes dense regions in the feature space [CM02] corresponding to local maxima of
the probability density function. The Mean Shift method takes an image as a set of n data
points (x1, . . . , xn) ∈ Rd. If a set of data points is part of a dense region, this set shall be
summarised to a cluster.
Mean Shift builds up on the concept of kernel density estimation. This method takes data
as product of probability distribution and tries to estimate the underlying distribution (i.e.
probability density function). This approach is done by fist defining a kernel, describing a
weighing function. The most popular used kernel is the Gaussian Kernel. By adding up
all individual kernels this approach generates a density function or probability surface in
Rd + 1. The multivariate kernel density function is then obtained with a kernel K(x) and
window radius h: [Che95]

f(x) = 1
nhd

n∑
i=1

K(x− xi
h

) (15)

and allows to estimate the distribution of data points dependent on kernel function K.
The Mean Shift method then exploits the kernel density estimation by presuming every
point climbs up the hill to the nearest peak on the density surface. This “up-climbing” is
achieved by iteratively shifting each point up the hill until it reaches the peak.
Given an approximation of density, data points can be clustered with the following proce-
dure: Let yi(0) the mapping of a data point xi on its associated point from the kernel density
function f(x) at time t = 0. The corresponding gradient ∇f(xi) is determined and yi(0) is
moved to yi(t+1) following the gradient (ascent of the hill). The algorithm terminates if the
difference between yi(t) and yi(t+1) falls below a given threshold value for every data point
in its cluster. Finally the data points are labelled by cluster centroids forming a labelled
image mask (the segmentation itself does not prescribe the resulting segment colour value).
Figure 11 illustrates the shifting procedure of data points on a density function (drawn as
grey background contour lines).

Quick Shift Quick Shift [VS08] segmentation is based onMean Shift segmentation method.
Their main difference however lies in the way how both algorithms update the data points
based on the gradients derived from density function.
Quick Shift starts similar to Mean Shift by estimating the density distribution of a given set
of data point, i.e. pixel values of an image. It uses a more cost and effort reduced estimation

26



Figure 11: Mean Shift kernel density
estimation [VS08, p. 2]

Figure 12: Quick Shift nearest neighbour
estimation [VS08, p. 2]

of the probability density by using the density function on N given points
[VS08]

Pi = 1
N

∑
j=1

Nφ(Dij) (16)

with Dij denoting the euclidean Distance between pi and pj .
While the Mean Shift method the data points then were shifted based on the gradient,
Quick Shift method shifts the points based on their closest neighbours. If the density Pj of
a point xj is greater than the density Pi of point xi and xi is nearest point to xj , then xi will
be shifted towards xj . This shifting procedure is formally described as index assignment
[VS08]

yi(1) = argmin
j:Pj>Pi

Dij (17)

Figure 12 illustrates the nearest neighbour shifting method of Quick Shift segmentation
algorithm. The implementation of Quick Shift 5 algorithm in scikit-image library requires
three parameters that influence the outcome of segmentation except for the image itself. The
parameter τ limits the maximum size of a segment, the parameter σ specifies the window
for density estimation and parameter r regulates the ratio on emphasis between geometry
or colour of a segment and adjusts the distance function Di,j . Higher values for r leads to
greater differentiation on colour compared to geometry.

5http://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.Quick Shift
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Figure 13: Quick shift superpixel algorithm on three test images from ARTigo data set. Segments’
colours are average of pixels in each segment.
Images (from left to right): Giorgio de Chirico: “Metaphysical Composition”, 1914;
Herman Henstenburgh: “Still Life of Fruits With Finch” (“Früchtestilleben mit Fink
und maritimen Schneckenhäusern”), around 1700, Vincent van Gogh: “Self-Portrait
With Grey Felt Hat”, 1886/1887.

28



4.1.3 Distance-Based Segmentation: SLIC

The third popular segmentation method widely used in computer vision application is the
simple linear iterative clustering (SLIC) developed by [ASS+12] in 2010 at École Polytech-
nique Fédrale de Lausanne, Switzerland. SLIC segmentation algorithms belongs to the
class of distance-based segmentation algorithms and produces superpixels using distance
measurements on both, geometry and colour aspects of images.
SLIC segmentation algorithm is based on a distance measurement method, that implements
a two folded comparison proceeding using colour similarity and proximity in the image plane.
This distance measuring is therefore undertaken in a five-dimensional space containing three
dimensions of colour and two dimensions for pixel position. While the SLIC segmentation
uses CIEL*a*b* colour space to gain perceptually uniform and linear colour distances,
the spatial distance in the xy plane of an image is obviously dependent on the image’s
size. Therefore, a simple five-dimensional euclidean distance measurement isn’t possible and
(SLIC) introduces a new distance measure Ds distinguishing colour and spatial distance.
[ASS+12]

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =
√

(xk − xi)2 + (yk − yi)2

Ds = dlab + m

S
dxy

(18)

where Ds is the sum of the lab distances and the xy plane distance normalised by the grid
interval S, which is defined as S =

√
N
K with N denotes the amount of pixels and K the

desired number of approximately equally-sized superpixels. The parameter m ∈ (0 . . . 20)
allows to control the compactness of the superpixels, greater values of m emphasise spatial
proximity and Therefore, produce more compact clusters.
The SLIC segmentation algorithm generates superpixels by resolving a clustering problem
introduces by the five-dimensional data of an image using the distance measure discussed
above. Given an Image I and the desired amount of K segments, SLIC starts by sampling
the image in K regularly spaced clusters. The centres of these clusters are then moved
to the lowest gradient position in a 3 × 3 neighbourhood. With that step the chances of
choosing a noisy pixel is reduced and placement at an edge is avoided. The image gradients
are computed as:
[ASS+12]

G(x, y) = ||I(x+ 1, y)− I(x− 1, y)||2 + ||I(x, y + 1)− I(x, y − 1)||2 (19)

where I(x, y) is the CIEL*a*b* vector at position xy and ||.|| is the l2 norm. This gradient
definition takes into account both colour and intensity information. Then each pixel is asso-
ciated to its nearest cluster centre. After all pixels are associated, a new centre is computed
by averaging all five-dimensional vectors of pixels belonging to the centre Iteratively the
process of pixel to centre association and centre re-computation is repeated until conver-
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gence is reached. At a last step in the algorithm connectivity, which is not enforced before,
is realised by assigning disjoint segments with labels of the nearest neighbouring cluster.

Figure 14: SLIC superpixel algorithm on three test images from ARTigo data set. Segments’
colours are average of the pixels in each segment. Images (from left to right): Giorgio
de Chirico: “Metaphysical Composition”, 1914; Herman Henstenburgh: “Still Life of
Fruits With Finch” (“Früchtestilleben mit Fink und maritimen Schneckenhäusern”),
around 1700, Vincent van Gogh: “Self-Portrait With Grey Felt Hat”, 1886/1887.
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4.2 Colour Quantisation

Next to super pixel segmentation, the task of reducing colour variety to a distinct set of
colours was primarily done with colour quantisation methods. These methods were his-
torically particular relevant when computer displays and graphic processing units weren’t
capable enough to process the roughly 16 Million colours the (s)RGB specification allows.
Therefore, algorithms were needed to reduce the amount of colours on an image to a pre-
defined quantity. Today these colour quantisation algorithms are still used to generate
or convert image formats based on indexed colours like the 8-bit GIF [Inc90] and PNG-8
[Duc03] formats, which show limited palettes of up to 256 colours. Since even the cheapest
display hardware today is capable of showing at least 24-bit colour-depth, the particular
need for colour quantisation for this purpose isn’t relevant any more.
A very fast but unsuitable approach of colour quantisation is scalar quantisation. [BB16, p.
329f] Scalar quantisation performs a simple linear quantisation fci → c′i is applied to each
of the colour components ci in the range [0, . . . ,m − 1] to convert them to the new range
[0, . . . , n− 1]:

f : bci ·
n

m
c → c′i (20)

This method multiplies each component with n
m , which is equivalent to ignoring a certain

amount of lower bits. Therefore, this approach isn’t suitable for the tasks of this project,
since scalar quantisations do not take into account the distribution of colours in the original
image. This technique provides an optimal solution only if image colours are uniformly
distributed.
Instead of focussing on individual components of colours, the following techniques discussed
are treating individual colour vectors separately and are called vector quantisation [BB16,
p. 330]

4.2.1 Median Cut

The median cut algorithm is a widely implemented method, including in popular image
processing libraries like ImageJ (Java)6 and PIL (Python)7. This method first computes a
colour histogram on the image colours, usually using a reduced number of histogram cells for
efficiency. Given the initial histogram volume, it is split along one of the axis so that the two
resulting boxes each contain half of the initial volume. This step is recursively repeated by
choosing the largest of all sub-boxes and splitting it along its longest axis. As a result, the
recursive splitting procedure produces a partitioning of the colour space in a set of disjoint
boxes with each box containing an equal amount of colours. Finally a representative vector
for all the colour vectors in each box is calculated, usually by computing the median vector.
Figure 15 illustrates the recursive splitting process.

6https://imagej.nih.gov/ij/
7http://www.pythonware.com/products/pil/
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Figure 15: median cut box splitting [BB16, p. 332]

A noticeable characteristic of this technique is that colour regions of high densities are
split into smaller cells, with regions of lower density are summarized to larger cells. In
consequence median cut reduces the quantisation error on these highly represented colours,
with only sporadic colour occurrences tend to be averaged.

4.2.2 Octree

Octree [BB16, p. 333] is a colour quantisation method that similarly tomedian-cut partitions
the 3-dimensional colour space into cells of varying size. In octree algorithm the partitioning
is represented by a hierarchical tree structure with each node linking to maximum 8 sub-
nodes (octree). Therefore, each node represents a sub-range of the colour space and each
subset is reduced to a single representative colour vector. This representative colour is
stored with corresponding pixel counts in the leaf nodes of the tree.
The algorithm starts by getting the maximum number of colours as quantisation goal K.
The eight-node-spanning tree, which is initially empty, is then filled up sequentially with
colours from the original image. Given a RGB colour Ci = (Ri, Gi, Bi) its binary representa-
tion of each component Ri, Gi, Bi is written in a table with columns indicating the resulting
levels and each colour channel on a single row. Then the octree is followed through a path
determined by each 3 bits of every level. Figure 16 shows the colour (90, 113, 157) having
0012 = 110 on first bit level and Therefore, the chosen node on level 1 is 1 and 1102 = 610
for bit-level 2 with node 6 on level 2 etc. [BB16, p. 331]
Since octree colour quantisation is limited to a predefined amount of colours K, a reduction
procedure is necessary. If a colour shall be inserted into the tree and the amount of already
inserted colours is equal to K, then colours on the maximum tree level are merged bz
adding their colour values and pixel counts. As soon as all pixel values are processed and
the tree is reduced to K maximum leafs the colour palette can be extracted and pixels on
the original image are assigned their most similar colour by tracing paths in the octree. A
major advantage of octree quantisation is its efficiency regarding memory and computation
steps, since the number of colour nodes is limited from the start to K and the maximum
number of comparisons is also limited to 8.
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Figure 16: Octree tree building [Del]

4.2.3 K-Means

The third quantisation algorithm to be discussed is the K-means algorithm, which fol-
lows a different rather statistical approach compared to the previously discussed algorithms
median-cut and octree. K-means clustering has already been mentioned in Section 4.1.3
discussing SLIC segmentation. In the latter this clustering technique was implemented
on a 5-dimensional, representing chromatic and spatial values. K-means clustering is also
used as a non-spatial colour quantisation technique clustering a 3-dimensional colour space
[Cel11].
Similarly to octree and median-cut, K-means requires a pre-given amount of clusters K to
be calculated. K-means [Pie] splits the colour-space into k clusters with each cluster being
parametrized by its mean vector mk. Since K-means is based on distance measurement
between data and cluster centroid vectors, a custom distance function d : x×m→ R with
mean µC can be used. Given a set of colour values xp ∈ {x1, . . . , xm} the algorithm produces
k centroids m1, . . . ,mk as follows [Pie]:

1. Initialize random cluster centroids m1, . . . ,mk

2. Repeat until convergence:
• Assigment step: assign each xp to the closest cluster mi for 1 ≤ i ≤ k

Ci := {P ∈ I|d(xp,mi) = min
1≤j≤k

d(xp,mj)} (21)

• Update step: for 1 ≤ i ≤ k
mi := µCi (22)
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In Figure 20 a comparison of quantisation methods applied on unsegmented art image is
shown with the resulting 3-dimensional colour histograms.

4.3 Modulation and Implementation of a Colour Segmentation Algorithm
for ARTigo Image Pool

Extracting representative and outstanding colours of an art image requires an extracting
method that fulfils the following needs. First, the extracted colours are not distorted in their
appearance but seem to be taken out of the image. Second, tiny details can bear significant
colours, therefore, the spatial distribution of colour has to be incorporated. Third, the
amount of extracted colours is at a reasonable extend and similar colours are passed over
in favour of the more prominent ones. And fourth, the method must be computationally
efficient enough.
The two discussed approaches segmentation and quantisation each applied alone does not
achieve results fulfilling all of the above criteria. Segmentation algorithms incorporate spa-
tial and chromatic aspects of images and deliver cautious segmentation. But the amount
of segments produced has been shown far to big, if segmentation is adjusted to be aware
of important details. The average amount of segments varies between around 2000 to 4000
depending on each image’s unique colour distribution. Colour quantisation algorithms in
contrast indicate good applicability in reducing colour palettes to predictable extends, but
seem to fall short in colour consistency when segmenting raw image colour material. Fig-
ure 20 shows the visible quantisation errors of these methods. Colours often seem to loose
brilliance and distinctiveness through averaging. The colour extraction process introduces
in this thesis combines the two approaches by segmenting images in a first step and quantise
the segmentation result in a following step.

Segmentation method selection For implementation of colour extraction one of the seg-
mentation methods have been chosen, providing most accurate and reliable segmentation
results. SLIC segmentation provided usable results, but fell short in segmenting larger co-
herent areas with uniform colours, as it produces smaller and quadratic segments, where
large segments would be expected. Its major disadvantage of requiring a pre-set number
of segments as processing goal, finally disqualified SLIC as appropriate method for initial
chromatic and spatial segmentation, with the great variety of images types in ARTigo image
data set prohibiting any assumptions on expected segmentation result.
However the choice between remaining segmentation methods has proved to be less defini-
tive. Even though Felzenszwalb segmentation is less performant in computation time, the
algorithm accurately traces colour implicated edges and generates sound segmentation re-
sults. Felzenszwalb segmentation however entails many uncomfortable disadvantages. First,
it has been shown highly dependent on pre-adjustments of available parameters. The algo-
rithm allows to set several parameters controlling maximum and minimum component size
and width of Gaussian kernel. A stable adjustment that fits to the image variety wasn’t
found. Figure 17 illustrates the difficulty of a proper adjustment for one image on another.
The first image and its segmentation shown on the column, produces good results, while
the same input parameters (scale, sigma and min_size) do not fit to the images on sec-
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ond and third column. The finding of proper input parameter adjustments seem to require
monitoring the segmentation of individual images or a classification of visually similar im-
ages. Second, Felzenszwalb in comparison to Quick Shift showed worse detection of small
regions with important colours. Figure 18 shows a comparison of segmentation algorithms
for selected images showing tiny but critical colour features.

Figure 17: Comparison of three images segmented with Felzenszwalb algorithm with equal input
parameters (scale = 400, sigma = 1 and min_size = 10) providing acceptable results
for left image while unsatisfactorly segmenting second and third images. This illustrates
the difficulty of adjusting Felzenszwalb input parameters. Images: Michail Matjuschin:
“Movement in Space”, 1918; Pierre-Paul Prudh́on: “The King of Rome, Sleeping”, 1811;
Vincent van Gogh: “Self-Portrait With Grey Felt Hat”, 1886/1887

Quick Shift was chosen as segmentation algorithm because it was possible to adjust its
parameters τ , σ and r to fit the variety of images in ARTigo data set. Quick Shift also
delivered best results on images with small details showing important colours (see Figure 18).
As discussed in Section 4.1.2 the algorithm is able to recognise colour densities in spatial
nearest neighbourhood and Therefore, allows to retain even small but dense regions in the
segmentation process. Furthermore Quick Shift offered reasonable computing time (about 3
times faster than Felzenszwalb and about 2 times slower than SLIC ). Providing the best set
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of suitable segmentation results, reasonable computing time and wide applicability, Quick
Shift has been implemented as first segmentation step.

Figure 18: Comparison of image segmentation on an image showing tiny but important colour de-
tails. The sun in the upper-right area shows outstanding saturation and colour contrast
and is important to capture as distinct colour segment. Quick Shift segmentation shows
best and most reliable detection of contrasting areas. The algorithms produced around
3000 segments showing around 400 unique and apparently partially similar colours.
Image: Claude Monet, “Impression. Rising Sun” (“Impression. Soleil levant”), 1872.

Image Segmentation Expansion The segmentation algorithms discussed in Section 4.1
output a labelled representation of images. To retrieve evenly coloured segments, like seen
in third row of the related figures, the set of colour values in each region still has to be further
processed. In this step the labelled image is converted into a composition of colour regions
by ether choosing the average of colour values, the mode (i.e. the most frequent value)
of colour value frequency or the weighted mode. The latter takes n most frequent colours
and computes a weighted average on this n-mode-selection. As expected the averaging of
pixels delivers the worst outcome and most distorted colours, since the average method
includes every noise colour value equally. Choosing mode as a strategy to retrieve the most
representative colour bears risk of overrating tiny spots and impurities. This effect can be
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seen on Figure 19, where the mode strategy lifts out purple areas erroneously. Therefore, a
new strategy of n-weighted mode was developed, consolidating the effectiveness of mode and
consistency of average method. From the set of colour values, the n most (n = 3 suggested)
frequent colours are selected and the weighted average is computed based on frequency.
The scikit-image library didn’t offered a similar method like n-weighted mode, therefore
it was newly implemented. The results and comparison can bee seen in Figure 19.

Figure 19: Quick Shift segmentation with label expansion methods average, mode and n_most. As
expected the average method produces less brilliant and consitent colours, while mode
method can overrate colours in regions (visible in the upper-left corner). The N-most
method produces best results in colour consistency and overall appearance
Image: Herman Henstenburgh: “Still Life of Fruits With Finch” (“Früchtestilleben mit
Fink und maritimen Schneckenhäusern”), around 1700.

Quantisation method selection As Figure 18 shows, the amount of image segments at
this stage is still far to big to directly select the most important and significant colours and
to present them in a colour palette. Therefore, a second quantisation step is required that
reduces the set of colours to a reasonable amount. While the segmentation step incorpo-
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rated the spatial distribution and composition of colours. This aspect isn’t required any
more and quantisation methods are therefore, applicable. As seen in Figure 20 the quantisa-
tion algorithms tend to produce unsatisfactory segmentation by ignoring the spatial colour
distribution but they are effective in reducing the palette of pre-segmented images.

Figure 20: Comparison of quantisation methods octree, median-cut and K-means. The upper
four images show the quantisation result, the bottom four images corresponding 3d-
histograms. Image: Paul Signac: “Study for Times of Harmony. Red Poppy”, 1894.
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The selection of best fitting quantisation algorithm was dominated by a particular fea-
ture K-means quantisation offers exclusively. As discussed in Section 4.2.3 K-means cal-
culates colour distances using a distance function d(x, y). This unique feature allows to
integrate the CIEL*a*b* colour distance function ∆E∗ab (see 3.1.1.3) as distance measure-
ment and thereby provides colour quantisation based on perceptional rather than numerical
(in median-cut and octree) similarities of colours. The K-means quantisation consequently
produces perceptionally more plausible results, as shown in Figure fig:quantisation. The
appropriate adjustment of K as the limiting factor for K-means on how many cluster cen-
troids are to be extracted however is still to be defined and will be discussed in the following
section on colour composition theory.
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5 Extraction of Image Specific Colour Palette

Figure 21: Franz Marc: “The Little Blue Horses” (“Die kleinen blauen Pferde”), 1911.

The colour extraction algorithm presented in this thesis has been developed for extracting
colours from artistic images. Consequently the applicable criteria evaluating the success
of colour extraction have to be oriented on art specific conditions rather than putting on
qualities of non-artistic images. For example, the application of normative conceptions like
“realness” or “accuracy” turn out to be highly difficult and complex judgements regarding
artworks. As the famous example of Franz Marc (Figure 21) explicitly shows, the correctness
of colours and their grade of accordance with a stated “reality” cannot legitimately be
judged on outward-positions on art. In particular, the judgement on Franz Marc’s painted,
blue horses, as not being painted using “accurate” or “real” colours would fail the specific
examination artists undertake with the very concepts of reality or accuracy [Bir76]. Any
evaluation on extracted colours from an art image has to understand at least the difficulties
regarding accuracy and importance of colours. But it can also get aid from research to
produce art-theory informed decisions as being suggested in this thesis and the following
section. The rather cautious approach on carefully segmenting images incorporating their
chromatic as well as spatial features, discussed in the previous sections, were also obligated
to this idea of informed processing. To enhance the results of selecting significant and
representative colours, colour composition theory on visual art will be consulted.

5.1 Colour Composition Theory and Semantics

Colour combinations induce perceptive effects and can enhance the experience of an artwork
by using harmonies, disharmonies, brilliance, fades, etc. Artists exploited these effects in
the composition of their paintings with most of the effects related to high-level chromatic
patterns rather than to physical properties of single points of colours. [CDP99, p. 117]
Starting from this or akin observation, multiple scholars obtained different colour composi-
tion theories. Probably the most famous examples were developed by Leonardo da Vinci,
Isaac Newton, Johann W. von Goethe and Michel E. Chevreul. In addition to these sepa-
rated theory approaches, Johannes Itten (1888–1967) expanded existing colour composition
theories and defined patterns and properties through his research on art and colour com-
position theory [ISVD12, p. 157]. Itten’s approach is chosen in the following discussion
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as leading theory, since he successfully combined physical observation with sophisticated
examination of art theory. It should be mentioned that Johannes Itten misused his colour
harmony concepts sanctifying racial and anti-semitic thought in the 1940s [Wil16]. Nev-
ertheless Itten is today still acknowledged as a renowned colour theorist and respected
Bauhaus representative, despite his political attitude.

Figure 22: Itten colour circle with primary colours red, yellow and blue in the inner triangle, corre-
sponding complementary colours orange, purple and green as compositions of primary
colours and twelve tertiary colours on outer ring

In his later work “The Art of Colour” [Itt74] Johannes Itten formulated a comprehensive
theory on the usage of colour in art and about its inducing semantics. Itten characterizes
colours according to hue, luminance and saturation and identifies twelve hues as as fun-
damental colours, illustrated in Figure 22 on the outer colour circle. These fundamental
hues are constructed from three “primary” colours yellow, red, blue. Further three “comple-
mentary” colours orange, green, purple and six “tertiary” colours are derived by combining
primary and complementary colours. Itten further differentiated five levels of luminance and
three levels of saturation, defining 180 distinct colours altogether. While he only specified
the abstracted colour circle arrangement (Figure 22), the painter and art scientist Philipp
Otto Runge arranged the whole set of Itten’s colours to a conventional chromatic sphere —
the Itten-Runge sphere (Figure 23) [SGD03]. It shows primary colours along a equatorial
ring with varying luminance along meridians and increasing saturation to the outer layers.
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Figure 23: Itten-Runge sphere allocating primary colours and shades to spherical order with pri-
mary colours on equatorial ring and varying luminance along meridians, increasing
saturation to outer layers of sphere [SGD03]

Johannes Itten’s main result of colour analysis is his hue contrasting system. He defines
twelve contrasts and other variations with respect to the intensity of the respective hue.
These contrasts are effected by deliberately juxtaposing colours with great or even very low
distance in the colour model. He defines the following types of contrasts: contrast of hue,
light-dark contrast, cold-warm contrast, complementary contrast, simultaneous contrast, con-
trast of saturation, contrast of extension. [Itt74] In the Itten-Runge sphere, the perceptually
contrasting colours are located on opposite coordinates.

5.2 Implementation of Colour Semantics and Colour Palette Extraction

The Itten-Runge sphere and Itten’s geometrical assembly of colours in opposing primary
colours shows much resemblance to HSV and CIEL*a*b* colour space. These colour models
organise colours along spherical volumes and place contrasting colours on opposing locations
(see Section 3.1.1.3 and 3.1.1.2). Putting Itten’s colour composition theory together with
the technique of representing colours in the perceptually uniform CIEL*a*b* colour model,
we have now obtained a substantiated framework for semantically informed selecting of sig-
nificant colours. Following the interpretation from Corridoni, Del Bimbo and Pala [CDP99],
Ittens’s semantically enriched colour contrast theory can be implemented the following way:
Colours are arranged in a spherical 3-dimensional space with perceptional opposing colour
being located on spational opposition. Following Itten, those colours, who are perceived as
most relevant, will arrange at the outer layer of the colour sphere, forming mutual colour
contrasts. To retrieve relevant colours based on their contrast qualities, we therefore, need
to select those colours on the outer layer, which also span the greatest distance to opposing
located colours.
To cover all of Itten’s proposed colour contrasts, the quantisation step has to extract as
least as 12 colours, Itten identified as the set on which colour contrasts are realised. To
obtain even few more possible shades than Itten proposed and to include white and black,
into the list of observed colour contrasts, the quantisation step clusters 16 colours. If – and
this is expected to be the common case – not each of the possible colours are used by the
artist, a second step step is required to sub-select the most contrasting ones.
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Convex Hull The selection of opposed contrast colours is realised by calculating the convex
hull on the set of colour centroids. The convex hull is a geometrical concept that defines
an envelope enclosing a set of vertices. This approach is chosen, since the resulting colour
vertices from quantisation process can be geometrically arranged in a 3-dimensional space
spanned by the three axes from CIEL*a*b* colour space. To visualise the concept of convex
hull one would imagine to span a tight rubber fabric around vertices in 3-dimensional space.
Those vertices, which touch the fabric will be selected and form the convex hull [AJJ+11,
p. 10]. Figure 24 shows a processed set of colour vertices and the corresponding convex
hull by marking member vertices of the convex hull with black outer lines. The method of
calculating convex hull was found as very efficient approach to select contrasting colours, but
also to take into account the topological distribution of colours in the perceptional colour
space. If a very dense distributed space of low contrasting colours is given, the convex hull
is still creatable and even slight colour contrasts can be detected.

Figure 24: Segmented set of vertices (left) and convex hull of clustered centres (right). Vertices
masked by convex hull are marked with strong black outline

A possible objection to this approach can be formulated by pointing out, that grey colours
tend to be excluded by spanning the convex hull. Grey colour vertices are located at
the centre of the colour sphere and therefore, seem to never sufficient the condition to be
selected. This objective is true for those colour arrangements, where contrasting colours
dominate the appearance of an image and follow the observation of Johannes Itten. He
states that grey colours, as mixtures of primary colour for themselves do not participate
in colour contrasts. But Itten also points out that contrast to grey colours is possible in
principle, if a solid colour stands in singular opposition to the grey colour [Itt74, p. 37f].
This special case is covered using convex hull, since in this case a grey colour vertex forms
a outer limit though located in the very centre of the colour space.

Gamma Correction The first result of the discussed colour selecting process based on
Itten’s contrast theory unfortunately showed not enough satisfactory results. The colours
from clustering procession still lost too much of their brilliance in favour of locating a “mean”
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colour as cluster centroid. To gain the colour perception even through clustering process,
significant and strong colour values have to get higher emphasis. Remembering the colour
representation model of HSV colour space (see Section 3.1.1.2) a gamma correction is applied
to saturation (S) and luminance channel (V). Gamma correction is a common technique in
digital image processing to compensate the usually linear intensity specification of displaying
devices to logarithmic light intensity dispersion. In gamma correction the logarithmic-to-
linear distortion is compensated by applying the inverted gamma function f−1

γ (a) = a
1
γ .

γ ∈ R is called the gamma value and produces “lighter” results for γ < 1 and “intensified”
results for γ > 1 [BB16, p. 74f]
With gamma correction applied only to the saturation channel (S) and luminance channel
(V) while leaving the hue component unaffected, this processing step merely affects the
perceived intensity of colours maintaining their overall perceptional quality. Figure 25 shows
the effect on this variant of gamma correction with slightly over-saturated appearing results,
that will average to more “natural” appearance after the then followed clustering process.

Figure 25: Gamma correction function applied on segmented image. The figure shows the original
image (1) with segmentation result (2), the gamma corrected segmentation (3) and the
extracted colour palette (4). The slightly over-saturated appearance in (3) prevents
faded colour clusters in following quantisation process and produces accordant extrac-
tion results (4) compared to original image (1).
Image: Jacques Louis David: “The Funeral of Marat in the Ancient Cordeliers’ Church”,
1783.
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6 Automatic Colour Name Tagging

The colour extraction algorithm presented in this project has been developed to aid the
image tagging game of ARTigo by automatically retrieving and validating relevant colour
tags. These extracted colour tags can be integrated into the ARTigo game system as a first
set of suggested colour terms. This far the algorithm discussed has produced a selection of
colour values. The mapping from numerical colours onto a list of colour terms is discussed
in the following section. First, the topic of basic colour terms is discussed. This subsection
is followed by second, a evaluation of colour name sets and standards followed by third
subsection explaining implementation in the colour extraction algorithm.

6.1 Basic Colour Terms

A pre-requirement of assessing the very possibility of tagging of visual perceived colour
impressions with a set of terms, is stated by the determination of a reliable set of basic
colour terms. A set of basic colour terms contains the information on colour impressions
conventionally mapped on certain basic colour terms in consideration of cultural, linguistic
and time-related factors. Thereby, a basic colour term is a colour word that is applicable
to a wide class of objects (unlike blonde), it is monolexic (unlike light blue) and reliable,
i.e., used by most native speakers [Har13]. Languages of modern industrial societies have
usually developed a wide range of colour terms, but only a few of them meet the forgoing
conditions.
In 1969 the American linguists and ethnologists B. Berlin and P. Kay published their influ-
ential study on “Basic Colour Terms” [KF09] exploring two questions: Is there a (ordered)
set of basic colour terms used in most human languages? And are there similarities in the
ways that different languages with the same number of basic colour terms carve out the
colour space? They used standardised colour stimuli consisting of 329 colour chips and
asked 25 monolingual speakers of 110 languages from 45 language families in total [Har13].
Berlin and Kay answered both questions in affirmative ways, but also explored, that lan-
guages have developed a different amount of terms. Additionally, an ordered progression
in integrating colour terms was found. They proposed a set of basic colour terms (BCT)
that vary slightly regarding different languages and also grouped these BCT in categories of
sequentially developed terms. For English and most European languages the ordered terms
are: white, black, red, green, yellow, blue, brown, pink, purple, orange, grey [KF09].
The studies of Berlin and Kay started a still ongoing debate on the linguistic and ethnolo-
gist aspects of their research.[HM97] For this and similar projects ([SS16, vdWS07, Lin13,
MHS02]) the studies of Berlin and Kay justify the expectation that a decent set of colour
terms are used to describe basic colour impression. Even though this assumption does not
lower people’s capability to understand a much larger set of colour terms in general. The
BCT research merely claims that the BCT set meets strong requirements of constancy and
verifiability.
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6.2 Colour Name Sets and Standards

Human aspiration for categorizing elements on their sensory experience has equipped us
with a keen capability to denominate visual perception with an almost unlimited set of
colour names. Some colour names refer to a dye or object, like “mouse-grey” and “irish
moss”, and from this perspective the amount of colour terms seems to be innumerable or
even arbitrary. On the other hand, a lot of empirical linguistic and semantic research is
done on the question, whether it is justified to obtain a more or less objective system of
colour term classification [HS12].
Research on colour-naming represent either universalist or relativist approaches. Relativists
claim, that colour naming practice varies from individual speech groups in idiosyncratic
ways, criticising the very idea of developing a common and authoritative set of colour
terms. Opposing universalists refer to studies like the colour survey done by Berlin and
Kay to emphasise the idea of at least basic accordances across different language groups
on colour naming practice. While this academic debate is still ongoing – especially in the
linguistics – industry has developed many approaches and guidelines on authoritative colour
naming classifications, following the urgent need to offer consistent and applicable colour
denomination [Wyl92, p. 13f].
The volume of colours specified in these industrial colour term sets highly varies through
the origin from specific areas of application. In computer programming certainly the most
known colour term system is provided by the W3C: the “CSS Color Module Level 4” 8,
referring to the latest specification for colour values within the Cascading Style Sheets
language. This colour term model contains 141 standard colours like “black”, “white”,
“red” and shades like “lemon chiffon” or “mint green”. The colour terms are listed with
corresponding RGB colour value in 32 bit colour depth. Especially the figurative terms rise
suspicion on it systematics and with this on its suitability as a basic colour term reference.
In fact, the CSS colour term list is a product of a multitude of supplementation and retention
of colour terms, which can be traced back to the beginning of the 1980s. Originally the
colour term list is a product of the X Window System, released in 1984 by MIT. But
with many contributions, done by multiple authors adding colours calibrated to their own
computer monitors (which in the 1980s and 90s still showed colour distortion), the colour
term list became increasingly inconsistent. Nevertheless the colour term set was adopted by
the W3C on the specification of CSS language to “codify current practices”, even though
developers already adopted the usage of hexadecimal colour specification anyway. [Tve15]
A more promising approach is presented by the RAL classic colour system developed and
maintained by the German non-profit RAL institute since 1927 [RAL16]. The RAL (abbre-
viation for Imperial Commission for Delivery Terms and Quality Assurance, German: Reich-
sausschuss für Lieferbedingungen) institute developed a colour matching systems defining
authoritative colour specifications meeting the industrial needs to replace the former in-
convenient practice of interchanging colour samples. RAL began specifying 40 basic colour
terms in 1927 and further developed multiple colour classifications incorporating 2.328 colour
terms today. With many classifications have been developed to need branch-specific colour
specification, the RAL ‘classic’ colour set containing 213 colours defined by a CIEL*a*b*

8https://drafts.csswg.org/css-color/
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triple value, a four digit RAL colour number and corresponding denomination in German,
English, French, Spanish, Italian and Dutch language.9

The RAL classic colour labelling systems provides two major advantages highly relevant for
this project: First, the list of colours and their denomination are released as the product
of a still ongoing, sophisticated curation process, consulting industrial, cultural and mate-
rial scientific perspectives. Second and partly as a consequence, the RAL colour system
is structured hierachially defining basic colour classes (corresponding to primary colours).
Therefore, it allows to obtain both, detailed colour denomination, as well as more abstract
affiliation to basic colour categories. The RAL classic colour systems allows both classifi-
cation modulation since colours are encoded with a four digit number. The first digit is a
system code number (1: yellow, 2: orange, 3: red, 4: violet, 5: blue, 6: green, 7: grey, 8:
brown and 9: white and black shades) and the remaining three digits are chosen sequen-
tially. Hence RAL classic colour encoding also serves as a basic colour matching reference
[RAL16].
Another, rather unusual approach to match visual colour impression on colour names, was
presented by Randall Munroe, the author of popular XKCD web comics [MX10]. Munroe
collected data through a advertised campaign on his popular XKCD comic website and
gathered over 3.4 million responses. Results from his survey have been publicly available
and already used in research ([HS12, Lin13, SS16]). In the survey participants were asked
for basic demographic information as well as technical information like display type, tem-
perature and gamma. Mainly participants were shown uniformed samples of colour in sRGB
colour space and were asked to name them in free form. Munroe also implemented a per-
user spam-score penalizing responses not used by anyone else and high variations in hues.
Spam filtered data provides 3,252,134 colour-name pairs and 132,259 unique colour names
[HS12]. Obviously the XKCD colour survey lacks on systematics. But as a recent and
large-scaled survey, it could provide interesting overvalue to established and curated colour
term systems.
The colour term mapping algorithm developed in this project in principle can be conducted
with any colour term mapping set (see following Section 7.1 for details). But as stated before,
the RAL colour term list is recommended and chosen as further implemented reference
model, allowing to retrieve colour terms suitable to compare with data in the ARTigo
tagging game (see Section 7.2 for further details).

9A comprehensive overview on RAL classic colour can be explored at http://www.ral-farben.de/inhalt/
anwendung-hilfe/alle-ral-farbnamen/uebersicht-ral-classic-farben.html.
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7 Implementation and Evaluation of Colour Tagging Algorithm

The semantic colour extraction and colour tagging process was implemented using the pro-
gramming language Python 3.5 and tested with the art image dataset from the ARTigo
art exploring project. In the following section the implementation of colour extraction and
tagging algorithm is presented by referring to important implementation steps.

7.1 Implementation of Colour Extraction and Colour Term Mapping

The algorithm can be divided into two main application parts: First, the extraction of a
semantically enriched colour palette for an individual art image, and second, the mapping
of colour values on a given set of colour terms.

Colour Palette Extraction The algorithm was generally implemented as terminal applica-
tion and requires a given path to a directory containing image files or a comma-separated-
values file (CSV) with image paths, file names and ARTigo resource id, which refers to
the organisation of the ARTigo database. Image paths and file names are then internally
represented by Pandas DataFrames10 (i.e., image-table), providing potential to execute
next calculations row-wise on multiple threads and CPU-cores. Beside the main Pandas
DataFrame, global DataFrames are initiated covering errors (e.g., file-not-found exceptions)
and recording grey-scale images. These grey-scale images do not feature (s)RGB colour
space, using merely a single dimension to represent pixel brightness, and are excluded from
chromatic processing accordingly.
If possible, each row on the image-table is further processed on separate execution thread.
The method get_palette_from_image in aux_lib/auxlib.py creates a set of colour values
for a given image by conducting the following procedure:

1. Image load from file system using given path and conversion from RGB to CIEL*a*b*
colour space (see Section 3.1.1.3).

2. Quick Shift segmentation (see Section 4.1.2) producing a labelled segmentation of the
image using Python scikit-image11 library for image processing.

3. Allocation of a representative colour for each segment using n-weighted mode selection
strategy (discussed in Section 4.3)

4. Conversion to HSV colour space (see Section 3.1.1.2)
5. Gamma correction on saturation and luminance channels, keeping colour hue channel

untreated (as described in Section 5.2)
6. K-Means colour segmentation expecting a maximum of 16 clustering centroids (see

Section 4.2.3) using Python scikit-learn12 machine learning library.
7. Selecting most contrasting colours based on convex hull masking, if more than 3

distinct clusters have been extracted (see Section 5.2).
10http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
11http://scikit-image.org/
12http://scikit-learn.org/

48

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://scikit-image.org/
http://scikit-learn.org/


id artresource_id frequency L* a* b*
...

...
...

...
...

...
189 15 3893 96.13965860969792 -4.353553461019601 15.247059676125923
190 15 2723 61.804331283316905 -0.2924245431566802 -10.815814917017569
191 16 5160 50.49297369032935 66.36012682514458 54.62556547286384
192 16 7145 20.89180746231898 8.021432088461284 11.219523074764579
193 16 10384 87.33684703253 -3.227628206072107 76.48085339991536
194 16 1953 42.17285940162755 -23.60589657253709 35.905640492163876
195 17 4126 62.129332068358146 6.897007816221198 59.03181388487913
196 17 5269 81.77068702431649 -3.36410330775431 9.236762502271928
...

...
...

...
...

...

Table 1: color_palette.csv excerpt as example for output of first colour palette extraction step.

The results of the first palette extraction part is then saved to a CSV file containing unique
colours in CIEL*a*b* components with colour frequency for each image. The amount of
colour rows per image can vary between 1 and 16. Table 1 displays an excerpt of the pro-
duced palette_images.csv CSV file. Additionally a metrics table metrics_images.csv
is exported including the convex hull volume and maximum colour distance for each image.
This table allows to compare images on colourfulness, with highly colourful images showing
greater values.

Colour Labelling The second part of the algorithm is devoted to mapping accurately ex-
tracted colour values from step 1 to a set of predefined reference colours with corresponding
colour terms. This part takes the palette_image Pandas DataFrame and processes the
palette colour to reference colour matching procedure, while duplicate hits have to be re-
duced to single occurrences.
The crucial part of this procedure lies in the distance calculation between the the colours. As
already been discussed in Section 3.1.1.3 the CIEL*a*b* distance function ∆E∗ab provides
a perceptually uniform distance measurement. Using CIEL*a*b* colour distance function,
a distance matrix is calculated for each row in the colour palette DataFrame, before the
minimum distanced reference colour is selected.
The RAL classic colour reference list also provides a reference to the respective basic colour
for each colour, signifying membership to a basic colour set.
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id artresource_id RAL colour_id
...

...
...

25897 101671 86
25898 101671 190
25899 101671 183
25900 101671 8
25901 2006886619 10
25902 2006886619 12
25904 2006886619 108
25907 2006886619 1
25909 2006886619 165
25911 2006793372 177
25912 2006793372 200
25913 2006793372 149

...
...

...

Table 2: image_terms.csv excerpt as example for image to RAL colour term matching

Table 2 shows an excerpt of the produced CSV table image_terms.csv with continuous id,
artresource index and RAL colour id and Table 3 a short extraction from RAL basic colour
list.

index L* a* b* german english french . . . basic_colour_index
76 44.82 29.08 -18.58 Signalviolett Signal violet Violet de sécurité . . . 75
77 60.59 10.38 -2.88 Pastellviolett Pastel violet Violet pastel . . . 75
78 50.39 48.95 -4.24 Telemagenta Telemagenta Telemagenta . . . 78
...

...
...

...
...

...
...

...
...

103 60.5 -9.53 -17.38 Pastellblau Pastel blue Bleu pastel . . . 96
104 35.93 -11.81 -16.28 Perlenzian Pearl gentian blue Gentiane nacré . . . 96
105 16 7.84 -29.1 Perlnachtblau Pearl night blue Bleu nuit nacré . . . 96

Table 3: ral_colors.csv excerpt from RAL classic colours list

Web Interface With the image segmentation and colour quantisation process being com-
puted “silently” and with only less illustrative CSV tables are produced as output, a web-
interface has also been developed to demonstrate key steps in the colour extracting algo-
rithm. On that account a –json flag can be set, which controls the production of separated
JSON representation of image segments and colour clusters as well as visual representation
of extracted colours with their corresponding relative frequency. These JSON files can be
loaded to the web-interface providing interactive 3-dimensional colour histograms, the orig-
inal image with its segmentation outcome and the resulting colour palette ordered by colour
hue angle. Figure 26 shows a screen-shot of a sample image. The selection of images shown
on the web-interface is implemented by retrieving an URL-parameter file, expecting the
art image resource id, which allows simple integration into ARTigo platform.
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Figure 26: Web-Interface showing (from upper-left to lower right) the original image, its segmen-
tation after gamma correction process, a 3-dimensional histogram of segmented image,
a similar histogram of colour quantisation with convex hull marked with black outline
and the circular hue-ordered extraction result.
Image: Paul Gauguin: “There is the Temple (Parahi te marae)”, 1892.
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7.2 Evaluation

The ARTigo image colour extraction and labelling was done on 192.109 art images from
the ARTigo database. After the first sorting step, separating 22,878 grey-scale images with
only one channel and 528 images with errors on file load, the remaining 168,703 colour art
images were further processed generating a colour palette for each image. In average the
algorithm produced 3.83897 colour tags per image. As discussed in Section 5.2 a maximum
of 16 colours could be extracted as colour palette, if all colours are masked by the convex
hull and the colour-to-term matching process hits 16 unique reference colours. In total
the algorithm produced 735,037 distinct colour tagging entries on the image dataset (i.e.,
distinct combinations of colour tag and art image).
For evaluating the accuracy of the presented algorithm compared with predicted colour
labelling already done in ARTigo, the empirical dataset of image tagging in ARTigo has to
be filtered the following way: First, the tagging results are reduced to those tags that imply
colour information, and second, to reliable colour tags being confirmed by users at least n
times.
The first task of sub-setting only chromatic tags was implemented with SQL query filtering
tags compared with a list of alike colour terms. This list allowed versatile forming of
colour tags in case, spelling and also composition (to include tags like “blackwhite” or
“lightblue”). In next step this list was further filtered excluding semantical false-positives
like “white wine” or “greyhound”, i.e., terms that do not precisely imply colour information
or have been detected because of showing coincidental permutation of letters only. Since
this filtering step required human or human-alike understandings of semantics, the list was
worked through manually in order to reduce false-positives to a minimum. As to this point
the list of tagged images with colour tags still listed tagging that hasn’t been verified by
multiple users, the image colour tagging list was further reduced using colour tags being
either n = 5 or n = 2 times verified. The following evaluation has been realised using the
filtered German tagging set of ARTigo, since the English and French data sets provided too
few validated colour tags covering total colour spectrum.

7.2.1 Results

Regarding colour tags validated at least 5 times, the algorithm tagged 13,310 images in
accordance with data in ARTigo. Images in ARTigo were tagged 20,367 times, yielding
an accuracy rate of 65.35%. Allowing tags, 2 times being validated at least, the algorithm
tagged 69,363 images in accordance with ARTigo, where 118,810 colour-tagged images have
been recorded, yielding an accuracy rate of 58.38%.
A detailed chart of image-tag dispersions ordered by colours from the algorithmic results as
well as from ARTigo is presented Figure 27 (algorithmic) and Figure 28 (ARTigo). Figure 29
shows Distribution of ARTigo colour tagging in descending order. To evaluate the depen-
dence of accuracy and colour Table 4 compares the frequency of each colour detected by
the algorithm next to ARTigo and the colour dependent accuracy rate, which is computed
from matching colour taggings on identical images. Therefore the accuracy rate indicates
the chance of colour tagging being predicted by the algorithm.

52



Figure 27: Distribution of colours, tagged on images in the algorithmic results. The blue horizontal
line marks the medium of tag frequency. For a discussion on noticeable high quantity
of “yellow” and “grey” see Section 7.2.2.

Figure 28: Distribution of colours, tagged on ARTigo images at least 2 times per image
(e.g., 18,525 images have been tagged with ‘red’ twice at least). The blue horizontal
line marks the medium. The colours’ order corresponds to Figure 27 for comparison.
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Figure 29: Distribution of colours, tagged on ARTigo images at least twice per image, in descending
frequency order. The blue horizontal line marks the medium.

Colour Algorithm ARTigo Accuracy
yellow 136,139 11,224 87.39 %
pink 6,677 5,423 23.27 %
beige 28,489 7,194 50.54 %
turquoise 5,162
red 24,389 18,525 55.10 %
ocre 2,107 7,494 50.98 %
violet 13,177 2,575 60.23 %
green 92,273 13,546 67.52 %
blue 22,198 18,044 51.00 %
olive 1,260
orange 12,988 7,044 57.85 %
black 47,258 30,782 40.47 %
grey 111,726 21,426 44.02 %
magenta 455
brown 64,129 16,263 82.91 %
purple 6,103 2,179 23.01 %
white 159,069 34,587 72.38 %

Table 4: Frequency of images tagged per colour term (at least twice) in comparison of ARTigo
and the algorithm’s results. Accuracy column is showing accuracy-rate for each colour
calculated by comparing matching term prediction and empirical term tagging.
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7.2.2 Discussion of Results

The results of algorithmic colour tagging presented above show interesting results, since
similarities and differences are both found comparing algorithmic colour tagging with em-
pirical data from ARTigo image tagging game. The following section will briefly mention
five major aspects, worth being discussed separately.
First, the average amount of colour tags attributed to an art image by the algorithm is
about 4. While Itten does not precisely predict a number of important colours being used
in colour composition of art images, the composition models he obtained from art images
are limited to a maximum of 5 and are minimum of 2 colours [Itt74]. The results of colour
extraction algorithm fits well into Itten’s analysis that a alike distinct number of colours
constitute a composition based on colour contrasts.
Second, the dataset from ARTigo shows a limited usage of expected basic colour terms.
Taking into account the order of basic colour terms proposed by Berlin and Kay (see Section
6.1 the empirical data on colour tagging in ARTigo can confirm Berlin and Kay’s basic
colour order most widely. Black, white, red, blue, brown, green and yellow are obviously
predominantly colours tagged and outreach the frequencies of orange, purple and other
secondary developed colours clearly. Although, the image material in ARTigo does not, of
course, provide similar standardised specifications as the colour sample set of Berlin and
Key’s study provided.
Third, the algorithm shows a striking emphasis on tagging the “yellow” colour tag. This
effect can be traced back presumably from two reasons. One one hand, it is produced by
a big share of drawings, architect’s plans and books’ pages, which often show yellowish
appearance resulting from ageing process.13 Even if yellow is a comprehensible reference to
old paper appearance, a more proper describing term would refer to the material (“paper”)
or the very process of ageing (“yellowed”). But for a second reason the dominance of “yellow”
can be traced back to photographic representation of gold material as frequent component
of art works in the ARTigo dataset. The colour extracting algorithm is not yet capable of
detecting chromatic gradients, as they occur when heavily reflecting materials like gold are
photographed. On the contrary the choice on Quick Shift as a gradient-based segmenting
method even increases the algorithmic affinity to unify such areas – a characteristic of
Quick Shift algorithm that is used purposely to unify perceptually uniform colour areas, as
discussed in Section 4.1.2. An increased analysis capable of detecting reflecting materials
like gold and silver, does have to intervene at this very step of segmentation, when gradient
information on the images can be still processed and evaluated.
Fourth, the comparison of Figure 27 and Figure 28 can tempt to conclude that the colour
extraction algorithm failed to detect, e.g., “red” as a apparently highly relevant colour. But
these two figures have to be compared with cautious on their different information scope.
While ARTigo colour tagging gives insight to users’ assessment of relevance on colours,
the colour tagging algorithm in contrast evaluates the colour composition of each image.
Therefore the algorithm could at its best only reproduce a small and distinct part of human

13English, German and French denote this procedure with verbs referring the yellow colour term
— i.e., yellowing in English, Vergilben in German and jaunissement in French.
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assessment on colour semantics, since the latter is influence and inspired by many more
factors than just the composition of colours.
Finally as fifth conspicuous aspect, the results of automatic colour extraction show a higher
frequency of “white” being tagged than expected. Detecting whiteness as colour in artworks
revealed many problems, since the actual pixel values of areas perceived as “white” show less
bright and pure characteristics than our perception purports. In consequence, the colour
extracting algorithm shows difficulties in accurately distinguishing slightly grey and tinged
white shades. The gamma correction process, discussed in Section 5.2, was therefore tuned
to increase brightness of already pale areas to improve the unambiguity of pale white and
light gray or tinted colours. Even with overall results in white being frequently tagged,
for several art images, the presented algorithmic colour extraction still does not provide
sufficient capability in detecting white as perceptional pure colour impression. And as
with the case of gold and other reflecting materials, this limitation could be improved by
further involvement of gradient analysis like suggested in [NpK04]. The high frequency of
“grey” being tagged in contrast with ARTigo’s empirical data, prove the need for further
refinements. The low proportion of tagging “black” in comparison to ARTigo data could be
attributed to grey-scale images which have been excluded in the colour extraction algorithm.
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8 Conclusion and Future Work

This thesis presented an algorithmic colour extraction method with automatic colour la-
belling on art images, incorporating the specifics of art images by consulting colour com-
position from art theory and analysing idiosyncrasies of state-of-art image segmentation
methods. From several segmentation and quantisation methods, Quick Shift image seg-
mentation algorithm was selected in combination with a K-means colour quantisation with
further processing steps selecting significant colours by using features of perceptional uni-
form colour model CIEL*a*b*. The combination of segmentation and quantisation methods
provided a highly adapted approach on art image characteristics, which have been analysed
consulting selected colour composition theory based on art images. With colour labelling
based on basic colour terms as final step in analysis, the processing steps of chromatic
extraction was also provided as an interactive web-interface, allowing colour distribution
analysis in demonstrative 3-dimensional colour space presentations. The overall results of
algorithmic colour extraction show high accuracy regarding empirical results from ARTigo
image tagging game and also reveal starting points for further research and development.
Even though this thesis’ implementation considered assertively the locally distribution of
colours on art images, this region-based approach could be improved by incorporating ob-
ject detecting, which would increase the semantical information base unprecedentedly and
would further approximate human perception and evaluation of colour sensation. The pre-
sented solution also has weaknesses in detecting reflecting materials like gold or silver, which
play an outstanding role especially in religious art works. A promising approach to meet
these weaknesses could be done by further analysis of spatial colour distribution and colour
gradients. Altogether the colour analysis can be further improved by incorporating more
background data, allowing highly adapted image processing based on art epochs, techniques
and artists for example.
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