
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

LMU
Maximilians
Universität
München

Ludwig

Pattern Queries for XML and

Semistructured Data

(revised version of PMS-FB-2002-5)

François Bry and Sebastian Schaffert

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2003-1, January 2003

Pattern Queries for XML and Semistructured Data

Sacha Berger, François Bry and Sebastian Schaffert

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de/

Abstract. Query and transformation languages developed since the mid 90es
for XML and semistructured data – e.g. XQuery, the precursors of XQuery,
and XSLT – built upon a path-oriented node selection: A node in a data item
is specified in terms of a root-to-node path in the manner of the file selection
languages of operating systems. Constructs from regular expressions such as
∗, +, ?, and “wildcards” give rise to a flexible node retrieval from incompletely
specified data items. This paper investigates an alternative approach to querying
XML and semistructured data. A metaphor for this approach views queries as
patterns, answers as data items matching the queries. Formally, an answer to a
query is defined as a simulation [1] of an instance of the query in a data item.
The basics of the query language Xcerpt are introduced and it is given a model-
theoretic semantics. Recent results on an operational semantics are outlined.
Ideas for a visual query language are finally sketched.

1 Introduction

Essential to semistructured data is the selection of data from incompletely spec-
ified data items. For such a data selection, a path language such as XPath [2]
is convenient because it provides with regular expressions such as ∗, +, ?, and
“wildcards” that give rise to a flexible node retrieval.

Query and transformation languages developed since the mid 90es for XML
[2] and semistructured data – e.g. XQuery [2], the precursors of XQuery [3], and
XSLT [2] – rely upon such a path-oriented selection. They use patterns (also
called templates) for expressing how the selected data, expressed by paths,
are re-arranged (or re-constructed) into new data items. Thus, such languages
intertwine construct parts, i.e. the construction patterns, and query parts, i.e.
path selectors.

This intertwining has some advantages: For simple query-construct requests,
the approach is rather natural and results in an easily understandable code.
However, intertwining construct and query parts also has drawbacks:

1. Query-construct requests involving a complex data retrieval might be con-
fusing,

2. unnecessarily complex path selections, e.g. XPath expressions involving both
forward and reverse axes, are possible [4],

3. in case of several path selections, the overall structure of the retrieved data
items might be difficult to grasp for a human reader.

This paper addresses using patterns instead of paths for querying XML and
semistructured data, an approach first proposed with UnQL [5] and further in-
vestigated e.g. with XMAS [6]. A metaphor for this approach is to see queries

as forms, answers as form fillings yielding database items. With this approach,
patterns are used not only in construct expressions, for re-arranging the re-
trieved data into new data items, but also for data selection. Furthermore, this
paper argues that the pattern approach allows for a more natural visualisation
of query and construct expressions in a visual query language.

In the following, the basics of the query language Xcerpt, which is based on
logic programming, are introduced. An answer to a query in this language is
formalised as a simulation [1] of a ground instance of the query in a database
item. This formalisation yields a compositional semantics. Finally, the visual
query language “visXcerpt” is introduced, showing the advantages of a pattern
based approach for the development of a visual query language.

2 Xcerpt Basics

The following principles have prevailed to the definition of the query language:
Pattern-based or positional instead of navigational. A query should correspond
to a form, an answer to a filling yielding a database item. The relative positions
of variables in a query should be easily recognisable.
Referential transparency. The meaning of an expression, especially of a variable,
should be the same wherever it appears. Therefore, destructive assignments are
prohibited and variables must be functional or logic programming variables.
Compositional semantics. A (structurally) recursive definition of the semantics
of a query in terms of the semantics of its parts, i.e. a Tarski-style model theory,
is sought for.
Multiple variable bindings. Like with SQL and other query languages, queries
might have several answers, each answer binding the query variables differently.
Symmetry. Queries should allow similar forms of incomplete specifications in
breadth, i.e. concerning siblings, and in depth, i.e. concerning children.

Note that the requirements of [3] are fulfilled by or compatible with the
basic query language defined below.

Below, the following pairwise disjoint sets of symbols are referred to: A set
I of identifiers, a set L of labels (or tags or strings), a set Vl of label variables,
a set Vt of term (or data item) variables. Identifiers are denoted by id, labels
(variables, resp.) by lower (upper, resp.) case letters with or without indices.
The following meta-variables (with or without indices and/or superscripts) are
used: id denotes an identifier, l denotes a label, L a label variable, X a term
variable, t a term (as defined below), v a label or a term, and V a label or term
variable.

A database is a set (or multiset) of database terms. The children of a docu-
ment node may be either ordered (as in standard XML), or unordered. In the
following, a term whose root is labelled l and has ordered (unordered, resp.)
children t1, . . . , tn is denoted l[t1, . . . , tn] (l{t1, . . . , tn}, resp.).

Definition 1 (Database Terms). Database terms are expressions inductively
defined as follows and satisfying Conditions 1 and 2 given below:

1. If l is a label, then l is a (atomic) database term.

2

2. If id is an identifier and t is a database term neither of the form id0: t0 nor
of the form ↑id0, then id: t is a database term.

3. If id is an identifier, then ↑id is a database term.
4. If l is a label and t1, . . . , tn are n ≥ 1 database terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are database terms.

Condition 1: For a given identifier id an identifier definition id: t0 occurs at
most once in a term.
Condition 2: For every identifier reference ↑id occurring in a term t an iden-
tifier definition id: t0 occurs in t.

Example 1. The following Xcerpt database term describes the book offers of an
online book store (This example is inspired from the W3C XQuery Use-Cases
[7]).

bib {

a1: author { last{ "Stevens" }, first { "W." } },

a2: author { last{ "Abiteboul" }, first { "Serge" } },

a3: author { last{ "Buneman" }, first { "Peter" } },

a4: author { last{ "Suciu" }, first { "Dan" } },

book {

title { "TCP/IP Illustrated" },

authors [↑ a1],

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Advanced Programming in the Unix environment" },

authors [↑ a1],

publisher { "Addison-Wesley" },

price { "65.95" }

},

book {

title { "Data on the Web" },

authors [↑ a2, ↑ a3, ↑ a4],

publisher { "Morgan Kaufmann Publishers" },

price { "39.95" }

}

}

Note that the element order is in general of no importance in a bibliographic
database. This is expressed in the Xcerpt syntax using the single curly brackets
{ }. However, in the author list of the first example, order might be of relevance
and is thus expressed using the square brackets []. Using the ↑ id and id : t
constructs in the first example make it possible to avoid redundant specifications
of the authors. ut

A query term is a pattern that specifies a selection of database terms very
much like logical atoms and SQL selections. The evaluation of query terms
(cf. Definition 9 on page 8) differs from the evaluation of logical atoms and
SQL selections as follows: 1. Answers might have additional subterms to those
mentioned in the query term. 2. Answers might have another subterm ordering
than the query. 3. A query term might specify subterms at an unspecified depth.

3

In query terms, the double square and curly brackets, [[]] and {{ }}, de-
note exact subterm patterns, i.e. double (square or curly) brackets are used in
a query term to be answered by database terms with no more subterms than
those given in the query term. [[]] is used if the subterm order in the answers
is to be that of the query term, {{ }} is used otherwise. Thus, possible answers
to the query term t1 = a[[b, c{d, e}, f]] are the database terms a[b, c{d, e, g}, f]
and a[b, c{d, e, g}, f{g, h}] and a[b, c{d, e{g, h}, g}, f{g, h}] and a[b, c[d, e], f]. In
contrast, a{b, c{d, e}, f, g} and a[b, c{d, e}, f, g] and a{b, c{d, e}, f} are no an-
swers to t1.

In a query term, a term variable X can be constrained to some query
terms using the construct ;, read “as”. Thus, the query term t2 = a[X1 ;

b[c, d], X2, e] constrains the term variable X1 to such database terms that are
possible answers to the query term b[c, d]. Note that the term variable X2 is
unconstrained in t2. Possible answers to t2 are a[b[c, d], f, e] which binds X1 to
b[c, d] and X2 to f , a[b[c, d], f [g, h], e] which binds X1 to b[c, d] and X2 to f [g, h],
a[b[c, d, e], f, e] which binds X1 to b[c, d, e] and X2 to f , and a[b[c, e, d], f, e]
which binds X1 to b[c, e, d] and X2 to f . In query terms, the construct desc,
read “descendant”, specifies a subterm at an unspecified depth. Thus, possi-
ble answers to the query term t3 = a[X ; desc f [c, d], b] are a[f [c, d], b] and
a[g[f [c, d]], b] and a[g[f [c, d], h], b] and a[g[g[f [c, d]]], b] and a[g[g[f [c, d], h], i], b].

Definition 2 (Query Terms). Query terms are expressions inductively de-
fined as follows and satisfying Conditions 1 and 2 of Definition 1:

1. If l is a label and L is a label variable, then l, L, l{{}}, and L{{}} are
(atomic) query terms.

2. A term variable is a query term.
3. If id is an identifier and t is a query term neither of the form id0: t0 nor

of the form ↑id0, then id: t is a query term.
4. If id is an identifier, then ↑id is a query term.
5. If X is a variable and t a query term, then X ; t is a query term.
6. If X is a variable and t is a query term, then X ; desc t is a query term.
7. If l is a label, L a label variable and t1, . . . , tn are n ≥ 1 query terms,

then l[t1, . . . , tn], L[t1, . . . , tn], l{t1, . . . , tn}, L{t1, . . . , tn}, l[[t1, . . . , tn]],
L[[t1, . . . , tn]], l{{t1, . . . , tn}}, and L{{t1, . . . , tn}} are query terms.

Query terms in which no variables occur are ground. Query terms that are not
of the form ↑id, are strict. The leftmost label of strict and ground query terms
of the form l, l{{}}, l{t1, . . . , tn}, and l[t1, . . . , tn] is l; the leftmost label of a
strict and ground query term of the form id : t is the leftmost label of t.

Note that desc never occurs in a ground query term, for it is by Definition 2
always coupled with a variable. Database terms are (simple kinds of) query
terms. However, the set of answers to a database term t (considered as a query
term) in a database D in general contains not only t (cf. Definition 9 on page 8).
E.g., f and f{a} and f{b} are possible answers to f . However, f is the only
possible answer to f{}. In a query term, multiple occurrences of a same term
variable are not precluded. E.g. a possible answer to a{{X ; b{{c}}, X ;

4

b{{d}}}} is a{b{c, d}}. However, a[[X ; b{{c}}, X ; f{{d}}]] has no answers,
for labels b and f are distinct. Child subterms and subterms of query terms are
defined such that if t = f [a, g{Y ; desc b{X}, h{a,X ; k{c}}], then a and
g{Y ; desc b{X}, h{a,X ; k{c}} are the only child subterms of t and e.g. a
and X and Y ; desc b{X} and h{a,X ; k{c}} and X ; k{c} and t itself are
subterms of t. Note that f is not a subterm of t.

Definition 3 (Variable Well-Formed Query Terms). A term variable X
depends on a term variable Y in a query term t if X ; t1 is a subterm of t
and Y is a subterm of t1. A query term t is variable well-formed if t contains
no term variables X0, . . . , Xn (n ≥ 1) such that 1. X0 = Xn and 2. for all
i = 1, . . . , n, Xi depends on Xi−1 in t.

E.g. f{X ; g{X}} and f{X ; g{Y }, Y ; h{X}} are not variable well-
formed. Variable well-formedness precludes queries specifying infinite answers.
In the following, query terms are assumed to be variable well-formed.

Example 2. The following Xcerpt query term is a pattern for the bibliographic
database introduced in Example 1 on page 3. An evaluation of this query term
against the aforementioned database would yield bindings of TITLE and AUTHOR
to all sensible combinations of title/author pairs.

bib {{

book {{

TITLE ; title,

authors { AUTHOR }

}}

}}

ut

3 Query Semantics

3.1 Simulation

The semantics is based on graph simulation. Informally, a simulation of a graph
G1 in a graph G2 is a mapping of the nodes of G1 in the nodes of G2 preserving
the edges. The graphs considered are directed, ordered and rooted and their
nodes are labelled.

Definition 4 (Simulation). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. Let ∼ be an equivalence relation on V1 ∪ V2. A relation S ⊆ V1 × V2 is
a simulation with respect to ∼ of G1 in G2 if:

1. If (v1, v2) ∈ S, then v1 ∼ v2.
2. If (v1, v2) ∈ S and (v1, v

′
1) ∈ E1, then there exists v′2 ∈ V2 such that (v′1, v

′
2) ∈

S and (v2, v
′
2) ∈ E2.

Let S be simulation S of G1 = (V1, E1) in G2 = (V2, E2). S is total, if for each
v1 ∈ V1 there exists at least one v2 ∈ V2 such that (v1, v2) ∈ S. If G1 has a
root r1, G2 has a root r2 and (r1, r2) ∈ S, then S is a rooted simulation. S is
minimal, if there are no simulations S ′ ⊆ S of G1 in G2 such that S ′ 6= S.

5

Note that every rooted simulation is total.

Definition 5 (Graphs Induced by Strict and Ground Query Terms).
Let t be a strict and ground query term. The graph Gt = (Nt, Vt) induced by t
is defined by:

1. Nt is the set of strict subterms (cf. Definition 2) of t and each t′ ∈ Nt is
labelled with the leftmost label (cf. Definition 2) of t′.

2. Vt is the set of pairs (t1, t2) such that either t2 is a child subterm of t1, or
↑id is a child subterm of t1 and the identifier definition id: t2 occurs in t.

3. The children of a node are ordered in Gt like in t.

1 2

1 1 2 2

1

f

ba g

h i

e

c

d

h i

d e

c i

gb

id id

id id:aid :g[h,i]id

idc{d,e,^ }

b{c{d,e,^ },^ }a

h

f

ed

id2id1f[:a,b{c{d,e,^ },^ }, :g[h,i]]

(a) Abstract node representation (b) Full node representation
(with node labels in gray)

Fig. 1. Graph induced by t = f [id1 : a, b{c{d, e, ↑ id1}, ↑ id2}, id2 : g[h, i]].

Note that t is the root of Gt. Figure 1 illustrates Definition 5. Obviously, the
graph induced by a ground query term does not fully convey the term structure:
Missing are graphical representations of the various nestings [], { }, [[]] and
{{ }}.

Below, a database term is often identified with the graph it induces.

3.2 Simulation Preorder

Definition 6 (Strict and Ground Query Term Simulation). � is the
relation on strict and ground query terms defined by t1 � t2 if there exists a
(minimal) rooted simulation with respect to label identity S of t1 in t2 such that:

1. if v1 = l{} occurs in t1 and (v1, v2) ∈ S, then v2 has no children in t2.
2. if v1 = l[[t11, . . . , t

1
n]] (n ≥ 1) occurs in t1, (v1, v2) ∈ S and (t1i , t

2
j) ∈ S

(1 ≤ j ≤ m ≤ n), then t21, . . . , t
2
m occur in this indexing order as children of

v2 in the graph induced by t2.

6

3. if v1 = l[t11, . . . , t
1
n] (n ≥ 1) occurs in t1, (v1, v2) ∈ S and if (t1i , t

2
j) ∈ S

(1 ≤ j ≤ m ≤ n), then t21, . . . , t
2
m are pairwise distinct (i.e. m = n), they

occur in this indexing order as children of v2 in the graph induced by t2 and
v2 has no other children than the t2j in t2.

4. if v1 = l{t11, . . . , t1n} occurs in t1, (v1, v2) ∈ S and (t1i , t
2
j) ∈ S (1 ≤ j ≤ m ≤

n), then v2 has no other children than the t2j in t2.

f

b

d e d

b

a

f

d

e

da c

Fig. 2. A minimal simulation of the (graph induced by the) ground query term
tq = f{id1 : a, b[d{{}}, ↑ id1], desce} in the (graph induced by the) database
term tdb = f [b[d, id2 : a], ↑ id2, c, d{e}].

Figure 2 illustrates Definition 6.
By Definition 4, � is reflexive and transitive, i.e. it is a preorder on the set

of database terms.
� is not a partial order, for although t1 = f{{a}} � t2 = f{{a, a}} and

t2 = f{{a, a}} � t1 = f{{a}} (both a of t2 can be simulated by the same a of
t1), t1 = f{{a}} 6= t2 = f{{a, a}}.

3.3 Grounding Substitutions and Ground Instances

Rooted simulation with respect to label equality is a first notion towards a
formalisation of answers to query terms: If there exists a rooted simulation
of (the graph induced by) a database term t1, considered as a query term, in
(the graph induced by) a database term t2, then t2 is an answer to t1. Ground
instances of a query term (cf. Definition 7 on the next page) gives rise to extend
this notion of answers to query terms that are not database terms. An answer in
a database D to a query term tq is characterised by bindings for the variables in
tq such that the database term t resulting from applying these bindings to tq is
an element of D. Consider e.g. the query tq = f{{ X ; g{{b}}, X ; g{{c}} }}
against the database D = {f{g{a, b, c}, g{a, b, c}, h}, f{g{b}, g{c}}}. The ;

constructs in tq yield the constraint g{{b}} � X∧g{{c}} � X. Matching tq with
the first database term in D yields the constraint X � g{a, b, c}. Matching tq

with the second database term in D yields the constraint X � g{b}∧X � g{c}.
g{b} � X ∧ g{c} � X is not compatible with X � g{b} ∧X � g{c}. Thus, the

7

only possible value for X is g{a, b, c}, i.e. the only possible answer to tq in D is
f{g{a, b, c}, g{a, b, c}, h}.

Definition 7 (Ground Instances of Query Terms). A grounding substi-
tution is a function which assigns a label to each label variable and a database
term to each term variable of a finite set of (label or term) variables. Let tq be
a query term, V1, . . . , Vn be the (label or term) variables occurring in tq and σ
be a grounding substitution assigning vi to Vi. The ground instance tqσ of tq

with respect to σ is the ground query term that can be constructed from tq as
follows:

1. Replace each subterm X ; t by X.
2. Replace each occurrence of Vi by vi (1 ≤ i ≤ n).

Requiring in Definition 2 desc to occur to the right of ; makes it possible to
characterise a ground instance of a query term by a grounding substitution.
This is helpful for formalising answers but not necessary for language imple-
mentations.

3.4 Answers

Not all ground instances of a query term are acceptable answers, for some
instances might violate the conditions expressed by the ; and desc constructs.

Definition 8 (Allowed Instances). The constraint induced by a query term
tq and a substitution σ is the conjunction of all inequalities tσ � Xσ such that
X ; t is a subterm of tq not of the form desc t0, and of all expressions Xσ�tσ
(read “tσ subterm of Xσ”) such that X ; desc t is a subterm of tq, if tq has
such subterms. If tq has no such subterms, the constraint induced tq and σ is
the formula true. Let σ be a grounding substitution and tqσ a ground instance
of tq. tqσ is allowed if:

1. Each inequality t1 � t2 in the constraint induced by tq and σ is satisfied.
2. For each t1 � t2 in the constraint induced by tq and σ, t2 is a subterm of t1.

Definition 9 (Answers). Let tq be a query term and D a database. An answer
to tq in D is a database term tdb ∈ D such that there exists an allowed ground
instance t of tq satisfying t � tdb.

4 Basics of the visual query and transformation language
visXcerpt

visXcerpt is a visual language fully based on Xcerpt. It covers all aspects of
Xcerpt and does not introduce elements which can not be mapped directly to
Xcerpt elements. Therefore, Xcerpt programs can be translated into visXcerpt
programs and vice versa without information loss.

8

Fig. 3. Query for the prices of the same
books in two different data stores repre-
sented by the elements bib and reviews.

Database terms are represented in
visXcerpt through nested rectangular
boxes with attached “tabs”. This reminds
somehow of the tabs used in graphical
windowing toolkits, which supports the
awareness of an underlying hierarchical
structure. The child-elements are nested
inside the box. Because visXcerpt is pri-
marily intended to be used with XML,
there is special handling of textual con-
tent (so called CDATA), attributes and
namespaces1 (all of which are not part
of the data model introduced above): At-
tributes are placed in a two-column table
with the name in the left column and the
value in the right one. The attribute table
is the first content of the box. If there are
no attributes, the table is omitted. Sub-
terms (i.e. child nodes), are recursively vi-
sualised the same way and arranged ver-
tically inside of the parent element’s box.
Textual content is simply written as plain
text. In visXcerpt the namespace of an el-
ement is written on the top right corner in
a smaller font and attribute namespaces
are prefixed (also in smaller font) before
the attribute name inside it’s table cell. For better distinction of elements at
different levels, every level is coloured differently.

XML allows the construction of graphs using reference mechanisms. Graph
representation is not fully implemented in visXcerpt and a matter of ongoing
work. The solution retained for visXcerpt is the use of hyperlinks to cope with
graph structure – the graph is then represented by a spanning tree and refer-
ences used to complete the graph are spanned in the “hyperspace”. This departs
from the approaches taken in most other visual languages, which are using two
dimensional representations of nodes and edges for graph visualisation. While
a two dimensional visualising non-tree graphs is suitable for small graphs, a hy-
perlink representation scales very well to graphs of arbitrary sizes. A reference is
visualised as a link (see 1b in Figure 4 on the following page) to the occurrence
of the referenced element (1a in Figure 4). Clicking onto such a link (see 3a)
scrolls the user’s visual context to the referenced element (3b). Furthermore,
when hovering with the mouse pointer over a referenced element (see 2a), all
referring elements are highlighted (2b). While browsing or editing documents
using visXcerpt, it is also possible to navigate back to the referencing element
via a back referring link (not shown).

1 Namespaces are defined as W3C recommendation at
http://www.w3.org/TR/REC-xml-names/

9

Fig. 4. Proposed handling of graph structures. Clicking on a reference (3a)
scrolls the users visual context to the referenced element (3b).

To cope with Xcerpt query terms , the following mapping of query constructs
is proposed:

– term variables : Term variables are represented as black boxes with their
name in the left top corner (see the box called VAR1 in Figure 5 on the
next page). If apart of the variable name the content of that box is empty,
the variable is considered to be unconstrained. If the variable is constrained
by an “as”-construct, the constraining pattern is the content of the black
variable box. This emphasises that all objects “collected” by the variable
(and therefore inside of the box) resemble to the pattern.

– the descendant construct : Descendants are visualised as grey boxes with
the word “descendant” written in the left top corner in italic. Italic font style
is reserved to textual Xcerpt key words that are used to support better as-
sociation with the textual representation. Xcerpt keywords are intended to
be used when no other text like a variable or element name is involved,
and when the construct is used infrequently. The metaphor of three dimen-
sional depth is used through a bevelled border to indicate matching of the
contained pattern at arbitrary depth.

10

Fig. 5. Example pattern with variable, descendant construct, or-
dered/unordered and total/partial matched elements.

– exact and partial matching : The border of visXcerpt elements are used
to indicate this feature (see the box called d1 in Figure 5). If the border
is painted as a solid line, the element’s content is intended to be matched
exactly, if the line is dotted or dashed partial matching of the child elements
is indicated.

– ordered and unordered matching : This feature is currently not visu-
ally supported, but an XML attribute named ordered in the namespace
http://xcerpt.org/ can be set to true or false leading to the desired ef-
fect. Hence, the generic attribute visualisation is used. In future versions of
visXcerpt, different alignment may be used to represent unordered match-
ing: while ordered content is represented using left text alignment, unordered
content may be aligned centred. This affects the tabs and the textual con-
tent.

4.1 Interactivity

An important property of a visual programming language is an editor which
is capable of supporting the user with both browsing and intelligent editing
facilities, especially when editing complex programs or documents.

Browsing Nodes can be folded by clicking on their tab. The content is hidden
while light and dark shading of colours used in the tab are reversed. The labels
are then displayed like tabs on registers along with other folded sibling elements,
an unfolded element label is the last one in the row of labels (see Figure 6 on the
next page). If the amount of folded labels exceeds the width of the visXcerpt

11

display area, a line-break occurs and a new line begins. All nodes can be folded
in the initial state, which is important for large databases. The user can then
dig into relevant areas by iterative unfolding of relevant nodes.

Fig. 6. Example with folded con-
tent (the tabs labelled “reviews”,
“price”, “authors” and “ISBN”)
and context menu button (at the
tab labelled “title”)

Editing The approach described so far only
covers handling of static data. To be able
to create or edit visXcerpt documents, it is
important to have an editor model that de-
scribes state transitions the user can per-
form in an interactive environment for visX-
cerpt. While plain text as attribute values
and text nodes can be edited the usual way,
editing models for tree or graph structures
are not yet established.

The editing paradigm used in visXcerpt
is the copy-and-paste paradigm. Each ele-
ment has a context menu that contains ap-
propriate operations. Copying an element
results in copying an element with all it’s
child nodes into a buffer. Copying an element is unambiguous, but the term
’paste’ does not state clearly where to paste something. Therefore paste is re-
fined in the four operations

– Paste before: The buffer’s content is pasted directly before the content
element.

– Paste after: The buffer’s content is pasted directly after the content ele-
ment.

– Paste into at beginning: The buffer’s content is pasted into the content
element as first child.

– Paste into at end: The buffer’s content is pasted into the content ele-
ment as last child.

Further editing operations acting on a context element are cut and delete,
where cut behaves like first copying and then deleting the content element.
The delete-operation removes a node with all it’s child nodes.

The former editing operations are explained with tree structures in mind
which is apparent, when “child elements” are mentioned. Because graph struc-
tures in visXcerpt are represented by hyperlinks on spanning trees, the handling
of graph structures is similar to the handling of trees. Nevertheless, graph spe-
cific extensions need to be investigated. A graph specific extension could be to
check referential consistency, maybe by removing all relevant references when
an element is deleted.

5 Concluding Remarks

The articles [8,9,10] have already pointed out the drawbacks of relying on a
navigational node selection à la XPath [11] and XQuery [12] for query and
transformation languages for XML and semistructured data.

12

[9] describes a language called fxt that has variables for terms, corresponding
to trees, and forests. In fxt, node selection is done with regular expressions. In
contrast to Xcerpt and the basic language described above uses term variables
for this purpose. In [8], a query and transformation language is described that is
related to logic and Prolog. This language has (in the terminology used above)
only label variables. In contrast, the basic query language introduced above also
has term variables.

The article [13] describes a non-standard unification algorithm subjacent to
Definition 9. [14,15] introduce in more detail the query language Xcerpt which
builds upon the basic language constructs introduced above. Xcerpt has con-
struct terms in which variables but no desc and ; may occur. A construct
term with variables V1, . . . , Vn is associated with a conjunction or disjunction
of (possibly negated) query terms in which all of V1, . . . , Vn occur. Xcerpt has
additional features that for space reasons cannot be mentioned here. A pro-
totype has been realized that implements a set-oriented backward reasoning
operational semantics. First experiments suggest that the Xcerpt approach to
querying is convenient in practice.

The language UnQL [5] has introduced simulation as a means for query an-
swering. UnQL, like Xcerpt, uses the notions of patterns and templates. UnQL
and Xcerpt differ from each other as follows. First, a query in UnQL consists of a
single “select-where” expression which can be processed with pattern matching.
In contrast, a query in Xcerpt might “chain” several “construct-query rules”
requiring a “unification” which is capable of binding variables from both of the
terms to be “unified”. Second, variables in UnQL can only occur as leaves of
query patterns. Complex queries might require the use of several patterns in
UnQL, where a single pattern suffices in Xcerpt.

References

1. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing Simulations on Finite and
Infinite Graphs. Technical report, Computer Science Department, Cornell University
(1996)

2. World Wide Web Consortium (W3C) http://www.w3.org/. (2002)

3. Maier, D.: Database Desiderata for an XML Query Language. In: Proceedings of QL’98
- The Query Languages Workshop. (1998) http://www.w3.org/TandS/QL/QL98/.

4. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Proceedings
of Workshop on XML Data Management (XMLDM), http://www.pms.informatik.uni-
muenchen.de/publikationen/#PMS-FB-2002-4, Springer-Verlag LNCS (2002)

5. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000) 76–110

6. Baru, C., Ludöscher, B., Papakonstantinou, Y., Velikhov, P., Vianu, V.: Features and
Requirements for an XML View Definition Language: Lessons from XML Information
Mediation. In: QL98/W3C. (1998)

7. Chamberlin, D., Fankhauser, P., Marchiori, M., Robie, J.: XML query use cases. W3C
Working Draft 20 (2001)

8. Grahne, G., Lakshmanan, L.V.S.: On the Difference between Navigating Semi-structured
Data and Querying It. In: Proceedings of Workshop on Database Programming Lan-
guages. (1999) 271–296

9. Berlea, A., Seidl, H.: fxt – A Transformation Language for XML Documents. J. of Com-
puting and Information Technology, Special Issue on Domain-Specific Languages (2001)

13

10. Boley, H.: Relationships between logic programming and XML. In: Proceedings of 14th
Workshop Logische Programmierung, Würzburg (2000)

11. W3 Consortium http://www.w3.org/TR/xpath: XML Path Language (XPath). (1999)
12. W3C http://www.w3.org/TR/xquery/: XQuery: A Query Language for XML. (2001)
13. Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language for

XML and Semistructured Data: Simulation Unification. In: Proceedings of the Int. Conf.
on Logic Programming (ICLP), Copenhagen, Springer-Verlag LNCS (2002)

14. Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query and Trans-
formation Language for XML. In: Proceedings of the International Workshop on Rule
Markup Languages for Business Rules on the Semantic Web, Sardinia, Italy (2002) (in-
vited article).

15. Bry, F., Schaffert, S.: The XML Query Language Xcerpt: Design Principles, Examples,
and Semantics. In: Proceedings of the 2nd Annual International Workshop ”Web and
Databases”, Erfurt, Germany (2002)

14

