A Proof of the Turing-completeness
of XSLT and XQuery

Stephan Kepser
SFB 441, University of Tibingen
kepser@sfs.uni-tuebingen.de

May 13, 2002

Abstract

The World Wide Web Consortium recommends both XSLT and XQuery as
query languages for XML documents. XSLT, originally designed to transform
XML into HTML, is nowadays a fully grown XML query language that is mostly
suited for use by machines. XQuery on the other hand was particularly designed
to be easily used by humans. Since both query languages receive a steady growth
in user acceptance, it is important and natural to ask about their expressive power.
We show here that both XSLT and XQuery are Turing-complete by reduction to
W-recursive functions.

Keywords: XML, XSLT, XQuery, Turing-completeness

1 Introduction

The World Wide Web Consortium (W3C) recommends both XSLT and XQuery as
query languages for XML documents. XSLT (X Style sheet Language Transforma-
tions [6,19)) is the recommendation of the W3C for an XM8][style sheet language.
The original primary role of XSLT was to allow users to write transformations of XML
to HTML, thus describing the presentation of XML documents. Nowadays, many
people use XSLT as their basic tool for XML to XML transformations, which ren-
ders XSLT into an XML query language. This naturally raises the question about the
expressive power of XSLT as a query language. We show here that XSLT is Turing-
complete by coding-recursive functions in XSLT.

We note that there are several claims in the XSLT programmers comunity that XSLT
be Turing-complete. But none of these claims is supported by a proof. There is a web
site (http://www.unidex.com/turing/) which provides a style sheet for a Universal
Turing Machine, but itis that long there is hardly a chance to formally show that it does
what it claims to do. We do not maintain the insight XSLT to be Turing-complete to
be new. Rather we provide a relatively simple proof to firmly establish a result which
may otherwise remain folklore.

kepser@sfs.uni-tuebingen.de�
http://www.unidex.com/turing/�

Previous work on the expressive power of XSLT was mostly concerned with fragments
of XSLT. Neven et al.2,/12] investegated XSLT from the point of view of its intended
model of structural recursion over trees.

There exist now several query languages for querying XML documents. The W3C
recommends (as a working draft) XQue#y},[which is based on XPatli]7], a lan-

guage originally designed to locate elements in an XML document. XQuery adds
variables and recursion to this, but also features to produces structured output. Turing-
completeness of XQuery can again be shown by cogiregursive functions. Indeed,

the coding is very straight forward.

It is interesting to note that the W3C now recommends two XML query languages
with the same expressive power, both based on XPath, but with quite some differences.
XSLT's processing model is to transform a document by structural recursion starting
with the root node and ending at the leaves. XQuery does not have a processing model.
Instead it possesses an abstract semantics which is originally based on a query algebra.
XQuery has a human-readable syntax while XSLT has an XML-based syntax, which
is very verbose, and cumbersome to read for humans. XSLT is untyped while XQuery
is strictly typed. So, apart from typing issues, XSLT is more machine oriented while
XQuery is more suitable for human use.

2 M-Recursive Functions

Amongst the many equivalent definition of Turing-complete computations there exists
a proposal by Kleenéll] using so-calledu-recursive functiongor computations on
natural numbers. Our definition @Erecursive functions follows the exposition by
Lewis and Papadimitrioudfl].

Definition 1 Thebasicfunctions are as follows:

1. For anyk > 0O, thek-ary zero function is defined asrog(ny,...,nx) = O for all
ny,...,Nk € N.

2. For anyk > j > 0 the j-th k-ary projection function is simply the function
T j(ng,...,n) =n; forallng,...,ng e N.

3. The successor function is definedsasc(n) = n+ 1 for allne€ N.

Thecompositioris defined as follows: Lekt,| > 0, letg: NK — N be ak-ary function,
and lethy,..., hg bel-ary functions. Then the composition gfwith hy, ..., hg is the
[-ary function

f(ng,...,n) =g(ha(ng,....m),....h(Ng,...,Np)).

Primitive recursion Let k > 0 and g be ak-ary function, and leh be ak+ 2-ary
function. Then the function defined recursively ¢gpandh is thek 4 1-ary functionf
with

f(ng,...,n,0) = g(ng,...,Nk),
f(ng,...,nk,m+1) = h(ng,...,n,,m, f(ng,..., N, m))

2

forallng,...,nx,me N.

p-Recursion Let k > 0 andg be ak+ 1-ary function. The minimisation of is the
k-ary functionf defined as

the leasm such thag(ng, ..., ng,m) =0,
f(n,...,nk) = if such anm exists
0 otherwise

forallng,...,nc € N.

We note in passing that primitive recursion is necessary even in the presepee of
recursion. It is indeed the only way to define a function that truly depends on more
than one argument.

3 XSLT

A full explanation of XSLT is of course far beyond the scope of this paper. The in-
terested reader is referred to the official stand&r®], published by the World Wide
Web Consortium, unfortunately not always easy to read. We will give here a short
overview over the constructs we need for codiagecursive functions. In a nutshell,
XPath provides the arithmetics, and XSLT recursion (with a little help from XPath).
As we will see, we need only a very small subpart of XSLT, basically template calling,
parameter passing, some basic arithmetics and a little bit of string handling. Arith-
metics and string handling is defined in XPath(T], the standard for expressions in
XSLT.

Templatesare XSLT’s way of expressing procedures or functions.
<xsl:template name="f">

</xsl:template>

Templates may have a name. If a template has a name, it can be called by another
template via this name:

<xsl:call-template name="f">

</xsl:call-template>

Instead of an identifier@namein XSLT terminology) likef there may be an expres-
sion that can be evaluated to an identifier, so that the template to be called may be
determined at run-time. This is one of the features newly introduced in XSLT version
2.0 that we will make use of to simplify the expositioxsl:call-template corre-
sponds to jumping to a particular label in a program code. In particular, if you call a
template and this called template completes its execution, program executiamotloes
return to the calling template, it rather just stops there. If you want to do any further
computations, there must be an explicit call to the next template.

Parameterscan be used for passing information from one template to another. They
have a name and a binding.

<xsl:param name="n"/>

to be placed at the beginning of a template states that this template can receive a pa-
rameter calledi. When the template is called, i.e., insidexal:call-template>
.. .<Ixsl:call-template> block, the parameter is transfered by

<xsl:with-param name="n" select=" expr ">

Variables are similar to parameters, but local to the template in which they occur.
They are not used for passing information between templates.

<xslvariable name="m" select=" expr ">
defines a local variable with nanmeand binds it to the value of the expressmxpr .

Conditionals XSLT provides constructs for conditional execution. We only need the
simple form of

<xslif test=’ expr >

<Ixslit>
If the expressioxpr evaluates to true, the block encloseddsl:if> and</xsl:if>

is executed. If it evaluates to false, the block is skipped. The expressions we will use
in tests are very simple: We just test if the value of a parameter is equal to 0.

Arithmetics XPath provides natural numbers and addition and subtraction of them.
That is all we need.

Strings XPath provides stings as data types and string functions which allow one to
emulate stacks by strings. One needs a symbol separating objects on the stack. In our
case it will be the slash (/). To push an element on the stack, we use the fururticat

to concatenate strings. It takes two or more arguments and returns their concatenation.
To get the top element of the stack, we use the functidsstring-beforevhich takes

two strings as arguments and returns the substring of the first string before the first
occurrence of the second string. When using the stack as the first and the separating
symbol /' as the second argument, the top of the stack is returned. To get the rest of
the stack, we ussubsting-after

We need stacks for two purposes: Firstly, when calling an XSLT-template for doing
subcomputations we need to know the return point, the point at which computation
shall resume after completing a subcomputation. Since subcomputations can call fur-
ther subcomputations, we need a stack of return points and not just a single one. Sec-
ondly, we need a storage place for results of subcomputations. There is no way to
determine beforehead how many results we will need to store, so we use a stack.

4 Coding p-Recursive Functions in XSLT

While the coding of the basic functions is easy to grasp from the XSLT source code, the
coding of complex functions is more demanding. We therefore explain the way these
templates work each time after presenting the XSLT code for each of the complex
functions.

Basic Functions
Letk > 0. We codezerok(ny, ..., k) as follows:

<xsl:template name="zero- k">
<xsl:param name="n-1"/>

<xsl:param name="n- K'/>
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:call-template name="substring-before($call-stack,'/')">
<xsl:with-param name="call-stack"
select="substring-after($call-stack,/')"/>

<xsl:with-param name="value-stack" select="concat(’0/’,$value-stack)"/>
</xsl:call-template>

</xsl:template>

Letk > j > 0. We coder j(ny,...,ng) as follows:

<xsl:template name="pi- k- j">
<xsl:param name="n-1"/>

<xsl:param name="n- Kk'/>

<xsl:param name="call-stack"/>

<xsl:param name="value-stack"/>

<xsl:call-template name="substring-before($call-stack,'/")">
<xsl:with-param name="call-stack"

select="substring-after($call-stack,/’)"/>
<xsl:with-param name="value-stack"

select="concat($n- j,I'\$value-stack)"/>
</xsl:call-template>

</xsl:template>
We codesucc(n) as follows:

<xsl:template name="succ">
<xsl:param name="n"/>
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:call-template name="substring-before($call-stack,'/')">
<xsl:.with-param name="call-stack"

select="substring-after($call-stack,"/’)"/>
<xsl:with-param name="value-stack"

select="concat($n + 1,'/",$value-stack)"/>
</xsl:call-template>

</xsl:template>

Composition

Letk,| > 0. We code the compositiof(n,...,n) =g(hi(ng,...,n),.
as follows:

..,hk(nl,...

,n))

<xsltemplate name="f">
<xsl:param name="n-1"/>

<xsl:param name="n- |"/>
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:call-template name="h1">
<xsl:with-param name="n-1"/ select="$n-1"/>

<xsl:with-param name="n- [" select="$n- I"/>
<xsl:with-param name="call-stack"
select="concat('f-s1/',$call-stack)"/>
<xsl:with-param name="value-stack”
select="concat($n-1,/,$n-2,7,.... I, $n- [’ $value-stack)"/>
</xsl:call-template>
</xsl:template>

ForO < j < k—1atemplate to cah;,1:

<xsl:template name="f-s ">
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:variable name="rv" select="substring-before($value-stack,’’)"/>
<xsl:variable name="vs1" select="substring-after($value-stack,/')"/>
<xsl:variable name="n-1" select="substring-before($vs1,/)"/>
<xsl:variable name="vs2" select="substring-after($vs1,/')"/>
<xsl:variable name="n-2" select="substring-before($vs2,'/")"/>
<xsl:variable name="vs3" select="substring-after($vs2,'/’)"/>

<xsl:variable name="n- I" select="substring-before($vs 111>
<xsl:variable name="vs(| +1)" select="substring-after($vs 1,'n">
<xsl:variable name="vss1" select="concat($rv, $vs(I +1))/>
<xsl:variable name="vss2"

select="concat($n-1,/",$n-2,'/',...,I" $n- I, $vssl)"/>
<xsl:call-template name="h(i+

<xsl:with-param name="n-1"/ select="$n-1"/>

<xsl:with-param name="n- [" select="$n- I"/>
<xsl:with-param name="call-stack"
select="concat("f-s(i+ D $call-stack)"/>
<xsl:with-param name="value-stack" select="$vss2"/>
</xsl:call-template>
</xsl:template>

The template to calhg. In opposite to the previous cases we do not need to store the
parametersy, ..., N on the value stack any more.

<xsl:template name="f-s(k—1)">
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:variable name="rv" select="substring-before($value-stack,/")"/>
<xsl:variable name="vs1l" select="substring-after($value-stack,/')"/>
<xsl:variable name="n-1" select="substring-before($vs1,’)"/>

6

<xsl:variable name="vs2" select="substring-after($vsl,/")"/>
<xsl:variable name="n-2" select="substring-before($vs2,’/")"/>
<xsl:variable name="vs3" select="substring-after($vs2,')">

<xsl:variable hame="n- I" select="substring-before($vs [,">
<xsl:variable name="vs(| +1)" select="substring-after($vs 1" 1>
<xsl:variable name="vss" select="concat($rv,"/’,$vs(I +1))/>
<xsl:call-template name="h K'>

<xsl:with-param name="n-1"/ select="$n-1"/>

<xsl:with-param name="n- I" select="$n- I"/>
<xsl:with-param name="call-stack"
select="concat(’f-s k/" $call-stack)"/>
<xsl:with-param name="value-stack" select="$vss"/>
</xsl:call-template>
</xsl:template>

And finally the template to cadi:
<xsl:template name="f-s k'>

<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>

<xsl:variable name="rv k" select="substring-before($value-stack,’/’)"/>
<xsl:variable name="vs1" select="substring-after($value-stack,’")"/>
<xsl:variable name="rv (k—1)" select="substring-before($vs1,/)"/>

<xsl:variable name="vs2" select="substring-after($vs1,/')"/>

<xsl:variable name="rv1" select="substring-before($vs (k=12),1">
<xsl:variable name="vs k' select="substring-after($vs (k—=21),1"">

<xsl:call-template name="g">
<xsl:with-param name="n-1"/ select="$rv1"/>

<xsl:with-param name="n- k' select="$rv K>
<xsl:with-param name="call-stack" select="$call-stack"/>
<xsl:with-param name="value-stack" select="$vs K'/>

</xsl:call-template>
<Ixsl:template>

Basically, we compute the valueshof(ng,...,n),...,hg(ng,...,n) first and use them
then as input to the template fgr We use the value stack to store the parameters
ny,...Ng because we need them for each call tdarWe use the value stack also for
accumulating the resulting values of the computationb; of.., hy. So, the template

f pushes the parametars, ... ng onto the value stack anéisl ’ onto the call stack.
This is the name of the template to be called at the end of the computation of
Templatef calls the template foln; with parametersy,...,ng and the call stack and
value stack.

ForO < j <k—1thetemplatd-s jis called at the end of the computation fgr The
top of the value stack now consists of

hj(ng,...,Mk),Ng, ..., Mk, hj—a (N, ... k), ..., ha(ng, .o k).

Templatef-s j pops the elements;(ny,...,Nk),Ny,. .., Nk from the stack storing them
in local variables. It pusheisj(ny,...,nx) back onto the value stack and thereafter

7

also pushesy,...,ng back onto that stack. Thus the order of return value figm
and the parameters is now reversed on the stack. Tenfiajefinishes by calling
the template fohj,; with parametersy, ..., ng, the call stack with the next template
‘f-s j+ 1 pushed on top of it, and the value stack.

The templatd-s (k— 1) is very similar to the above ones. It is called at the end of the
computation foth,_;. The top of the value stack now consists of

he—1(Ng, ..., Nk), N,y e i e 2(Na, oo), ha(ng, ... k).

Templatef-s (k— 1) thus pops the elemenitg_1(ny,...,Nk),N1,..., Nk from the stack

to store them in local variables. It pustg$ns, ..., ny) back onto the value stack. The
parameters, ..., Nk heed not be pushed back onto the value stack, because we need
them for the last time here for the call bf. Templatef-s (k— 1) finishes by calling

the template fohy with parameterss, ..., ng, the call stack with the templatés k'
pushed on top of it, and the value stack.

Finally, the templatés kis called at the end of the computationipf The top of the

value stack now consists of(ny,...,nk),hk-1(N1,...,N),...,ha(N1,...,nk). These

are popped from the stack and stored in local variables to be used as parameters in the
call tog accompanied by the call stack and the value stack. Because the computation
of gis the last step in the composition, we do not need to push a new continuation point
onto the call stack. Rather the templgtinishes by calling the continuation point left

on the call stack by the function that calléd

Primitive Recursion
For primitive recursion, lek > 0 and let

f(ng,...,n,0) = g(ng,...,Nk),
f(ng,...,nk,m+1) = h(ng,...,n,,m, f(nNg,..., Nk, m))

We codef as follows:

<xsl:template name="f">
<xsl:param name="n-1"/>

<xsl:param name="n- K'/>
<xsl:param name="m"/>
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xslif test="$m = 0>

<xsl:with-param name="n-1"/ select="$n-1"/>

<xsl:with-param name="n- k' select="$n- K'/>
<xsl:with-param name="call-stack" select="$call-stack"/>
<xsl:with-param name="value-stack" select="$value-stack"/>
</xsl:call-template>
</xsl:if>
<xsl:call-template name="{">
<xsl:with-param name="n-1" select="$n-1"/>

<xsl:with-param name="n- k' select="$n- Kk'/>
<xsl:with-param name="m" select="$m - 1"/>
<xsl:with-param name="call-stack" select="concat('f-c/’,$call-stack)"/>
<xsl:with-param name="value-stack"
select="concat($n-1,..., /" $n- k'l$m - 1,
'l $value-stack)"/>
</xsl:call-template>
</xsl:template>

And the template to cal:

<xsl:template name="f-c">
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:variable name="rv" select="substring-before($value-stack,/")"/>
<xsl:variable name="vs1" select="substring-after($value-stack,’)"/>
<xsl:variable name="n-1" select="substring-before($vs1,'/")"/>
<xsl:variable name="vs2" select="substring-after($vsl,/')">
<xsl:variable name="n-2" select="substring-before($vs2,/")"/>
<xsl:variable name="vs3" select="substring-after($vs2,’)"/>

<xsl:variable name="n- K" select="substring-before($vs k'I)'I>
<xsl:variable name="vs(k+1)" select="substring-after($vs k,'1)"I>
<xsl:variable name="m" select="substring-before($vs(k+1),7">
<xsl:variable name="vs" select="substring-after($vs(k+2),">

<xsl:call-template name="h">
<xsl:with-param name="n-1" select="$n-1"/>

<xsl:with-param name="n- K' select="$n- K'/>
<xsl:with-param name="n- (k+1)" select="$m"/>
<xsl:with-param name="n- (k+2)" select="$rv"/>

<xsl:with-param name="call-stack" select="$call-stack"/>
<xsl:with-param name="value-stack" select="$vs"/>
</xsl:call-template>
</xsl:template>

In principle, templaté provides a division by cases. If the last argumemntis equal

to O, the template fog is called. Ifmis greater then O, firstly templateis called
recursively withm decreased by 1 and then the templateHds called to complete
the computation. Thus templatetests ifm= 0. If so, it calls the template fog
with parameters,,...,ng, the call stack and the value stack. nif#£ 0O, it pushes
the parameters,,...,nx,, m— 1 onto the value stack for further use and calls itself
recursively with parametensy,...,ng,m— 1, the call stack with continuation point
‘f-c ' pushed onto it, and the value stack.

Templatef-c is called at the end of the recursive computatiorf @f;, ..., ng,m) and
hence the value of(ny,...,nk, m) lies on top of the value stack followed by the param-
etersny,...,ng, M. These elemets are taken from the stack and stored in local variables.
Then the template fdnis called with parameters,...,ng,m, f(ny,...,ng,m) and the

call stack and value stack. Because the computatibrisothe last step in the primitive

recursion, we do not need to push a new continuation point onto the call stack. Rather
the templatéh finishes by calling the continuation point left on the call stack by the
function that called.

(-Recursion

For p-recursion, lek > 0 and f defined as

the leasmsuch thag(ng,...,nk,m) =0,
f(ng,...,n) = if such anm exists
0 otherwise

We codef as follows:

<xsltemplate name="f">
<xsl:param name="n-1"/>

<xsl:param name="n- K'/>
<xsl:param name="m" select="0"/>
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:call-template name="g">

<xsl:with-param name="n-1" select="$n-1"/>

<xsl:with-param name="n- K' select="$n- K'/>
<xsl:with-param name="n- (k+1)" select="$m"/>
<xsl:with-param name="call-stack" select="concat('mu-f/’,$call-stack)"/>
<xsl:with-param name="value-stack"
select="concat($n-1,7..., /", $n- k,'/',$m,’" $value-stack)"/>
</xsl:call-template>
</xsl:template>

And the template to process the result of the cafj:to

<xsl:template name="mu-f">
<xsl:param name="call-stack"/>
<xsl:param name="value-stack"/>
<xsl:variable name="rv" select="substring-before($value-stack,')"/>
<xsl:variable name="vs1" select="substring-after($value-stack,’")"/>
<xsl:variable name="n-1" select="substring-before($vs1,/)"/>
<xsl:variable name="vs2" select="substring-after($vs1,/')"/>
<xsl:variable name="n-2" select="substring-before($vs2,'/")"/>
<xsl:variable name="vs3" select="substring-after($vs2,'')"/>

<xsl:variable name="n- k" select="substring-before($vs k">
<xsl:variable name="vs(k+1)" select="substring-after($vs k,'1)"I>
<xsl:variable name="m" select="substring-before($vs(k+1),">
<xsl:variable name="vs" select="substring-after($vs(k+2),7)1>

<xslif test="$rv = 0'>
<xsl:call-template name="f">
<xsl:with-param name="n-1" select="$n-1"/>

10

<xsl:with-param name="n- k' select="$n- k'/>
<xsl:with-param name="m" select="$m + 1"/>
<xsl:with-param name="call-stack" select="$call-stack"/>
<xsl:with-param name="value-stack" select="$vs"/>
</xsl:call-template>
</xslif>
<xsl:call-template name="substring-before($call-stack, '/')">
<xsl:with-param name="call-stack"
select="substring-after($call-stack, '/")"/>
<xsl:with-param name="value-stack" select="concat($m,/’,$vs)"/>
</xsl:call-template>
</xsl:template>

Functionf is coded by a loop on parametarstarting with 0. The core of the loop
consists of a call tg with the current value oi. If we found a null forg, we are
finished and returm. If not, we incrementn by 1 and loop on. Thus the template
for f pushes the parametans,...,n, m onto the value stack for later use bw-f ,
pushes the continuation poimhu-f * onto the call stack and calls the template &pr
with parametersy, ..., ng, m, the call stack and value stack. Note the line

<xsl:param name="m" select="0"/>
in the parameter block of template Here, we use the fact that a template may be
called with some parameters left uninstantiated by the caller. The first daiit
havem uninstantiated, becauseis the loop variable. Theelect -part provides a de-
fault value of0. In later calls td by templatenu-f the variablanwill be instantiated.

Templatemu-f is called at the end of the computation @f The top of the value
stack consists of the elemerg&y,...,ng,m),ny,...,Nk,M. These are popped from
the stack and stored in local variables.g(fy,...,ng, m) # 0, we callf recursively
with parametersyy,...,ng,, m+ 1, the call stack and the value stack to loop on. If
g(ny,...,nk,m) = 0 we found the null we are looking for, pushas return value on

the value stack and finish by calling the next continuation point from the call stack.
Note that ifg(ny, ..., Nk, m) has no null, we loop forever.

A Complete Style Sheet

The above section showed the translation of recursive functions into XSLT. There
are still two minor items missing to complete the translation. First, we have to pro-
vide some framework information to get a well-defined style sheet. And second, we
want to output the result of the computation. We therefore introduce additional XSLT-

code at the beginning and end of the translation. Assuming that we want to calculate
f(my, My, ..., mx) we introduce before the translation

<?xml version="1.0"?>

<xsl:transform xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="2.0">

<xsl:output method="text" omit-xml-declaration="yes"/>

11

<xsl:template match="/">
<xsl:call-template name="f">

<xsl:with-param name="n-1" select=" m"/>
<xsl:with-param name="n-2" select=" my'f>
<xsl:with-param name="n-3" select=" m'>

<xsl:with-param name="call-stack select="out/"/>

.

</xsl:call-template>
</xsl:template>

<xsl:template name="out">
<xsl:param name="call-stack"/>
<xsl:param name="value-stack">
Result: <xsl:value-of select="substring-before($value-stack,’)"/>
<xsltext>
</xsl:text>
</xsl:template>

The <xsl:output ...[> is just there to produce a nicer output. The first template is
there to start the computation. It matches with the super-root of the input document,
the only node that must be present at every input document, and the first node to be
processed. It calls the template fbr the function we want to compute, pasing the
arguments tof. And it places the call to the output template on the call-stack to
ensure that the output routine will be called at the end of the computation. The second
template is the output template. It pops the result of the computation from the value-
stack and prints it out.

After the translation we just add

</xsl:transform>

to complete the style sheet.

5 Correctness

Proposition 2 Let f be ak-ary p-recursive function ands, ..., ng € N. After calling
the XSLT-coding of, the top of the value stack is the valuefoh, . .., ny).

Proof. If f is a basic function, thei(ny,...,nx) is directly pushed onto the value
stack:

If fiszerog, then the line

<xsl:with-param name="value-stack" select="concat('0/’,$value-stack)"/>

sets the returned value stack to be the old one with a O pushed onto it.

If fism, then the line

<xsl:with-param name="value-stack"
select="concat($n- j,I'\$value-stack)"/>

sets the returned value stack to be the old one with the value of the paramatshed
onto it.
If fissucc, then the line

12

<xsl:with-param name="value-stack"
select="concat($n + 1,/ $value-stack)"/>

sets the returned value stack to be the old one with the value of the parameter
pushed onto it.

If fis defined by primitive recursion, we distinguish two casegg K 0 then the tem-
plate forf calls the template fog handing over all needed parameters. By hypothesis
we can assume that after calling the coding dlfiere isg(n,...,nk—1) on top of the
value stack. Sincé(ny,...,nk_1,0) =g(ny,...,N_1) the value off (ny, ..., ny) forms

the top the value stack.

If nx > 0then the template fof calls itself recursively with parametars, ..., ng_1, Nk —

1 pushingf-c on the call stack and the parameteis...,nc_1,nx — 1 on the value
stack. By hypothesis we can assume that at the end of the recursive dathéo
value of f(ng,...,nk_1,nx — 1) will be on top of the value stack, and the next ele-
ments are the parametens,...,nx_1,Nk — 1. Sincef-c is on top of the call stack,
computation continues with the templdte . This template calh with parameters
Ng,...,M—1,Nk— 1, f(ng,...,nk_1,nk — 1). By hypothesis we can assume that at the
end of the call tch there will beh(ng, ..., ng_1,nk— 1, f(Nny,...,Mk_1,nx — 1)), on the
value stack, which is by definition equal fgny, ..., ny).

If fis defined byu-recursion then the template 6fcalls the template of with pa-
rametersny,...,ng, m wherem = 0 initially, pushingmu-f on the call stack and the
parameters, ..., Nk, mon the value stack. By hypothesis we can assume that at the
end of the call tay there will beg(ng, ..., nx,m) on top of the value stack followed by
the parametens,, ..., ng, . Computation continues with the call to the templatef .

This template introduces a case distinction depending on the top of the value stack. If
g(ny,...,nk,m) = 0thenmis pushed on the value stack, and computation is complete.
This mis by definition the value of (ny,...,nk). If g(ny,...,nk,m) # 0 then then the
template forf is called recursively with parametens, ..., ng,, m+ 1. By hypothesis

we can assume that at the end of the recursive cdlltteere will bef(ny,...,ng) on

top of the value stack.

If fis defined by composition a§ny,...,ng) = g(hi(ng,...,nk),....h(N1,...,nK)),

then the template fof calls the template foh, with parameters,...,nx pushing

f-s1 on the call stack and the parameteys..., ng on the value stack. By hypothesis
we can assume that at the end of the calitaohe valueh;(ny,...,ny) will be on top

of the value stack followed by, . .., nk. Computation will continue with the template
f-s1 .

For0 < j < | —1the templatd-s j was called at the end of the call g so that we
can assume thdt; (ny, ..., ny) is on top of the value stack followed by the parameters
ni,...,Nk. The templatd-s j pops all those values from the value stack and stores
them in local variables. It pushég(ny,...,nx) back onto the value stack and there-
after also pushes,,...,ng onto the value stack, so that the order of the return value
and the parameters is now reversed. The template calls the templhje fovith pa-
rameterd, ..., ng pushingf-s j+ 1 onto the call stack.

The templatd-s | — 1 was called at the end of the calllp_; so that we can assume
thath_1(ny,...,nk) is on top of the value stack followed by the parametgrs. ., ng.

The templatd-s | — 1 pops all those values from the value stack and stores them in

13

local variables. It pushesg_1(ny,...,nx) back onto the value stack and calls the tem-
plate forhy with parametersy, ..., ng pushingf-s | onto the call stack.

The templatd-s | was called at the end of the calllipso that we can assume that the
top of the value stack now consists of the valbgas, ..., nk), h_1(N1,...,n),h_2(ng,
cosi)y . ha(ng, ..o k). The templatés | takes these from the value stack and uses
them in the right order as parameters in the cad.tét the end of the call tg we can
assume that the top of the value stack consistflof(ny,...,Nk),....h(Ny,...,Nk)).

|

6 Codingp-Recursive Functions in XQuery

The following coding ofu-recursive functions shows that XQue#] |s also Turing-
complete. XQuery is recommended by the W3C as a query language that human users
can use to query XML documents. Codipgecursive functions in XQuery is simpler

than in XSLT. Because XQuery offers full recursion, we do not need to emulate it by
means of stacks. XQuery is a strongly typed language; parameters and return values
of a function have types. In our case, the type for all parameters and return values
is nonNegativelnteger This data type is exactly the one of the natural numbers, as
defined in B].

The syntax for defining new functions in XQuery is similar to the one of the program-
ming language Java or C. The head of a function definition has the prototypical format
define function fname (Parameters) returns Datatype

wherefname is the name of the functiomatatype the data type of the return value of

the function, andParameters is a coma separated sequencBathtype $Variablename

pairs. The body of a function definition constists of a sequence of expressions enclosed
by braces{}). The only structure providing expression of XQuery we need is the con-
ditional

if (Exprl) then Expr2 else Expr3

meaning obviously that Exprl evaluates to truegxpr2 is evaluated, otherwisexpr3

is evaluated. XQuery provides the functieq for testing equality of two numerical
values.

In the following, we use the abbriviatiotat for the datatype&s:nonNegativelnteger
to enhance readability.

Basic functions
Letk > 0. We codezerog(n,...,nk) as follows:

define function zero- k(Nat $n-1, ..., Nat $n- k) returns Nat

{0}
Letk > j > 0. We coder j(ny,...,nx) as follows:

define function pi- k- j(Nat $n-1, ..., Nat $n- k) returns Nat
{8n-j}

14

We codesucc(n) as follows:

define function succ(Nat $n) returns Nat
{$n+1}

Composition

Letk,| > 0. We code the compositiof(ng,...,n) =g(hi(ng,...,n),....h(ng,...

as follows:

define function f(Nat $n-1, ..., Nat $n- [) returns Nat
g(h-1($n-1,....$n- [), ... h- k($n-1,..$n- 1)

}

Primitive recursion

For primitive recursion, lek > 0 and let

f(m,...,n,,0) = g(n,...,Nk),
f(nla"'ank>m+1) = h(n17"'7nk7maf(nlv"'ankam))

We codef as follows:

define function f(Nat $n-1, ..., Nat $n- k, Nat $m) returns Nat
if ($m eq 0) then g($n-1,....$n- K)
else h($n-1,....$n- k$m - 1, f($n-1,...,$n- k$m - 1))

}

[-recursion

For p-recursion, lek > 0 and f defined as

the leasimsuch thag(ng,...,nk,m) =0,
f(ng,...,n) = if such anm exists
0 otherwise

We codef as follows:

define function f(Nat $n-1, ..., Nat $n- k) returns Nat
mu-f($n-1,...,$n- k,0)

}

define function mu-f(Nat $n-1, ..., Nat $n- k, Nat $m) returns Nat
if (g($n-1,...,$n- k,$m) eq 0)
then $m
else mu-f($n-1,...,$n- k$m + 1)

}

15

Thatp-recursion is coded by two functions is a consequence of the fact that XQuery
does not offer optional arguments. So functiogerves as an interface function to call
mu-f , which has one parameter more, the one on which we do minimisation.

7 Conclusion

We provided a proof for the Turing-completeness of XSLT and XQuery by cqaing
recursive functions. XPath, being a component of both, provides the arithmetics while
XSLT and XQuery provide the recursion. In the case of XQuery the coding is straight-
forward, because XQuery allows the definition of (recursive) functions. For XSLT,
there was a little more work to be done, because we had to hand-code the return from
a recursive function call using a call-stack.

There is probably quite a number of ways to prove Turing-completeness of both XQuery
and XSLT, just because the languages provide so many facilities. We think the proof
presented for XQuery is likely to be the shortest one can find. It is a short one-to-one
translation. We are also of the oppinion that it will be difficult to find a shorter proof
for XSLT. Admitted we use two stacks and a two-stack machine is Turing-complete.
But a complete coding of such a machine in XSLT would not be shorter than the one
presented here. Most of the “lenght” of the coding is to be assigned to the fact that
XML and XSLT are so very verbose, a problem that every coding faces. Apart from
that, our coding is really just recursive function calls and passing caller and value stack
parameters around.

Since both XSLT and XQuery are Turing-complete, they are interchangeable on a
theoretical level. From a user’'s perspective, there are clear differences. A recursive
transformation of a document is simpler to define in XSLT, while queries can quicker
be coded in XQuery. The expressive power both provide seems an almost natural
choice when defining a languange that is convenient for u&prsThey probably

often demand expressive power and care a lot less about computability and complexity
issues.

Acknowledgements

I would like to thank Uwe Mdnnich, Frank Morawietz, Frank Neven, Helmut Seidl,
Klaus Schulz, and Thomas Schwentick for helpful comments and interesting discus-
sions.

References

[1] Anders Berglund, Scott Boag, Don Chamberlin, Mary Fernandez, Michael Kay,
Jonathan Robie, an@dme Sinkon. XML Path Language (XPath) 2.0. Techni-
cal report, W3C, 2001http:/iwww.w3.0rg/ TR/xpath20/

[2] Geert Jan Bex, Sebastian Maneth, and Frank Neven. A Formal Model for an
Expressive Fragment of XSLTnformation System£7(1):21-39, 2002.

16

http://www.w3.org/TR/xpath20/�

[3] Paul Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. Technical
report, W3C, 2001http://www.w3.org/ TR/Xmischema-2/

[4] Scott Boag, Don Chamberlin, Mary Fernandez, Daniela Florescu, Jonathan Ro-
bie, Erdme Sing&on, and Mugur Stefanescu. XQuery 1.0: An XML Query Lan-
guage. Technical report, W3C, 2001. Working drfatft://www.w3.0rg/ TR/
xquery/ .

[5] Jon Bosak. XML, Java, and the Future of the Web. Technical report, Sun
Microsystems, 1997http://www.ibiblio.org/pub/sun-info/standards/
xml/why/xmlapps.htm

[6] James Clark. XSL Transformations (XSLT), Version 1.0. Technical report, W3C,
1999. http:/iwww.w3.0rg/ TR/XSIt

[7] James Clark and Steve DeRose. XML Path Language (XPath) 1.0. Technical
report, W3C, 1999nttp://www.w3.0rg/ TR/xpath

[8] World Wide Web Consortium. Extensible Markup Language (XML). Technical
report, W3C, 1999nttp://www.w3.0rg/ XML/

[9] Michael Kay. XSL Transformations (XSLT), Version 2.0. Technical report, W3C,
2001. hitp://www.w3.0rg/ TR/XsIt20/

[10] Stephen Cole Kleendntroduction to Metamathematic®lorth-Holland, 1952.

[11] Harry Lewis and Christos Papadimitridalements of the Theory of Computation
Prentice-Hall, 2nd edition, 1998.

[12] Frank Neven. On the Power of Walking for Querying Tree-Structured Data. In
Lucian Popa, editoiRroceedings PODS 2002002.

17

http://www.w3.org/TR/xmlschema-2/�
http://www.w3.org/TR/xquery/�
http://www.w3.org/TR/xquery/�
http://www.ibiblio.org/pub/sun-info/standards/xml/why/xmlapps.htm�
http://www.ibiblio.org/pub/sun-info/standards/xml/why/xmlapps.htm�
http://www.w3.org/TR/xslt�
http://www.w3.org/TR/xpath�
http://www.w3.org/XML/�
http://www.w3.org/TR/xslt20/�

