
A GRAPHICAL QUERY LANGUAGE SUPPORTING RECURSION+

Isabel F Cm*
Alberto 0 Mendelzon

Peter T Wood

Computer Systems Research Insmute
Umverslty of Toronto

Toronto, Canada M5S IA4

ABSTRACT

We define a language G for querymg data Epresented as a
labeled graph G By considenng G as a relation. tis graphcal
query language can be viewed as a relational query language,
and its expressive power can be compared to that of other &a-
honal query languages We do not propose G as an alternative to
general purpose relational quety languages, but rather as a com-
plementary language m which xecurslve quenes are simple to
formulate The user 1s ;uded m this formulahon by means of a
graphml mterface The pmvlsion of regular expressions m G
allows recursive quenes more general than transitive closure to
be posed, although the language 1s not as powerful as those based
on funcuon-free Horn clauses However, we hope to be able to
exploit well-known graph algonthms m evaluatmg recursive
quenes efficiently, a topic which has received wdespread atten-
tion recently

1 INTRODUCTION

It is often the case that the data compnsmg an apphcatlon
can be represented most naturally m the form of a graph struc-
ture In order to extract mformatton from such a representahon,
users need a smtable query language One method of provldmg
&us service would be to transform the graph mto a mlanon and
use a relauonal query language such as SQL However, tis
solution suffers from two disadvantages Firstly, the graphcal
nature of the data 1s no longer apparent, and secondly, there are
useful quenes, such as finding the transittve closure of a graph,
that cannot be expressed m tradluonal relational query languages
[Ah0791 As a result, our approach 1s different In tis paper we
define a graphcal query language G tailored to querying data
which 1s repnzsented as a graph Thus language has sufficient

Research supported by an Invotm grant and a World Um’emty Servm
of cwada scholarship

PermIssion to copy wlthout fee all or part of this material IS granted
provided that the copies are not made or distributed for dnect
commercial advantage, the ACM copynght notlce and the title of
the pubhcatlon and Its date appear, and notice IS given that copying
IS by permission of the Association for Computing Machinery To
copy otherwlse, or to repubhsh, requires a fee and/or specflc
permission

@ 1987 ACM O-89791-236-5/87/0005/0323 75c

expressive power to enable users to pose quenes, mcludmg tran-
sitive closure, which are not expressible in relational query
languages Furthermore, the formulation of such quenes by the
user is facdltated by means of a graph& mterface. through
whtch the user constructs and mampulates both query and
answer graphs

Recently, there have been a number of proposak for more
power&l relational query languages [Daya86], many of them
based on Horn clauses [Hens84,Chan85,Ullm85] However,
efficient evaluanon algontbms for such languages have been
difficult to obtam and seem highly data dependent
[Banc86,Sacc86] We hope that by restnctmg the query
language slightly and exploitmg exlstmg graph algonthms, we
will be able to evaluate grafical quenes efficiently

The graphs over which our graphlcal quenes are defined
are labeled due&d multigraphs The node labels m distmct
values drawn from some domam, while edge labels are tuples of
domam values

EXAMPLE 1 The followmg graph represents the fhght m-
fonnauon of vanous rurlmes Each node IS labeled by the name
of a city, whde each edge 1s labeled by an arlme name

A directed edge from node ‘Tar’ to node ‘Bos’ with label ‘AC’
denotes the fact that Air Canada has a Right from Toronto to
Boston 0

A grophlcal query Q on a graph G 1s a set of labeled
dlrected mulngraphs, m wkch the node labels of Q may he
ather vanables or constants, and the edge labels are regular
expresslons defined over n-tuples of vanables and constants An
edge which IS labeled by a regular expression contammg the
posmve closure operator (+) 1s drawn as a dashed edge m Q

323

ms 1s done to emphasize that such edges correspond to paths of
arbitrary length m G, while sohd edges m Q (those whose labels
contam no +) correspond to paths of fixed length The value of
Q wtth respect w G IS the muon of all query graphs of Q which
“match” subgraphs of G A formal defimtlon of the semanucs
of G 1s postponed untd Secuon 2 2

EXAMPLE 2 Given the graph G of Example 1, the follow-
ing query Q = (Q 1 ,Q2) finds the first and last cmes vlslted m all
round tnps from Toronto, m which the first and last fltghts are
with Air Canada and all other flights (if any) are with the same
arline

y>
Z

The followmg graph 1s the value of Q with respect to the graph
G

The node x m Q 1 matches ‘Van’ m G, whde the edge from y to z
in Q2 matches the paths <‘NY’,‘LA’> and c’Bos’,‘NY’,‘LA’>
m G The concatenated edge labels of both these paths satrsfy
the regular expression ‘AA’+ Because this query requires the
computanon of the transiuve closure of G, it IS not expressible m
relational algebra [Ah0791 Furthermore, tbe requirement that
cmes be hnked by the same (unspecified) auhne means that the
query IS also not expressible m the algebra extended with a tran-
slhve closure operator [Vard82] Cl

Apart from those query languages based on Horn clauses,
other extended relational query languages have concentrated on
the translhve closure operator QBE [Zloo76] allows transmve
closure to be computed, but only with respect to mformahon
which can be represented as a tree or a forest Both the
approaches of [Clem81] and G-Wlnz [He11851 support recursive
views, but neither of them can query cychc informanon The
Probe prolect [Daya86,Rose86] IS closest to our approach
Probe 1s an extension of G-Whiz which allows cychc structures
to be quened Transitive closure 1s generalized to include addi-
tional information about the set of paths between any two attn-
bute values over wluch transihve closure 1s defined However, it
1s not clear whether the query of Example 2 can be expressed m
the Probe language In any event, we believe that the use of reg-
ular expressions makes such quenes easier to express in our
language The provision of vanous operators in Probe permlts
quenes such as finding the shortest path to be expressed, which
cannot be achieved m our present formulanon However, we any
m the process of addmg suitable operators to our language m
order to gam this additional expressive power

The remamder of this paper is divided mto four mam sec-
uons In the next secnon, the syntax and semantics of the graph-
ical query language G are defined Section 3 compares the
expressive power of G with that of II, the language of Horn
clause programs [Chan85] An m~hal lmplementahon of G, m
which quenes are translated to Prolog programs [Cloc81], is dn-
cussed bnefly m Secnon 4 Finally, a number of further research
issues are suggested in Secnon 5

2 GRAPHICAL QUERIES

The syntax and semanttcs of the graphcal query language
G are defined m tis sectton Before dlscussmg the syntax and
semanncs of G, tt 1s necessary to give a more precise defimoon
of the graphs over wluch the expressions of G are defmed

A labeled directed (mu&r-) graph G IS an ordered quintuple

where No IS a set of nodes Eo IS a set of directed edges, yo 1s
the rncufence functwn that associates urlth each edge of G an
ordered pour of nodes of G, vo is a one-to-one node kabehng
functwn that associates \~lth each node a &stmct value drawn
from domam DO, and &o is an edge labehng function, wkch
associates wrth each edge an n-tuple of values drawn from
domams D1, .D,
(‘Bos’.‘Van’,‘Tor’,‘~~,‘LA~,‘~~] m?~~(‘AAl’:‘AC’~“;f
e=(X,y)iS~edgemEG,thenXiSthe~IlOfe~dylSthehead
of e Given two edges e, and e, m Eo such that v&e,) = vG(e,),
then e(e,) #~.&e,) We wtll call tius the dtstmt edge label
property In addluon, there are no isolated nodes m G From
now on, G wdl be referred to simply as a graph, and directed
edges wdl simply be called edges

2 1 Syntax

Given a graph G = (NC, Eo, yo, VG, EG), an expression of
G, that 1s. a graphical query, IS a set [Q t , ,Q,) of labeled
directed (muln-) graphs Let

be one of these graphs, and let X = (x1, ~2,) be a set of vurt-
ables Every node m Np must be the head or tad of some edge
m EQ The node labehng funtion VQ maps each node m NQ to
an element of DouX, that IS, a node is labeled either by a con-
stunt a,EDo or by a vanable X,EX The edge labeling function
EQ associates with each edge m EQ a regular expression of sun-
ple edge labels A sunple edge label IS an n-tuple (11, 91”) of
constants, vanables and underscores, such that for any constant b
appearmg m the r’th component of an edge label, be D, The
empty edge label 1s also a simple edge label, It 1s used only when
querying graphs wkch have no edge labels

A sequence of edge labels 1s defined as follows Each edge
label (11, ,l,)isasequencec(lt, (1,) > of edge labels If
x and y are sequences of edge labels, then so is the concntenatzon
cr,y>ofxandy Lets1 andS2besetsofsequencesoflabels
The set S ,S2, called the concatenatton of S 1 and Sz, 1s

(cx,y> Ix=Sl andye&)

lf S 1s a set of sequences of labels, define S’+’ = SS’ for I 21, and
the posrtrve closure of S as the set

S+=;Sl
14

324

Let L be the set of simple edge labels The regular expres-
swns over L and the sets that they denote are defined recursively
as follows [Ah0741

1 For each label 1 in 15.1 IS a regular expression and denotes
the set (I)

2 If s 1 and s2 are regular expressions denotmg the sets S 1
and S2 respecttvely, then the alternatwn of s t and ~2. wnt-
ten s1 Is2, and the sequence csl.s2> are regular expres-
sions that denote the sets S t u S2 and S 1 S2 respecttvely

3 Ifs 1s a regular expression denotmg the set S, then the posr-
nve closure of s, wntten s+, IS a regular expression denot-
ing the set S+

Edges whose labels are formed by usmg only the first two rules
above are called solid edges, wMe those whose labels are con-
structed usmg rule 3 are called dashed edges

EXAMPLE 3 Refemng back to the graph of Example 1, the
followmg query Q urlll return those cities reachable from
Toronto using only a single kr Canada or Amencan Alrhnes
flight

@ ‘AC’ I ‘AA’@

This IS equivalent to the followmg set (Q 1, Q 2) of quenes

Q,@EL@

Q,@%@

0

The underscore can be viewed as a shorthand notation for
the alternation of aJl relevant domain constants appeanng m the
graph G That IS, d an underscore appears as the t’tb component
of an n-tuple, it denotes the regular expression d 1 I I d,,,,
where.D,=(dl, , d,,,) As a result, the posmve closure of the
n-tuple of underscores denotes the set of all sequences of sunple
labels which contam only constants

EXAMPLE 4 The query to find the clues reachable from
Toronto m a sequence of three flights such that the first and last
fhghts are with the same atrlme could be expressed as follows

@ <Y*-*Yyg

The underscore IS shorthand for ‘AC’ I ‘AA’ 0

EXAMPLE 5 The dashed edge label @ven by the regular
expression AC? I <AC. AA>+ would match the edge labels on
paths where either all the fltghts were with Air Canada or the
flights alternated between An Canada and Amencan Alrlmes 0

2.2 Semantics

We shall now define the value of a graphcal query Q wtth
respect to a graph G Gwen an expression Q of G which IS a set
IQ,* , Q,) of query graphs, the value of Q wrth respect to G
1s slmply

QG)=Q,(G)u uQ,G).
where Q,(G) IS the value of Q, with respect to G The graph
umon operator IS defined m such a way that It preserves the dls-

tmct edge label property Next, we will defme the semantics
when Q IS a single query graph

The concept of a valuanon IS used to define a mappmg
from the vanables in Q to values m the domams of G Let
Q =(NQ,EQ,~Q,vQ, EQ) be a query graph which IS to be
evaluated wtth respect to the graph G = (iVo. EC, WC, VG, +).
whose nodes labels are defined over DO, and whose edge labels
are defined over D1 x xD,, A valuatwn p of Q 1s a pan
@1 ,pz) of mappings The node valuatron pl IS a one-to-one
mapping from node labels to elements of the doman DO. such
that if c IS a constant, then pl(c)=c The edge valuatwn p2 IS a
mapping from the constants and vanables that appcdr m edge
labels to domam values such that (1) If c IS a constant, then
p#)=c, and (2) If x IS a vanable appeanng m the t’th com-
ponent of a tuple m an edge label, then p2(n)e D, The mapping
p2 can be extended to map snnple edge labels to tuples of
domain values In addition. given an edge e m Ee, let pz(Q(e))
denote the result of applymg p2 to each sunple label appeanng us
the regular expression EQ(e), and let S(p2, ~a, Q, e) be the set of
sequences of simple labels denoted by p&(e))

EXAMPLE 6 A valuation p =(p1,p2) for the query of Exam-
ple 4 IS given by

pl(‘Tor’) = ‘Tor’, pi(x) = ‘LA’,
p2(y) = ‘AA’, p2(‘AC’) = ‘AC’, p*(‘AA’) = ‘AA’

From now on, when definmg valuahons we will usually omit the
defimbons for constant labels Cl

The semantics of the graphical query language IS detined
usmg a simplified form of mappmg between graphs known as a
subgraph homeomorphmn [Lapa78. FortgO] Thus mappmg
seems to captunz our mtentton that the user should dunk of the
edges m a query being matched to paths m the graph being
quened It is first necessary to define a simple path in a graph
A sample path P in a graph G IS a sequence

cvl,el.v2,e2, ,e,-l,v,>,

where V,E?V'G, v,#v,, lll,jln, and ekEEG, lskln-1, such
that vG(ek)=(vk,vk+l). 1 Sksn-1 The edge label sequence
tnduced by P IS gtven by

<ec(elX z-&-d~

An edge-independent subgraph homeomorphtsm between a
query graph Q and a graph G IS defined as a pair p=(pl&) of
one-to-one mappings, where p1 maps nodes of Q to nodes of G,
and ~2 maps edges of Q to sunple paths m G The tradlbonal
defirutlon of subgraph homeomorptism requues that the paths 111
G to which the edges of Q map are panwise node-disjoint
[Fort80] We use the term “edge-mdependent” m our defimtion
since each edge m Q can be mapped to any snnple path III Q,
independently of the other edges m Q Some JusMicatlon of tis
choice for the setnanhcs of G IS gven towards the end of 011s
sechon From now on, we will refer to edge-independent sub-
graph homeomorphtsms snnply as homeomorphmns

Given a valuatton p=(pl.pz) of Q, the homeomorptism
p=(pl 42) 1s sard to preserve p if for each node x m Q,

and for each edge e m Q. the edge label sequence Induced by the
simple path pz(e) m G IS m the set S (p2.~ Q,e). that IS, the set
denoted by the regular expression pz(h(e))

325

The value of Q wrth respecr to G, denoted Q(G), IS the
muon of the set of graphs

(p(Q) I p is a valuanon of Q and there IS a homeo-

morphsm between Q and G wkch preserves p)

EXAMPLE 7 Let us return to the graph G of Example 1
The followmg two graphs provide defimnons for the structure of
G as well as for the labehng functions

r-l Bos

Consider the followmg query Q, where only the second of the
two graphs (that speclfymg the labels) would actually be input
by the user

Let a valuation p =(pl ,pz) of Q be given by

p,(x)=‘LA’. p&)=‘AA’

One homeomo@sm FL= (~1 ,pz) from Q to G IS gwen by

and

The mappmg pt preserves the node valuation p1 since
pl(v&))=v&(u,)) for all nodes U,ENQ For example,
p1(vQ(u3))=‘LA’=v&(u3)) The edge label sequence
induced by p2(ll) IS <‘AC’>, and that mduced by ~~(12) 1s
<‘AA’> Since each of these IS m the set denoted by the edge
valuation p2 applied to the corresponding regular expression m

Q, ~2 preserves p2 So p preserves p. and p(Q) which IS

IS a subgraph of the answer to Q Another valuation which IS
preserved by a homeomorphlsm from Q to G IS p’, which IS
idenncat to p except that p1 ‘(x)=‘SF’ The homeomorphlsm p’
which preserves p ’ 1s the same as p, except that pt ‘(~3) =vg and
)12’(f2)=<v4,eS,v5,elO,v6> The valuation p’ is preserved
since <‘AA’,‘AA’> sat&es ‘AA’+ Therefore, the followmg
graph p ‘(Q) IS another subgraph of the answer

The paths cv2,e3,vs,es,v4> and <v2,e4,vs,esVv+ do not
preserve any valuation of Q (smce k(es)=‘AA’ and
e&,)= ‘AC’+), so I 1 cannot be mapped to either of these paths
Smce no other subgraphs contnbute to the answer, Q(G) is @ven
by

@c@
AA+ ” ,

.’ :AA+

We now provide some Jushficatlon for our chorce of a
homeomorphlsm different from the tradiuonal mappmg For this
purpose, it IS useful to consider the answer of the followmg
query Q with respect to the graph G of Example 7

+

If the semantics of G were based on the conventlonal defimuon
of homeomo@usm, tis query would request all pans of dqouat
paths from Toronto to New York There are three paths m G
from Toronto to New York,

PZ = a%e3,v3,es,v4>, and

~3 = cv2,e4,v3,es9v4>.

and two disJomt pars of paths, (p 1.~2) and (p l,p3) If the
answer to the query Q IS the won of these paus, then it IS posn-
ble for the user to deduce incorrectly thatpz andps are disJomt,
since 011s information IS lost m formmg the muon An altema-
nve 1s to present mdlvldual answers to the user one at a rime, but
dus 1s both less elegant and would re~uue additional processmg
to group answers where possible m order to try to avold produc-
ing an exponenaal number of solutions We also feel that
evaluatmg quenes with these semantics may be more costly,
although we have no results to support Uns conJecture It should
be noted that, using our chosen semanhcs, one of the dashed
edges m the above query IS redundant

326

3 EXPRESSIVE POWER
In tis secnon, the expressive power of G IS compared to

that of relational query languages, specifically the language H of
Horn clause programs [ChanSS] Before domg so, It 1s necessary
to be able to view a query of G as a mappmg between relations
rather than graphs, that is, to provide relational semantics for G
Given a graph G and a query Q on G, we show how to mterpret
both G and Q(G) as relahons

3 1. Relational semantics for G
Given a graph G = (NC, ,!?G, WC, VG, %G) m which edge

labels are n-tuples of domam values, It IS stra@tforward to con-
struct a relation r corresponding to G Let the relation scheme
for r be gven by R=(Al,Az,Bl, .&h where
dom(Al)=&rn(Az)=DO(thedomamofthenodelabelsmG)
and dom(B,)=D,, l<r<n For every edge eeEG with
vG@)=(x9yh where v&)=vl, vGb’)=vZ, and
Ec(e)=Ul, .I.),thereoatuple(v~,v~,I~, ,I.)mr The
dlstmct edge label property ensures that r 1s mdeed a relation
Conversely, gwen a relatton r m which two attnbutes are de6ned
over the same domam, it 1s also nmple to produce a graph G
correspondmg to r

EXAMPLE 8 The relation r of the graph G given m Exam-
ple 1 IS shown below The relaaon scheme 1s fltght = Ifrom, to,
awlme)

Tor NY AC

Bos NY AA
NY LA AA

LA SF AA
SF NY AA

0
In order to interpret Q(G) as a relanon, It 1s convement to

add a summary table to the syntax of G Given a set Q of p
graphcal quenes (Q 1, , Q,), a slunmary table T 1s a set
(t19 , t,,] of k-tuples of constants and vanables from X, such
that each vanable x, appearmg m tuple r, must label some node
m Q, or be a component of some edge label of Q, Intmuvely,
each tuple Z, of T defines the output relation r, for query Q,, the
value of Q being @ven by the muon of the relations r 1, , r,,

Let Q be an expression of G, that IS, Q 1s a set
(Qlv ,Q,) of query graphs, and let T=(tl, .+I be the
summary table for Q Given a relation r with scheme
R=(AI,A~.BI, , B,), the value of Q wuh respect to r and T
1s

Q(r,T)=Ql<r,tdu uQ,<r@,

where each Q,(r,f,), 1 <I Ip, is a relation whch 1s the value of
query Q, with respect to relanon r and summary row f, Let G be
the graph of r and Q(G) be the value of Q wnh respect to G

The value of a single query graph Q with respect to r and sum-
mary mw t IS defined as

Q (r,t) = (p(t) I p 1s a valuation of Q and p(Q)

1s lsomorptic to a subgraph of Q (G))

EXAMPLE 9 Returning to the query Q of Example 2, let the
summary table T=(tl,rz), where tl=(x,x,‘AC’) and
t2=0,z,w) The value of Q with respect to r and T IS the fol-
lowmg relation

Van Van AC
Bos LA AA
NY LA AA

cl
EXAMPLE 10 Given a graph G, the Identity query (shown

below), with summary table conslstmg of the smgle tuple
(XY,ll, , I,,), yields the same relahon as would be produced
by the method outlined at the begmmng of dus section

0

3.2 Horn clause queries
It seems most appmpnate to assess the expressive power of

G by comparmg It to the language H of Horn clause querres
introduced m [Chan85] We will not repeat the defimtlon of H
here, but will only hlghhght some of the dlffenmces between H
and the usual delimnon of fun&on-free Horn clauses The
pre&cate symbols of H are pamuoned mto termrnal refanon
symbols, which correspond to base relanons, and nontermrnal
refatron symbols Smce we are dealmg with quenes over a smgle
relauon, we wdl assume there is only a single termmal relanon
symbol R, apart from = and # which are special terminal rela-
tion symbols

In order to view a program P of H as representmg a query,
one of the nontennmal relation symbols of P IS ldentlfied as the
tamer that produces the result of the query The tamer wdl
usually be denoted by S If S 1s of anty m, we define the query
represented by P as

P@)=I(dl. ,dm)IPkS(dl, .dnd)

A method for constructmg a program of H from a query of
G 1s given m [Mend861 Rather than repmducmg the algonthm
here, we wdl demonstrate some of its features by means of an
example

327

EXAMPLE 11 Consider the graphlcal query Q of Example
7, with the summary Tow (x,y) The followmg program P, with
carrier S, would be constructed from Q by the algorithm

C 1 Sky) t E 1 (Tor,W), Ez(NY,x,y), NY#x, x#Tor

C2 El(Tor,NY) t Tl(Tor,NY)

C3 T1(Tor,NY)tE1l(Tor,z),Tl(z,NY),Tor+z,z#NY

C4 Tl(Tor,NY) tEll(Tor,NY)

C5 E11(Tor,r)tR(Tor,z,AC)

Crz Ez(NY>x.y)+ T~WJJ)

C7 Tz(NY,x,y)cE21(NY,z,y), T2(2,x,y),~fz, zfx

Cs Tz(NY,x,y)tEz~(NY,x,y)

Cg ~21W',x,y)+RW,x,y)

The nght-hand stde of C 1 contams a nontermmal hteral for each
edge m Q Subsequent clauses pmvtde the defimtlons for these
hterals C2 to C5 define El. and Cs to Cg define E2 A recur-
sive clause 1s produced If an edge m Q 1s labeled by a regular
expression contammg the posihve closure operator As a nzsult,
the defimuons of both Et and E2 contam recursive clauses (C,
and CT) The mequahnes m P ensure that the asslgmnent of
values to those vanables m P which correspond to node labels m
G obey the restnckon that such assignments are one-to-one 0

We say that the translation of a query Q, with summary
table T, to a program P, wrth tamer S, ts correct tf
P(R) = Q (r,T) Our coI1sttucuon of P from Q IS correct tf either
Q 1s nonrecurslve or the graph G correspondmg to the relation r
1s my& If G 1s cychc and Q 1s recursive, there 1s no guarantee
that the translaUon WIU be correct The dlfticulty arises m
enforcing that only simple paths m G are traversed by P, and
addmg mequahttes to the appmpnate clauses of P 1s not
sufficient to prevent non-sunple paths from bemg traversed The
translation m the previous example IS correct because, although
non-sample paths may be examined by P, for every non-simple
path from x toy which sahsfies the restnctlons of the query, there
1s a simple path from x to y which also sat&z them The next
example, however, demonstrates that this 1s not always txue

EXAMPLE 12 Consider the followmg graph G

and the query Q

w
with summary table (x,y) The value of Q(G) IS ((a&, (b,a))
However, the program P for Q would also produce the tuple
(b,d), since there is no way of preventmg (b,a) from combmmg
with (u,d) to form (b,d), even usmg mequalmes In this exam-
ple, there 1s a non-sunple path between b and d which sattsties
the regular expressIon <1,2>+, but no simple path between b and
d which sausfies It q

It 1s not hard to see that every nomccurstve program of H
can be expressed as a graph& query Let P be a nonrecursive
program of H, with tamer S Then P can be transformed to P ‘,
where no nontermmal symbol appears m the body of any clause
of P ‘, and the head of every clause m P ’ has the same predrcate
symbol, namely S For each clause C, of P ‘, construct a graph-
cal query Q, as follows Imtmlly N,,=0 and E@ Each
atomlcfomndaR(vl,v2,It, , I,,) m the body of C, conmbutes
an edge e to Q,, SO that EQ,=EQ, u(e), NQ,=NQ, u (x,Y],

vQ,(e)=(-%Yh vQ,(x)'vlv vQ,ti)=vZs and q2,(e)=(~lv 94)

Ifthe head of C, IS S(zt. , zd, add the tuple (z t , .zk) t0
the summary table T The query Q consists of the set of all such
quenes Q, produced in tis way along wtth the summary table T

For a query Q constructed by the above process alone, It
may be the case that Q (r,T)cP(R) Thus ts a consequence of
the one-to-one node mappmgs, which force node vanables to lx
mapped to dtstmct values However, the problem can be solved
by mcludmg addmonal quenes Q,, m the set Q by contractmg
edges (IdenMymg nodes) of Q, wMe preserving the dlstmct
edge label property The summary row t,, for Q,, IS the same as
that for Q,, except that those vanables appeanng m z,, that
correspond to nodes m Q, which have been tdermfied are
equated If I NQ, I =n, there may be 0 (2”) such quenes Q,, gen-
erated, although for certam quenes on acychc graphs none of
these additional quenes IS needed The followmg example dlus-
trates the above process

EXAMPLE 13 Consider the followmg program P

S(x,y,z) c R(x.y,a), R(y,z,u), R(x,z.u)

The above procedure produces the followmg graphlcal query
Q=(Q*. vQ51

Q4ma e’aa

The summary table T for Q IS

x x 2

If the graph of R IS acychc, then Q t wtth summary table {rt] 1s
equivalent to P 0

A consequence of the above translation 1s that G has
greater expressive power than both the conjunchve quenes
[Char1771 and the tableau quenes [Aho79a] However, it IS not
obvious exactly which subset of the recurSlve quenes expressible
m H can be expressed m G In the present formulanon of G,
there are quenes expressible m H whch appear not to be expres-
sible m G

328

EXAMPLE 14 Consider the fhghts relation scheme with two
addmonal attnbutes @vmg the departure and amval times of
fhghts, that IS,J‘~@ = (from, to, dep, arr, azrkne) The query Q
that finds those cmes connected by fhghts where the amval hme
of one fhght IS equal to the depamne tune of the next flight,
appears not to be expressible m G However, Q can be
expressed 111 H as demonstrated by the followmg program

The above query Q reqmres flndmg the transmve closure of
two pans of attnbutes simultaneously If G IS modified to permit
node labels to be defined over sets of attnbutes, then Q can be
expressed m G by labehng nodes with (jkom, dep) and (ro, arr)
pans, while labeling edges ullth alrhnes The various ways m
which G might be extended and the addmonal expressive power
gamed through such extensions am currently under mvesugaoon

4 IMPLEMENTATION

We have wntten a prototype implementation of G, m
which a graph& query is complied mto a C-Prolog program
The complier accepts quenes wntten m an equivalent strmg
representanon of G, whose syntax IS specified usmg a context-
free grammar Thus allows the implementation to be Independent
of the graphlcal mtirface, which IS curnmtly under development
on a Sun 3 workstauon The UNId tools Lex and Yacc were
used to develop a parser for the language Given a graphcal
query Q, the compiler constructs a parse tree which IS traversed
m pre-order to generate a Prolog program equivalent to Q

Certam non-Horn clause constructs avadable m Prolog are
used to ensure that only simple paths am traversed by any pro-
gram generated by the compiler Thus overcomes the problem
raised by the query Q of Example 12, whose translauon mto a
Prolog program P 1s given below

szmplel(X, Y, Vzszted, [X / Vzszted I) -
0, K I),
not member(X, Vzszted)

szmple2(X. Y, Vzszted, [X 1 Vzszted I) -
W, Y. 2),
not member(X, Vzszted)

sequence(X, Y, Vzszted, NewVzszted) -
szmplel(X, 2, Vzszted, NV),
szmple2(Z, Y, NV, NewVzszted)

closure(X, Y, Vzszted, NewVzszted) -
sequence(X, Y, Visited, NewVzszted)

closure(X, Y, Vzszted, NewVzszted) -
sequence(X, Z, Vzszted, NV),
chure(Z. Y, NV, NewVzszted)

The tamer of P is s, whde the rules for the nonterminal relation
symbols closure, sequence, szmplel, and simple2 are. generated
whde decomposing the regular expression <1,2>+ By mam-
tammg a hst of vlslted nodes and testmg for membership m thus
list (using the standard rules for the member pmdlcate), the pro-
gram ensures that no nodes of the graph are revlslted Given the
graph of Example 12, which IS translated mto the followmg set
of Prolog facts

r(a, b, I)
r(b, c, I)
r(b, d, 2)
r(c, a, 2)

P produces the answer ((u,d), (b,a)), as reqmred
‘IIns Prolog lmplementatlon wdl be used to test and evalu-

ate subsequent Implementations which we annapate will be
more efficient as a result of employmg graph algonthms for
query evaluauon

5 CONCLUSION AND FURTHER RESEARCH

We have described a language G for querying data which
can be represented as a labeled drrected graph Thus representa-
tion includes relations (e g parenr) over which useful recursive
quenes (e g finding the ancestor relation) can be defined We
have provided a means for speclfymg recursive quenes m G,
which we believe IS sunpler to use than comparanve formula-
tions such as algebr;uc operators and Horn clauses The use of
regular expressions m G allows quenes to be formulated which
are not expressible m relational algebra even when it IS extended
with a transmve closure operator

There are a number of topics for further research on the
graphcal query language It would be useful to increase the
expressive power of the language further by adding operators to
the language m a manner similar to [Rose861 These operators
are defined over paths m the graph, and permit quenes such as
tiding shortest paths to be computed We are currently mvesti-
gatmg the use of graph algonthms as a means for evaluatmg
graphlcal quenes efficiently Related to dus IS the posslbdlty
that properties of the graph bemg quened (such as acychaty) can
be explolted duMg evaluauon It IS also sometimes the case that
graphlcal quenes can contam some redundancies ‘Pius suggests
the posslb&y of “optunizmg” graphlcal queries, for example,
by removmg redundant edges

SK u -
closure(X, Y, [I. Vzszted),
not member(Y, Vzszted)

+ UNJX 1s a trademark of Bell Laboratones

329

References

Ah074
A V AHO, J E HOPCROPT, AND J D ULLMAN, The Destgn
and Analysrs of Computer Algonthms, Addtson-Wesley,
1974

Aho79a
A V AHO, Y SAGN, AND J D ULLMAN, “Effictent
Opnmrzabon of a Class of Relattonal Exptesstons,” ACM
Tram on Databare Syst , vol 4, no 4, pp 435-454,1979

Aho
A V AHO AND JD ULLMAN, “Umversahty of Data
Retneval Languages,” Proc 6th ACM Symp on Pnnclples
of Programmrng Languages, pp 110-120, 1979

Banc86
F BANCJLHON, D MAIER, Y SAGIV, AND J D ULLMAN,
“Magtc Sets and Other Strange Ways To Implement Logtc
Programs,” Proc 5th ACM SIGACT-SIGMOD Symp on
Prmcrples of Database Systems, pp I-151986

ChanlJ
A K CBANDRA AND D HAREL, “Horn Clause Quenes and
Generahzauons,” J Logrc Programming, vol 2, no 1, pp
l-15, 1985 Ongmally appeared as “Horn Clauses and the
Ftxpomt Query Hterarchy”, Proc 1st ACM SIGACT-
SIGMOD Symp on Pnnctples of Database Systems, pp
158-163.1982

Chan77
A K CHARBRA AND P M MERLIN, “Opttmal Implementa-
non of ConJtmcnve Quenes m Relational Data Bases,”
Proc 9th ACM Symp on Theory of Computmg, pp 77-90,
1977

Clem8 1
E CLEMONS, “Destgn of an External Schema Facility to
Define and Process Recursive Structures,” ACM Truns on
Database Syst , vol 6, no 2, pp 295-311,1981

Cloc81
W F CLOCKSIN AND C S MELLISH, Programmmg in Pro-
log, Sprmger-Verlag, 198 1

Daya
u DAYAL AND JM SMTTH, “PROBE A Knowledge-
Onented Database Management System,” in On
Knowledge Base Management System.v Integrating
Artlfrcral Intellrgence and Database Technologies, ed M L
Btodte and J Mylopoulos, pp 227-257, Spnnger-Verlag,
1986

Fort80
s FORTUNE, J HOPCROFT, AND J WYLLIE, “The Directed
Subgraph Homeomotphism Problem,” Theor Comput
Scr ,vol 10,pp ill-121.1980

He1185
s HEILER AND A ROSENTHAL, “G-WHIZ, a Visual Inter-
face for the Functional Model with Recursion,” Proc 11th
Conf on Very Large Data Bases, 1985

Hens84
L J HENSCHEN AND S A NAQVI, “On Compiling Quenes
m Recurstve Ftrst-Order Databases,” J ACM, vol 31, no
1, pp 47-85.1984

LaPa
AS LAPAUGH AND R L RNEsT, “The Subgraph
Homeomorphtsm Problem,” Proc 10th Ann ACM Symp
on Theory of Computrng, pp 40-50, 1978

Mend86
A 0 MENDELZON AND P T WOOD, “A Graphtcal Query
Language Supporting Recursion,” Tech Report CSRI-183,
UNV of Toronto, 1986

Rose86
A ROSENTHAL, S HEILER. U DAYAL, AND F MANOLA.
“Traversal Recutston A Practical Approach to Supportmg
Recurstve Apphcattons,” Proc ACM SIGMOD Conf on
Management of Data, pp 166-176, 1986

Sacc86
D SACCA AND C ZANIOLO, “On the Implementanon of a
Sunple Class of Logic Quenes,” Proc 5th ACM
SIGACT-SIGMOD Symp on Pnnciples of Database Sys-
tems, pp 16-23,1986

Ulhn85
JD ULLMAN, “Implementanon of Logical Query
Languages for Databases,” ACM Trans on Database Syst ,
vol 10, no 3, pp 289-321, 1985 Onginally appeared as
Stanford UNV , Dept of Computer Science TR (May
1984)

Vard82
MY VARDI, “The Complextty of Relauonal Query
Languages,” Proc 14th Ann ACM Symp on Theory of
Compunng, pp 137-146,1982

Zloo76
MM ZLOOF, “Query by Example Operanons on the
Transtnve Closure,” IBM Research Report, RC5526,1976

330

