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ABSTRACT

We define a language G for querying data represented as a
labeled graph G By considening G as a relation, this graphical
query language can be viewed as a relational query language,
and 1ts expressive power can be compared to that of other rela-
tional query languages We do not propose G as an alternative to
general purpose relauonal query languages, but rather as a com-
plementary language in which recursive queries are simple to
formulate The user 1s axded 1n this formulation by means of a
graphical mterface The provision of regular expressions in G
allows recursive quenes more general than transitive closure to
be posed, although the language 1s not as powerful as those based
on function-free Hom clauses However, we hope to be able to
exploit well-known graph algonthms in evaluating recursive
quenes efficiently, a topic which has received widespread atten-
tion recently

1 INTRODUCTION

It 1s often the case that the data compnsing an application
can be represented most naturally i the form of a graph struc-
ture In order to extract mnformation from such a representation,
users need a suitable query language One method of providing
this service would be to transform the graph into a relaton and
use a relatonal query language such as SQL However, this
solution suffers from two disadvantages Firstly, the graphical
nature of the data 1s no longer apparent, and secondly, there are
useful quenes, such as finding the transitive closure of a graph,
that cannot be expressed 1n traditional relational query languages
[Aho79] As a result, our approach 1s different In this paper we
define a graphical query language G tailored to querying data
which 15 represented as a graph This language has sufficient
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expressive power to enable users to pose quenes, including tran-
siive closure, which are not expressible in relational query
languages Furthermore, the formulation of such quernes by the
user 18 facilitated by means of a graphical mterface, through
which the user constructs and manpulates both query and
answer graphs

Recently, there have been a number of proposals for more
powerful relatonal query languages {Daya86], many of them
based on Hom clauses [Hens84,Chan85,Ullm85] However,
efficient evaluation algonthms for such languages have been
difficult to obtan and seem highly data dependent
[Banc86,Sacc86] We hope that by restricting the query
language slightly and exploiting existing graph algonthms, we
will be able to evaluate graphical queries efficiently

The graphs over which our graphical queries are defined
are labeled directed multigraphs The node labels are distinct
values drawn from some domain, while edge labels are tuples of
domain values

EXAMPLE 1 The following graph represents the flight in-
formation of vanous airlines Each node 1s labeled by the name
of a city, while each edge 1s labeled by an airhne name

A directed edge from node “Tor’ to node ‘Bos’ with label ‘AC’
denotes the fact that Air Canada has a flight from Toronto to
Boston O

A graphical query Q on a graph G 1s a set of labeled
directed mulngraphs, in which the node labels of Q may be
either vanables or constants, and the edge labels are regular
expressions defined over n-tuples of vanables and constants An
edge which 1s labeled by a regular expression contamning the
positive closure operator (+) 1s drawn as a dashed edge n Q



This 15 done to emphasize that such edges correspond to paths of
arbitrary length 1n G, while solid edges 1n Q (those whose labels
contain no +) correspond to paths of fixed length The value of
Q with respect to G 1s the union of all query graphs of Q which
‘‘match” subgraphs of G A formal defimtion of the semantics
of G 1s postponed until Section 2 2

EXAMPLE 2 Given the graph G of Example 1, the follow-
g query Q={Q1,0Q>} finds the first and last cities visited 1n all
round tnps from Toronto, mn which the first and last flights are
with Air Canada and all other flights (if any) are with the same
airline

‘AC,

G

The node x in @ matches ‘Van’ in G, while the edge from y to z
in Q, matches the paths <'NY’,'LA’> and <‘Bos’,'NY','LA’>
in G The concatenated edge labels of both these paths satisfy
the regular expression ‘AA™ Because this query requires the
computation of the transitive closure of G, 1t 1s not expressible in
relational algebra [Aho79] Furthermore, the requirement that
cities be linked by the same (unspecified) airline means that the
query 1s also not expressible 1n the algebra extended with a tran-
sitive closure operator [Vard82] O

Apart from those query languages based on Horn clauses,
other extended relational query languages have concentrated on
the transitive closure operator QBE [Z10076] allows transitive
closure to be computed, but only with respect to mformation
which can be represented as a tree or a forest Both the
approaches of [Clem81] and G-Whiz [He1l85] support recursive
views, but nerther of them can query cyclic information The
Probe project [Daya86,Rose86] 1s closest to our approach
Probe 15 an extension of G-Whiz which allows cyclic structures
to be quenied Transitive closure 1s generalized to include addi-
tional information about the set of paths between any two attn-
bute values over which transitive closure 1s defined However, it
15 not clear whether the query of Example 2 can be expressed m
the Probe language In any event, we believe that the use of reg-
ular expressions makes such quenes easier {0 €xpress in our
language The provision of vanious operators m Probe permits
queries such as finding the shortest path to be expressed, which
cannot be achueved 1 our present formulation However, we are
1n the process of adding suitable operators to our language n
order to gain thus additional expressive power
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The remainder of this paper 1s divided into four main sec-
uons In the next section, the syntax and semantics of the graph-
ical query language G are defined Section 3 compares the
expressive power of G with that of H, the language of Hom
clause programs [Chan85] An mutial implementation of G, mn
which quenes are translated to Prolog programs [Cloc81], 1s dis-
cussed bnefly in Section 4 Finally, a number of further research
1ssues are suggested 1n Section §

2 GRAPHICAL QUERIES

The syntax and semantics of the graphical query language
G are defined 1n this section Before discussing the syntax and
semantics of G, it 1s necessary to give a more precise defimtion
of the graphs over which the expressions of G are defined

A labeled directed (multi-) graph G 1s an ordered quintuple

(N, EG, Vg, V6: €G)s

where Ng 1s a set of nodes Eg 15 a set of directed edges, Yg 15
the incidence function that associates with each edge of G an
ordered pair of nodes of G, vg 15 a one-to-one node labeling
funcnion that associates with each node a distinct value drawn
from domain Dy, and € 1S an edge labeling function, which
associates with each edge an n-tuple of values drawn from
domains Dy, ,D, In Example 1, Dy=
{‘Bos’,'Van’,*Tor’,'NY",'LA’,'SF'} and D = {*AA','AC’} If
e=(x,y) 1s an edge n Eg, then x 1s the tail of e and y 1s the head
of e Given two edges e, and ¢, n Eg such that yg(e,) = yg(e,)).
then eg(e,) #€c(e)) We will call this the disanct edge label
property In addition, there are no 1solated nodes n G From
now on, G will be referred to simply as a graph, and directed
edges will simply be called edges

21 Syntax

Given a graph G =(Ng, Eg, Y¢. V¢, €g), an expression of
G, that 15, a graphical query, 1s a set {Qy, ,Q,} of labeled
directed (mului-) graphs Let

Q =Wy, Eg, yg, Vg, £0)

be one of these graphs, and let X = (x;, x2, } be a set of vari-
ables Every node 1n Ny must be the head or tail of some edge
mn Ey The node labehing function vy maps each node n Ny to
an element of DyUX, that 1s, a node 1s labeled either by a con-
stant a,€ D or by a vanable x,eX The edge labeling function
&g associates with each edge in Eg a regular expression of sim-
ple edge labels A simple edge label 1s an n-tuple (Iy,  ,I,) of
constants, vanables and underscores, such that for any constant b
appeanng 1 the 2’th component of an edge label, be D, The
empty edge label 1s also a simple edge label, 1t 15 used only when
querying graphs which have no edge labels

A sequence of edge labels 1s defined as follows Each edge
label ({1, ,l.)1sasequence <(l1, ,l.)>ofedgelabels If
x and y are sequences of edge labels, then so 1s the concatenation
<x,y>ofxandy LetS; and S, be sets of sequences of labels
The set S S3, called the concatenation of S| and S, 18

{<x,y> I xeS;andyeS; }

If S 15 a set of sequences of labels, define $'*! = §S* for 121, and
the positive closure of S as the set

st =Us"

o=



Let L be the set of simple edge labels The regular expres-
sions over L and the sets that they denote are defined recursively
as follows [Aho74]

1 For each label / 1n L, [ 15 a regular expression and denotes
the set {/}

2 If sy and s, are regular expressions denoting the sets S
and S, respectively, then the alternation of s, and s, wnit-
ten 5y 5., and the sequence <sy, s> are regular expres-
sions that denote the sets §1 U S, and S, S, respectively

3 If 515 a regular expression denofing the sct S, then the posi-
nve closure of s, written s*, 1s a regular expression denot-
ng the set S*

Edges whose labels are formed by using only the first two rules
above are called solid edges, while those whose labels are con-
structed using rule 3 are called dashed edges

EXAMPLE 3 Refernng back to the graph of Example 1, the
followmng query Q will return those cities reachable from
Toronto using only a single Air Canada or American Airlines

flight
@ ‘AC’ ) ‘AA° °

Thus 1s equivalent to the following set {@.0Q,} of quernes

0 @0
- @20

The underscore can be viewed as a shorthand notation for
the alternation of all relevant domain constants appeanng 1n the
graph G That 1s, 1f an underscore appears as the :’th component
of an n-tuple, 1t denotes the regular expression d | ld,,
where D,={d;, ,d»} As aresult, the posiive closure of the
n-tuple of underscores denotes the set of all sequences of simple
labels which contain only constants

EXAMPLE 4 The query to find the cities reachable from
Toronto 1n a sequence of three flights such that the first and last
flights are with the same airline could be expressed as follows

The underscore 15 shorthand for ‘AC’ | ‘AA’ O

EXAMPLE 5 The dashed edge label given by the regular
expression AC* | <AC, AA>* would match the edge labels on
paths where erther all the flights were with Air Canada or the
flghts alternated between Air Canada and American Aurlines m]

O

2.2 Semantics
We shall now define the value of a graphical query Q with
respect to a graph G Given an expression Q of G which s a set
{@1, .Qp) of query graphs, the value of Q with respect to G
1s simply
QG)=2iG)v VGG

where Q,(G) 1s the value of Q, with respect to G The graph
union operator 15 defined 1n such a way that 1t preserves the dis-
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tinct edge label property Next, we will define the semantics
when Q 1s a single query graph

The concept of a valuation 1s used to define a mapping
from the vanables in @ to values in the domams of G Let
Q=WNg,Eg,V¥g,vg, €g) be a query graph which 15 to be
evaluated with respect to the graph G =(Ng, Eg, Vg, Ve, €6)
whose nodes labels are defined over Dy, and whose edge labels
are defined over Dy x  xD, A valuation p of Q 1s a pair
(p1.p2) of mappmgs The node valuation p; 1s a one-to-one
mapping from node labels to elements of the domain Dy, such
that if ¢ 1s a constant, then p;(c)=c The edge valuation p; 1s a
mapping from the constants and vanables that appcar 1n edge
labels to domam values such that (1) if ¢ 1s a constant, then
pa2(c)=c, and (2) if x 1s a vanable appeanng n the 1’th com-
ponent of a tuple 1n an edge label, then p,(x)e D, The mapping
p2 can be extended to map simple edge labels to tuples of
domain values In addition, given an edge e 1n Eg, let pa(gg(e))
denote the result of applying p; to each simple label appearing in
the regular expression gg(e), and let S(p;, €9, Q, €) be the set of
sequences of simple labels denoted by pa(eg(e))

EXAMPLE 6 A valuation p=(p,,p;) for the query of Exam-
ple 41s given by
p1(‘Tor’) = ‘Tor’, p1(x) = ‘LA’
p2(y) = ‘AA’, p2(CAC") = ‘ACY, p2(CAA) = "AA°
From now on, when defining valuations we will usually omit the
defimtions for constant labels O

The semantics of the graphical query language 1s defined
using a simphified form of mapping between graphs known as a
subgraph homeomorphism ([LaPa78,Fort80] This mapping
seems to capture our intention that the user should think of the
edges mn a query being matched to paths in the graph being
quened It 1s first necessary to define a simple path in a graph
A simple path P 1n a graph G 1s a sequence

<Vi,ey,v2,€2, 1€p—1,Vn >y

where v,eNg, v, #v,, 151,)<n, and ¢eEg, 1<k<n-1, such
that Wg(e) =V, Vis), 1Sk<Sn-1 The edge label sequence
tnduced by P 1s given by

< eG(e l)v veG(en—l) >

An edge-independent subgraph homeomorphism between a
query graph O and a graph G 1s defined as a pair p=(u;, ;) of
one-to-one mappings, where j; maps nodes of Q to nodes of G,
and p, maps edges of Q to simple paths in G The traditional
defimtion of subgraph homeomorphism requires that the paths in
G to which the edges of Q map are pairrwise node-disjoint
[Fort80] We use the term ‘‘edge-independent’ 1n our defimtion
since each edge in Q can be mapped to any simple path in @,
mdependently of the other edges In 0 Some justification of this
choice for the semantics of G 1s given towards the end of this
section From now on, we will refer to edge-independent sub-
graph homeomorphisms simply as homeomorphisms

Given a valuation p=(p,p2) of Q, the homeomorphism
w=(,ly) 18 sad to preserve p 1f for each node x in Q,
P1(vo(x)) = va(n1 (x)),

and for each edge e 1n Q, the edge label sequence induced by the
simple path [a(e) n G 15 1n the set S (p2,€g O, e), that 1s, the set
denoted by the regular expression pz(ep{e))



The value of Q with respect to G, denoted Q(G), 1s the
umon of the set of graphs

{p(@) 1 p 15 a valuation of Q and there 15 a homeo-
morphusm between Q and G which preserves p }

EXAMPLE 7 Let us return to the graph G of Example 1
The following two graphs provide defimuons for the structure of
G as well as for the labeling functions

Consider the following query Q, where only the second of the
two graphs (that specifying the labels) would actually be mnput
by the user

h L

‘é?';@ b

Let a valuation p=(p;,pz) of Q be given by
P1)="LA’, p2(y)="AA’
One homeomorphism [L=(jy,5) from Q to G 1s given by

mi(ey)=va, Bi(U2)=vy, Wi(us)=vs,

O8O0,

and
u2(11)=<V2,86,V4>, u2(12)=<V4,83,V5>

The mapping p; preserves the node valuation p; since
P1(Vo(u,))=vs{i(w,)) for all nodes weNg For example,
P1(vous)="LA’=vs(i(3)) The edge label sequence
mduced by pa(l1) 18 <*AC’>, and that induced by pa(l2) 15
<‘AA’> Since each of these 1s 1n the set denoted by the edge
valuation p, apphed to the corresponding regular expression in
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Q. 12 preserves p,  So W preserves p, and p(Q) which 1s

18 a subgraph of the answer to Q Another valuation which 1s
preserved by a homeomorphism from Q to G 1s p’, which 1s
identical 1o p except that p; (x)='SF' The homeomorphism fL°
which preserves p“1s the same as L, except that Ji; (u3)=v¢ and
W2 (U2)=<v4,e3,v5,10,v6> The valuation p° 1s preserved
since <‘AA’,'AA’> satsfies ‘AA’* Therefore, the following
graph p (Q) 1s another subgraph of the answer

o0

The paths <vj,e3,v3,es5,v4> and <v,,e4,v3,e5,v4> do not
preserve any valuaton of Q (since eg(es)=‘AA’ and
gg(l1)="AC*), s0 I, cannot be mapped to either of these paths
Since no other subgraphs contnbute to the answer, Q(G) 1s given

by
() A=)
+ a,
A’}' (AA*
, |
o

We now provide some justification for our choice of a
homeomorptusm different from the traditional mapping For this
purpose, 1t is useful to consider the answer of the following
query Q with respect to the graph G of Example 7

+

.@ --F :C
If the semantics of G were based on the conventional defimtion
of homeomorphism, thus query would request all paurs of disjoint

paths from Toronto to New York There are three paths in G
from Toronto to New York,

D1 =<V3,€6,V4>,
P2 =<v3,63,V3,€5,V4>, and
p3 =<V3,€4,V3,65,V4>,

and two disjoint pawrs of paths, (p;.p2) and (p;,p3) If the
answer to the query Q 1s the union of these pairs, then 1t 15 possi-
ble for the user to deduce incorrectly that p, and p3 are disjont,
since this information 1s lost in formmg the union An altema-
tive 15 to present individual answers to the user one at a time, but
this 15 both less elegant and would require additional processing
to group answers where posstble 1n order to try to avoid produc-
g an exponenbal number of solutons We also feel that
evaluating quenies with these semantics may be more costly,
although we have no results to support this conjecture It should
be noted that, using our chosen semantics, one of the dashed
edges n the above query 1s redundant



3 EXPRESSIVE POWER

In this section, the expressive power of G 1s compared to
that of relational query languages, specifically the language H of
Hom clause programs [Chan85] Before dong so, 1t 1s necessary
to be able to view a query of G as a mapping between relations
rather than graphs, that 1s, to provide relational semantics for G
Given a graph G and a query Q on G, we show how to interpret
both G and Q (G) as relations

3 1. Relational semantics for G

Given a graph G =(Ng, Eg, ¥g, Vg, €c) In which edge
labels are n-tuples of domain values, 1t 1s straightforward to con-
struct a relation r corresponding to G Let the relation scheme
for r be gwven by R=(A,A;,B;, .B,), where
dom(A ;) =dom(A;) =D, (the domain of the node labels n G)
and dom(B)=D,, 1<i<n For every edge ecEs; with
ye(e)=(xy), where vg(x)=v{, Ve()=v;, and
gge)=(Wy, .I,), theress atuple (vy,va,ly, Ll,)mr The
distinct edge label property ensures that r 1s indeed a relation
Conversely, given a relation r in which two attributes are defined
over the same domasn, 1t 1s also simple to produce a graph G
corresponding to 7

EXAMPLE 8 The relation r of the graph G given 1in Exam-
ple 1 1s shown below The relaton scheme 1s flight = (from, to,
airline)

from to airline
Tor Van AC
Tor Bos AA
Tor Bos AC
Tor NY AC
Van Tor AC
Bos NY AA
NY LA AA
LA Tor AC
LA SF AA
SF NY AA

]

In order to interpret Q (G) as a relation, 1t 1s convenient to
add a summary table to the syntax of G Given a set Q of p
graphical queries (Q1, .Q,}, 2 summary table T 1s a set
{ti, 5} of k-tuples of constants and vanables from X, such
that each vanable x, appearing n tuple f, must label some node
m Q, or be a component of some edge label of Q, Intwtvely,
each tuple ¢, of T defines the output relation r, for query Q,, the
value of Q being given by the union of the relations ry, .7,

Let Q be an expression of G, that 15, Q 1s a set
{Q1, ,0Q) of query graphs, and let T={¢;, ,1,} be the
summary table for @ Given a relaon r with scheme
R=(A1,A2.B;, ,By), the value of Q with respecttor and T
18

2r.N=0:(ntpv UQp(’-tp)v

where each Q,(r,t,), 151 <p, 15 a relation which 1s the value of
query Q, with respect to relation r and summary row f, Let G be
the graph of r and Q(G) be the value of Q with respect to G
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The value of a single query graph Q with respect to r and sum-
mary row ¢ 1s defined as
Q(r.1)={p(t) 1 p1savaluation of Q and p(Q)

15 1somorphic to a subgraph of Q (G) }

EXAMPLE 9 Returning to the query Q of Example 2, let the
summary table T={ty,1,}, where f;=(xx,‘AC") and
t2=(y,z,w) The value of Q with respect to r and T 1s the fol-
lowng relation

Van Van AC
Bos LA AA
NY LA AA

]

EXAMPLE 10 Given a graph G, the identity query (shown
below), with summary table consisting of the single tuple
i1, »In), y1elds the same relation as would be produced
by the method outlined at the begmning of thus section

( ) (ll: »In) ( )

3.2 Horn clause queries

O

It seems most appropnate to assess the expressive power of
G by companng 1t to the language H of Horn clause queries
mtroduced i [Chan85] We will not repeat the defimtion of H
here, but will only highlight some of the differences between H
and the usual defimton of function-free Hom clauses The
predicate symbols of H are partitioned nto termunal relation
symbols, which correspond to base relations, and nonterminal
relation symbols Since we are dealing with queries over a single
relanon, we will assume there 1s only a single termmal relation
symbol R, apart from = and # which are special terminal rela-
tion symbols

In order to view a program P of H as representing a query,
one of the nonterminal relation symbols of P 1s 1dentified as the
carrier that produces the result of the query The carner will
usually be denoted by S If S 1s of anty m, we define the query
represented by P as

PRY={{d1, .dn)|PESUE1, .dw)}

A method for constructing a program of H from a query of
G 15 given 1 [Mend86] Rather than reproducing the algonithm
here, we will demonstrate some of its features by means of an
example



EXAMPLE 11 Consider the graphical query Q of Example
7, with the summary row (x,y) The following program P, with
carrier S, would be constructed from Q by the algonthm

Cy S(xy) « E((Tor,NY), E;(NY,x,y), NY#x, x#Tor
Cy E (Tor,NY) « T (Tor,NY)

C3 T1(Tor,NY) « Ey(Tor,z), T|(z,NY), Tor £z, z#NY
C4 T1(Tor,NY) « E(Tor,NY)

Cs Ey(Tor,z) « R(Tor,2,AC)

Cs Ea(NY,x,y) « To(NY,x,y)

Cq To,(NY,x,y) « E21(NY,2,), To(z,x,y), NY #2, z#x
Cg T2(NY,x,y) « Ex(NY,x,y)

Cy E5(NY,x,y) « R(NY,x,y)

The nght-hand side of C; contains a nonterminal literal for each
edge n Q Subsequent clauses provide the defimtions for these
hiterals C, to Cs define E, and Cg to Cy define E; A recur-
sive clause 1s produced 1if an edge m Q 1s labeled by a regular
expression contaumng the positive closure operator As a result,
the definitions of both E; and E, contan recursive clauses (C3
and C7) The mequalittes m P ensure that the assignment of
values to those vanables in P which correspond to node labels in
G obey the restriction that such assignments are one-to-one [

We say that the translation of a query Q, with summary
table T, to a program P, with carner §, 1s correct if
P(R)=Q(r,T) Our construction of P from Q 1s correct if either
Q 1s nonrecursive or the graph G corresponding to the relation r
18 acyclic If G1s cychic and Q 1s recursive, there 1s no guarantee
that the translation will be correct The difficulty anses n
enforcing that only simple paths in G are traversed by P, and
adding mequalities to the appropnate clauses of P 1s not
sufficient to prevent non-simple paths from being traversed The
translation 1n the previous example 1s correct because, although
non-simple paths may be examined by P, for every non-simple
path from x to y which sausfies the restnctions of the query, there
15 a sumple path from x to y which also satisfies them The next
example, however, demonstrates that this 1s not always true

EXAMPLE 12 Consider the following graph G

and the query Q

with summary table (x,y) The value of Q(G) 1s {(a,d), (b,a)}
However, the program P for Q would also produce the tuple
(b,d), since there 1s no way of preventing (b,a) from combining
with (a,d) to form (b,d), even using inequahties In this exam-
ple, there 1s a non-simple path between b and d which sansfies
the regular expression <1,2>*, but no simple path between b and
d which sausfies it [
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It 1s not hard to see that every nonrecursive program of H
can be expressed as a graphical query Let P be a nonrecursive
program of H, with carner § Then P can be transformed to P,
where no nonterminal symbol appears mn the body of any clause
of P, and the head of every clause in P “ has the same predicate
symbol, namely S For each clause C, of P, construct a graphi-
cal query Q, as follows Imtally No=0 and Eg=C Each
atomic formula R (vy,v2,l1, .I,) 1n the body of C, contributes
an edge e to Q,, so that Eg =E, U{e}, Ng,=Ng L (xy},
Yo, (©)=(x, y), vo,()=v1, Vg, (y)=V2, and gg (e)=(1,  ,ln)
If the head of C, 1s S(z;,  ,2), add the wple (z;, ,zp) to
the summary table T The query Q consists of the set of all such
quernies Q, produced 1n this way along with the summary table T

For a query Q constructed by the above process alone, 1t
may be the case that @ (r,T)cP(R) Ths 1s a consequence of
the one-to-one node mappings, which force node vanables to be
mapped to distinct values However, the problem can be solved
by including additional queries Q,; 1n the set Q by contracting
edges (identfying nodes) of Q, while preserving the distinct
edge label property The summary row t,, for Q,, 1s the same as
that for Q,, except that those vanables appeanng m ¢, that
correspond to nodes i Q, which have been identfied are
equated If INg | =n, there may be O (2") such queries Q,, gen-
erated, although for certain quenes on acychc graphs none of
these additional queries 1s needed The following example 1llus-
trates the above process

EXAMPLE 13 Consider the following program P
S(x,y.2) « R(x.y,a), R(%,2,0), R (x,2,a)
The above procedure produces the following graphical query

Q={0.. .Qs]
a
a a
103 Q2
a
a a .
Qs
a
a
«(D-CDr «CD:
The summary table T for Q 15
X y z
X X z
X y X
Xy Yy
X X X

If the graph of R 15 acyclic, then O with summary table {¢1} 1s
equivalentto P O

A consequence of the above translation 1s that G has
greater expressive power than both the comjunctive queries
[Chan77] and the tableau quenes [Aho79a] However, 1t 15 not
obvious exactly which subset of the recursive quernies expressible
m H can be expressed in G In the present formulation of G,
there are queres expressible in H which appear not to be expres-
sible In G



EXAMPLE 14 Consider the flights relation scheme with two
addmional attnbutes giving the departure and arnval umes of
fughts, that 1s, fight = (from, to, dep, arr, airine) The query O
that finds those cities connected by flights where the arnval nume
of one flight 1s equal to the departure time of the next flight,
appears not to be expressible n G However, Q can be
expressed in H as demonstrated by the following program

S(xy,x2) & T(x1.X2,51,¥2)
T(x1,%2,¥1.¥2) ¢~ R(x1,X3,Y1,¥3,2), T(x3,%2,¥3,¥2)
T(x1,x2,y1,y2) € R(x1,%2,y1,y2,2) O

The above query Q requires finding the transitive closure of
two patrs of attnbutes simultaneously If G 1s modified to permit
node labels to be defined over sets of attributes, then Q can be
expressed 1n G by labehing nodes with (from, dep) and (to, arr)
pairs, while labeling edges with arrlines The various ways in
which G might be extended and the additional expressive power
gamed through such extensions are currently under investigation

4 IMPLEMENTATION

We have wniten a prototype implementation of G, m
which a graphical query 1s compiled into a C-Prolog program
The compiler accepts quenes written I an equivalent string
representation of G, whose syntax 1s specified using a context-
free grammar This allows the implementation to be mdependent
of the graphical mnterface, which 1s currently under development
on a Sun 3 workstation The UNIX' tools Lex and Yacc were
used to develop a parser for the language Given a graphical
query Q, the compiler constructs a parse tree which 1s traversed
m pre-order to generate a Prolog program equivalent to Q

Certain non-Hom clause constructs available 1n Prolog are
used to ensure that only simple paths are traversed by any pro-
gram generated by the compiler Ths overcomes the problem
raised by the query Q of Example 12, whose translation into a
Prolog program P 15 given below

simplel(X, Y, Visited, [ X | Visited ]) -
rX,Y, 1),
not member(X, Visited)

simple2(X, Y, Visuited, [ X | Visuted ]) -
rnX,Y,2),
not member(X, Visited)

sequence(X, Y, Visited, NewVisited) -
simplel(X, Z, Visited, NV),
simple2(Z, Y, NV, NewVisited)

closure(X, Y, Visited, NewVisited) -
sequence(X, Y, Visited, NewVisuted)

closure(X, Y, Visited, NewVisited) -
sequence(X, Z, Visited, NV),
closure(Z, Y, NV, NewVisited)

s(X,Y) -
closure(X, Y, [], Visited),
not member(Y, Visited)

UNIX 1s a trademark of Bell Laboratones
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The carnier of P 1s s, whule the rules for the nonterminal relation
while decomposing the regular expression <1,2>* By main-
taiming a list of visited nodes and testing for membership 1n this
hst (using the standard rules for the member predicate), the pro-
gram ensures that no nodes of the graph are revisited Given the
graph of Example 12, which 1s translated into the following set
of Prolog facts

r(a,b, 1)
r(b,c, 1)
r(b,d,2)
r(c,a,2)

P produces the answer {(a,d), (b,a)}, as required
Ths Prolog implementation will be used to test and evalu-

ate subsequent implementations which we anticipate will be
more efficient as a result of employing graph algonthms for
query evaluation

5 CONCLUSION AND FURTHER RESEARCH

We have described a language G for querying data which
can be represented as a labeled directed graph This representa-
tion includes relations (e g parent) over which useful recurstve
queries (e g finding the ancestor relation) can be defined We
have provided a means for specifying recursive quenes in G,
which we believe 1s simpler to use than comparative formula-
tions such as algebraic operators and Hom clauses The use of
regular expressions in G allows quernies to be formulated which
are not expressible 1n relational algebra even when 1t 1s extended
with a transitive closure operator

There are a number of topics for further research on the
graphical query language It would be useful to increase the
expressive power of the language further by adding operators to
the language 1n a manner similar to [Rose86] These operators
are defined over paths 1n the graph, and permit quenes such as
finding shortest paths to be computed We are currently nvesti-
gating the use of graph algonthms as a means for evaluating
graphical queries efficiently Related to this 1s the possibility
that properties of the graph being quened (such as acyclicity) can
be exploited during evaluation It 1s also sometimes the case that
graphical quenes can contain some redundancies This suggests
the possibility of ‘‘optimizing” graphical queres, for example,
by removing redundant edges
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