
1 

Dynamic Emergency Management 
STEFFEN HAUSMANN, SIMON BRODT, FRANÇOIS BRY, LUDWIG-MAXIMILIAN 

UNIVERSITY OF MUNICH, MARCO BETTELINI, AMBERG ENGINEERING AG 

 

Large infrastructures become technologically more and more complex and 

interdependencies between different infrastructures increase. As a consequence 

complex infrastructures become more vulnerable to emergencies. The personnel in 

charge must be supported in the challenging task of identifying and assessing an 

emergency situation and in choosing an appropriate reaction. This calls for a system 

which continuously analyses the available sensory data for emergency situations, 

making predictions for the future development of an emergency and recommending 

proper reactions to the emergency. 

 

SUMMARY 

The interdisciplinary three-year EMILI project has shown that simulations based on 

simplified physical models, complex event processing and standard hard- and software 

can be combined into a powerful emergency management system. First the resulting 

system can timely provide the personnel in charge with instructions and predictions 

relevant to a current emergency situation and second offers an environment for training 

the staff for emergency management. Prototypes for three different use-cases, namely a 

metro station, an airport and a power-grid, have been implemented and successfully 

tested. 

Keywords: Large Infrastructures, Dynamic Emergency Management, Physical 

Simulation, Complex Event Processing, Training 

 



2 

1. Advantages of Dynamic Emergency Procedures 
Large infrastructures, such as airports and large metro stations, become technologically 

more and more complex. Advanced equipment provides additional, more detailed 

information, which must be processed in a suitable manner. Interdependencies increase 

and, as a consequence, the vulnerability of complex infrastructures in emergencies also 

increases. This evolution calls for a new-generation of SCADA (supervisory control and 

data acquisition) systems based on new technologies which enable a better emergency 

management. Today's emergency procedures are reactive but static. They consist in 

complex and lengthy instructions to be learned in advance by the staff in charge during 

emergencies. Indeed, in emergency situations, it would be unpractical because it would 

be much too time consuming to expect the staff to consult such instructions before 

acting.  

Dynamic emergency procedures reacting to situations detected by sensors and/or 

reported about by equipment, such as staircases or lifts, and expressed as executable 

software are nowadays possible, though. Dynamic emergency procedures make it 

possible, firstly to timely provide the personnel in charge with instructions and 

predictions relevant to the current situation in cases of emergency, and secondly to train 

this staff for emergency management.  

This article reports on the main outcome of a three-year international research project 

funded by the European Commission, called EMILI (for “Emergency Management In 

Large Infrastructures)”, within its 7th Framework Programme, which has worked out the 

conceptual software components for dynamic emergency procedures. The EMILI project 

has been presented in the article [1].  

The suggested approach can be deployed for the fire security of large infrastructures 

such as airports, train stations, metro stations, concert halls, or theatres. The approach 

relies on the following technological building blocks, some of which are generic, that is, 

independent of the infrastructure:  



3 

- simplified smoke propagation and egress models delivering real time estimates, 

the principles of which are generic but that require instances specific to the 

infrastructure considered,  

- an infrastructure of generic sensors of the kind currently used requiring a 

deployment specific to the infrastructure considered, 

- reaction rules in a generic language requiring a programming specific to the 

infrastructure considered, 

- a generic run time system for the (generic) reaction rule language conceived as 

an extension of a (generic) relational database system.  

The proposed approach comes at an undeniable and in most cases significant, cost 

because of its many aspects dependent on the respective infrastructure. A considerable 

part of this cost is however necessary for realizing today's static emergency procedures. 

Furthermore, since the approach proposed to dynamic emergency procedure can be 

used for both, testing the procedures and for training, part of its costs can be seen as 

training costs. Finally and very importantly, the approach proposed holds the promise of 

reducing casualties.  

2. Real Time Simulations  

2.1 Why Real Time Simulation? 
SCADA (supervisory control and data acquisition) systems can process a large amount 

of information and present it to operators in an ordered manner. This information is static 

in nature, since it presents instantaneous values for the relevant physical data, such as 

smoke distribution or operating parameters of the equipment. However, SCADA systems 

usually provide less or no information on the origin and the evolution of the scenario at 

hand. Where did a fire originate? Are persons directly and immediately endangered or 

there is time for a more controlled reaction? What is the likely evolution of fire intensity 

and smoke propagation? All these issues have a direct and immediate impact on 

optimum emergency management and should be properly accounted for. 

The interpretation of the large bulk of data is frequently left to the operator, who might or 

might not have an adequate background for this challenging task. As a competent 



4 

professional, he will certainly have a proper knowledge of all technical systems, 

predefined scenarios and standard procedures. His technical background will, in most 

cases, not include complex and specialized issues such as fire and smoke dynamics. 

Additionally, his work is greatly complicated by a number of different and urgent tasks to 

be performed: communicating with users and staff, alerting internal and external 

emergency services, redirecting persons and vehicles, initializing emergency procedures 

and much more. There is simply no time and insufficient background for reasoning on 

causes and likely scenario evolution. Critical decisions related to emergency 

management are therefore based on a reduced subset of simplified static data and 

simple rules in most cases.  

Optimum emergency management is intimately related to the future evolution of the 

scenario. In traffic infrastructures, rescue strategies primarily depend on smoke 

propagation. Therefore smoke-management strategies must be adapted to the selected 

self-rescue and intervention strategies. The initial strategic choices can, in most cases, 

no longer be corrected, even if they are far from optimum. This was recognized in the 

early phases of the EMILI project and this issue was addressed with a specific effort 

towards the development of physical models for real-time simulation, specifically 

conceived for emergency management in traffic infrastructures. A similar approach can 

be adopted for different infrastructures, adapting the model subset to the specific 

characteristics and requirements. 

Emergency scenarios in transport infrastructures must focus on two key processes: 

person movement and smoke propagation. In the initial phase of emergency in a traffic 

infrastructure, before the arrival on site of the specialized services, the users are alone. 

This is the self-rescue phase, which will typically last 5 to 15 minutes, depending on the 

specific conditions. Some level of communication with the users, through emergency 

phones, loudspeakers etc., is possible but limited. Proper technical measures, such as 

train redirection and emergency ventilation, must be adopted immediately and are 

decisive for the outcome. Time is therefore a key factor. The use of specially conceived 

physical models allows simulating the likely evolution of the conditions within the critical 

infrastructure and the position of the escaping persons in real time. Different emergency 

management scenarios can be analyzed and compared in a very short time. This allows 



5 

founding strategic emergency-management decisions on rational bases and represents 

an important step towards optimum emergency management. 

2.2  iSEM – Real Time Simulation for Emergency Management in Traffic 
Infrastructures 

A number of excellent and well-validated software tools are available for analyzing the 

self-rescue process and for simulating the evolution of fire, smoke and air pollutants. 

Such tools suffer from two main drawbacks: the need for comprehensive pre- and post-

processing and relatively long processing times. The use of standard tools would 

therefore require a number of interfaces, many adaptations and unrealistically large 

computational resources. It was therefore decided to develop, within EMILI, the 

dedicated software package iSEM (“intelligent Simulation for Emergency Management”) 

for this specific purpose. iSEM is based on a simplified but physically sound set of 

equations for person and train motion, aerodynamics, temperature distribution and 

smoke propagation.  

The geometric discretization is carried out based on a network approach, which allows a 

very intuitive representation of the geometry at hand and a seamless integration with its 

ontological model. Figures 1 and 2 show the geometric discretization for a generic metro 

station. The main output of the simulation is represented by the time-dependent 

evaluation of the following parameters for every node: number of persons, smoke 

concentration and visibility, temperature. Details on iSEM’s approach and on its 

validation are provided in [1]. 



6 

 

Figure 1: Physical representation of a generic metro station. 

  

Figure 2: Network representation of a generic metro station. 

 

2.3 Real Time Physical Simulation for Emergency Management 
In a first step, physical models are used for the real-time simulation of the most likely 

evolution of the system, based on a known set of initial conditions, subject to known 

boundary conditions and evolving according to predefined emergency-management 

strategies. The main objective is the identification of the best-suited strategies for the 

specific situation at hand. This involves the following steps: 

- Identification of initial conditions, based on the available sensor data 

- Simulation of the system’s evolution, according to different reaction strategies 

(e.g. different evacuation strategies combined with appropriate operation modes 

of the ventilation system and further safety equipment) 



7 

- Comparison of results, primarily in terms of minimization of number of victims, 

and selection of the best-suited emergency-management strategy. 

Figure 3 illustrates the integration of real-time simulations in the decision process. 

 

Figure 3: Principle of Real Time Physical Simulation for Emergency Management. 

 

2.4 Real-Time Simulation for Training 
Emergency situations are extremely rare in critical infrastructures. The availability of 

proper training capabilities therefore represents a key factor for the continuous 

improvement and verification of staff’s readiness in case of emergency. iSEM can be 

used as a “physical engine” for training purposes. The trainees work on predefined 

emergency scenarios, where new dynamic elements can be introduced any time, and 

the system’s state evolves dynamically according to the trainee’s decisions. The 

consequences of inappropriate or too late decisions manifest themselves in form of 

unfavourable outcomes. Good decisions result in visibly better results. Owing to the 

physical models, the system’s response is extremely realistic and greatly enhances the 

learning process. The trainee gains important knowledge also on the critical 

infrastructure’s physical behaviour while running training scenarios. In this way the 

training leads to a continuous improvement of operators’ readiness. 



8 

3. The generic reactive language Dura 
Emergency management can substantially benefit from a new generation of event 

processing systems that support operators during exceptional situations and emergency 

situations. The language Dura [3, 4, 14] is a reactive event processing language that is 

intended to make a contribution towards more automation in emergency management. It 

has been designed to capture situation assessment and emergency procedures that are 

often only available in text form nowadays or implicitly in the form of experience of 

emergency managers. 

3.1 Challenges 
Near Real-Time Situation Assessment Emergency management requires quick 

and reliable situation assessment by means of expressive complex event queries 

evaluated in a continuous and timely fashion in order to detect relevant patterns in the 

vast amount of information that is provided by various sensors and actuators. Complex 

event queries derive higher level events that represent a concise abstraction which is 

desirable for human operators and suitable as input for the simulators. 

Moreover, effective situation assessment needs to incorporate the predictions of 

simulations to obtain reasonable interpretation of often faulty or biased sensor data and 

as a reliable basis for the execution of actions. To this end, results of external simulators 

can be represented by means of events. But to discriminate the time a simulation event 

is observed by the system and the time at which the event is actually deemed to occur 

according to the simulation, the event query language must be capable of dealing with 

multiple independent time lines. 

Besides the information that is provided by the sensors and simulators, the assessment 

of the current situation also needs to incorporate the state of the infrastructure. The 

interpretation of events may substantially differ based on the context in which they 

appear, e.g., the current operation mode of the station. 

Formalization of Emergency Procedures Emergency management requites a 

notion for composite actions that are realized by means of basic actions executed by 

external actuators located in the infrastructure. However, composite actions that are 



9 

based on external actions have some rather unusual properties and requirements 

compared to internal database updates and remote procedure calls that are commonly 

considered by complex event processing languages. 

Reactions are usually composed of several interrelated steps and are intended to 

accomplish a certain purpose, which cannot be realized by the mere execution of single 

actions. Therefore, the actually executed external actions are just means to affect the 

physical state of the infrastructure in a way that is related the purpose of the composite 

actions. Naturally, the success of the reaction is related to its purpose and not, or only 

indirectly, related to the success of the applied external actions. 

Reactions can certainly fail to accomplish their intended purpose: the corresponding 

actuators can malfunction, the communication can be faulty, or the executed actions 

may simply cause unintended effects that fail to achieve the purpose of the action. 

Moreover, external actions affect the physical state of the infrastructure and are 

therefore often irreversible and cannot be easily compensated either. Accordingly, 

reactions must be well chosen before they are executed and thus a reliable situation 

assessment is mandatory. 

Finally, the steps that are taken by an action build on each other and thus cannot be 

executed in an arbitrary order. To obtain a certain effect it is moreover often crucial to 

satisfy a certain timing between actions that exceeds the capabilities of simple 

sequences that are commonly available in imperative languages. 

3.2 Emergency Management with Dura in a Nutshell 
Dura models concepts related to emergency management by means of events, stateful 

objects, and actions. Events are used to represent sensor messages and to incorporate 

the result of simulations, stateful objects model states, e.g., the operation mode of the 

infrastructure, and (more or less static) topology information, and actions are used to 

modify stateful objects and to refer to physical actions of external actuators. 

Dura is a rule-based language that distinguishes three kinds of rules. Declarative rules 

and action rules define new (complex) events and actions based on event queries and 

action specifications, respectively. They resemble database views that are continuously 



10 

evaluated and procedures that are automatically executed by the system. Reactive rules 

specify how to react to detected events. They make the transition between declarative 

rules that derive a high-level interpretation of the current situation and the corresponding 

reactions that are executed by external actuators. 

Event Queries in Dura Complex event queries in Dura are specifically tailored to the 

particularities of emergency management. They uniformly integrate queries for events 

and stateful objects, provide expressive temporal dependencies that are capable of 

incorporating different time lines and maintain a clear separation of query dimensions 

which is desirable to obtain a high expressiveness of event queries. 

Complex event queries are used in deductive rules to specify when a certain complex 

event should be derived. The following deductive rule uses a complex event query to 

derive certain alarms whenever the smoke concentration in an area exceeds 10% and 

the temperature rises above 50 degrees in the same area within two minutes. Note the 

clear separation of query dimensions, in particular the separation of the event 

composition with and and the specification of temporal dependencies with within. 

DETECT 
  certain-alarm{ area{var Area} } 
ON 
  and{ 
    event e: smoke{ area{var Area}, amount{var C} }, 
    event f: temp{ area{var Area}, value{var T} } 
  } where { {e,f} within 2 min, C > 0.1, T > 50 } 
END 

 
Complex event queries are also used in reactive rules to specify when to execute certain 

actions. Under normal conditions, uncertain alarms are ignored. However, if there is an 

uncertain alarm and there have already been problems in the same area before, a 

warden is sent to clarify the situation. Accordingly, the following reactive rule initiates an 

action requesting the inspection of the area, if there is an uncertain alarm and the 

operation mode of the corresponding are has not been normal throughout the last three 

minutes. Note how queries of events and stateful objects are freely combined and that 

the query of the stateful object also considers past characteristics of the operation mode 

and not only the current one. 

ON 
  and{ 



11 

    event e: uncertain-alarm{ area{var Area} }, 
    not state s: operation-mode{ area{var Area}, mode{"normal"} } 
  } where { s valid-during from-end-backward(e, 3 min) } 
DO 
  action a: request-warden{ area{var Area} } 
END 

 
Action Specifications in Dura Complex action specifications in Dura are tailored to the 

properties of external actions. They incorporate expressive temporal dependencies that 

are discriminating the success and failure of actions to specify a sophisticated timing 

between actions. The success and failure of actions is determined by means of complex 

event queries that are not limited to incorporate solely the result of sub-actions but can 

also incorporate information from sensors. Finally, complex action specifications 

maintain a clear separation of query dimensions to obtain a high expressiveness. 

The following complex action is intended to extract smoke from a certain area. To this 

end, the fire dampers of this area are opened and subsequently ventilators that generate 

an airflow that actually pushes the smoke out of the station are activated. Note that the 

specification of success of the action is directly related to its purpose, the extraction of 

smoke that manifests in the drop of the smoke concentration in the area below 10% 

within 1 minute. The event processing system ensures that the specified temporal 

dependencies in the where part are satisfied during runtime, in this case, that the 

ventilators are only activated 5 seconds after the fire dampers were opened 

successfully. 

FOR 
  adapt-ventilation{ var Area } 
DO 
  compound{ 
    action a: open-fire-dampers{ var Area }, 
    action b: activate-ventilators{ var Area } 
  } where { succ(a) + 5sec <= init(b) } 
    succeeds on { 
      event e: smoke{ area{var Area}, amount{var C} } 
        where { C < 0.2, end(e)-init(a) <= 60 sec } 
    } 
END 

 
Semantic Analysis for Complex Actions Although desirable, the clear separation 

of different aspects of actions and the use of inequalities to specify temporal 

dependencies enable inconsistent action specifications that cause undesirable effects 

during runtime. To prevent unsound specification while maintaining the expressiveness 



12 

of temporal dependencies, a semantic analysis is applied to complex actions at compile 

time to ensure, e.g., that all sub-actions can be actually executed during runtime [14]. 

4. The Generic Run Time System Event-Mill for Evaluating Dura 
Rules 

Event-Mill is an evaluation engine for reactive event processing languages like Dura. 

Event-Mill is based on a so-called “Temporal Stream Algebra” (short TSA) which 

generalizes the data model and the standard operators of relational algebra thus 

adapting it to data streams [5,6]. Event-Mill consists of three components: First, a 

compiler which translates Dura programs into TSA programs. Second, another compiler 

which transforms TSA programs into a set of incremental relational algebra expressions 

along with some so-called propagation functions [6]. Propagation functions are needed 

for proper synchronization and timing during the evaluation of incremental expressions. 

Third, a run time finally evaluating the original program by continuously executing SQL 

statements in a relational database like MonetDB [7]. The SQL statements are 

generated from the incremental relational algebra expressions produced by the 

compiler. Like Dura, Event-Mill and TSA have been designed to meet the specific 

requirements of emergency management. As a consequence, Event Mill and TSA 

significantly depart from other approaches based on, or related to, relational databases.  

4.1 Challenges 
Temporal Relations instead of Time Windows Emergency procedures for the 

detection and analysis of emergencies and for the reaction to emergencies usually 

impose temporal relations between the occurrence of events, the validity of states and 

the execution time of actions. In fact combining temporally (and frequently also spatially) 

correlated events into meaningful patterns is the basis for the detection and analysis of 

emergencies. For example, a fire can be detected accurately by combining the 

measurements/events from smoke and temperature sensors of an area within the last 

few seconds (see Section 3.2). Most existing complex event processing systems use 

time windows with fixed, data-independent bounds for expressing temporal relations. 

However, such windows can only express basic temporal relations and formulating the 

temporal relations specified in an emergency procedure by means of time windows 



13 

tends to be counter-intuitive and yields programs that, even in simple cases, are difficult 

to understand. The rules implementing dynamic emergency procedures need to be easy 

to verify and maintain and thus, temporal relations should be specified directly, that is, 

preferably without time windows. 

Furthermore, windows with fixed, data-independent bounds cannot adapt to relevant 

“episodes” in the incoming data, for example, defined by the beginning and end of an 

emergency like a fire. The implementation of dynamic emergency procedures frequently 

requires analytic queries, like “the maximum smoke concentration within a room during a 

fire”, which should only be evaluated when actually needed, that is, in case of the 

emergency they specify. Both the starting time as well as the temporal extension of the 

analysis are determined by events (the beginning and the end of an emergency) and 

cannot be specified in advance. Moreover, the precise knowledge of the start and end of 

some period can be needed, for example in monitoring an evacuation. Thus, data 

independent window definitions are hardly suited for this kind of queries. General 

temporal relations should be used instead. 

User-defined Timestamps for Composite Events In the area of emergency 

management the “right” choice for the timestamp of a composite event is not always 

obvious and may differ from query to query. Consider for example the following two 

rules: Rule 1: A temperature sensor is considered to be malfunctioning if there is a 

message from that sensor which is not followed by another message within 30 seconds. 

Rule 2: A precautionary fire alarm is raised if there is a potential fire detection in an area 

and no report from the responsible warden is received within 2 minutes after the 

potential fire detection. Both queries have the same basic structure, a positive event that 

triggers the rule if it is not followed by another event within a certain time-frame. 

However for the first query, the timestamp for the ``malfunction sensor'' event should 

probably be the time of the first missing messages, for example, 10 seconds after the 

last message from that sensor. By contrast the time for the precautionary alarm should 

be the time of the (potential) fire detection and not the time of the missing report. 

Therefore the user should be able to choose the most meaningful definition for the 

timestamps of a composite event on a query per query basis. 



14 

Multiple Time Lines Emergency management requires queries referring to timestamps 

according to various different timelines. In a simple case these timelines are just 

application and system time. Reconsider the rule – A precautionary fire alarm is raised if 

there is potential fire detection in an area and no report from the responsible warden is 

received within 2 minutes after the potential fire detection. The timespan of 2 minutes is 

defined between the detection of the potential fire, that is, application time, and the 

reception of the report, that is, system time. So as to ensure that no more than two 

minutes will elapse between the potential detection and a reaction to that detection, it is 

crucial that the 2 minutes period is defined in exactly that way, as transmission delays 

could otherwise block the emergency management system. 

Further timelines are needed for simulations that help to predict the evolution of an 

emergency (see Section 2.1). Beside application and system time, events produced by a 

simulation carry a timestamp expressing the time at which a prediction is meant to hold. 

Multiple timelines are also useful for skipping the derivation of composite events which 

have become irrelevant by lapse of time, for example, due to prioritization in favor of 

more important queries. 

Access to Static Relations Both detection and analytic queries frequently need to 

access static, or rarely changing, relations for interpreting the incoming events. For 

example sensor messages usually carry sensor identifiers, but rarely carry data 

indicating the locations of the issuing sensors. The location is however essential for 

correlating messages from different sensors. Therefore, location must be retrieved by an 

access to a database providing, for each sensor identifier, the location of the 

corresponding sensor. More complex topological information might be needed as well, 

for example, the neighbouring rooms of a burning area that are threatened by the fire. 

Identifying those rooms needs to correlate the event of fire detection with the static 

neighbor relation of rooms through a more involved database query.  

Automatic Garbage Collection The evaluation of rules for emergency management 

needs to buffer, for some time, at least part of the incoming. As new data continuously 

arrive, old data that have become irrelevant need to be removed, that is, “garbage 

collected”. Manual garbage collection is error-prone and hard to maintain as it requires 



15 

an in-depth knowledge of the underlying evaluation system and a global overview of the 

whole emergency management program. Thus, garbage collection should be performed 

in an automatic and transparent way. The conditions distinguishing relevant and 

irrelevant data mostly depend on the temporal relations specified in the emergency 

management rules. Therefore, an automatic derivation of these conditions requires a 

sophisticated analysis of temporal relations. 

Workload Bursts An evaluation system for emergency procedures must remain stable 

under workload bursts. This is especially important as emergency management 

applications have the property (which is unpleasant for the evaluation system) to require 

both, high reliability and good response times, at the time when the workload is at its 

highest, that is, during an emergency. The high workload during an emergency results 

first from an avalanche of irregular sensor readings which must be correlated to the 

corresponding emergency and second from the complex analytic tasks triggered by the 

emergency. 

4.2 Temporal Stream Algebra (TSA) 
Temporal Stream Algebra (TSA) generalizes the data model and the standard operators 

of relational algebra like selection, projection, join, set difference and grouping towards 

data streams [5,6]. Using the operators of relational algebra has a number of 

advantages: First, the operators are sufficiently expressive for formulating the 

emergency procedures encountered in all use -cases we examined. Second, the 

operators provide a good basis for the implementation of the high-level declarative 

language Dura. Third, data streams can be queried in a manner which is already known 

from relational databases (especially using the database query language SQL). Fourth, 

techniques and algorithms for the evaluation and optimization of relational algebra 

expressions can be reused for, or easily adapted to, data streams. The challenge of 

applying relational algebra to data streams is that some relational algebra queries 

cannot be evaluated on data streams, that is, they are invalid. TSA addresses this 

challenge based on three key observations:  

First, data streams usually “make progress” with respect to some of their attributes. 

More precisely a data stream is “making progress” on an attribute if it eventually 



16 

exceeds any value for that attribute. Such an attribute is a so-called “progressing 

attribute” of the data stream. Usually, some of the timestamp attributes of a data stream 

are “progressing attributes”. 

Second, the set of progressing attributes for a derived stream depends on the 

progressing attributes of the input streams of the corresponding query and on the 

temporal relations specified in the query. The achievable progress with respect to a 

progressing attribute of the derived stream depends on the available progress of the 

input streams and can be computed by so-called “propagation functions” which also 

depend on the temporal relations specified in the query. 

Third, a relational algebra query can be evaluated incrementally on a data stream if its 

derived stream has at least one progressing attribute. 

TSA exploits these observations in the following way: First, TSA propagates constraints 

on progressing attributes and temporal relations through the operators of relational 

algebra. Second, TSA provides an analysis of the propagated constraints identifying the 

progressing attributes of the derived streams of a query and also generating the 

corresponding propagation functions. Based on this, TSA can decide on the validity of a 

relational algebra query against data streams and can provide incremental expressions 

(also expressed in relational algebra) for every valid query. Furthermore, the results of 

the analysis can be used for garbage collection. 

4.3 The Event-Mill Evaluation Run Time 
The evaluation run time system Event Mill exploits the power of modern relational 

database systems like MonetDB [7] for an efficient evaluation of complex event queries. 

In particular, Event-Mill implements an out-of-order, bulk-wise processing of event 

queries based on the bulk-processing features of the underlying database system. The 

bulk-wise processing is essential for coping with bursts in the workload. It also increases 

the system’s efficiency. The evaluation of Event-Mill is asynchronous in the sense that 

the progress of different queries only has to be loosely synchronized. This allows for 

prioritizing the most important queries of an emergency by evaluating the less important 

queries at a lower frequency, or by even delaying such queries until the end of the 

emergency. Furthermore, the incremental evaluation of different queries can be 



17 

performed in parallel, making use of multi-core systems. Asynchronous processing is 

also an enabling feature for an efficient distributed processing which might be needed in 

some use-cases so as to scale with the size of an emergency management application 

with the size of a metro network. 

Basically, the run time system takes an incremental relational algebra expression 

provided by TSA and transforms it into a semantically equivalent parameterized SQL 

statement. The parameters are placeholders for so-called progress values indicating the 

achievable progress of the corresponding derived stream and the available progress of 

the respective input streams. The actual progress values are computed using the 

propagation functions also provided by TSA. Each incremental evaluation step for a 

query consists of three phases: First, the propagation function is used to compute the 

achievable progress of the derived stream for the current incremental evaluation step 

based on the currently available progress of the input streams. Second, the parameters 

of the SQL statement for the query are bound to the obtained progress values and the 

SQL statement is executed. The execution of the SQL statements directly inserts the 

resulting tuples into the database table corresponding to the derived stream of the 

query. Third, the available progress of the derived stream is set to the values of the 

achievable progress computed in the first phase before the execution of the SQL 

statement. 

5. Conclusion and Perspectives: Towards Composable Software 
for Modelling Complex Structures 

An appealing characteristic of the approach presented in this article is its use of 

standard hardware and software.  

As of hardware, standard smoke and other sensors and standard PCs/PLCs are 

sufficient. It would make sense for a large infrastructure to rely on two PCs networks 

fully independent of each other and both running the system. This would make it 

possible to immediately switch from one PC network another in case one network stops 

working. A metro station could be processed with a single PC (for each PC network), an 



18 

airport with as many PCs as areas like halls that, in case of an emergency would have to 

be evacuated individually.  

As far as software is concerned, standard internet software and the software described 

in this article would suffice for a large infrastructure like an airport, a train station, or a 

metro network.  

The main limitation of the approach proposed is that it requires a specific programming 

of sensor-based detection and of reactive emergency rules. A next step which would be 

worthwhile investigating is a software build up from composable pre-defined, that is 

generic, components that could be adjusted by the setting of suitable parameters to the 

specificities of a wide range of large infrastructures. Such an approach seems possible 

since, provided they are sufficiently recent, large infrastructures are very similar in their 

structures.  

6. Acknowledgements 
The work presented in this article is part of the research project EMILI (2010–2012, 

http://www.emili-project.eu/) funded by the European Commission under grant 

agreement number 242438 within its 7th Framework Programme.  

7. References 
[1] M. Bettelini, N. Seifert, and F. Bry: Innovatives Sicherheitssystem für U-Bahn-

Stationen” (in German) IM - Fachzeitschrift für Information Management und 

Consulting, volume 4. 2010 

[2] M. Bettelini, S Rigert, and N. Seifert: Optimum Emergency Management Through 

Physical Simulation - Findings from the EMILI Research Project, Proceedings of 

the World Tunnel Congress. Geneva. 2013 

[3] S. Brodt, S. Hausmann, and F. Bry: Reactive Rules for Emergency Management. 

EMILI Deliverable D4.2, University of Munich. 2010 

[4] S. Hausmann, S. Brodt, and F. Bry: Dura: Concepts and Examples. EMILI 

Deliverable D4.3, University of Munich. 2011 



19 

[5] S. Brodt, S. Hausmann, and F. Bry: Refinement of the implementation. EMILI 

Deliverable D4.7. 2012 

[6] S. Brodt and F. Bry: Analysing Temporal Relations – Beyond Windows, Frames 

and Predicates. Submitted for publication. 2013 

[7] MonetDB, www.monetdb.org 

[8] A. Braun, P. Kroner, Y. Leontyeva, and D. Siller: Event Processing in Sensor 

Networks: A Solution for Integrated Emergency Management, Poster at the 6th 

ACM International Conference on Distributed Event-Based Systems (DEBS). 

Berlin. July 2012 

[9] V. Janev, V. Mijović, N. Tomašević, L. Kraus, S. Vraneš. Dynamic Workflows For 

Airport Emergency Management Training, In: Proceddings of the 2nd 

International Workshop on Information Systems for Situation Awareness and 

Situation Management (Workshop ISSASiM '12 ) at the 23rd International 

Conference on Database and Expert Systems Applications, IEEE Press. 2012 

[10] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. Sjoerd Mullender, M. L. 

Kersten: MonetDB: Two Decades of Research in Column-oriented Database 

Architectures, IEEE Data Engeenering Bulletin, volume 35, number 1, pages 40-

45. 2012 

[11] E. Liarou, S. Idreos, S. Manegold, M. L. Kersten: MonetDB/DataCell: 

Online Analytics in a Streaming Column-Store, PVLDB, volume 5, number 12, 

pages 1910-1913. 2012 

[12] V. Mijović: Application of ECA rules for Emergency Management at 

Airports, Proceedings of the 2nd International Conference on Information Society 

Technology (ICIST 2012), Kopaonik, Serbia, February 29 – March 03,  pages 

638-642. 2012 

[13] L. Kraus, V. Janes, S. Vraneš: Different Approaches to ICT-enhanced 

Emergency Management, Proceedings of the 56th Conference for Electronics, 

Telecommunications, Computers, Automation, and Nuclear Engineering, Zlatibor, 

Serbia, June 11 – 14. 2012 

[14] S. Hausmann and F. Bry: Towards Complex Actions in Complex Event 

Processing, To appear in Proceedings of the 7th International Conference on 

Distributed Event-Based Systems, ACM, 2013 

http://www.monetdb.org/


20 

 

 

KURZ UND BÜNDIG 
Große Infrastruktureinrichtungen werden technologisch immer komplexer und sind 

immer stärker voneinander abhängig. Als Folge davon werden komplexe 

Infrastruktureinrichtungen anfälliger für Notfälle. Das verantwortliche Personal muss in 

der schwierigen Aufgabe unterstützt werden, Notfälle zu erkennen, richtig zu bewerten 

und passende Gegenmaßnahmen auszuwählen. Daher empfiehlt es sich, ein System zu 

wählen, das kontinuierlich die verfügbaren Sensordaten auf Notfälle hin analysiert, 

Vorhersagen über die zukünftige Entwicklung eines Notfalls macht und sinnvolle 

Reaktionen auf den Notfall vorschlägt. 

 

Stichworte: Große Infrastruktureinrichtungen, Dynamisches Notfallmanagement, 

Physikalische Simulationen, Complec Event Processing, Training 

 
 
SERVICE 
 

About the Authors 

 
Steffen Hausmann 
Dipl.-Inform. 
 
Steffen Hausmann received his diploma degree with distinction in 2010 from the 

University of Munich. Currently he is a teaching and research assistant in the group lead 

by François Bry at the University of Munich. His research interests are related to 

complex event processing and reactive systems. He investigates new approaches 

towards high-level event processing languages unifying declarative event queries with 

expressive composite reactions. 

 
Simon Brodt 



21 

Dipl.-Inform. 
 
Simon Brodt is a teaching and research assistant in the group lead by François Bry at 

the University of Munich. His research interests are the efficient evaluation of expressive 

complex event queries, the efficient storage and querying of graph data and the 

evaluation of logic programs. His current focus is the development of an efficient 

evaluation engine for high-level reactive event processing languages based on in-

memory, column-store databases. 

 
Prof. Dr. François Bry 
 
François Bry is a professor at the Institute for Informatics of the Ludwig-Maximilian 

University of Munich, Germany, heading the research group for programming and 

modelling languages. He currently investigates methods and applications related to 

querying answering, search, complex event processing, and human computation. 

François Bry regularly contributes to scientific conferences and journals as an author, 

reviewer, and program committee member. Before joining the University of Munich in 

1994, he worked in industry in France and Germany, in particular with the research 

centre ECRC. François Bry devotes his free time to family, travels, and reading literature 

and history. 

 
Dr. Marco Bettelini 
 
Dr. Marco Bettelini obtained his Master in Mechanical Engineering from ETH Zurich in 

1984 and his PhD from the same institution in 1990. After a post-doctoral year at Brown 

University, he joined ABB Corporate Research. His main fields of activities were applied 

aerodynamics, combustion and safety. Since 1998, he operates in the fields of 

infrastructural safety and tunnel ventilation and held positions as Chief Engineer in 

several leading engineering companies. He is currently head of ventilation and safety 

with Amberg Engineering Ltd, in Switzerland. 

 
KONTAKT 



22 

 
 
steffen.hausmann@ifi.lmu.de 

simon.brodt@ifi.lmu.de 

bry@lmu.de 

mbettelini@amberg.ch 

 

Ludwig-Maximilian University of Munich 

Institute for Informatics 

Oettingenstraße 67 

80538 München, Germany 

Phone: +49-(0)89-2180-9771 

Fax: +49-(0)89-2180-9311 

 

http://www.pms.ifi.lmu.de/mitarbeiter/derzeitige/steffen-hausmann 

http://www.pms.ifi.lmu.de/mitarbeiter/derzeitige/simon-brodt/ 

http://www.pms.ifi.lmu.de/mitarbeiter/derzeitige/francois-bry/ 

http://www.amberg.ch 

 

mailto:steffen.hausmann@ifi.lmu.de
mailto:simon.brodt@ifi.lmu.de
mailto:bry@lmu.de
mailto:mbettelini@amberg.ch
http://www.pms.ifi.lmu.de/mitarbeiter/derzeitige/steffen-hausmann
http://www.pms.ifi.lmu.de/mitarbeiter/derzeitige/simon-brodt/
http://www.pms.ifi.lmu.de/mitarbeiter/derzeitige/francois-bry/
http://www.amberg.ch/

	Dynamic Emergency Management
	1. Advantages of Dynamic Emergency Procedures
	2. Real Time Simulations
	2.1 Why Real Time Simulation?
	2.2  iSEM – Real Time Simulation for Emergency Management in Traffic Infrastructures
	2.3 Real Time Physical Simulation for Emergency Management
	2.4 Real-Time Simulation for Training

	3. The generic reactive language Dura
	3.1 Challenges
	3.2 Emergency Management with Dura in a Nutshell

	4. The Generic Run Time System Event-Mill for Evaluating Dura Rules
	4.1 Challenges
	4.2 Temporal Stream Algebra (TSA)
	4.3 The Event-Mill Evaluation Run Time

	5. Conclusion and Perspectives: Towards Composable Software for Modelling Complex Structures
	6. Acknowledgements
	7. References

