Towards Complex Actions for Complex Event Processing

Steffen Hausmann
Institute for Informatics
University of Munich
hausmann@Imu.de

ABSTRACT

Complex actions are a natural extension for complex event
processing languages needed by many applications like emer-
gency management. In particular interactions with external
actuators that are common in those applications pose chal-
lenges that need to be adequately covered. Many approaches
towards actions and reactivity in event processing are, how-
ever, either too simple or too formal to model complex com-
posite actions in a convenient manner or require a complete
knowledge of the actions and of their effects.

This article proposes a pragmatic yet generic approach to
complex actions in event processing which adapts to the het-
erogeneous and incomplete nature of physical actions. The
article furthermore introduces a static semantic analysis for
rejecting incorrect and undesirable programs which scales
with the available information without requiring an a pri-
ori, or complete, knowledge of the actions and their con-
sequences. The article finally describes a transformation
of complex actions into complex events queries making it
rather simple to add complex actions to a wide range of
event processing languages.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages— Program analysis

Keywords

Composite Actions, External Actions, Temporal Analysis,
Semantic Analysis, Complex Event Processing

1. INTRODUCTION

Many applications are conveniently implemented using
complex event processing techniques [19]. However, many
implementations focus merely on the deduction of high-level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Francois Bry
Institute for Informatics
University of Munich
bry@Imu.de

knowledge in terms of complex events and delegate the ex-
ecution of reactions, if any at all are modeled within the
event processing system, to proprietary often hard coded
systems. A large number of applications can substantially
benefit from a new generation of event processing systems
that integrate the definition of complex events with the ca-
pability of modeling the logic of reactions whereas only the
execution of basic actions is delegated to external actuators.

One particular field that benefits from such a new kind
of systems is emergency management in public infrastruc-
tures like subway systems and airports. Nowadays, such
infrastructures are operated by humans from a central con-
trol room. Composite reactions are executed by isolated
and proprietary subsystems with an incomplete knowledge
and the information provided by sensor is poorly processed.
Moreover, incidents in the past have shown that static pro-
cedures and human misinterpretation may result in severe
casualties or damages [13, 22].

Emergency management calls for complex event process-
ing with complex actions and fast computable simulations
[4] making it possible to derive a more abstract and high
level interpretation of the arriving data and to execute com-
posite reactions that are requested by human operators.

Challenges. Although the combination of complex events
and reactive rules has already been extensively investigated
in the literature, the physical nature of basic actions that are
eventually executed by external actuators introduces new
aspects that need to be considered to obtain an adequate
and effective approach suited, for instance, to emergency
management applications as they are described in [25, 18].

Ezample 1. Smoke is the most dangerous threat to pas-
sengers and personnel during a fire in a metro station. Ac-
cordingly it is crucial to keep evacuation routes free of smoke
as long as possible. This is usually achieved by adapting the
ventilation regime so that a flow of fresh air keeps the smoke
away from important areas.

To this end, smoke dampers are opened and ventilators
are activated to generate the desired air flow that pushes
the smoke out of the station. Moreover, warning signals are
activated close to the outlet of the ventilation system some
time before the leakage of smoke.

From this example we derive the following observations:

Physical Actions Atomic actions are executed by exter-
nal actuators that interfere with the real world the underly-
ing physical effects of which can hardly be formalised. To
estimate, e.g., the effect of an airflow on the distribution

of smoke within an area, complex numeric simulations of
physical effects are required [4].

Irreversible Effect Physical actions can often hardly be
reversed or compensated as the caused physical effects can-
not be easily undone. Once activated, the ventilators can
indeed be turned off again, however, the caused airflow has
already scattered the smoke what cannot be simply undone
by reversing the airflow.

Timing of Actions In contrast to mere sequences of ac-
tions that are commonly used in imperative procedures, the
exact timing between physical action is often crucial to ob-
tain a desired effect. To be effective, the warning of leaking
smoke needs to be issued, e.g., 20 seconds ahead of time and
not just in the moment the smoke actually passes out.

Indirect Feedback External actions may fail to achieve
their intended goal. However, feedback on their success usu-
ally cannot be inferred from the feedback that is provided
by the contributing actuators. The adaptation of the ven-
tilation regime is successful when the smoke actually dis-
appeared, not when the dampers and ventilators were acti-
vated successfully.

Requirements. Based on these observations we derive the
following requirements for complex actions suitable for mod-
ern and effective emergency management:

High-Level Language Emergency management has a
natural need for expressiveness and ease of use. Complex
actions need to be capable of modelling composite work-
flows in a manner that is convenient and appropriate for
humans. Furthermore, complex actions must be tailored to
the particularities of physical actions as they are desirable
for interactions with external actuators in the infrastructure.
At the same time, approaches based on intelligently acting
autonomous systems cannot be used. Emergency managers
are in charge and need to be in control and consequently
they only accept actions that are specified in a determinis-
tic and comprehensible way.

Integration of Events and Actions Instead of dedicat-
ing the execution of composite actions to proprietary and
specialized systems without an expressive notion of complex
events, it seems more appropriate to uniformly integrate the
execution of composite actions into the event processing sys-
tem. Complex event queries are capable of combining the
information from various sources to obtain an abstract rep-
resentation of the infrastructure and its condition that is
valuable to control the executed procedures during runtime
and to determine, e.g., the result of complex actions.

Expressive Temporal Dependencies Complex actions
usually try to achieve a higher level goal that cannot be
realised by individual actions but requires the collaboration
of multiple actions. To this end, complex actions have a
need for temporal dependencies that specify the timing and
sequence for several actions in a manner that exceeds the
capabilities of ordinary sequences and cases from imperative
programming languages. To be valuable, the system must
be able to actually execute complex actions according to
their temporal dependencies.

Static Semantic Analysis Complex actions require a
versatile semantic analysis that identifies errors at compile
time which would otherwise only manifest during runtime.
As the knowledge on runtime properties of heterogeneous
actions is often incomplete, the analysis needs to scale with
the available information. Basic properties of complex ac-
tions must be verifiable without specific knowledge whereas

more specific properties can be verified if the corresponding
knowledge is available.

Contributions. We make the following contributions:

e Identification of orthogonal dimensions that must be
supported by expressive complex actions and discus-
sion of limitations that are inherent to external actions.

e Introduction of expressive complex actions tailored to
external actions with a clear separation of orthogonal
aspects of action execution.

e Discussion of viable temporal dependencies between
actions and elaboration of an execution strategy that
satisfies those dependencies during runtime.

e Elaboration of a semantics of actions that enables a
semantic analysis which ensures crucial properties of
complex actions at compile time.

e Suggestion of a transformation scheme that converts
complex actions to event queries which can be evalu-
ated on top of a conventional event processing system.

2. FOUNDATIONS OF COMPLEX ACTIONS

2.1 Times Associated with Actions

The underlying time model is a crucial aspects for complex
event processing that substantially influences the semantics
of complex events. In event processing systems application
time is often used in favour of system time to avoid unin-
tuitive effects. In a similar way, the employed time model
significantly impacts the semantics of actions and thus sim-
ilar issues need to be accounted to obtain an appropriate
time model for actions.

In general it seems desirable to apply a synchronous time
model and that the times associated with an action instance
are determined by the corresponding actuator that actually
executes it. In this way, the impact of latency and network
delays is minimized and in consequence the semantics of
actions becomes more meaningful and stable.

We distinguish three different times of actions: one related
to the beginning and two related to the ending of an action.

Initiation Time. The initiation time of an action refers to
the time the action is deemed to begin.

Success and Failure Times. The end of an action is de-
noted by the time of its success or failure. Naturally, each
action can only either succeed or fail. In the context of emer-
gency management, actions are furthermore considered as
failed if they did not succeed within an application depen-
dent amount of time.

Note that these times are subject to a priory unknown
runtime effects and cannot be directly influenced. In par-
ticular the initiation times of actions can only be affected
indirectly: Actions are requested by the event processing
system as soon as the premises of the corresponding reac-
tive rule are satisfied. However, this constraints only the
earliest possible times at which actions can be conceptually
initiated whereas the times of their actual initiation are sub-
ject to runtime effects, such as, latency and network delay.

This aspect substantially impacts the way how actions
can be executed during runtime and introduces limitations
on viable temporal relations that can be actually guaranteed
during runtime.

2.2 Indirect Feedback on Physical Actions

Physical actions are requested within the event process-
ing system and executed by external actuators. As a conse-
quence the system has inherently no general knowledge on
the progress of requested actions. Instead it depends on the
feedback that is provided by the corresponding actuators to
determine the current status of running actions. However,
due to the heterogeneity of actuators in large infrastructures,
the quality of feedback may vary substantially. For instance,
not every actuator can provide the feedback that is desired,
to determine when and if an action was actually successful,
some even cannot provide any feedback at all.

As a consequence, it is often mandatory to rely on indi-
rect feedback from related sensors that allows inferences on
the execution status of actions. For instance, to determine
whether a ventilator was activated successfully, one can use
the information on the current airflow measured by an adja-
cent anemometer. If even no indirect feedback is available,
domain knowledge can be used to specify, for instance, that
the activation of the ventilator is successful 20 seconds after
the request was emitted by the event processing system.

In summary, it is desirable to obtain the feedback on the
execution of actions directly from the actuator, but due to
technical limitations the feedback may need to be inferred
from other sources including very generic information pro-
vided by the event processing system itself. As a conse-
quence, the times associated with external actions need to
be adjustable according to the capabilities of the actuators
and the requirement of the programmer as there is no suit-
able default that equally fits all kinds of diverse actions.

2.3 Dimensions of Complex Actions

A language towards complex actions for emergency man-
agement must support (at least) the three complementary
dimensions of action composition, temporal dependencies,
and execution result. A fourth dimension, temporal asser-
tions, seems desirable to increase the quality and robustness
of programs but it does not result in a higher expressiveness.

Action composition. Complex actions are composed from
several (atomic or complex) sub-actions that are executed in
combination to achieve a certain higher level goal that can-
not be achieved by single and more basic actions. Naturally,
a language for complex actions must support the composi-
tion of several actions into one composite complex action.

Note that emergency management requires temporal de-
pendencies that exceed the expressiveness of common se-
quences and choice as they are available in imperative lan-
guages. However, action composition covers only the mere
collection of several actions whereas monolytic operators
available in other approaches, like sequences, are expressed
by means of more generic and expressive temporal depen-
dencies between actions.

Temporal dependencies. Temporal relations are manda-
tory to specify the timing and execution order of actions
which must be satisfied when the action is executed. Com-
monly used temporal dependencies between actions are for
instance before and after which may additionally specify an
optional duration (e.g., 20 seconds after).

To obtain expressive complex actions, it is crucial that
multiple dependencies can be independently specified for the
same action. Note that this requirement is often not satis-

fied by monolytic composition operators which interleave
temporal relations and action composition.

To be suitable for external actions with uncertain results,
temporal relations must furthermore discriminate between
success and failure of actions to allow different reactions
based on the result of preceding actions (e.g., only ezxecute
a after b was successful).

Execution result. Complex actions need a mean to specify
whether their intended effect has been accomplished or not,
that is, if their execution was successful or failed. Without a
notion of success and failure of actions, composite workflows
that invoke different alternatives to adapt to the result of
preceding actions cannot be easily modeled.

As the desired effect of actions may not only depend on
the success of their sub-actions, those means must be ex-
pressive enough to specify generic event patterns that verify
the success and failure of the desired effects of the complex
action.

Temporal assertions. Temporal assertions specify tempo-
ral conditions between actions that need to be satisfied dur-
ing runtime. In contrast to temporal dependencies, these
conditions have no effect on the execution of the composite
action. It is just verified during compile time that the con-
ditions will be satisfied if the action is executed according
to its temporal dependencies.

It is desirable that the verification of assertions does not
rely on comprehensive domain knowledge on actions, as the
available knowledge is in practice often incomplete. How-
ever, if specific domain knowledge is actually available for
certain actions, it should be considered by the analysis to
obtain stronger results.

Temporal assertions do not increase the expressiveness of
actions, but they facilitate the development of more robust
code as they they specify conditions on the behaviour during
runtime that are verified by the system at compile time.

Besides the capabilities of four dimensions, a clear separa-
tion of concerns of the orthogonal properties of the dimen-
sions seems desirable. The benefits of a clear separation of
concerns that are widely recognised for rule based languages,
in particular for rule based event query languages [7]. These
benefits can be naturally generalised for complex actions in
complex event processing. Without a clear separation of or-
thogonal concepts, complex actions lose expressiveness and
become cumbersome and unintuitive to write. This effect in-
creases the more dimensions are considered for the actions.

2.4 Semantic Analysis for Actions

The clear separation of concerns and a good coverage of
the four orthogonal dimensions of actions is arguably desir-
able for complex actions, in particular for complex actions in
emergency management. However, the resulting expressive-
ness comes at a price, namely the need for a strong semantic
analysis capable of rejecting incorrect and faulty programs.
The semantic analysis of complex actions should preferably
cover at least the three following aspects.

Viability of Temporal Dependencies. Atomic temporal
dependencies need to be viable in the sense that they can
be actually satisfied by the system during runtime. As the
referred time-points of actions can only be affected indirectly,
arbitrary temporal dependencies between actions may not
necessarily be satisfiable during runtime.

For instance, due to inherent runtime effects, it is impossi-
ble for the system to guarantee that two actions are actually
initiated at the same time, because the distribution of the
action request to the actuator is subject to latency. Note
that this still holds if the initiation refers to the time the
request is emitted by the system.

Fairness of Actions. Using action identifiers and generic
relations to specify temporal dependencies between actions
seems desirable. In fact, it is even mandatory to facilitate
the integration of multiple independent dimensions without
losing expressiveness.

However, the flexibility of temporal dependencies may re-
sult in inconsistent specifications, for instance in cyclic de-
pendencies between actions, that prevent sub-actions from
being executed. Accordingly, the semantic analysis must ver-
ify at compile time whether the temporal dependencies allow
that all sub-actions can actually be executed during runtime
and that there is no “dead code” that contains actions which
will never be executed.

Entailment of Assertions. Specifying temporal assertions
is only meaningful if it is verified during compile time that
the corresponding assertions of an action will actually be
satisfied during runtime.

However, the verification often requires domain knowledge
that might not be available for all kinds of physical actions.
Accordingly, it is mandatory that the semantic analysis can
incorporate such domain knowledge, specified, e.g., in the
schema of actions, but does not rely on it to work at all.

3. ACTIONS IN A HIGH-LEVEL LANGUAGE

In the following, we will elaborate complex actions that
can be integrated into high-level event query languages. To
this end, a short overview of the event query language Dura
is given which has been introduced in [16] and which is exem-
plarily used as a basis for our work. Subsequently, we will
extend the event query language with expressive complex
actions that aim at a full coverage of the aforementioned
dimensions of complex actions.

3.1 Event Processing with Dura in a Nutshell

Dura is a high-level rule based complex event processing
language in the spirit of the XML query and transformation
language Xcerpt [9] and the rule based event query language
XChange®? [6].

Event queries in Dura are characterized by a pattern based
query approach, versatile temporal dependencies between
events, versatile negation and grouping capabilities, and a
clear separation of query dimensions that is desirable to ob-
tain a high expressiveness of the language [7]. Moreover,
Dura comes with stateful objects that represent non-volatile
data which can be updated in non-destructive and declara-
tive fashion and support of multiple external time models.

Atomic Event Queries. Events are represented as struc-
tured data, similar to structs known from C. Every event
has a name, contains a unique identifier and further user
defined attributes in its payload, and is associated with a
time interval.

Events are queried by means of a pattern based approach,
that is, the query pattern resembles the data of the event
and variables are specified in the pattern where data should
be extracted. In addition, an event identifier is introduced

that precedes the query that is used in composite queries to
refer, e.g., to the time of the matched event.

event e: smoke{ area{var Area}, amount{var C} }

The preceding query matches smoke events and binds the
value of the area and amount attributes to variables. Note
that either values or composite data can be bound to vari-
ables and that the query pattern may be incomplete, omit-
ting irrelevant attributes.

Composite Event Queries. Several event queries are com-
bined by means of the operators and, or, and not. In addition
to the mere composition of queries, temporal and other de-
pendencies between events and the data they carry are given
in a separate where part that is appended to the query.
and{
event e: smoke{ area{var Area}, amount{var C} },
event f: temp{ area{var Area}, value{var T} }
} where { {e,f} within 2 min, C > 0.1, T > 50 }

This query matches smoke and temp events that occur within
2 minutes in the same area, note the implicit join over the
variable Area, and which report a temperature above 50°C
and a smoke concentration that exceeds 10 percent.

Event queries are purely declarative and do not consume
or absorb any events. Accordingly, the same event can be
matched by a rule multiple times. For instance, a smoke
event may be matched twice if two suited temp events occur
within the appropriate amount of time.

Deductive Rules. Deductive rules derive higher level events
based on the occurrence of events in the stream. They cor-
respond to materialized views from database systems.
DETECT
fire{ var Area }
ON
and{
event e: smoke{ area{var Area}, amount{var C} },
event f: temp{ area{var Area}, value{var T} }
} where { {e,f} within 2 min, C > 0.1, T > 50 }
END
In their head deductive rules contain a data term with
variables which are replaced by the values obtained during
the evaluation of the query in the body of the rule. Note that
the values for the unique identifier and the time of events
are automatically determined by the system.
The given rule derives new fire events carrying the origi-
nating area of the fire in their payload whenever the query
from above matches the stream of events.

3.2 Complex Actions for Dura

Complex actions aim at a high expressiveness with a full
coverage of all four dimensions of actions. In the following,
complex actions for Dura are introduced in the context of
an emergency management related scenario that resembles
the one given in the introduction.

Atomic Actions. Atomic actions are specified in a manner
similar to the specification of atomic event queries.

action a: adapt-ventilation{ var Area }
However, instead of extracting values from the pattern, as
in case of event queries, the values that are already bound

to variables are injected to the corresponding actions as pa-
rameters.

Reactive Rules. Reactive rules are the counterpart of de-
ductive rules. They trigger the execution of actions as a

reaction to the occurrence of events. Note that there is
no automatic conflict resolution for reactive rules matching
the same events in Dura. Accordingly, all reactive rules
matching the stream of events are always triggered. Con-
flicts between rules are explicitly resolved by adding further
conditions to their event queries.

ON

event e: fire{ var Area }
DO

action a: adapt-ventilation{ var Area }
END

For the sake of simplicity, we assume that an enterprise
service bus [10] is available and that external actuators are
connected to the bus by means of appropriate adaptors.

Action Composition. Composition of complex actions is
expressed in a manner similar to the composition of event
queries. Several actions are grouped together by means of
the compound operator and identifiers are introduced that re-
fer to the actions they precede.
compound{
action a: open-fire-dampers{ var Area },
action b: activate-ventilators{ var Area }
}

Note that, due to the clear separation of orthogonal dimen-
sions, compound is the only available operator that is required
for the composition of actions. It just specifies the actions
that are executed in combination with their concrete param-
eters, but does not describe further dependencies between
actions. So in this case, both actions are simply executed
concurrently.

Temporal Dependencies. Temporal dependencies between
actions are specified in the where part of complex actions.
They refer to the actions from the separate compound part by
means of the action identifiers and specify the timing of ac-
tions. To this end, action identifiers are used in combination
with init, succ, and fail to distinguish between the different
time-points associated with the actions.

Temporal dependencies are specified by means of conjunc-
tions of inequalities that determine lower bounds for the ini-
tiation of actions. For other applications it seems appropri-
ate to furthermore support disjunctions of temporal depen-
dencies that enable non-deterministic actions. However, for
emergency management applications the determinism of ac-
tions is a crucial requirement and as a consequence, disjunc-
tive dependencies are not further considered here although
they can be integrated in our approach. An extension inte-
grating disjunctive dependencies is discussed in Sec. 7.

compound{
action a: open-fire-dampers{ var Area },
action b: activate-ventilators{ var Area }
} where { succ(a) <= init(b) }

The preceding complex action uses temporal dependen-
cies to specify that the ventilators should only be activated
after the fire dampers have been successfully opened. Note
that this behavior corresponds to a simple sequence of ac-
tions that can be also specified by many other approaches
that support composite actions. However, due to the clear
separation of dimensions more elaborated dependencies can
be easily specified whereas approaches that interleave the
composition of actions and their temporal dependencies in
monolithic operators fail to express the following extension
of the preceding example.

compound{
action a: open-fire-dampers{ var Area },
action b: activate-ventilators{ var Area },
action c: warn-of-smoke-emission{ var Area }
} where { succ(a) <= init(b),
init(c) + 20 sec <= init(b) }

The complex action is complemented by a third action
that warns persons close to the outlet of the ventilation sys-
tem of the imminent emission of smoke. To be effective, a
time delay of 20 seconds between the issue of the warning
and the actual emission of smoke is added to the temporal
dependencies of the action.

Execution Result. Complex actions usually try to achieve
a higher level goal that cannot be realised by individual
actions. Naturally, the success of the action depends on the
achievement of this goal which often cannot be inferred from
the raw success of the comprising actions. As a consequence,
Dura employs versatile event queries to specify the success
of actions beyond the success of their sub-actions.

The success and failure of complex actions is specified in
the dedicated succeeds on part by means of common event
queries. The failure of actions is implicitly specified, as in
emergency management actions are deemed as failed if they
are not successful within a certain amount of time. The
where part of the event query specifying the success of the
action may as well refer to the time-points of sub-actions by
means of their action identifiers.

Similar to the specification of the success of actions, the
initiation of external non-composite actions can be specified
by means of an initiated on part that is incorporated to the
(schema) specification of the atomic action.

compound{
action a: open-fire-dampers{ var Area },
action b: activate-ventilators{ var Area }
} where { succ(a) <= init(b) }
succeeds on {
event e: smoke{ area{var Area}, amount{var C} }
where { C < 0.2, end(e)-init(a) < 60 sec }
}

In this case, the action that is intended to extract smoke
from a certain area is deemed successful if the smoke con-
centration drops below 20% in the respective area within
one minute from the beginning of the action and fails oth-
erwise. Note that the where part of the complex action and
of the query in the succeeds on part are both referring to the
open-fire-damper action by means of the identifier a.

Temporal Assertions. Temporal assertions are specified in
the hence part of complex actions. They are denoted in a
way that resembles the specification of temporal dependen-
cies but are in general more expressive, as arbitrary combina-
tions of conjunctions and disjunctions of inequalities can be
specified. Temporal assertions serve to express additional
formulas that must hold during runtime. Assertions that
do not necessarily hold during runtime are detected during
compile time and result in compilation errors.

Note that domain knowledge, such as, the maximal du-
ration of the corresponding actions and the latency of the
system, may be required to verify assertions during compile
time. The available domain knowledge is specified in the
schema of actions by means of inequalities similar to those
of assertions. However, if no additional domain knowledge is
available or if it is omitted from the schema, assertions may

be falsely rejected due although they are actually always
satisfied during runtime.
compound{
action a: open-fire-dampers{ var Area },
action b: activate-ventilators{ var Area }
} where { succ(a) <= init(b) }
hence or{ succ(b)-init(a) <= 20 sec,
fail(b)-init(a) <= 20 sec }

Assertions are used in this case to ensure that the sequen-
tial execution of open-fire-dampers and activate-ventilators
is completed (regardless of its result) within 20 seconds. Re-
call that assertions do not influence the execution of actions
and are just verified during compile time. To actually verify
this particular assertion, reliable information on the dura-
tion of both actions and the latency needs to be available in
the schema of the actions.

Complex Action Rules. Complex action rules assign names
to (anonymous) complex actions in a way that resembles pro-
cedures that assign names to certain fragments of code.
FOR
adapt-ventilation{ var Area }
DO
compound{
action a: open-fire-dampers{ var Area },
action b: activate-ventilators{ var Area }
} where { succ(a) <= init(b) }
succeeds on {
event e: smoke{ area{var Area}, amount{var C} }
where { C < 0.2, end(e)-init(a) < 60 sec }
}
END
Accordingly, the specified complex action can be executed
by referring to its name adapt-ventilation instead of repeat-
ing the entire code of the body of the given rule.

3.3 Satisfying Temporal Dependencies

During runtime complex actions are actually executed by
the event processing system according to their temporal de-
pendencies. To this end, the system can defer actions whose
initiation is explicitly specified in the temporal dependencies
of the complex action.

To obtain clear and reasonable semantics, the system may
not implicitly assume dependencies that are not explicitly
specified by the user. In general, implicit assumptions are
avoided in our approach as they influence the semantics of
actions in a way that can easily be overlooked by program-
mers. Note that this is a major difference to approaches
concerned with the planning and scheduling of actions [31].

To satisfy the following temporal dependency, the system
simply defers the initiation of b until the success of a has
been observed. If several dependencies for the initiation of
an action are given, the system simply defers its initiation
until all of them are satisfied.

where { succ(a) <= init(b) }

In contrast, the subsequent temporal dependency is in-
valid as it does not constrain the initiation of actions and
can hence only be observed during runtime but cannot be
satisfied in general without considering further dependen-
cies.

where { succ(a) <= succ(b) }
In summary, temporal dependencies specify lower bounds

for the initiation of actions that need to be exceeded be-
fore the action is requested by the system. Although the

available constraints seem rather limited, we will determine
that due to the inherent properties of external actions other
dependencies cannot be satisfied in general.

The execution of complex actions can thus be understood
as some kind of feedback loop. The event processing system
requests the execution of actions which eventually results
in the observation of their success or failure. This, in turn,
determines the lower bounds for the initiation of further
actions which will be eventually exceeded. Eventually these
actions will be requested for execution and so forth.

4. SEMANTICS OF COMPLEX ACTIONS

The execution strategy of complex actions combined with
the loose structure of temporal dependencies bears some pit-
falls. For instance, cyclic dependencies can be specified that
prevent some, or even all, actions from being executed dur-
ing runtime. To overcome those undesirable effects while
maintaining the expressiveness of the temporal constraints
we elaborate a semantic analysis that is capable of detecting
such situations during compile time.

However, to obtain a meaningful analysis, the correctness
of an algorithm for the semantic analysis of actions must be
verified formally. To this end, a formal semantics of complex
actions is required that is generic enough to model physical
action but that is at the same time specific enough to for-
mally prove the desired properties.

4.1 Formalization of Complex Actions

For convenience, complex actions are formalized in a more
concise manner that omits the verbose syntactic constructs
of the language and contains only information that is crucial
for the intended analysis.

Definition 1. The set of variables is denoted V =1, U V,.
For each action identifier f, the variable f;; € Vi, is called
affected variable and the variables f .., fay € Vo are called
observed variables.

Variables correspond to the times associated with actions
and accordingly their values are determined by external com-
ponents. However, the initiation of actions can be deferred
by the system and thus the system can determine lower
bounds for the value of affected variables whereas the val-
ues of observed variables can indeed just be observed.

Note that these notions resemble activated and received
time-points from [31].

Definition 2. The set of atomic temporal dependencies is
a set of triples denoted C =V x Q x V.

Informally these triples correspond to temporal dependen-
cies of complex actions. For instance, (asucc, 0, binit) € C cor-
responds to the dependency succ(a) <= init(b) from above.
For convenience, (u,d,u’), (v,—d,v'), (w,0,w’) € C can also
be written u +d < v/, v —d < v’ and w < w’. Other rela-
tions, like < and =, are not considered here, but note that
they can be expressed by means of the given ones.

Definition 8. A complex action C' is formally represented
by a conjunction of temporal dependencies C' = /\1 d; with
d; € C.

Definition 4. The assertions H of complex actions are rep-
resented by conjunctions of disjunctions of temporal depen-
dencies H = /\l \/]. dij with dij eC.

Definition 5. The domain knowledge D on actions is ob-
tained from their schema and represented just like their as-
sertions are by D = A\, \/, di; with di; € C.

For convenience, a conjunction C = /\Z d; is represented
by a set C = (J,di. As the number of dependencies is
always finite, both representations are used interchangeably.
Moreover, complex actions from Dura are formally identified
by their corresponding set of temporal dependencies.

Definition 6. The wariables of a complex action C' C C
are denoted

var(C) ={v | (v+d<v)eC v (v +d<v)eC}

Definition 7. The axiomatic closure of a complex action
C C Cis aset Ca DO C that contains the following implicit
axioms on sub-actions

C-A = C U U {J—init S finit7 init S fsucc7 init S ffail}

finig Evar(C)

whereby the special variable Liyit € V), refers to the initiation
of the complex action.

The additional dependencies that are introduced by the
axiomatic closure ensure that no sub-action is initiated be-
fore the complex action has been initiated and that the suc-
cess and failure of sub-actions occur after their initiation.

Ezample 2. The complex action adapt-ventilation from

Sec. 3.2 is formally represented by the set C' = {asucc < Dinit }
with the axiomatic closure

Cy=CU {J_init < Ginit, @init < Gsuce; Ginit < Ofail,
J—ini': S binit: binit S bsucm binit S bfail}

The following domain knowledge on open-fire-damper ac-
tions limits their duration to 5 seconds.

D= {asucc - 5 S Ginit V Qfail - 5 S ainit}

Note that the system latency can be specified in a similar
manner by constraining the time between the initiation of
actions and the end of their predecessors.

4.2 Formalizing Viable Temporal Dependencies

By design, complex actions in Dura only support temporal
dependencies in their where part that specify lower bounds on
the initiation of actions. However, this limitation is actually
not specific for Dura but applies in general if the initiation
of actions can only be indirectly affected.

To satisfy atomic temporal dependencies during runtime,
there must be lower bounds for their affected variables so
that the temporal dependencies are satisfied for all valid val-
ues of their observed variables. In the following we discrim-
inate between viable dependencies for which proper lower
bounds exist and observable dependencies that may not be
satisfied in all situations.

There are four different categories of atomic dependencies.
Note that atomic dependency with variables that refer to
the same action, e.g., dsucc -5 § Qinit, are not considered
in the following, because they are always observable as the
duration of actions cannot be influenced by the system.

(v1 +d < v2) € V), x Q x V: The variables v; and vy
are both observed variables and hence the system has no

direct influence on their values. Accordingly, those kinds of
dependencies are observable dependencies.

(v1 +d S v2) € Vo XxQxVj,: The value €2 = vy +d is a lower
bound for the affected variable v2 so that the formula is sat-
isfied for all values of the observed variable v1. Accordingly
those kinds of dependencies are viable dependencies. How-
ever, in practice, only d € Q7 is reasonable, as the value of
v1 is not determined until it is exceeded.

(01 +d S v2) € Vo X Q x V,: There is no lower bound
¢y for the affected variable v; that implies the formula (the
assumption there is a bound ¢; leads to a contradiction for
v < {1 + d). Therefore, those kinds of dependencies are
observed dependencies.

(v1 +d < v2) € Vu x Q x Vu: In general, there are no lower
bounds ¢; and ¢2 for v and ve that imply the formula (the
assumption there are such bounds leads to a contradiction
for va < v1 + d). Accordingly, those kinds of dependencies
are observed dependencies.

In summary, the set V, x QT x V), exactly corresponds to
the set of viable dependencies which can be satisfied during
runtime by choosing the right lower bounds for their affected
variable. Naturally, viable dependencies are specified in the
where part of actions whereas observable dependencies are
specified in their hence part where it is verified by the se-
mantic analysis that they actually hold during runtime.

4.3 Semantics of Complex Actions

In order to prove properties of complex actions, their be-
haviour must be characterized in a formally precise manner.
To this end, we develop a notion of runtime traces that for-
malizes the behavior of complex actions during runtime.

Definition 8. P = Q% U {oo} and D = Q* U {oo} denote
the set of time-points and the set of durations. Time-points
and durations can be added up in a canonical manner

+:PxD P, (pd) — (p+d).

The terms are discriminated to emphasise their different
semantics. Durations will be used to describe possible delays
during runtime whereas time-points will refer to the absolute
times, for instance, at which time an action succeeded.

Definition 9. A wvariable assignment maps variables to val-
ues in D or P. In the following, variable assignments are
denoted by sets of variable value pairs as it is known from
substitutions used in model theory [2].

Variable assignments can be naturally applied to compos-
ite syntactical expressions. For v; € V and d; € Q"

T(v1 4 di) = 7(v1) + da
T({’Ul —i—dl,...,vk +dk}) = {T('Ul —i—d1),...,T(Uk—i-dk)}

Definition 10. Given a complex action C' C C, a variable
assignment A : var(C) — P is called a trace of C.

Traces are intended to describe the execution of actions.
To this end, a trace maps variables corresponding to the
initiation, success and failure of sub-actions to actual time-
points. Thereby the value co € P indicates that an action
has not been initiated, did not succeed, and did not fail.

Obviously not every arbitrary trace corresponds to how
the action is actually executed during runtime. Some sub-
actions may, according to the trace, be successful before

they begin, the temporal dependencies of the complex action
may not be satisfied by the trace, etc. To obtain a more
appropriate representation of complex actions, traces need
to incorporate the temporal dependencies between actions
and the execution strategy for actions.

However, in general, it cannot be known in advance how
long it will take to execute an external action and whether
the execution will be successful or not. Therefore these run-
time effects are abstracted away by means of so-called sce-
narios.

Definition 11. Given a complex action C' C C, a variable
assignment A : var(C) — D is called a scenario of C. For
convenience A(v) is also denoted A,.

Each scenario describes one particular series of develop-
ments for the different outcomes of sub-actions and time
delays that can potentially occur during runtime.

Ezxample 3. The scenario § D {7/J_init, 1/ainit, 5/asucc,

oo/afail} describes, e.g., that the action a is initiated 1 ms
after it has been requested and succeeds 5 ms after it has
been initiated.

Definition 12. For a complex action C the preconditions
for the determination of a variable v € var(C) are denoted

preg(v) = {Uz‘ +di | (vi+di<v)€ C}

Informally, the preconditions of a variable f_;, is the set
of lower bounds which must each be exceeded before the
action f can be requested by the event processing system.
Therefore, the time-point when the action is actually initi-
ated depends on the largest of those bounds and the latency
between the request and the initiation which is available
from the considered scenario.

Definition 13. Given a complex action C' C C and a run-
time scenario A. Then the operator Th,c maps variable
assignments to variable assignments with

Ta,c(o) = { (max {U(prec(v))} + Av)/v

Yo' € var(prec(v)) v € dom(a)}

Hereby max) = 0 € P and thus the operator Ta ¢ is
actually a mapping between (incomplete) traces.

T formalizes on step of the feedback loop described in
Sec. 3.3. It takes as an argument an incomplete trace that
contains the values of variables that have already been ob-
served and adds values for the initiation, success and failure
of actions in response to the given (observed) values in com-
pliance with the scenario A. To obtain a complete trace,
the operator is applied multiple times to incrementally de-
termine values for all variables of the action C.

Note that the operator T' makes a transition from merely
syntactic formulas on the right to actual time-points that
are assigned to v on the left.

Definition 14. The powers of T are inductively defined by
TO — @7 Tn+1 _ T(Tn)
and the least fixpoint of T is denoted T.

As the operator T' is monotonic [2], it has a unique least
fixpoint. Moreover, the fixpoint is reached after a finite num-
ber of iterations. For a formal proof refer to the appendix
in the electronic version of this paper [17].

Basically, the fixpoint T describes, based on one particular
scenario, how the action will be executed by the system if
the given delays are actually observed during runtime.

Ezxample 4. A complete iteration of T is given in the fol-
lowing example. Note that not only the initiation of ac-
tions, but also the time-point of their success and failure
are determined by T according to the scenario A. For C =

{asuce +5 < it} and with T = Ta ¢,

T = { A /Lins}

T? =T U{A L+ Doy / Ginic }

T° = T?U{A Lt Do+ Doee / Gsuce |
U {AJ_init—FAa,mit—i-Aafaﬂ/a,faﬂ}

T = TP U{A Lt Bt Dot 5+ Dby / binit }

T°=T'U{A Lt Dot Aaect 5+ Dbyt Doy / boec }
U{A Lt At Dt 5+ Db+ Aoy /bra }

T°=T7°=T

With the concrete scenario ¢ from Ex. 3 and T' = T ¢,

T(Linis) =7, T(ainit) =8, T(asucc) =13

which means that the complex action is initiated at time 7,
a is initiated at time 8 and succeeds at time 13. However,
by design, the fixpoint T may not contain values for all
variables of the complex action.

Eﬂlmple 5. For C = {asucc + 5 S binit7 bsucc + 3 S ainit}
the event processing system will neither initiate a nor b dur-
ing runtime as both actions depend on each other. Accord-
ingly, runtime traces of C' must provide co as a time-point
of ainit and binit. However, the fixpoint of T = Ta,c, ex-
presses this by containing neither of both variables instead
of mapping the variables to oo.

TO = wa Tl = {ALiI,it/J-init} 5 T2 = T1 =T

This observation leads to the following definition of run-
time traces, which informally maps missing values to co.

Definition 15. Suppose C C C is a complex action. A
trace of C is called runtime trace if there is a scenario A
such that for T'= T ¢, holds

7—|dom(T) =T

Vo & dom(T) :
and furthermore for all f,;, € dom(T) holds

T(finit) 7& 00 = (T(fsu(:c) 7é 0 T(ffail) = OO) (*)

Runtime traces formally describe how complex actions are
executed during runtime based on a scenario that describes
the time delays that occur and determines the results of
actions. They are used in the following to formally analyse
the runtime properties of complex actions.

The condition (x) ensures that actions eventually either
succeed or fail if they are initiated. This fundamental as-
sumption seems very natural for actions in general and in

7(v) = 00

particular for emergency management purposes. It is thus
directly incorporated into the definition of runtime traces.
Note that less generic properties of specific actions can be
specified in the domain knowledge associated with their sche-
ma when necessary.

5. SEMANTIC ANALYSIS OF ACTIONS
5.1 Preliminaries

Definition 16. A disjunctive temporal problem (DTP) [29]
is a conjunction of disjunctive constraints A, \/j cij, where
the c;; have the form | < v —v' < u, v and v’ represent
variables that designate time-points, and I, u € Q.

Checking the consistency of a DTP is known to be NP-
hard and there are extensions with the domain Q U {co}
and with support of strict inequalities [29, 5].

In the following, the execution of complex actions that
is formalized by runtime traces is expressed by means of
solutions to disjunctive temporal problems. In this way, the
entailment of assertions can be reduced to the inconsistency
of a DTP which can be verified by established approaches.

Definition 17. A dependency graph is a directed weighted
graph given by a triple G = (V, E, w) of the set of vertices
V CV, the set of edges E C V x V and the weight function
w : E — Q. Furthermore, the notation v 2L, v indicates
that there is a path p from v to v’ in the graph.

A complex action C' is represented by means of a depen-
dency graph G¢ by adding an edge v — v’ labeled —d to
the graph for each (v' +d < v) € C. Note that a similar
representation is used to solve simple temporal problems, a
variation of DTPs, in polynomial time [12].

The graph representation of a complex action is used in
the following to conveniently verify fairness properties of the
action by checking properties of the graph.

Definition 18. The canonical domain knowledge of a com-
plex action C is a DTP that corresponds to (x) from Def. 15.

With v = oo abbreviating Linit + 00 § v it is denoted
CD = /\ <<f:§ucc =00 A ffail < f;;ucc) \
finit €var(C) . . .
(f;‘ail =00 A f;ucc < ffail) N f;nit = OO)

5.2 Formal Properties of Complex Actions

For space limitations we just give the intuition behind the
proofs here and refer the interested reader to the appendix
in the extended electronic version of this paper [17].

Definition 19. A complex action C' C C is fair iff for all

finie € var(C) there is a runtime trace 7 with 7(f,,;,) 7# oo.

The preceding definition formalizes the notion of fairness
from Sec. 2.4. Accordingly an action is fair, if for each of
its sub-actions there is at least one scenario in which the
sub-action is actually executed. That is, the complex action
contains no “dead code” which is never executed during run-
time.

THEOREM 1. A complex action C is fair iff Go, is acyclic
and there is no node v and no action f,;, such that v~ f. ..
and v~ fp; are paths in G, .

Algorithm 1: Viability, Fairness, and Entailment Test

input :a complex action C with assertions H and
domain knowledge D
if C\ (V. xQ" xV)#0then /x ensure viability #/
L fail C cannot be reliably executed;

(V. E,w) < (0,0,0);
foreach (v+d <v') € C4 do
V VUi, v}
E«+ EU{(®,v)}
w4+ wU{(v,v) = —d};

/* initialize graph structure */

/* populate graph */

if (V,E,w) is cyclic then
L fail C is not fair;
if v~ fco and v~ fo. are paths in (V, E,w) then
L fail C is not fair; /* ensure entailment x*/
if Ca ANCp AN D N —H 1is inconsistent then
L fail the assertions H are not necessarily satisfied;

/* ensure fairness */

PROOF (SKETCHED). Paths in the graph correspond to
temporal dependencies and because of (%) actions either suc-
ceed or fail. Accordingly, if there are cyclic dependencies in
the graph or the execution of an action depends on the suc-
cess and failure of one of its predecessors, the preconditions
of the actions cannot be met and thus it is never executed
and the complex action is not fair. [J

The following theorem establishes a relationship between
runtime traces which formalize the execution of actions and
solutions of disjunctive temporal problems which are derived
from the temporal dependencies of the complex action.

THEOREM 2. A trace T of a fair complex action C is a
runtime trace iff the variable free formula 7(Ca A Cp) holds.

PROOF (SKETCHED). By definition of 7', the values in T
satisfy the constraints from C4. Moreover, the definition of
runtime traces excludes solutions of C4 that do not satisfy
(%) which is formalized by Cp. Accordingly, runtime traces
satisfy C4ACp and conversely from every solution of C4AC'p
an appropriate scenario can be constructed that specifies a
runtime trace. []

Definition 20. The assertions H of a complex action C
with domain knowledge D are entailed iff for all runtime
traces 7 of C' that conform to D the variable free formula
7(H) holds.

Accordingly, assertions are entailed, if they hold for every
runtime trace of the corresponding actions, that is, if they
hold for every way an action can be executed during runtime.

THEOREM 3. The assertions H of a fair complex action
C with the domain knowledge D are entailed iff the disjunc-
tive temporal problem Ca A Cp N D A —H is inconsistent.

PROOF (SKETCHED). Runtime traces correspond to the
solutions of Ca A Cp. However, not all runtime traces obey
the restrictions specified by the domain knowledge. Accord-
ingly, runtime traces that conform to the domain knowledge
must satisfy D and thus they are solutions of C4 A C'p A D.

To verify that all those traces imply the assertions H, it
suffices to show that (Ca A Cp A D) = H is valid and thus
that Ca A Cp A D A —H is inconsistent. [

These established connections are exploited by Algorithm
1 to check the fairness of actions and entailment of assertions
by means of basic graph properties and the inconsistency of
disjunctive temporal problems which can be verified in finite
time by approaches like [5]. The comlexity of Algorithm 1
is dominated by the complexity of checking the consistency
of DTPs which is known to be NP-hard [29].

6. COMPLEX ACTIONS IN CEP SYSTEMS

To obtain a generic approach that is applicable to a wide
range of event processing systems, we represent the execu-
tion of actions by means of events and translate complex
actions and reactive rules to regular complex event queries.
In this way, we obtain the functionality of complex actions
by actually evaluating a set of conventional event queries.

For the sake of simplicity, we assume that complex ac-
tions have a proper name and anonymous complex actions
have been eliminated in a preprocessing step by introducing
complex action rules for them.

6.1 Modelling Actions by Means of Events

Each action that is conceptually available in the language
is mapped to four special types of events representing the
request, initiation, success, and failure of the action. For
instance, the open-fire-dampers action is represented by the
following four types of events.

open-fire-dampers$request

open-fire-dampers$succeeded

open-fire-dampers$initiated

open-fire-dampers$failed

The payload of these events contains the parameters of
the action and additional internal information, such as, a
unique identifier to discriminate different instances of the
same action and, if applicable, a reference to the identifier
of the composite action that caused its execution. Moreover,
the time-points associated with actions correspond to the
occurrence times of the respective events.

6.2 Translation of Reactive Rules

Conceptually, reactive rules trigger the execution of ac-
tions. They are thus translated to deductive rules that de-
rive request events which are distributed to the according
actuators where they trigger the actual execution of the ac-
tion. The reactive rule from Sec. 3.2 is thus converted to

DETECT

adapt-ventilation$request{ payload{var Area} }
ON

event e: fire{ var Area }
END

Recall that the identifier and the time of events are deter-
mined by the system. Accordingly, the identifier of the re-
quest event designates the identifier of the respective action.

6.3 Translation of Complex Actions

In the following, the basic ideas of translating complex
actions will be introduced based on the complex actions
adapt-ventilation from Sec. 3.2.

Temporal Dependencies. Temporal dependencies referring
to certain time-points of actions occur for instance in the
where part of actions and of event queries contained in the
succeeds on part. Therefore, the contained references to ac-
tions need to be converted to references to events.

To this end, queries of events related to the correspond-
ing actions are introduced and the references to time-points

of actions are subsequently converted into references to the
time of the introduced events. For instance, the query

event e: smoke{ area{var Area}, amount{var C} }

where { C < 0.2, end(e)-init(a) < 30 sec }

taken from the succeeds on part of the adapt-ventilation ac-
tion contains init(a) which refers to the initiation of the
open-fire-dampers action. The query is thus converted to
and{

event bot$init: adapt-ventilation$initiated{ id{var I} }

event a$init: open-fire-dampers$initiated{ ref{var I} }

event e: smoke{ area{var Area}, amount{var C} }
} where { C < 0.2, end(e)-end(a$init) < 30 sec }

Note that the join between the identifier of the complex
action adapt-ventilation and the identifier referred by the ini-
tiation event of the open-fire-dampers action is mandatory to
distinguish open-fire-dampers actions related to this instance
of the complex action from those that just happen to be ini-
tiated at the same time and relate to other action instances
or other complex actions.

In a similar manner, the preconditions { Linit -i—O, asucc‘i’O}
of the activate-ventilators actions from the same complex
action are translated to the following query.
and{

event bot$init: adapt-ventilation$initiated{ id{var I} },

event a$succ: open-fire-dampers$succeeded{ ref{var I} }
} where { end(bot$init) + Oms <= now(),

end(a$succ) + Oms <= now() }

It matches whenever the activate-ventilators can be ini-
tiated without violating any temporal dependencies of the
complex action, that is, when all lower bounds that con-
strain the initiation of activate-ventilators are exceeded.

Action Composition. The semantics of composite actions
specify that each sub-action is executed as soon as the lower
bounds for their initiation are exceeded. To obtain the same
behaviour by means of deductive rules, all sub-actions of a
composite action are separated into independent rules, each
of them responsible for the execution of one particular ac-
tion in accordance with the temporal dependencies of the
complex action.

To this end, the event query that monitors the prelimi-
naries of each sub-action is determined as discussed above.
These queries are subsequently included in the body of declar-
ative rules that derive the appropriate request events. Note
that the event query corresponding to the preliminaries of a
sub-action always contains a query for the initiation of the
complex action and thus the parameters required for the ex-
ecution of sub-actions can be obtained from the payload of
the queried initiated event.

DETECT
activate-ventilators$request{ ref{var I}, payload{var A} }
ON
and{

event bot$init:

adapt-ventilation$initiated{ id{var I}, payload{var A} }

event a$succ: open-fire-dampers$succeeded{ ref{var I} }
} where { end(bot$init) + Oms <= now(),

end(a$succ) + Oms <= now() }

END

Accordingly, the execution of the activate-ventilators ac-
tion is handled by the given deductive rule. Note that
the query for adapt-ventilation$initiated events has been
extended to extract the area that is passed to the action
activate-ventilators as a parameter.

Execution Results. Translating the execution result spec-
ified in the succeeds on part of a complex action is straight
forward. References to sub-actions in the where part of the
query are rewritten as it has been described above and a de-
ductive rule with the obtained query is created that derives
the corresponding adapt-ventilation$succeeded event.

To obtain the query for the failed event, the same proce-
dure is applied to the negation of the succeeds on query. To
this end, the query in the succeeds on part needs to be timely
bounded with respect to at least one time-point of an action.
Due to space limitations, the simple but rather longish rules
are only contained in the appendix of [17].

7. EXTENSIONS

Conditional Actions. Temporal dependencies of complex
actions specify the execution order of actions relative to their
initiation and success. However, in some situations it may be
more suitable to specify the execution of actions in relation
to the current state of the infrastructure, static data, or
the occurrence of certain events instead of referring to the
initiation and success of preceding actions.

This functionality can be added to Dura by means of con-
ditional actions that block the execution of actions until
a given event query matches. Recall, that in Dura event
queries integrate queries for static and dynamic data.

compound{
action a: request-operator-confirmation{ ... }
IF event e: request-confirmed{ ref{id(action a)} }
where { end(e)-succ(a) <= 20 sec }
THEN action b:
}

The former action requests a confirmation from the opera-
tor and only executes the action b if the request is confirmed
within 20 seconds. The translation of conditional actions
corresponds to the translation of the execution result of ac-
tions. But instead of deriving succeeded and failed events,
the corresponding request events are derived.

Disjunctive Temporal Dependencies. To obtain a deter-
ministic specification of actions, the where part of complex
actions must not contain disjunctive dependencies, such as

or{ succ(a) <= init(b), succ(a) <= init(c) }

However, if all temporal dependencies in a disjunction re-
fer to the initiation of the same action, they correspond to
a join of different execution branches and the execution of
the complex action remains deterministic.

or{ succ(a) <= init(c), fail(b) <= init(c) }

The translation of temporal dependencies to event queries
also applies for this kind of disjunctive constraints, it just
needs to be slightly extended to ensure that the action is
only initiated once, e.g., if in this example a is successful
and b fails. The proposed semantic analysis can be reused
by applying it to every disjunct of the disjunctive normal
form of the corresponding dependencies. Accordingly, the
analysis rejects the complete action if it rejects a single dis-
junct, as the dependencies must be met in any case.

8. RELATED WORK

Many approaches combining event detection and reaction
rules have been proposed and studied by the research com-
munity. In fact, many of them are capable of specifying
reactions to events in one way or another.

Complex Event Processing Most event processing sys-
tems support some kind of reactivity [19]. However, reac-
tions are often dedicated to proprietary systems by means
of remote procedure calls or some imperative host languages
without a notion of complex actions. Notable exceptions
are works from Paschke et. al. [23] and Behrends et. al. [3].
Although the proposed languages are capable of specifying
composite workflows they still lack a language level support
of complex actions that is tailored to physical actions and
conveniently integrates complex events. Furthermore they
do not provide a semantic analysis that verifies, e.g., fairness
properties of actions.

Active Databases Active databases [1, 15, 14] realise
automatic reactions in response to events by means of event-
condition-action (ECA) rules. ECA rules are well estab-
lished and have been intensively studied [24], but due to
their origin in databases, events and actions are often re-
lated to (composite) updates of the internal knowledge base
or trigger basic remote procedure calls. The authors of [8] ar-
gue that it is possible to realize workflows by means of ECA
rules, but identify substantial shortcomings of hand coded
rules that mimic imperative constructs like sequences.

Logic Based Formalisms The event calculus [27, 21]
and the situation calculus [20] provide logic based frame-
works which are commonly used for abductive planning and
reasoning about the implications of actions based on a for-
mal description of actions and their effects. Many extensions
have been proposed that support composite actions and the
specification of workflows [26, 11]. However, the focus of
these formal and thus rather minimalistic formalisms is on
reasoning about actions given a formal specification of their
effects in contrast to high-level actions intended for emer-
gency managers that are executed as events occur.

Temporal Constraint Satisfaction Temporal constraint
satisfaction problems [12, 28] are commonly applied in prob-
lems related to planing and scheduling. In particular ap-
proaches that analyse the presence of dynamic plans that
adhere to given constraints and cover events with contingent
durations [31, 29] and disjunctions of events [30] are related
to the semantic analysis of complex actions. However, our
analysis focuses on the validation of fairness properties of ac-
tions that can fail during runtime, whereas those approaches
try to determine dynamic plans for the execution of actions.

9. CONCLUSIONS

This work introduces complex actions with a clear sep-
aration of orthogonal dimensions and expressive temporal
dependencies that naturally integrate complex events and
actions in a high-level language. Thereby the specific par-
ticularities of physical actions as they are desirable, for in-
stance, for emergency management have been considered.
Moreover, we demonstrated how to realize complex actions
by means of common complex event queries.

To compensate for inconsistent specifications of actions
that are possible due to the desirable flexibility of our ap-
proach we have elaborated a semantic analysis that is tai-
lored to physical actions and that scales with the in practice
often varying degree of available knowledge on actions.

The proposed approach has been applied to implement
the use cases of an emergency management related project
[18]. And although this has been our main motivation for
this work, our findings generalize to other applications that
rely on external or physical actions.

10.

ACKNOWLEDGMENTS

We would like to thank N. Eisinger and S. Brodt for valu-
able suggestions and discussions on our work. This work has
been partly founded by the European Commission within
the project “EMILI— Emergency Management in Large In-
frastructures” under grant agreement number 242438.

11.
1]

2]

[7]

REFERENCES

R. Adaikkalavan and S. Chakravarthy. SnoopIB:
interval-based event specification and detection for
active databases. Data and Knowledge Engineering,
59(1):139-165, 2006.

K. R. Apt, H. A. Blair, and A. Walker. Towards a
Theory of Declarative Knowledge. In Foundations of
deductive databases and logic programming, pages
89-148. Morgan Kaufmann, 1988.

E. Behrends, O. Fritzen, W. May, and F. Schenk.
Combining ECA Rules with Process Algebras for the
Semantic Web. In Proc. Int. Conf. Rules and Rule
Markup Languages for the Semantic Web, pages 29-38.
IEEE, 2006.

M. Bettelini, S. Rigert, and N. Seifert. Optimum
Emergency Management Through Physical
Simulation— Findings from the EMILI Research
Project. In Proc. World Tunnel Congress, 2013.

S. Brodt and F. Bry. Temporal Stream Algebra.
Technical report, University of Munich, 2012.
http://www.pms.ifi.lmu.de/publications/.

F. Bry and M. Eckert. Rule-based composite event
queries: the language XChangeEQ and its semantics.
In Proc. Int. Conf. Web Reasoning and Rule Systems,
pages 16-30. Springer, 2007.

F. Bry and M. Eckert. Rules for Making Sense of
Events: Design Issues for High-Level Event Query and
Reasoning Languages. In Al Meets Business Rules and
Process Management, Proc. AAAI Spring Symposium.
AAAT, 2008.

F. Bry, M. Eckert, P.-L. Patranjan, and I. Romanenko.
Realizing Business Processes with ECA Rules:
Benefits, Challenges, Limits. In Proc. Int. Workshop
on Principles and Practice of Semantic Web, pages
48-62. Springer, 2006.

F. Bry and S. Schaffert. Towards a declarative query
and transformation language for XML and
semistructured data: Simulation unification. Proc. Int.
Conf. Logic Programming, 2401:255-270, 2002.

D. Chappell. Enterprise Service Bus. O’Reilly, 2004.
N. K. Cicekli and Y. Yildirim. Formalizing Workflows
Using the Event Calculus. In Proc. Int. Conf.
Database and Expert Systems Applications, pages
222-231. Springer, 2000.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artificial Intelligence, 49(1-3):61-95, 1991.
K. Fridolf. Fire evacuation in underground
transportation systems: a review of accidents and
empirical research. Technical report, Lund University,
2010.

S. Gatziu and K. R. Dittrich. Detecting composite
events in active database systems using Petri nets. In
Proc. Int. Workshop on Research Issues in Data
Engineering, pages 2-9. IEEE, 1994.

(15]

(22]

23]

N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Composite Event Specification in Active Databases:
Model and Implementation. In Proc. Int. Conf. Very
Large Data Bases, pages 327-338. Morgan Kaufmann,
1992.

S. Hausmann, S. Brodt, and F. Bry. Dura: Concepts
and Examples. Technical report, University of Munich,
2011.
http://www.emili-project.eu/index.php?id=481.
S. Hausmann and F. Bry. Towards Complex Actions
for Complex Event Processing (Extended Version with
Appendix). Technical report, University of Munich,
2013. http://www.pms.ifi.lmu.de/publications/.
R. Llopis, X. Fust, J. a. Gonzélez, J. L. Marin,

N. Seifert, M. Bettelini, S. Rigert, V. Janev,

P. Kroner, and D. Siller. Evaluation of our Simulation
and Training Environment SITE and of our Use Case
Implementations. Technical report, 2012.
http://www.emili-project.eu/index.php?id=544.
D. Luckham. The Power of Events: An Introduction
to Complex Fvent Processing in Distributed Enterprise
Systems. Addison Wesley, 2001.

J. McCarthy and P. J. Hayes. Some philosophical
problems from the standpoint of artificial intelligence.
Machine Intelligence, 4:463-502, 1969.

R. Miller and M. Shanahan. Some Alternative
Formulations of the Event Calculus. In Computational
Logic: Logic Programming and Beyond, pages 452—490.
Springer, 2002.

Fire Investigation Summary Diisseldorf. Technical
report, National Fire Protection Association, 1998.

A. Paschke, A. Kozlenkov, and H. Boley. A
Homogeneous Reaction Rule Language for Complex
Event Processing. Proc. Int. Workshop Event Driven
Architecture and Event Processing Systems, 2007.

N. W. Paton and O. Diaz. Active database systems.
ACM Computing Surveys, 31(1):63-103, 1999.

N. Seifert, M. Bettelini, and S. Rigert. Concrete Use
Case Models (Main Report). Technical report, 2011.
http://www.emili-project.eu/index.php?id=481.
M. Shanahan. Event Calculus Planning Revisited. In
Proc. European Conf. Planning, pages 390—402.
Springer, 1997.

M. Shanahan. The Event Calculus Explained. In
Artificial Intelligence Today, volume 1600 of LNCS,
pages 409-430. Springer, 1999.

K. Stergiou and M. Koubarakis. Backtracking
algorithms for disjunctions of temporal constraints.
Artificial Intelligence, 120(1):81-117, 2000.

I. Tsamardinos, T. Vidal, and M. E. Pollack. CTP: A
New Constraint-Based Formalism for Conditional,
Temporal Planning. Constraints, 8(4):365-388, 2003.
K. B. Venable and N. Yorke-Smith. Disjunctive
temporal planning with uncertainty. In Proc. Int.
Joint Conf. Artificial Intelligence, pages 1721-1722.
Morgan Kaufmann, 2005.

T. Vidal and H. Fragier. Handling contingency in
temporal constraint networks: from consistency to
controllabilities. Journal of Experimental and
Theoretical Artificial Intelligence, 11(1):23-45, 1999.

http://www.pms.ifi.lmu.de/publications/
http://www.emili-project.eu/index.php?id=481
http://www.pms.ifi.lmu.de/publications/
http://www.emili-project.eu/index.php?id=544
http://www.emili-project.eu/index.php?id=481

	Introduction
	Foundations of Complex Actions
	Times Associated with Actions
	Indirect Feedback on Physical Actions
	Dimensions of Complex Actions
	Semantic Analysis for Actions

	Actions in a High-Level Language
	Event Processing with Dura in a Nutshell
	Complex Actions for Dura
	Satisfying Temporal Dependencies

	Semantics of Complex Actions
	Formalization of Complex Actions
	Formalizing Viable Temporal Dependencies
	Semantics of Complex Actions

	Semantic Analysis of Actions
	Preliminaries
	Formal Properties of Complex Actions

	Complex Actions in CEP Systems
	Modelling Actions by Means of Events
	Translation of Reactive Rules
	Translation of Complex Actions

	Extensions
	Related Work
	Conclusions
	Acknowledgments
	References

