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Abstract

Java2OWL is a Java software library for synchronising Java class hierarchies with OWL
concept hierarchies. With a few extra annotations in Java class files, the Java2OWL library
can automatically map Java class hierarchies to OWL ontologies. The instances of these Java
classes are automatically mapped to OWL individuals and vice versa. OWL reasoners can be
used as query processors to retrieve instances of OWL concepts, and these OWL individuals are
mapped to corresponding instances of the Java classes. Changes of the Java object’s attributes
are automatically mapped to changes of the corresponding attributes of the OWL individuals,
thus keeping Java and OWL synchronised. With minimal programming overhead the library
allows one to combine the power of programming (in Java) with the expressivity and the
reasoning power of OWL. This paper introduces the main ideas and techniques. Examples in
the appendix illustrate how the system operates. The Java2OWL Application Interface (API)
can be found in the Javadoc generated documentation.
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1 Motivation

Object oriented programming languages like Java combine the procedural aspects of programming
with some declarative-logical features contained in the Java class hierarchy and the instance-
class relationship. Whereas the procedural aspects are as strong as one can expect from modern
programming languages, the logical aspects are rather restricted. In particular
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• the ontology, i.e. the logical structure, implicitly contained in the class hierarchy of Java
programs is only accessible from within the program and can not be exported to other
systems;

• the instance-class relationship is fixed at the creation time of an object. Objects can not live
independently of classes and can not change their membership relation to classes;

• the class hierarchy in Java is a tree; no multiple inheritance is possible;

• there is no logical reasoning available. This means in particular that fine grained selection of
objects is difficult. For example, queries like “select all students in the Bachelor programme
who passed the exam X last year and who live close to the university” can not be evaluated
with the Java built-in mechanisms.

Nevertheless, these are desirable features, which is indicated by the rising popularity of modelling
languages like UML, and in particular by the more and more widespread use of the logic-based
Ontology Working Language (OWL1). OWL is the W3C-standard for Description Logics [1]. Its
main features are

• one can define ontologies independently of any particular application or programming lan-
guage;

• the OWL-language is very expressive and more features are being added as one learns how
to extend the logical calculus for them;

• since it is logic based, various forms of reasoning can be performed;

• the class hierarchy can be a DAG, thus, multiple inheritance is allowed;

• individuals can live independently of classes. Their membership relation with classes is
determined by logical reasoning, and it can change when new information about an individual
becomes available;

• there are expressive languages which can be used to pose complex queries to an ontology.
They are evaluated by logic reasoners.

The disadvantage of OWL is the lack of procedural features; OWL is no programming language.
For an OWL ontology together with an A-Box (a set of individuals) one can draw all possible
inferences, i.e. compute the class hierarchy and the membership relation of the individuals with
the classes. After this, however, the ontology becomes a static object which can do nothing by
itself.

An OWL ontology just living in a file system is not of much use. Therefore application interfaces
(API) have been developed which allow programs to load an ontology, access its data, manipulate
the ontology, and save it back to files, all within ordinary programs. The most recent one is the
Java OWL API2 for OWL-version 2 [5], developed as part of the CO-ODE project3 and the TONES
project4 in the Manchester University5. It allows one to load, access and manipulate the structure
of OWL ontologies and to integrate them with OWL reasoners.

Java programs using the OWL API for loading ontologies have two class hierarchies in parallel,
the Java class hierarchy and the OWL class hierarchy. For applications where these hierarchies
are sufficiently different, this is no problem. If, however, the class hierarchies overlap, one gets a
considerable synchronisation problem. Overlapping class hierarchies are of interest if one wants to
add procedural features to the classes. Since OWL has no procedural features, the only choice is
to define corresponding Java classes with the corresponding methods.

1OWL: http://www.w3.org/TR/owl2-overview/
2OWL API: http://owlapi.sourceforge.net/
3CO-ODE project: http://www.co-ode.org/
4TONES project: http://www.tonesproject.org/
5Manchester University: http://owl.cs.manchester.ac.uk/
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As an illustrating example, consider the partial modelling of university structures. There are
people, students, tutors, lecturers, professors, secretaries, technical staff etc. There are programmes
of study, Bachelor, Master and PhD programmes. There are lectures, seminars, excursions etc.
There are scientific areas, natural sciences, humanities, social sciences etc. All this can be modelled
in OWL, but there is no chance to add procedural features to these OWL classes. This can only be
done in corresponding Java classes. Combining Java classes and their methods with corresponding
OWL classes as the basis of OWL-reasoning, however, may turn out to be a very useful thing. The
Java methods do the computation, and the OWL classes can in particular be used to select sets
of individuals by determining the instances of OWL concept expressions. This is very analogous
to querying databases. The difference is that OWL concept expressions are more expressive, and
they do not depend on a particular database scheme.

The Java2OWL library presented in this paper targets the synchronised coexistence of Java
classes and OWL classes. It makes it possible to exploit the strengths of both systems without too
much programming overhead.

The next chapter illustrates a typical workflow when developing and running an application
which uses the Java2OWL library. Since Java2OWL brings together the Java world with the
OWL world, including Description Logics and the OWL API, there is a sometimes quite confusing
usage of notions. In order to reduce the confusion at least a bit and make the paper better
comprehensible, Section 3 gives a short overview over the most important notions and their usage
in the different systems. A more general introduction into the different parts of the library and the
ideas behind them is given in Section 6. Technical details are presented in Section 7. This section
should give the reader a more precise idea how the system operates. For using it in a concrete
application, the Javadoc generated documentation is recommended. A few performance tests are
documented in Section 9. Finally, the Appendix addresses aspects which have not directly to do
with the main operations of the Java2OWL system, but which are necessary to know for writing
concrete applications. How to install all the components necessary for the Java2OWL library
is documented in Appendix A. Appendix B gives an overview about the Manchester Syntax for
writing OWL concept expressions. Appendix C presents the mechanism for logging events and
errors in the system. Appendix D gives an overview about the correlations between the Java data
types and the OWL data types. Finally, Appendix E contains some examples which illustrate how
the system works.

The report gives no introduction to Java and OWL. The reader of this report should therefore be
quite familiar with Java and have at least some understanding of the meta-programming facilities
in Java (Java reflection). Some knowledge about OWL and a basic understanding of the OWL
API are also very helpful. Programmers wanting to use the Java2OWL library should of course be
familiar with OWL and the OWL API.

2 A Typical Workflow

A typical workflow in the development and application of Java programs using the Java2OWL
library consists of two major phases:

1. the preparation phase, which consists of the programming and the compilation phase,

2. the Java application phase which starts with the steps a Java application has to perform in
order to work with the Java2OWL library.

2.1 The Preparation Phase

This phase consists of the following steps:

1. Background Ontology: Most applications which want to use ontologies do not start from
scratch, but us already existing ontologies, or develop specialised ontologies for this appli-
cation. Therefore the Java2OWL library assumes the existence of a “background ontology”

4



with predefined classes and properties. This background ontology can be loaded into the
Java2OWL-compiler which then extends it with OWL classes generated from Java classes.

2. Annotating Java Classes: Java classes which are to be mapped to OWL classes must be
annotated in a special way. The class-level annotations control the generation of OWL classes
and the method-level annotations control the generation of the OWL-properties. Typically,
the Java class has getter methods, setter methods, and for collection-valued attributes, adder
and remover methods. The annotations of the getter methods are sufficient to tell the system
how to access and manipulate the Java-attributes and to synchronise them with the OWL-
properties. The details can be found in Section 6.1.

3. Compiling the Extension Ontology: The annotated Java classes are mapped to newly
generated OWL classes which are added to the background ontology. The getter methods
are mapped to OWL-properties, either data properties, mapping objects to data types like
integer, or object properties, mapping objects to other objects.

The so extended background ontology is then saved as “extension ontology”. Of course
one can use the background ontology for different purposes and generate different extension
ontologies. The J2OCompiler is explained in Section 6.2.

4. Extending the Extension Ontology: In some applications it may be necessary to manu-
ally extend the extension ontology, for example by adding special individuals. Therefore one
can manipulate the extension ontology outside the Java2OWL-system in an almost arbitrary
way before it is used in the application program. One should, however, not delete items
from the Java-generated classes. Since OWL provides an include mechanism, it is possible
to extend the extension ontology by just including it into another ontology. This way, the
generated extension ontology itself need not be touched when it is extended further. This
is in particular useful if the Java program is changed and a new version of the extension
ontology is generated. It is not necessary to redo the extension of the extension ontology.

5. Injecting Synchronisation Code into the Java classes: Since Java classes and OWL
classes coexist in the Java2OWL system, their instances also coexist. This means, for each
Java object which is an instance of an annotated Java class, there is a corresponding OWL
individual. This OWL individual should mirror the attributes of the Java object. If the
Java object changes its attributes, the changes should automatically trigger changes of the
attributes of the OWL individual. The code for forwarding the changes of the Java-attributes
to the OWL side must be contained in the setter, adder and remover methods of the Java
class. In order to relieve the Java programmer from writing this “synchronisation code” the
Java2OWL library contains a “Synchroniser” class which automatically injects the “synchro-
nisation code” into the compiled Java classes. This can be done either in a separate step
after the ordinary Java compilation, or it can be done “on the fly” in the class loader. In this
case a Java-agent6 must be loaded when the program is started. Its premain-method adds a
corresponding transformer to the system class loader. For details see Section 6.3.2.

2.2 The Java Application Phase

As soon as all the preparations have been successfully completed, i.e. the Java application with the
annotated classes has been build and the extension ontology is ready to be used, the application
can start. These are the typical steps, the application must do before its main job can start:

1. Setting up the system: This is simply done by creating a J2OManager. The J2OManager
itself creates an J2OOntology manager, a J2OClass manager, a J2OIndividual manager and a
logger for logging important events. It installs a default OWL-reasoner. The OWL-reasoner
may be changed later on.

One can create several J2OManagers, but they are completely independent of each other and
do not interact with each other.

6Java-agent: http://docs.oracle.com/javase/6/docs/api/java/lang/instrument/package-summary.html
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2. Loading the Extension Ontology: The J2OOntology manager must then be asked to
load the extension ontology.

3. Linking the Extension Ontology: In this step the internal data structures are created
which keep track of the correspondences between Java classes and OWL classes.

4. Creating Java-Objects and OWL individuals: The system is now ready to create in-
stances of classes. It is possible to instantiate Java classes and let the Java2OWL-system map
them to OWL individuals. The other direction is also possible. OWL individuals contained
in the A-Box of the extension ontology can be mapped to instances of the corresponding Java
classes.

5. Keeping Java-Objects and OWL individuals synchronised: Changes to the attributes
of instances should only be done by calling setter, adder, and remover methods of the Java-
objects. The injected synchroniser-code automatically forwards the changes to the OWL-
side. The OWL API allows for changing the attributes of OWL individuals directly, but
these changes will then not be mapped to the Java side. Therefore this is not recommended.

6. Reclassification of Instances: OWL is logic based. Therefore OWL reasoners can derive
information which was only implicitly contained in the OWL ontology generated from the
Java side. This derived information can then be mapped back to the Java side. There are
two typical situations where this can occur:

• An object’s class may be changed: Consider a Java class Student with attribute
semester, and a subclass Freshman whose semester is frozen to the value 1. An
instance of the Java class Student whose semester is set to 1 should now become
an instance of Freshman. This is not directly possible in Java. In the Java2OWL-
system, however, the Java-objects are contained in wrapper-objects. Therefore it is
possible to exchange a Java-object inside a wrapper object with another Java object.
In the Student/Freshman-example this would be performed by creating an instance
of Freshman and transferring all non-static fields of the Student-instance to the new
Freshman-instance. The new Freshman-instance then replaces the Student-instance
inside the wrapper object.

• An object’s attributes may be changed: Consider a Java class with a transitive has-Part
attribute. If this is mapped to OWL then an OWL reasoner can derive the transitive
closure of the has-Part relation. Mapped back to Java the has-Part attribute is
automatically filled with the transitive closure of the has-Part relation (see the Example
E.3).

The application program can ask the Java2OWL-system at any time to do this reclassification
of instances whose attributes have been changed.

3 Notions

Java2OWL brings the world of Java programming together with the OWL world. OWL is a stan-
dardised realisation of Description Logics. OWL itself, however, is still an abstract specification.
The concrete technical realisation a programmer has to deal with is the OWL API. Java, OWL,
the OWL API and Description Logics deal with the same or quite similar things, but each one uses
its own lingo with sometimes the same, and sometimes different notions for the same or similar
things. In order to make this report comprehensible, we need to clarify the technical notions.

Class, class expression, concept, concept expression: From a mathematical point of view,
classes, class expressions, concepts, concept expressions all stand for sets of objects. A Java
class specifies the set of instances which can be generated with the constructor methods.
The corresponding notion in the OWL API is OWLClass. An OWLClass, however, can not
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be instantiated in the same way as a Java class. An OWL reasoner can only find out that a
particular individual is an instance of an OWL class.

OWL classes in the OWL API and in OWL form the signature elements of a formal language
for specifying new sets by combining features of other sets, the class expressions (OWL
lingo) or concept expressions (Description Logic lingo). The formal language for writing class
expressions which is used in the OWL API is the Manchester Syntax7 (App. B). It is a user-
friendly compact syntax for OWL 2 ontologies.
An example for a class expression in Manchester Syntax8 is

Person and hasAge some int[>= 65].

It specifies the set of persons older than 64.

In the OWL API there is a parser for class expressions in Manchester syntax. It turns them
into instances of the class OWLClassExpression:

The notion concept is used in Description Logics for what in the OWL API is a OWLClass of
OWLClassExpression.

In this report we shall use the notions class and class expression. If it is necessary to
distinguish between Java and OWL, we write ‘Java class’ or ‘OWL class’.

Objects, instances, individuals: All these name members of the sets named class, class ex-
pression, concept or concept expression. The notion ‘instance’ is used in Java for objects
generated by a constructor of a Java class. Whereas ‘instance’ implicitly expresses the rela-
tion to the class whose constructor created it, the term ‘object’ is used if the relation to the
class is not important. Since there are class hierarchies in Java, an object c generated by a
class A which is a subclass of a class B is also considered as instance of B.

In Description Logics and in OWL one speaks of ‘individuals’. In contrast to Java, where
objects are instances of some class, individuals in Description Logics and OWL exist inde-
pendently of classes. A set of individuals as part of an ontology is sometimes called “A-Box”.

The OWL API distinguishes further between named individuals (OWLNamedIndividual) and
anonymous individuals (OWLAnonymousIndividual). Java2OWL works only with named
individuals when it maps Java objects to OWL.

In this report we shall us ‘object’ and ‘instance’ for Java objects and ‘individual’ for OWL
individuals.

Attributes, instance variables, fields, properties, relations, features, roles, role fillers:
In our context, attributes, instance variables, fields, properties, relations, features, roles, all
stand for functions or binary relations. Partial functions map a given object to at most one
other object. Total functions map a given object to exactly one other object. Binary relations
map a given object to any number of other objects (‘role fillers’ in Description Logic lingo).

In Java one speaks of ‘instance variables’ and ‘class variables’. Instance variables map Java
objects to some value, whereas class variables map classes to some value. The Java reflection
system uses the notion (and class) ‘Field’ for both, instance and class variables. It is good
Java practice not to expose fields outside the class where they are defined, but to access
them via getter and setter methods. Therefore getter and setter methods also can represent
attributes.

In Description Logics ‘Abstract features’ map individuals to other individuals, and ‘concrete
features’ map individuals to some concrete domain (strings, integers etc.) [6]. ‘Abstract
features’ are also called roles. For a binary relation r and an object x, the ‘role fillers’ for x
is the set {y | r(x, y)}.

7Manchester Syntax: http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
8Manchester Syntax: http://www.co-ode.org/resources/reference/manchester syntax/
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In OWL, ‘properties’ is the generic term for both functions and binary relations. The OWL
API distinguishes OWLDataProperty and OWLObjectProperty. Both can be functions or bi-
nary relations. OWLDataProperty map individuals to basic data types. OWLObjectProperty
map individuals to other individuals.

In this report we shall use ‘attribute’ as the generic term for functions and binary relations,
both in Java and in OWL.

The notion ‘property’ is reserved for OWL properties, either data or object properties.

4 Java Class Hierarchy Versus OWL Class Hierarchy

The intrinsic Java ontology which is implicitly contained in the Java class hierarchy is simpler
than the OWL ontology: mono-inheritance causes the Java class hierarchy to be become a tree,
and the constructor mechanism for generating new instances of classes causes Java objects to be
an instance of exactly one Java class. In contrast to this, OWL has multi-inheritance, and OWL
individuals may be instances of several classes. Mapping a Java ontology to an OWL ontology is
therefore not problematic. This part of the Java2OWL library is purely technical.

The Java2OWL library, however has three further features which are more problematic:

• it can map OWL individuals back to Java objects,

• it can attach attributes to Java objects, which are not foreseen in the Java class definition,
and which must therefore be immediately forwarded to the OWL side,

• it can reclassify Java objects when further information becomes available.

If OWL individuals are to be mapped back to Java objects, we have to deal with the problem that
an OWL individual may be an instance of several OWL classes. Therefore one can not just create
an instance of one particular Java class as corresponding Java object. If extra attributes can be
attached at Java objects by forwarding them to the OWL side, this may cause a new situation.
For a Java object o as an instance of the Java class C which corresponds to a unique OWL object
o′ as instance of the OWL class C ′ the OWL instance o′ may suddenly become an instance of other
OWL classes, and therefore there is no longer this unique correspondence between o and o′. The
problem turns up when the Java object is reclassified to incorporate the new information.

The solution to these problems in the Java2OWL library so far is experimental because no real
application where these problems turned up have been tried. The solution is to encapsulate the
correspondences between Java objects and OWL individuals in individual wrappers (see the class
IndividualWrapper 7.5.1). An individual wrapper encapsulates an OWL individual together with
several Java objects. Java programs should therefore not work with Java objects in the usual way,
but with individual wrappers.

The typical example which illustrates the multi-inheritance phenomenon is the OWL class
Amphibious-Vehicle as subclass of Ship and Surface-Vehicle. Since in Java there can not be
a class Amphibious-Vehicle extending Ship and Surface-Vehicle, there is a problem. In Java
one could in principle define either Ship as a class and Surface-Vehicle as an interface, and
then define a class Amphibious-Vehicle extending Ship and implementing Surface-Vehicle,
or the other way round. In this case, however, there can not be instances of Surface-Vehicle,
which might not be a good idea. Therefore when mapping an Amphibious-Vehicle instance from
OWL to Java, Java2OWL creates an individual wrapper containing a Java Ship instance and a
Java Surface-Vehicle instance. It takes care that the common attributes of both Java objects are
pointer-equal.

Even when multi-inheritance is avoided at the OWL side, there can be situations where an OWL
individual must be mapped to several Java objects. As an example consider a Java class Student
and a Java class Teacher which have nothing to do with each other, except that the Teacher class
has an attribute teaches (some students). Both Student and Teacher are mapped to the OWL
ontology. Now suppose, James is an instance of Student, and we add the extra information that
James is not only a student, but teaches another student Tom. This information is not attached
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to the Java object James, but forwarded to the corresponding OWL individual James’. At this
moment, James’ becomes an instance of the OWL class Teacher’. If this information is mapped
back to the Java side, besides the Java object James as instance of the Java class Student, we
need also an instance, say James-Teacher, of the Java class Teacher. Both Java objects can be
wrapped in an individual wrapper, which at first glance, solves the problem.

There is, however, a further problem. Suppose James does not teach another student Tom,
but James teaches himself, James. The Java instance James-Teacher has an attribute teaches

of type Student. This attribute has to be filled with James, but which James, the Student

instance James or the Teacher instance James-Teacher? In this case it is clear by the type of the
teaches attribute, that the Student instance James is the only Java object which can be put into
the teaches attribute. In other examples, however, there may be several choices. The current
implementation is such that it takes the first one whose Java class fits the class of the attribute.
Only practical applications can show what is really needed in these situations.

5 Java Data Types Versus OWL Properties

Java objects have attributes (instance variables), and these attributes are typed. In this section it
is explained which attribute types are mapped in which way to OWL properties.

OWL distinguishes two kinds of properties:

OWLDataProperty: these describe basic datatype-valued attributes of individuals. OWL has a
number of basic data types built-in, for example, integer, float, double, etc., but also strings.
Examples could be a string-valued name-attribute, or an integer-valued age-attribute.

OWLObjectProperty: these describe relations between OWL individuals. Examples are the
hasPart relation between physical objects, or the hasParent relation between persons.

OWL properties can be functional, i.e. they map an OWL individual to a single value, or relational:
they map an OWL individual to several values.

Depending on the type of the Java attribute, the following cases are distinguished:

Data Types: This case covers attributes which are primitive, i.e. boolean, byte, short, int, long,
float, double, or of the corresponding wrapper types, or of type String. They are mapped to
functional OWLDataProperties.

Collection Data Types: These types are either arrays or collections of Data types. Examples
are String[] or Set<Integer>. Attributes of these types are mapped to relational OWL-
DataProperties.

Object Types: Attributes whose type is a Java2OWL-annotated class are mapped to functional
OWLObjectProperties.

Collections Object types: Examples may be Person[] or ArrayList<Person> where Person is
a Java2OWL annotated class. These attributes are mapped to relational OWLObjectProp-
erties.

Map Data Types: Types like HashMap<String,Integer> are treated in a special way. For each
key parameter in such a map a new functional OWLDataProperty is created, which maps the
individual to the corresponding value part. The key class in a Map<Key,Value> can be any
class whose instances can be turned into a unique string. Together with the attribute name,
this string determines the OWLDataProperty name.

The following example explains the idea:
Consider a class with an attribute HashMap<Locale,String> explanations. For a given
object it contains explanation strings for different languages, and the languages are deter-
mined by the Locale. Suppose the explanations contain a German string for the Locale ‘de’
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and an English string for the Locale ‘en’. The whole map would be mapped to the two func-
tional OWLDataProperties explanations de with the German string and explanations en

with the English string.

Map Collection Data Types: These are types like HashMap<Locale,String[]> or
HashMap<Locale,Set<String>>. They are treated in a similar way as above, but the keys
of the maps are mapped to relational OWLDataProperties.

Map Object Types: An example could be an attribute HashMap<Locale,Person> language-expert

which maps a Locale to a Person, where Person is a Java2OWL annotated class. In this case
each key is mapped a functional OWLObjectProperty.

Map Collection Object Types: For this case the example could be an attribute
HashMap<Locale,Person[]> language-experts which maps Locales to arrays of Persons.
Each key is now mapped to a relational OWLObjectProperty.

5.1 Accessor Groups

It is good Java practice to keep the instance variables private and to access them via special
accessor methods, typically getter and setter methods. Therefore the information the Java2OWL
system needs about the attributes to be mapped to OWL is not taken from the instance variables
themselves, but from the corresponding getter method. There must be a public getter method
whose return type determines the way the attribute is mapped to OWL.

In the rest of the paper, we therefore do not consider Java instance variables any more, but the
corresponding getter methods!

If the return type of the getter method is not primitive, there are usually a number of fur-
ther accessor methods which can manipulate the attributes. Some of them are required by the
application, some of them are necessary for Java2OWL, in particular if OWL individuals are to be
mapped to Java objects.

We distinguish again the following cases which correspond to the above classification of the
attribute types.

Data Types and Object Types: There may be several setter methods. All of them must accept
the value to be set as the first argument. If OWL individuals are to be mapped to Java objects,
there must be one setter method with exactly one argument.

As an example, consider an attribute String name, with a getter method
String getName(){return name} and two setter methods void setName(String name){...}
and void setName(String name, boolean log){...}. The first setter method is required
if OWL individuals are to be mapped to Java objects.

Collection Data and Object Types: The following accessor methods make sense:

setter methods for assigning the whole collection at once.

adder methods for adding a single item to the collection.

remover methods for removing a single item.

a clearer method for clearing the whole collection.

The setter, adder and remover methods should take the object to be set, added or removed
as first argument. If OWL individuals are to be mapped to Java objects, there must be an
adder method with exactly one argument.

Map Data and Object Types: like HashMap<Locale,String>.
The following accessor methods make sense:

setter methods for assigning the whole map at once.

adder methods for adding a single (key-value) pair to the map.
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remover methods for removing a single key.

a clearer method for clearing the whole map.

a getKey method for turning a String into the corresponding key data structure.

If OWL individuals are to be mapped to Java objects, there must be an adder method with
exactly two arguments, the key and the value, and a getKey method. The getKey method,
however, is only necessary if the key type is not a string. In the HashMap<Locale,String>

example, the getKey method is needed to turn a string into a Locale.

Map Collection Data and Object Types: like HashMap<Locale,Set<String>>.
The following accessor methods make sense:

setter methods for assigning the whole map at once.

adder methods for adding a single (key-value) pair to the map.

adder methods for adding a single (key-collection) pair to the map.

remover methods for removing a (key-value) pair from the map.

remover methods with only a key argument for removing the whole collection which cor-
responds to the key from the map.

a clearer method for clearing the whole map.

a getKey method for turning a String into the corresponding key data structure.

If OWL individuals are to be mapped to Java objects, there must be an adder method with
exactly two arguments, the key and the value (not the collection as a whole), and a getKey
method. The getKey method, however, is again only necessary if the key type is not a string.

A getter method together with the corresponding setter, adder, remover, clearer and getKey meth-
ods form an accessor group.

6 Components of the Library

This section gives an overview of the main components of the system. It provides enough informa-
tion that potential users know what the system can do for them. The technical details which are
necessary to actually program with Java2OWL are contained in Section 7, the appendix and the
Javadoc generated documentation.

6.1 Annotated Java classes

The first aspect a programmer who wants to use Java2OWL is confronted with, is the structure of
the Java classes to be mapped to OWL classes. The following restrictions to the structure of the
Java classes are important:

• There must be a constructor method with an empty argument list. It is used when OWL
individuals are mapped to Java objects.

• All attributes which are to be mapped to OWL-attributes must be accessible by getter, setter,
adder and remover methods.

• The mapping of Java classes to OWL classes is controlled by special annotations of class and
method definitions.

Since Java 5 it is possible to annotate Java classes, methods and fields with extra information.
Java comes with a set of built-in annotations like @Override. It is, however, also possible to define
new types of annotations and to access them with the corresponding Java-reflection methods.
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6.1.1 The Class-Level Annotation

A simple example illustrates the annotation of classes:

@J2OWLClass(name = ” Person ” , OWLSuperClasses = ” LivingThing ” )
public class TestPerson { . . . }

The name-attribute Person causes the mapping of the Java class TestPerson to a newly created
OWL class Person. The OWLSuperClasses-attribute LivingThing causes the generated OWL
class Person to become a subclass of the OWL class LivingThing, which must be part of the
background ontology.
The specification of the J2OWLClass annotation is

public @inte r f a c e J2OWLClass {
St r ing name ( ) default ”” ;
S t r ing OWLSuperClasses ( ) default ”” ;
S t r ing Equiva lentClass ( ) default ”” ;
boolean synchron i s e ( ) default true ;
S t r ing naming ( ) default ”getName” ;}

The four attributes have the following meaning:

name specifies the name of the generated OWL class. If the name-attribute is omitted then the
name of the Java class becomes the name of the OWL class.

OWLSuperClasses: This can be a comma-separated list of OWL classes. It causes the generated
OWL class to become a subclass of the given OWL classes. These OWL classes must be
contained in the background ontology. Of course, the Java-side class hierarchy is also mapped
to corresponding OWL-subclass relationships.

EquivalentClass: This is an OWL class expression in Manchester syntax which causes the gen-
erated OWL class to be equivalent to the given class expression. To illustrate the effect of
this construct consider a class Student with attribute Semester and a subclass

@J2OWLClass( Equiva lentClass = ” semester va lue 1” )
public stat ic class Freshman extends Student {

public int getSemester ( ) {return 1 ;}

The specification extends Student together with EquivalentClass = "semester value 1"

cause the corresponding OWL class to be axiomatised:

Freshman = Student and semester value 1,

such that students in the first semester can be classified as Freshman. See Example E.2 for
more details.

synchronise: This triggers the insertion of synchroniser code into the accessor methods. By
default it is set to true, and the synchroniser code is inserted. If synchronisation is not
necessary by some reason one can suppress the insertion of synchroniser code by setting this
flag to false.

naming: OWL individuals can be identified by their International Resource Identifiers (IRI). A
part of the IRI is an ordinary name, which has to be chosen in some way. In order to be able
to associate OWL individuals generated from Java-objects with the original Java-objects, one
can chose the name such that the correlation becomes obvious. To this end one can provide
as naming-attribute the name of a String-valued getter method. The string returned by
this method becomes the fragment-part of the IRI. The default is not the toString-method
because this method usually yields a longer description of an object, and not a short name.
It is recommended to program a String valued getName()-method which returns a short but

12



meaningful and unique identifier for the object. It is important that the identifier is unique
because OWL can not distinguish different items with the same IRI.

If the naming-attribute is the empty string and there is no String-valued getName() method
then a name <OWL classname> <counter> is generated for the new OWL individuals.

6.1.2 The Method Level Annotations

In Section 5.1 it was explained that Java attributes which are to be mapped to OWL are charac-
terised by accessor groups. The main part of an accessor group is a getter method which returns
the attribute value to be mapped to OWL. The other components of an accessor group are setter,
adder, remover, clearer and getKey methods. All of them are specified in a single annotation of
the getter method.

A typical example for an annotated getter method is

@J2OWLProperty(name = ”hasName” , s e t t e r=”setName” )
public St r ing getName ( ) {return name ;}

public void setName ( St r ing name) { this . name = name ;}

The @J2OWLProperty has a larger number of attributes. The specification is:

public @inte r f a c e J2OWLProperty {
St r ing name ( ) default ”” ;
boolean l o c a l ( ) default fa l se ;
S t r ing s e t t e r ( ) default ”” ;
S t r ing adder ( ) default ”” ;
S t r ing remover ( ) default ”” ;
S t r ing c l e a r e r ( ) default ”” ;
S t r ing getKey ( ) default ”” ;

boolean t r a n s i t i v e ( ) default fa l se ;
boolean symmetric ( ) default fa l se ;
boolean asymmetric ( ) default fa l se ;
boolean r e f l e x i v e ( ) default fa l se ;
boolean i r r e f l e x i v e ( ) default fa l se ;
boolean t o t a l ( ) default fa l se ;
int a t l e a s t ( ) default −1;
int atmost ( ) default −1;

boolean addRangeAxiom ( ) default true ;}

The meaning of these attributes is:

name: is the name of the corresponding OWL-property. If the name is the empty string then the
name of the getter method is taken.

local: If this flag is set to true then the generated name is prefixed with the class name. This
means in particular that OWL-properties generated from non-local getter methods can be
used in more than one class. Examples where this makes sense are the hasPart relation or
the hasName-property. If a getter method name G is mapped to some OWL-property name
P then the system first checks whether a property with this name (i.e. its IRI’s fragment
equals P) is already known in the extension ontology or some of the ontologies imported by
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the extension ontology. In this case it takes the previously introduced property. Only if no
such property is found it generates a new one.

This way one can in particular map Java-attributes to OWL-properties for which further
information has already been specified in the background ontology, for example functionality
or transitivity.

setter,adder,remover: These are the comma separated names of the corresponding methods
which are responsible for the same attribute. They all must accept the object to be set, added
or removed as the first argument, or, in case of Map type attributes as the first two arguments
(key-value pairs). The type of the argument of the setter methods must be such that the
result of the getter method can be a legal first argument to these methods (autoboxing of
primitive data types is supported). The type of the arguments of the adder and remover
methods for non-Map type attributes must be such that the result of the getter method,
or components of the result if the property is relational, can be a legal first argument to
these methods (autoboxing of primitive data types is again supported). If the corresponding
property is functional then at least one of the setter methods must have exactly one argument.
If the corresponding property is relational then at least one of the adder methods must have
exactly one argument. For Map-type attributes the first argument is usually the key type
of the map, and the second argument must accept the value type, or the component type of
the value type.

clearer: This must be the name of a parameter-less method which empties collection valued
attributes.

transitive,symmetric,asymmetric,reflexive,irreflexive: These are properties of OWLObject-
Properties. This makes sense because OWLObjectProperties are actually nothing else than
binary relations between individuals. The corresponding axioms are added to the extension
ontology.

total: This flag makes only sense for functional properties. If set to true it enforces that the
function is total, but only for the OWL class generated from this particular Java class. A
property like hasName, for example, may be total in a class A, i.e. their instances must have
a name, and partial in a class B where their instances need not have a name.

atleast,atmost: These values are for relational properties. They specify the minium and maxi-
mum number of ‘role fillers’. The default value -1 causes no such restriction to be added.

addRangeAxiom: The range type of the getter methods can be mapped to corresponding OWL
classes or OWL-data types. If addRangeAxiom is true then the corresponding range type ax-
iom is specified for the OWL-property generated from the getter method. This may help de-
tecting hidden modelling errors, in particular when attributes in different classes are mapped
to the same OWL-property.

getKey: denotes a method which can turn a string into the data structure which is used as the
key-part in a Map-type attribute. If the key-part is already a string then there need not be
a getKey method.

6.2 The Java2OWL Compiler

The Java2OWL compiler, implemented in the class J2OCompiler, generates OWL classes from
annotated Java class files. For the preparation phase (see Sect. 2.1) it has a main method such
that it can be called to generate the extension ontology from a given list of compiled Java classes.
In the application phase (see Sect. 2.2) its methods can be used to link the Java classes with the
OWL classes i.e. to build the internal data structures necessary for managing the correspondences
between Java and OWL.
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6.2.1 The Java2OWL Compiler in the Preparation Phase

In the preparation phase the Java2OWL-compiler can be invoked by calling
java Java2OWL/J2OCompiler <parameters>

If there are no parameters it just prints a help text. Otherwise the arguments to the program
consist of filenames for Java .class files, directory names with Java .class files and a number of
key-value parameters. There can be any number of Java .class files and directories.

The key-value pairs are

bgo (“background ontology”, optional): The value is the filename for the background ontology.
It can be omitted if there is no background ontology.

exof (“extension ontology file”, mandatory): The value is the filename where the newly created
extension ontology is to be saved.

exoi (“extension ontology IRI”, optional): The value is the IRI for the newly created extension
ontology. By default some reasonable name is created from the background ontology or from
the user name.

sync (“synchronise”, optional, default: false): The value is true/false. If true, then synchroniser
code is injected into the class files.

reasoner (optional): The value is the name of the reasoner to be used. The following reasoners
are available: [HermiT, Pellet, FaCT++]. The default reasoner is HermiT, and the default
timeout for the reasoner is 10 seconds.

debug (optional, default: true) If the value is not false then the system is put into debug mode.
In this case the first error causes the compiler to stop.

log (optional): The value ’all’ causes all logs to be printed, otherwise only error messages are
printed.

The program reads the background ontology, creates an extension ontology, reads the class files,
analyses its annotations, fills the extension ontology with the translated Java classes and saves the
extension ontology. Error messages are printed to System.out.

Notice that not all Java class files to be translated need to be given as input. For a given class
C to be compiled to OWL the J2OCompiler automatically translates the following classes:

• all annotated superclasses of C,

• all annotated static inner classes of C,

• all annotated range type classes of the annotated getter methods in C.

For Map-type attributes like Map<String,Set<Person>> the component type of the map’s value
type, in the example Person is not automatically translated.

The translation need not be started manually. The main-method of the J2OCompiler can also be
called from within another program. An example could be

St r ing args = new St r ing [ ] { ” bu i ld / t e s t / c l a s s e s /TestPackage/ TestVehic l e . c l a s s ” ,
” exo i ” , ” http ://www. lmu . de/ Veh ic l e . owl” ,
” exo f ” , ” t e s t /TestPackage/ Veh ic l e . owl” ,
” sync ” , ” t rue ” , ”debug” , ” t rue ” } ;

J2OCompiler . main ( args ) ;

15



6.2.2 The Java2OWL-Compiler in the Application Phase

When an application is launched and the extension ontology is loaded, the application must link
the Java classes with the OWL classes.

A typical sequence of Java statements for this purpose could be:

J2OManager manager = new J2OManager ( ”TestManager” ) ;
J2OOntologyManager omg = manager . getOntologyManager ( ) ;

omg . addIRIMapper (new AutoIRIMapper ( new F i l e ( ” t e s t /Java2OWL” ) , true ) ;

OWLOntology extOntology =
omg . loadOntology ( ” t e s t /Java2OWL/ ExtensionOntology . owl” , fa l se ) ;

omg . setReasoner ( ”HermiT” , true , false , 10000) ;

J2OCompiler compi le r = manager . getCompiler ( ) ;
compi le r . class2OWL ( TestStudent . class , TestAddress . class ,

Tes tSc i ence . class , TestStudyProgramme . class ) ;
compi le r . f i n i s h T r a n s l a t i o n ( null ) ;

The statement

omg . addIRIMapper (new AutoIRIMapper ( new F i l e ( ” t e s t /Java2OWL” ) , true ) ;

adds a so called IRI-mapper to the ontology manager. Its purpose is to locate ontologies included
by the extension ontology in the file system (see the OWL API9 for details). The actual translation
from Java to OWL is done in the two statements:

compi le r . class2OWL ( TestStudent . class , TestAddress . class ,
Tes tSc i ence . class , TestStudyProgramme . class ) ;

compi le r . f i n i s h T r a n s l a t i o n ( ) ;

The first statement prepares the translation and collects the relevant data. The finishTranslation-
method does all the remaining work. The compiler.class2OWL-method need not be given all the
classes to be processed. Annotated superclasses, inner classes and range type classes of getter
methods are automatically processed as well.

6.2.3 Compile Time Errors

The J2OCompiler analyses annotated Java class and combines the extracted structures with the
background ontology. In this step it tries to detect as many programming errors as possible.

Here are examples for errors it can detect:

• Inconsistencies in the annotations of getter methods:

@J2OWLProperty(name = ” hasFriend ” ,
r e f l e x i v e = true , i r r e f l e x i v e = true )

public Set<Person> getFr i ends ( ) {return f r i e n d s ;}

This is a trivial inconsistency because a relation can not be reflexive and irreflexive at the
same time.

• Java data types which can not be mapped to OWL data types:
The Java data types which can be mapped to OWL data types are the primitive Java data

9OWL API: http://owlapi.sourceforge.net/javadoc/index.html
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types boolean, byte, short, int, long, float, double and the String type. All other built-in Java
data types, for example BufferedString, are not mapped to OWL data types. A specification
like

@J2OWLProperty(name = ”hasName” )
public Buf f e r edSt r ing getName ( ) {return name ;}

therefore causes an error.

• Classes without necessary Java2OWL annotations:
Consider a class Person with a getter method

@J2OWLProperty(name = ” hasAddress ” )
public Address getAddress ( ) {return address ;}

This causes a functional Object Property hasAddress to be created, which maps individuals
of type Person to individuals of type Address. If there is no class Address in the background
ontology and the Java class Address is not annotated, the relation hasAddress makes no
sense in the extension ontology.

The J2OCompiler can of course not detect all errors which may course trouble at run time. There-
fore run time error handling is also necessary (see Sect. 6.4.2).

6.3 Synchronisation Between Java and OWL

6.3.1 Java to OWL Synchronisation

Java to OWL synchronisation means that changes to attributes of Java objects are forwarded to
the corresponding OWL individuals. The Java2OWL library provides two different possibilities to
do this:

Life Synchronisation: This means that all changes to the attributes of Java objects are im-
mediately forwarded to the corresponding OWL individual. This is only possible if the
annotated Java classes got ‘synchroniser code’ injected. Life Synchronisation can be turned
on and off at any time. This can be done at class level, i.e. for all instances of a given
class. The activation/deactivation of class level life synchronisation can be overwritten
by activating/deactivating it for single objects. By default life synchronisation is deacti-
vated at class level, and activated at object level. It can therefore be activated by calling
activateSynchronisation(...) of the J2OClassManager class.

Block Synchronisation: This means that changes to the attributes of Java objects are not for-
warded to OWL for a while, and at some time the application decides to do this ‘en bloc’ for
all attributes of the object. The classes IndividualWrapper and J2OIndividualManager

have methods synchroniseWithOWL for this purpose. If this is the only technique used in an
application then no ‘synchroniser code’ need be injected into the annotated Java classes.

6.3.2 The Java2OWL Synchroniser

The J2OSynchronizer-class is used to insert extra ‘synchroniser code’ into the setter, adder, re-
mover and clearer methods of the compiled Java class files. It can be used in two ways:

• the J2OCompiler calls it when the sync-flag is set to true,

• the J2OSynchronizerAgent calls it in its premain-method. This causes a further transformer
to be installed in the class loader. This transformer calls the J2OSynchronizer to inject the
synchronizer code when a compiled class is loaded. In this case one must start the Java
application with java -javaagent:J2OSynchronizerAgent.jar ...
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The second way is more comfortable because, as long as the Java2OWL annotations in a Java
class are not changed, one can repeatedly recompile a Java class with the javac-compiler, because
the synchroniser code is injected at load time. The first way makes the loading of compiled Java
classes into an application more efficient because no manipulation of compiled Java class files is
necessary. On the other hand, it means that each time a Java class is recompiled with javac, one
has to call the J2OCompiler. A reasonable strategy is therefore to use the second method as long
as a program is under development, and generate compiled Java classes with injected synchroniser
code when the program is not changed any more.

6.3.3 The Structure of the Injected Synchroniser Code

The injected synchroniser code serves two purposes:

• it forwards changes to attributes of Java objects to the OWL side, and

• it maintains three flags:

– the first one is to turn object-level synchronisation on and off,

– the second one indicates changes to the attributes since the last block synchronisation,

– the third one indicates changes to the attributes since the last reclassification.

All three flags are part of the integer variable Java2OWLFlags.

The structure of the injected synchroniser code can be exposed with a Java decompiler, for example
Jad10. First of all, a number of extra fields and a new method is inserted:

public stat ic J2OIndividualManager j2OWLIndividualManager ;
public int Java2OWLFlags ;
private stat ic Method J2OWL getter getName =

J2OSynchronizer . getMethod ( TestPackage/ TestPerson , ”getName” ) ;
. . .
J2OIndividualManager J2OSynchronisat ionAct ive ( ) {

Java2OWLFlags |= 6 ; // i n d i c a t e s changes to an a t t r i b u t e .
return ( Java2OWLFlags & 1) != 0 ? null : j2OWLIndividualManager ;}

The variable j2OWLIndividualManager has by default the value null. In this case no synchro-
nisation is performed for all instances of the class. This variable is set and reset by calling the
activateSynchronisation- or deactivateSynchronisation methods of the J2OClassManager

(See Section 7.4). Since the j2OWLIndividualManager-variable is static it allows for activating or
deactivating synchronisation for all instances of the class at once.

Individual activation/deactivation for single instances can be achieved by setting/resetting the
rightmost bit of Java2OWLFlags. This can be done by calling the activateSynchnisation- or
deactivateSynchronisation methods of the individual wrapper containing the object. The de-
fault value of Java2OWLFlags is 0 which causes that object-controlled synchronisation is turned
on.

Static variables like J2OWL getter getName are created for all getter methods. They are bound
at initialisation time to pointers to the getter methods themselves.

Each setter, adder, remover and clearer method is changed by inserting calls to methods which
do the synchronisation. As an example, a typical setter method

public void setName ( St r ing name){
this . name = name ;}

is changed to

10Jad: http://www.kpdus.com/
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public void setName ( St r ing name){
i f ( J2OSynchronisat ionAct ive ( ) != null )

J2OSynchronisat ionAct ive ( ) . exchangePropertyValue ( this ,
J2OWL getter getName , getName ( ) , name ) ;

this . name = name ;}

The actually injected code is slightly optimised and can not be represented in Java syntax.
The working of this code slice together with the method J2OSynchronisationActive() is

quite sophisticated. The same variables Java2OWLFlags and J2OIndividualManager, and the same
J2OSynchronisationActive() method get injected into each class. As an example, consider a class
Person with the setter method setName, and a subclass Studenten extends Person. Both get
the variables Java2OWLFlags and J2OIndividualManager, and the J2OSynchronisationActive()
method injected. The value of the variable J2OIndividualManager may be different for the Person
and for the Studenten class, maybe because synchronisation has been turned off for persons, but
turned on for students. Suppose for an instance of the Student class, say Paul, the setter method
setName method is called. The setName is actually part of the Person class and not of the Student
class. Nevertheless, this.J2OSynchronisationActive() calls the J2OSynchronisationActive()
method for Paul’s class, namely Student. The J2OSynchronisationActive() method therefore
accesses the J2OIndividualManager variable of the Student class, and this is the variable which
is relevant for the Student instance Paul. The same mechanism ensures that the value of the
Java2OWLFlags variable which is relevant for Paul is chosen, namely the variable for the Student

class, and not the variable of the Person class, although setName belongs to the Person class.
The bytecode manipulation for injecting the synchroniser code has been programmed with the

Byte Code Engineering Library11 (Apache Commons BCELTM) [3].

6.4 The J2OOntology Manager

The J2OOntologyManager is a kind of interface between the OWL API and the application. The
OWL API consists of three main components:

• the OWLOntologyManager which stores all the data belonging to an ontology,

• a OWLDataFactory which creates the structures necessary to interact with the ontology,

• a reasoner. There can be several reasoners, but only one can be active within a J2OManager
at any time.

Since the interaction with the OWL API is sometimes quite cumbersome, the J2OOntologyManager
hides the pecularities of the OWL API. Its main tasks are:

• loading and saving ontologies;

• setting up reasoners;

• getting information about the components of the ontology;

• making changes to the extension ontology.

6.4.1 The Interaction with the OWL API

The OWL API stores information about an ontology in two ways:

• The OWLOntologyManager in the OWL API itself has an internal representation of the on-
tology. Various interface method can access this information. Since OWL is based on De-
scription Logic, changes to the ontology are submitted to the OWL API as logical axioms.
Whenever a change to the ontology is to be made, the OWLDataFactory must create a logical
axiom and then either add it to the ontology, or remove it from the ontology.

11Byte Code Engineering Library: http://commons.apache.org/bcel/
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• The reasoner must of course also have an internal representation of the ontology. Since rea-
soners in different programming languages are available (FaCT++, for example, is written in
C++), the information about the ontology must be forwarded from the OWLOntologyManager
to the reasoner.

Changes to an ontology are therefore done in three steps:

1. Logical axioms are created and stored in a list. This does not yet change the ontology itself
at all.

2. The OWLOntologyManager is asked to apply the changes, i.e. to integrate the axioms into the
ontology.

3. The new information is forwarded to the reasoner. This may either be done as soon as the
OWLOntologyManager integrates a new axiom, or the changes may be buffered and made
effective at a later step. In this case the ontology may have become inconsistent before the
reasoner has a chance to check it. The J2OOntologyManager makes sure that whenever the
reasoner is asked to do something, the buffer is first flushed to the reasoner.

6.4.2 Sources of Inconsistencies in the Extension Ontology

Inconsistency is not a relevant notion in an ordinary programming context. Therefore it is a
reasonable question to ask where inconsistencies in Java2OWL-managed ontologies can come from.
Certain sources of inconsistencies, which can be detected by the compiler, have been discussed in
Sect. 6.2.3. In this section we discuss inconsistencies which may show up at run time.

Here are some examples for inconsistencies:

• Inconsistencies between the background ontology and the annotations of getter methods:
In a background ontology, one might for example specify a functional property hasName, and
in a Java class a getter method. An annotated getter method may be

@J2OWLProperty(name = ”hasName” )
public St r ing [ ] getNames ( ) {return names ;}

where the return type is an array. This is not inconsistent with the functionality of hasName
as long as the result of the getNames()-method has just a single element. As soon as
the getNames()-method returns a longer array, it becomes inconsistent with the required
functionality of hasName.

This is a case where a compiler could issue a warning, but the situation may be intended and
there may be no problem at run time.

• Constraint Violations:
The annotation

@J2OWLProperty(name = ” hasFriend ” , atmost = 3)
public Set<Person> getFr i ends ( ) {return f r i e n d s ;}

specifies that one can have at most three friends. If getFriends() returns a set with more
than three friends, this contradicts the constraint atmost = 3.

6.4.3 Checking the Consistency of the Extension Ontology

Checking for inconsistencies by the reasoner is an expensive operation. Therefore it is a strategic
decision when to check the consistency of the extension ontology. During development and debug-
ging it is useful to find inconsistencies as early as possible. To this end, the J2OManager can be
put into debug mode by calling setDebugMode(true). It causes each change to the ontology to be
immediately forwarded to the OWLOntologyManager and to the reasoner and to ask the reasoner
to immediately check the consistency.
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If the system is not in debug mode, i.e. setDebugMode(false) has been called, then changes
to the ontology are buffered as long as possible. The changes to the ontology are forwarded to the
OWLOntologyManager and to the reasoner

• either when the reasoner is asked to compute some information,

• or when new information overwrites old information, and it is necessary to retrieve the old
information in order to generate the corresponding remove-axioms.

These operations are hidden in the J2OOntologyManager. The only consequence for the application
is that inconsistencies in the ontology may show up long after they have been introduced. In this
case it may be difficult to figure out where the inconsistency originally came from.

6.5 The J2OClass Manager

The class J2OClassManager manages the correspondences between the Java classes and the OWL
classes. To this end it has two auxiliary data structures:

ClassWrapper which stores the pair [Java Class, OWL Class] together with information about the
mapped attributes (Section 7.4.1).

PropertyWrapper which stores the correspondences between the Java getter, setter, adder, re-
mover and clearer methods on the one side, and the corresponding OWL-property on the
other side.

If the J2OClassManager is asked to get for a Java class the correspondence to the OWL class it
does not return an OWL class, but a ClassWrapper. From the ClassWrapper one can get the
OWL class. The same holds for the attributes. The details can be found in Section 7.4.

6.6 The J2OIndividual Manager

The J2OIndividualManager manages the correspondences between the Java objects and the OWL
individuals. The main purposes of the J2OIndividualManager are therefore

• mapping Java objects to OWL individuals and vice versa and

• synchronising the Java object’s attributes with the corresponding OWL properties.

The correspondences between Java objects and OWL individuals are encapsulated in the class
IndividualWrapper. Individual wrappers are actually the object level front end to the OWL
ontology. Each individual wrapper contains one OWL individual and, due to multi-inheritance
of OWL one or more corresponding Java objects. The most important operations, an individual
wrapper can perform are:

• activating/deactivating life synchronisation

• block synchronisation with OWL

• reclassification of the Java objects,

• attaching extra attributes to the objects which are not foreseen in the Java class definitions.
These attributes are actually attached at the OWL individual in the OWL ontolgoy.

For more details see Section 7.5.
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7 Detailed Documentation of the Various Components

This section should provide sufficient details of the Java2OWL library’s public interface to plan
concrete applications. The remaining details which are necessary for actually implementing an
application are contained in the Javadoc generated documentation. Only the Java2OWL classes
and methods which are needed for programming the application are public. The compilation and
synchronisation is done by the protected methods in the Java2OWL library. They need not be
publicly exposed.

Most Java2OWL classes have a number of public methods which are only for administrative
purposes. They are not listed here.

7.1 The Class J2OManager

This is the top manager for the Java2OWL system. It contains all the other necessary managers.
One can create several instances of J2OManager, but all of them work with different ontologies.
Each J2OManager is either in the status COMPILE or in the status RUN. This is indicated by the
enum J2OManager.Status. Since a J2OManager creates all other managers and further relevant
objects, the other classes have no public constructors.

The Public Interface

Constructor: J2OManager(String name, boolean debugMode)
creates a J2OManager with the given name and debug mode for the RUN status. (The COMPILE
status is not exposed to the public.)

The J2OManager is only an administrator for the system. It plays no active part in the opera-
tions. Therefore there are only methods for accessing the other components of the system:

J2OOntologyManager getOntologyManager()
returns the ontology manager.

J2OClassManager getClassManager()
returns the class manager.

J2OIndividualManager getIndvidualManager()
returns the individual manager.

J2OCompiler getCompiler()
returns the Java2OWL compiler.

Logging getLogger()
returns the logger.

void setDebugMode(boolean flag)
puts the system in/out of debug mode. This flag is automatically forwarded to the other
components of the system. Some of them, in particular the logger (see App. C), can for itself
overwrite the general setting of the debug-mode flag.

7.2 The Class J2OCompiler

The J2OCompiler is in particular needed in the application phase for linking the Java classes with
the OWL classes in the extension ontology. For this purpose it has the following public methods:

void class2OWL(Class... classes)

void class2OWL(Collection<Class> classes)
These methods start the translation of the annotated Java classes into OWL classes. Only
the internal data structures are created.
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boolean finishTranslation()
finishes the translation of the annotated Java classes into OWL classes. The internal data
structures are turned into OWL axioms. This method should be called after class2OWL has
been called for all classes to be translated.

The whole linking process is split into these two parts because different getter methods of different
classes can be mapped to the same OWL property. Therefore it is necessary to analyse all annotated
Java classes first. Only when the whole information about the different getter methods is collected
the system can do the actual linking.

7.3 The Class J2OOntologyManager

The J2OOntologyManager is the application interface to the OWL ontologies. In most cases its
operation needs actually not be exposed to the application because the J2OClass manager, the
J2OIndividual manager and the wrapper classes provide a more convenient interaction with OWL.
For advanced applications it may, however, be useful to access the internal components directly.
To this end there are a number of public methods available. The first group consists of pure
administrative methods.

Administrative Methods:

OWLOntology getBackgroundOntology()
returns the background ontology.

OWLOntology getExtensionOntology()
returns the extension ontology.

void addIRIMapper(AutoIRIMapper iriMapper)
adds an IRIMapper to the ontology manager. The IRIMapper helps finding imported on-
tologies.

OWLOntology loadOntology(IRI iri, boolean background)
loads either the background ontology or the extension ontology from the given IRI.

OWLOntology loadBackgroundOntology(String name)
loads the background ontology from the given file.

OWLOntology loadExtensionOntology(String name)
loads the extension ontology from the given file.

boolean saveExtensionOntology(IRI iri)
saves the extension ontology to the given IRI.

boolean saveExtensionOntology(String filename)
saves the extension ontology to the given file.

boolean saveExtensionOntology()
saves the extension ontology to the same file where it was loaded from.

OWLDataProperty getFirstOWLDataProperty(String name)

OWLObjectProperty getFirstOWLObjectProperty(String name)
return the first OWLDataProperty/OWLObjectProperty in the extensionOntology’s import
closure whose IRI-fragment equals ’name’, or null if there is no such property.

Set<OWLDataProperty> getOWLDataProperties(String name,boolean background)
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Set<OWLObjectProperty> getOWLObjectProperties(String name,boolean background)
returns the OWLDataProperties/OWLObjectProperties in the ontology’s import closure
whose IRI-fragment equals ‘name’, or null if there is no such property. If bachground = true

then the ontology is the background ontology, otherwise it is the extension ontology.

static Set<String> getReasoners()
returns the names of all available reasoners.

OWLReasoner setReasoner(String reasonerName, boolean buffering,
boolean monitorProgress, int timeout)
installs a reasoner with the given name for the extension ontology. If buffering = true then
a buffering reasoner is installed. This is recommended because otherwise each change to the
ontology immediately invokes the reasoner. monitorProgress = true causes logs of the
reasoner’s operations to be printed. timeout is the timeout in milliseconds. If a particular
invocation of the reasoner exceeds this timeout it is stopped.

boolean applyChanges(boolean checkConsistency)
This method forwards the change axioms to the extension ontology. If checkConsistency
= true and the system is in debug mode then the changes are forwarded to the reasoner
as well and the reasoner checks the consistency of the extension ontology. If it has become
inconsistent then error messages are sent to the logger and the method returns false. If the
system is not in debug mode then the reasoner is not invoked in this method.

The second group of methods may invoke the reasoner to retrieve information from the ontology.
Invoking the reasoner may cause the following exceptions to be thrown: AxiomNotInProfileExcep-
tion, ClassExpressionNotInProfileException, FreshEntitiesException, InconsistentOntologyExcep-
tion, TimeOutException, ReasonerInterruptedException, UnsupportedEntailmentTypeException,
ReasonerInternalException (See the OWL API12 documentation for details). All these exceptions
are caught by the J2OOntologyManager and an error message is logged. If the system runs in
debug mode this error message causes it to stop. If the system is not in debug mode an error
message is still logged, but the system tries to continue with reasonable assumptions. It may,
however, fail at a later stage.

Methods Involving Reasoning:

Set<OWLClass> getOWLClasses(OWLNamedIndividual individual)
returns the set of lowest OWL classes in the OWL class hierarchy which contain the individ-
ual.

Set<Object> getDataPropertyValues(OWLNamedIndividual individual,
OWLDataProperty property)
returns all role-fillers for data-properties as Java objects. The returned objects are either
strings (in the Java class String) or elements of the wrapper classes for numbers and booleans.
If the property is functional then the result contains at most one element.

Set<OWLNamedIndividual> getObjectPropertyValues(
OWLNamedIndividual individual, OWLObjectProperty property)
returns all role-fillers for object-properties as OWLNamedIndividuals.

OWLClassExpression parseClassExpression(String classExpressionString)
parses a class expression string in Manchester Syntax (see App. B) to obtain an internal
representation of a class expression.

Set<OWLNamedIndividual> getInstances(OWLClassExpression classExpression)
returns all OWL-instances of the given class expression.

Set<OWLNamedIndividual> getInstances(String classExpressionString)
returns the OWL-instances of the class expression.

12OWL API: http://owlapi.sourceforge.net/javadoc/index.html
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void removeIndividual(OWLNamedIndividual individual)
creates the change axioms for removing the individual from all ontologies.

void removeAllIndividuals(OWLClass ocl)
creates the change axioms for removing all individuals in the given class.

boolean isConsistent()
returns true if the extension ontology is consistent.

7.4 The Class J2OClassManager

The J2OClassManager manages the correspondences between the Java classes and the OWL
classes. The correspondences themselves are stored as instances of the class ClassWrapper.

7.4.1 The Class ClassWrapper

This class stores the correspondence between a Java class and an OWL class. The only public
methods are

Class getJavaClass() returns the Java class.

OWLClass getOWLClass() returns the OWL class

The class ClassWrapper also stores the correlations between Java attributes and OWL properties.
This information is only internally used. It is therefore not publicly exposed.

7.4.2 Public Methods of the J2OClassManager

Set<Class> getClasses()
returns the set of classes managed by the class manager.

Collection<ClassWrapper> getCLWs()
returns the ClassWrappers managed by the class manager.

boolean isMapped(Class jcl)
returns true if the Java class is directly mapped to an OWLClass.

ClassWrapper getCLW(Class jcl, boolean direct)
returns the ClassWrapper for the given Java class, or null if none can be found. If direct = true

then only the direct mapping from Java classes to OWL classes is considered. If direct = false

then the lowest superclass of jcl for which a mapping can be found is searched.

OWLClass getOWLClass(Class jcl, boolean direct)
returns the OWL class for the given Java class, or null if none can be found. If direct = true

then only the direct mapping from Java classes to OWL classes is considered. If direct = false

then the lowest superclass of jcl for which a mapping can be found is searched.

Set<ClassWrapper> getCLWs(OWLClass ocl)
yields the ClassWrappers which corresponds to the given OWL-class. Due to multiple inher-
itance in OWL the superclasses of the OWL class can form a tree (or actually a DAG). This
tree is searched for the OWL classes closest to ocl which have a corresponding Java class.

Set<Class> getJavaClasses(OWLClass ocl)
yields the Java classes which corresponds to the given OWL-class.

Set<ClassWrapper> getCLWs(Set<OWLClass> ocls)
yields the ClassWrappers which corresponds to the given OWL-classes.

void activateSynchronisation(Object... classes)
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void deactivateSynchronisation(Object... classes)
activates/deactivates synchronisation for all given Java classes. The given Java classes may
be individual classes, arrays of classes or collections of classes.

7.5 The Individual Manager

We consider at first the auxiliary class IndividualWrapper.

7.5.1 The Class IndividualWrapper

Since the mapping between Java objects and OWL individuals need not be bijective, several Java
objects may correspond to one OWL individual. Therefore there is an extra class IndividualWrapper
which keeps all the information about the mapping between the Java objects and the OWL indi-
viduals. The instances of IndividualWrapper are a kind of front end for the application.

The following methods access the internal data of the individual wrapper.

OWLNamedIndividual getIndividual()
returns the OWL individual belonging to the individual wrapper.

ArrayList<Object> getObjects()
returns the objects belonging to the individual wrapper.

Object getObject(Class jcl)
returns the object among the stored objects which is an instance of the given Java class, or
null if there is no such object.

Object getFirstObject()
returns the first object among the stored objects. If it is known that the mapping between
Java objects and OWL individuals is bijective, there is only one such object, and therefore
this method is the simplest way to get it.

reclassify(boolean forceReclassification)
reclassifies the object (see Example E.2). If forceReclassification is false then reclassifi-
cation is done only when the object’s attributes have been changed since the last reclassifi-
cation. This saves resources, but may miss derivable changes to the object’s attributes (e.g.
computing the transitive closure of a transitive relation).

The Algorithm for Reclassifying Java Objects

Let o1, ..., on be the Java objects wrapped in an individual wrapper, and I be the corresponding
OWL individual.

The algorithm performs the following steps to reclassify o1, ..., ok.

1. The reasoner computes the set OC1, ..., OCn of OWL classes which are lowest in the OWL
class hierarchy such that I is a member of OC1, ..., OCn (this is sometimes called realisation).

2. For each OCi in OC1, ..., OCn the lowest superclasses in the OWL class hierarchy are deter-
mined which have corresponding Java classes. Let O1, ..., Om be these classes and J1, ..., Jm
be the corresponding Java classes. J1, ..., Jm do not contain subclasses of each other.

3. The set O of new objects to replace o1, ..., ok is determined as follows:
For each class Ji in J1, ..., Jm:

• If there is an object o in o1, ..., ok whose class is a equal to Ji or a superclass of Ji then
o is put into O.

• If there is an object o in o1, ..., ok whose class is a proper subclass of Ji then an instance
o′ of Ji is created, all fields of o are transferred to o′ and the remaining fields are filled
by transferring the corresponding properties of the OWL individual to o′.
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4. For all classes J in J1, ..., Jm for which none of the above cases was applicable a new instance
o is created and put into O. For those fields f in o for which an object in O exists which has
a field f ′ with the same name and type the contents of f ′ is transferred to f . The remaining
fields are filled by transferring the corresponding properties of the OWL individual to o.

5. In oder to ensure that the fields of the objects in O with the same name and type get pointer-
equal values, before transferring the properties from OWL to Java, it is checked whether a
previously filled object o′ has the same field as o. In this case the reference of the field value
of o′ is copied to the field value of o.

Extra Attributes

In contrast to Java where the object’s attributes are fixed at compile time, OWL individuals can
get any number of properties at run time. The following methods allow applications to attach
extra properties to the Java objects. They are not stored within the Java objects, but forwarded
to the ontology. Therefore they can be taken into account by the reasoner.

boolean setObjectPropertyValue(OWLObjectProperty property, Object value)
sets the value as role-filler for the individual’s property and returns true if the operation
succeeded.

IndividualWrapper[] getObjectPropertyValues(OWLObjectProperty property)
returns the role-fillers for the individual’s property as an array of IndividualWrappers.

boolean setDataPropertyValue(OWLDataProperty property, Object value)
sets the value as OWL attribute for the individual’s property.

Set<Object> getDataPropertyValue(OWLDataProperty property)
gets the OWL attributes for the individual’s property as Java objects.

These methods can also be used if the extension ontology contains an A-Box whose individu-
als have properties which can not be mapped to Java objects. As an example, consider a Java
class Person and an OWL class Person with an OWL individual Einstein which has a property
Year of Nobel Prize Award. If the Java class Person would have such an attribute, it would be
empty for almost all instances. In this case it might be useful to keep the property at the OWL
side and access it from the ontology directly.

Synchronisation

Java to OWL Synchronisation at object level can be controlled with the following methods for
individual wrappers:

activateSynchronisation(boolean log)

deactivateSynchronisation(boolean log)
activates/deactivates life synchronisation at object level for all objects in the individual wrap-
pers. If log = true then the activation/deactivation is logged.

synchroniseWithOWL()
performs block synchonisation for all objects in the individual wrapper.

7.5.2 The Class J2OIndividualManager

The individual manager servers different purposes

• it stores all the Java objects and OWL individuals for which correspondences have been
established,

• it has methods for mapping new Java objects to OWL individuals,
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• it has methods for mapping OWL individuals to Java objects,

• it can invoke the OWL reasoner to select individuals as instances of OWL class expressions,

• it can perform operations on collections of individual wrappers.

Accessing the Stored Java Objects and OWL Individuals

The stored Java objects and OWL individuals can not be accessed directly. The following methods
return IndividualWrappers from where the Java objects and OWL individuals can be retrieved.

IndividualWrapper getIWR(Object object)
returns for a given Java-object the stored IndividualWrapper, or null if there is none.

IndividualWrapper getIWR(OWLNamedIndividual individual)
returns for a given OWL individual the stored IndividualWrapper, or null if there is none.

Mapping Java Objects to OWL Individuals and Vice Versa

The following methods can be used to establish new correspondences between Java objects and
OWL individuals:

IndividualWrapper object2OWL(Object object)
creates for a Java instance of an annotated class the corresponding OWL individual (wrapped
into an IndividualWrapper). For the object’s annotated Java attributes whose values are Java
objects which can be mapped to OWL the corresponding OWL individuals are created as
well (and this process continues recursively).

IndividualWrapper individual2Java(OWLNamedIndividual individual)
creates for an OWL individual a corresponding Java object (or several of them if mulitple
inheritance is necessary) and turns all OWL property values into Java attributes. If OWL
property values are themselves individuals then these individuals are also mapped to Java
objects, and this continues recursively.

void reclassify(boolean forceReclassification, Object... indWrapper)
reclassifies all objects in the given individual wrappers. The indWrapper arguments may be
single individual wrappers, or arrays or collections of individual wrappers.

If forceReclassification is false then reclassification is done only when some of the object’s
attributes have been changed since the last reclassification.

The Algorithm for Mapping OWL Individuals to Java Objects

The algorithm is quite similar to the reclassification algorithm. It performs the following steps to
map an OWL individual I to Java objects:

1. The reasoner computes the set OC1, ..., OCn of OWL classes which are lowest in the OWL
class hierarchy such that I is a member of OC1, ..., OCn (this is sometimes called realisation).

2. For each OCi in OC1, ..., OCn the lowest superclasses in the OWL class hierarchy are deter-
mined which have corresponding Java classes. Let O1, ..., Om be these classes and J1, ..., Jm
be the corresponding Java classes. J1, ..., Jm do not contain subclasses of each other.

3. The classes J1, ..., Jm are instantiated to the objects o1, ..., om.

4. For i = 1, ...,m the fields of oi with annotated getter-methods are filled with property values
transferred from the OWL individual I.

5. In oder to ensure that the fields in the objects o1, ..., om with the same same name and type
get pointer-equal values, before transferring the properties from OWL to Java, it is checked
whether a previously filled object oj has the same field as oi. In this case the reference of
the field value of oj is copied to the field value of oi.
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Queries to the Reasoner

All OWL individuals which correspond to Java objects are in particular available to the OWL
reasoner. The following methods can be used to retrieve instances of OWL class expressions as
IndividualWrappers from where the Java objects can then be obtained.

ArrayList<IndividualWrapper> getInstances(String classExpression)
This method parses the class expression and asks the reasoner to compute all instances
of the class expression. The instances are automatically mapped to Java objects. The
classExpression must be in Manchester Syntax (see Sect. B).

ArrayList<IndividualWrapper> getInstances(OWLClassExpression classExpression)
This method asks the reasoner to compute all instances of the class expression. It actually
uses the corresponding method of the J2OOntologyManager, which returns a set of OWL
individuals. These instances are then mapped to Java objects. Notice that only OWL indi-
viduals which have already been mapped to Java can be retrieved this way.

The method j2oOntologyManager.parseClassExpression(cle) can be used to parse a
string into an OWLClassExpression. This may save time if the same class expression is to
be used repeatedly.

Controlling Synchronisation

The following methods activate and deactivate synchronisation at object level between Java objects
and OWL individuals.

void activateSynchronisation(boolean log, Object... individualWrappers)

void deactivateSynchronisation(boolean log, Object... individualWrappers)
activates/deactivated life synchronisation for all objects in all given individual wrappers.
The individual wrappers may be just single individual wrappers or arrays or collections of
individual wrappers. If log = true then the activation/deactivation is logged.

void synchroniseWithOWL(Object... individualWrappers)
does block synchronisation for all objects in the individual wrappers. The individualWrappers
can be single individual wrappers or arrays or collections of individual wrappers.

8 Thread Safety

The typical workflow of a Java2OWL application has been documented in Section 2. In the prepa-
ration phase, Java2OWL is involved in mapping annotated Java classes to OWL. This operation is
relatively cheap, and it needs to be done only during the development of an application. Therefore
it is realised as a single thread Java program. No thread synchronisation is necessary.

The first steps in the application phase comprise linking the Java classes to the extension
ontology. The classes and methods involved are the same as the ones involved in the preparation
phase. Therefore this step is also realised as a single thread application. The application program
should therefore spawn threads only after the linking step. If threads try to access the extension
ontology before the linking is finished, anything can happen.

The following types of interaction with the extension ontology are possible during the main
application:

• creating Java objects and mapping them to OWL;

• mapping OWL individuals to Java objects;

• changing attributes of Java objects and immediately forwarding the change to OWL;

• block synchronisation of Java objects with OWL (if synchronisation has been turned off for
a while);
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• reclassification of Java objects;

• querying the extension ontology to retrieve instances of OWL class expressions.

Not all of these operations have immediate effects, but the information is stored in different caches.
Some operations involve external OWL reasoners, maybe even written in another programming
language. Therefore making them thread safe is not easy. Moreover, one should keep the overhead
for thread safety as small as possible. The goal is of course to make all these operations thread
safe with minimal costs. This has been tried as best as possible. However, since thread safety is
extremely difficult to test, no guarantee can be given that all cases have been covered.

9 Performance of the System

A thorough performance analysis of the Java2OWL system is not really possible. The input are
Java programs and OWL ontologies, and there is no clear output which can be measured. Moreover,
a significant part of the system is the OWL reasoner, and this is not under control of the Java2OWL
system. The complexity of the OWL reasoning tasks depends on the OWL constructs used in the
application. The complexity classes range from polynomial to undecidable. Typical examples are
in the PSPACE range, which means that heuristics have an important influence on the behaviour
of the reasoners.

The few experiments whose results are listed below might give a rough impression on the
performance of the various parts of the system. They have been performed with a Java class
Student, with attributes name and semester and a subclass Freshman which are students in the
first semester (see Example E.2). The classes have been translated to OWL and then a number of
measurements have been performed.

In all experiments a sequence of lists of Student instances have been created, and for each list
a certain operation has been performed. The time it took to perform the operation on the list has
been measured, and divided by the length of the list. The resulting times in milliseconds indicate
the time it took to perform a single operation. The lengths of the lists are 1000, 2000, ..., 10000.
The measurements were done with a Dell notebook with a 2.2 GHz dual core processor.

Java to OWL axioms: Each Student has been translated to OWL axioms, but the axioms are
not yet integrated into the ontology. The times in milliseconds per operation are:

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ms 0.17 0.19 0.14 0.04 0.009 0.01 0.008 0.032 0.0049 0.0055

It is not clear why the times are so different. One effect could be the Just-in-Time compilation
of Java which after a while decides to compile the Java methods into native machine code.

Java to OWL indivdiduals: In this experiment the translated Student instances are integrated
as OWL individuals into the OWL ontology. The times in milliseconds per operation are:

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ms 0.43 0.39 0.21 0.16 0.048 0.016 0.028 0.011 0.08 0.03

Java to OWL individuals with consistency test: In this experiment the translated Student
instances are integrated as OWL individuals into the OWL ontology, and each time a con-
sistency test is performed by the OWL reasoner. All three reasoners are tried. The times in
milliseconds per operation are:

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
FaCT++ 0.556 0.14 0.122 0.046 0.065 0.013 0.024 0.07 0.026 0.09
Pellet 0.534 0.13 0.135 0.076 0.027 0.064 0.025 0.077 0.025 0.1]
HermiT 0.576 0.17 0.107 0.120 0.111 0.037 0.012 0.031 0.013 0.09

Java-OWL synchronisation: This time the Student instances which have been mapped to
OWL get their semester changed to 1, and this is forwarded to the ontology. It does not
involve OWL reasoning. The times in milliseconds per operation are:
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size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ms 0.39 0.07 0.037 0.012 0.07 0.0077 0.023 0.11 0.0075 0.0075

Querying OWL: In this experiment we take the Student instances whose semester had been
changed to 1, and map them to OWL individuals. Afterwards the OWL reasoner is asked to
retrieve all instances of the OWL Freshman class. All three reasoners are tried. The operation
is much more expensive than the previously investigated operations. Therefore only much
smaller lists of Student instances are tried. The times in milliseconds per operation are:

size 100 200 300 400 500 600 700 800 900 1000
FaCT++ 0.93 0.455 0.167 0.187 0.168 0.167 0.17 0.22 0.17 0.18
Pellet 20.66 7.57 6.81 8.02 11.15 12.3 13.5 15.3 18.9 22.4
HermiT 15.39 5.14 6.72 10.0 13.22 17.12 21.14 27.8 32.5 37.6

For this class of examples FaCT++ is about 20 times faster than the other reasoners. Since
OWL reasoning is a heuristically controlled search there may well be other classes of examples
where the other reasoners are faster.

OWL to Java: In this experiment the Student instances whose semester had been changed to 1,
and which had been mapped to OWL individuals are deleted, and afterwards reconstructed
as Freshman instances form the OWL individuals. The times in milliseconds below indicate
how long it took to turn an OWL individual into a Java object.

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ms 0.175 0.119 0.115 0.13 0.134 0.222 0.176 0.198 0.188 0.238

Reclassification: In this experiment the Student instances whose semester had been changed
to 1 are reclassified to Freshman instances. All three reasoners are tested. The times in
milliseconds per operation are:

size 100 200 300 400 500 600 700 800 900 1000
FaCT++ 1.23 1.11 0.44 0.43 0.38 0.29 0.38 0.29 0.24 0.3
HermiT 18.64 5.48 6.66 9.49 12.56 16.22 20.2 25.73 30.06 35.08
Pellet 22.13 7.58 10.45 13.13 15.24 16.36 18.96 20.05 25.76 29.24

Again, FaCT++ is much faster than the other reasoners.

The times vary quite a lot with the different lengths of the lists. An important observation is,
however, that the times per operation do not depend much on the size of the data. Sometimes the
operations become even faster with increased amounts of data.

10 Summary

This report describes the Java2OWL library version 1.1. The program itself together with the
documentation can be obtained from http://www.pms.ifi.lmu.de/Java2OWL. The following files
can be downloaded

• Java2OWL.jar contains the compiled code of the library. The J2OCompiler within Java2OWL.jar
is the class with the main function. Therefore the compiler can be called by just executing
java -jar Java2OWL.jar ...,

• J2OSynchronizerAgent.jar contains the compiled Java agent with the synchroniser for the
class loader,

• Java2OWL.tgz contains the entire NetBeans project with source code, examples and docu-
mentation,

• Java2OWL doc.tgz contains the Javadoc generated files,

• J2OReport.pdf is this report as pdf file.
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The system has not yet been tested in a real application. It is planned to use it for a university
wide information system. It is quite clear that real applications will require further changes to the
library. Suggestions for improvements may be E-mailed to ohlbach@lmu.de.

10.1 Synchronising OWL with Other Programming Languages

There are quite a number of other object oriented programming languages where a synchronisa-
tion with Java would make sense. Therefore the question is whether the ideas and techniques of
Java2OWL can be used for these other programming languages as well. Java2OWL in its current
version depends on a number of special features of Java

• the OWL API for Java. At the time being there seems to be no similar OWL API for
other programming languages. There are APIs for XML and RDF in other programming
languages. They could provide the basis for an OWL API, but a lot of work still has to be
done.

• the possibility to annotate classes and methods and to read the annotations programmatically.
This seems to be a unique feature in Java. In other languages, for example C and C++ there
are compiler directives or preprocessor directives which are processed by a preprocessor of the
compiler. This would be the right tool to achieve something similar to the Java annotations.
It is, however, very unlikely that the standard preprocessors could be used as they are. It
might therefore be necessary to write an extra preprocessor.

An alternative to annotations in the source code is of course to put the extra information into
extra files, typically XML files. This was the way many Java applications operated before the
introduction of annotations. Besides the extra work to write the extra files, there is always
the problem to keep the source files and the extra files consistent.

• Java reflection. In the Java2OWL library Java reflection is heavily used to analyse the Java
program and to generate the extension ontology. There are only a few other languages with
similar features, for example LISP. If reflection is not available there are two alternatives:

1. the source code is parsed and the information is extracted from the source code directly.

2. the programmer puts the information about the structure of the program, in our case
the getter and setter methods and the class hierarchy, into extra files. This is error
prone and means extra work for the programmer.

• byte code engineering. In Java2OWL the synchroniser code is automatically injected into the
compiled class files. This could of course also be done manually by the programmer; again,
it means extra work and is error prone. More convenient would be a specialised preprocessor
for changing the source code before compiling it.

To summerise, the ideas of Java2OWL can also be realised in other object oriented program-
ming languages, provided there is a good OWL API. For the concrete realisation there are two
possibilities:

• A specialised preprocessor for the compiler extracts the necessary information from the source
code, generates the extension ontology and transforms the source code to include the syn-
chroniser code.

• If this is not possible the programmer can put the information into extra files and insert the
synchroniser code manually into the programs.

When a compiled application program which uses Java2OWL gets started, the first thing it has
to do is to link the Java class hierarchy with the OWL hierarchy in the extension ontology. In
this step Java2OWL uses reflection again to inspect the Java classes. Alternatively a preprocessor
could put the corresponding information extracted from the source files into extra files. At run
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time a linker could take the information from there to build up the data structures for correlating
Java with OWL.

The impression is that Java has some quite unique features which allow one to build such a
system in a way which requires minimal extra work by the application programmer, and which is
therefore much less error prone than the alternatives in other programming languages.
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11 Appendix

A Installing the Libraries and the Reasoners

In order to get the Java2OWL library to work you have to

• download the files Java2OWL.jar and J2OSynchronizerAgent.jar,

• download the latest version of the OWL API13 [5], unzip it to get the file owlapi-bin.jar.

• install at least one of the supported reasoners. Notice that HermiT is the default rea-
soner. If it is not installed one must change the reasoner (by calling setReasoner in the
J2OOntologyManager) before using the system.

The .jar files can either be put into the Java extension directory, for example in /usr/lib/jvm/java-
6-sun-1.6.0.24/jre/lib/ext, or in a directory contained in the Java CLASSPATH.

The current version of the Java2OWL library supports three reasoners, HermiT [2], Pellet [7]
and FaCT++ [8]. They can be installed as follows:

HermiT: download HermiT.zip14, unzip it and put the file HermiT.jar into a place where Java
can find it;

Pellet: download the latest version of Pellet15, unzip the zip archive. It is recommended to locate
the pellet.jar and aterm-java-x.x.jar libraries in the lib folder and to place these two files into
a directory where Java can find it. Experience has shown that other .jar files contained in
the zip archive are also necessary. The best is to put all of them into a place where Java can
find them.

FaCT++: FaCT++ is written in C++. Therefore you must download the FaCT++ OWLAPI16

as well as the FaCT++ precompiled binaries17 for your platform (OS X, Linux or Windows).
Place the FaCT++OWLAPI-vx.x.x.jar file in a place where Java can find it. Unzip the
native libraries and ensure that the directory containing the FaCTPlusPlusJNI library is in
your java.library.path. For example if the libraries reside in /usr/lib/ then you should add:
-Djava.library.path=”/usr/lib” to the arguments for your Java application.

13OWL API: http://sourceforge.net/projects/owlapi/
14HermiT.zip: http://hermit-reasoner.com/
15Pellet: http://clarkparsia.com/pellet/download
16FaCT++ OWLAPI: http://code.google.com/p/factplusplus/list
17FaCT++ precompiled binaries: http://code.google.com/p/factplusplus/list
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B Manchester OWL Syntax

The Manchester OWL Syntax is used for formulating class expressions in queries to the reasoner.
The complete specification can be found in http://www.w3.org/2007/OWL/wiki/ManchesterSyntax.
This section contains a short overview which is taken from
http://www.co-ode.org/resources/reference/manchester syntax/

Boolean Class Constructors

Boolean class constructor symbols have simply been replaced by their English language counter-
parts.

OWL DL Manchester OWL Example
Symbol Syntax Keyword

intersectionOf u and Doctor and Female
unionOf t or Man or Woman
complementOf ¬ not not Child

Restrictions

Restrictions use an infix syntax rather than a prefix syntax. The Description Logic symbols that
were previously used to indicate the type of restriction have been replaced with English language
keywords.

OWL DL Manchester OWL Example
Symbol Syntax Keyword

someValuesFrom ∃ some hasChild some Man
allValuesFrom ∀ only hasSibling only Woman
hasValue 3 value hasCountryOfOrigin value England
minCardinality ≥ min hasChild min 3
cardinality = exactly hasChild exactly 3
maxCardinality ≤ max hasChild max 3

Complex Class Expressions

Complex class expressions can be constructed using the above boolean constructors and restrictions.
For example,

Person and hasChild some (Person and (hasChild only Man) and (hasChild some Person))
describes the set of people who have at least one child that has some children that are only men
(i.e. grandparents that only have grandsons). Note that brackets should be used to disambiguate
the meaning of the expression.

Data Values and Data Types (OWL1.1)

Data values may be untyped or typed (eg int, boolean, float etc). The types available will depend
on tool support, but will include those specified in the XSD recommendation.

Constants can be expressed without type by just enclosing them in double quotes, or with type
like in ‘hasAge value ”21”ˆˆlong’.

Usage of these data types in more general expressions is possible through their shortened name,
for example ‘hasAge some int’

Several additional XSD facets can also be used to create new data types: ‘Person and hasAge
some int[>= 65]’

Multiple facets can also be used. For example, when wishing to express numeric ranges: ‘Person
and hasAge some int[>= 18, <= 30]’
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XSD facet Meaning
< x, <= x less than, less than or equal to x
> x, >= x greater than, greater than or equal to x
length x for strings, the number of characters must be equal to x
maxLength x for strings, the number of characters must be less than or equal to x
minLength x for strings, the number of characters must be greater than or equal to x
pattern regexp the lexical representation of the value must match the regular expression
totalDigits x number can be expressed in x characters
fractionDigits x part of the number to the right of the decimal place

can be expressed in x characters

Warning:
The OWL-API removes an OWLDataProperty or an OWLObjectProperty completely if it is no
longer used. A class expression like ”hasFriend some Person” would therefore raise a ParserEx-
ception if there are no friends any more in the ontology.
A test like getFirstOWLDataProperty("hasFriend") == null can be used to check this situa-
tion.

C Data Logs

The Java2OWL library hides many important operations from the application developer. In order
to help him understand what is going on, and to debug his application, extensive data logs are
provided. Since the logs can become very long, there is a special class Logging with mechanisms
to selectively turn data logging on and off. Logging is an interface to the Java Logger class. A
J2OManager automatically creates a Logging object and forwards it to the other components of
Java2OWL package. In order to configure it, one can get the installed logger by calling the method
public Logging getLogger() for the J2OManager, and then call various configuration methods.

The possibilities to configure the Logging object are described in the subsequent paragraphs.

Handler

The Logger forwards its output to a handler. The handler is responsible for forwarding the
messages to the final destination. The default handler just prints it to System.out. This can be
changed by the setHandler method. It comes in two forms:

setHandler(Logging.Destination where, String filename)
The Logging.Destination can be OUT, ERR, BUFFER, or FILE. OUT sends the logs to
System.out. ERR sends the logs to System.err. BUFFER sends the logs to an in-memory
buffer. FILE sends the logs to a file with the given filename. If BUFFER is chosen then the logs
can be accessed with the methods String getContents() and boolean hasContents().

setHandler(Handler newHandler, boolean closable)
In this case a user defined handler (see java.util.logging) can be created and installed.
The flag closable indicates that the handler must be closed at the end. (System.out and
System.err, for example, should not be closed.)

A handler can be changed at any time. The old handler is closed and the new handler is opened.
Some handler maintain internal buffers for the messages. This might cause confusion because

messages may not appear immediately at the output device. The internal buffer can be flushed by
calling the method flush(). Error and warning messages, however, are immediately flushed.
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Messages with Semantics

In order to distinguish different classes of messages, and to be able to turn them on and off, each
message is labelled with a tag from the Labelling.Semantics enum. The different tags are:

INFO General information
CONTROLFLOW entering, exiting, installation messages
ERROR error and warning messages
OCC OWL class creation
OPC OWL property creation
OIC OWL individual creation
JOC Java-Object creation (from an OWL individual)
DC Data Change.

By default logging of all message types is enabled. One can enable logging of certain message
types only by calling void activate(Logging.Semantics... semantics). Error and warning
messages, however, are always enabled. For example,

logger.activate(Logging.Semantics.OCC,Logging.Semantics.OIC);

enables only OWL class creation and OWL individual creation messages (and error and warning
messages).

Enabling or disabling all message types at once, including error and warning messages, is
possible by calling void activate(boolean active).

Enabling or disabling all message types at once, excluding error and warning messages, is
possible by calling void activateInfo(boolean active);. logger.activate(false); disables
all but error and warning messages at a very early state. This causes the least overhead by the
logger. logger.activate(true); enables all message types, except those excluded by calling
void activate(Logging.Semantics... semantics).

Origin

The error and warning messages generated by the logger include a hint to the origin of the error
or warning. The origin is indicated by one of the key words:

USAGE something wrong with the way the application uses Java2OWL
JAVA Java programming error
ONTOLOGY something wrong with the ontology
INDIVIDUAL something wrong with the OWL individuals
REASONER something wrong with the reasoner
UNCLEAR no idea where the problem came from.

In practice, however, it is not always clear what exactly went wrong. Therefore these hints may
not always be precise.

Debug Mode

The logger can be put into debug mode by calling setDebugMode(boolean flag), either separately
for the logger, or globally for the J2OManager. In debug mode two things are different to normal
mode:

1. all messages are immediately flushed.

2. an error message causes the system immediately to stop (by calling System.exit(1)). This
may help detecting errors very early. Errors in normal mode usually cause an exception to
be thrown. The exception handler may be able to circumvent the error, but this should not
be a permanent solution.
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Remarks

The Logging class is basically independent of the Java2OWL system. It can therefore in principle
be used by other systems as well. Log messages are created by one of the following public void

methods:

entering(Object... objects)
indicates entering a method and prints the objects.

exiting(Object... objects)
indicates exiting a method and prints the objects.

installation(Object object)
indicates installation of a module and prints the object.

error(String message, Origin origin,Object... objects)
generates an error message. In debug mode this method causes the system to stop.

warning(String message, Origin origin,Object... objects)
generates a warning message.

event(Semantics semantics, Object... objects)
generates an event message with a specific semantics.

correlation(Semantics semantics, Object... objects)
generates a message informing that a new correlation between the objects has been estab-
lished.

The logger uses the toString() method to print the objects.
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D Data Types

Java distinguishes primitive data types and object data types. The primitive data types are
boolean, byte, short, int, long, float and double. A further distinguished non-primitive
data type is String. All these data types have correspondences in OWL. Therefore it is no problem
to map Java objects with attributes of these types to OWL. OWL, however, has a much richer
set of built in data types. Most of them are inherited from XML-Schema18. It is therefore not so
straight forward to map OWL individuals with their properties to Java. As a compromise, OWL
data types are mapped in the following way to Java data types:

OWL data type Java data type
OWL RATIONAL double
OWL REAL double
RDF PLAIN LITERAL String
RDF XML LITERAL String
XSD ANY URI String
XSD BASE 64 BINARY int
XSD BOOLEAN boolean
XSD BYTE byte
XSD DATE TIME String
XSD DATE TIME STAMP String
XSD DECIMAL int
XSD DOUBLE double
XSD FLOAT float
XSD HEX BINARY int
XSD INT int
XSD INTEGER int
XSD LANGUAGE String
XSD LONG long
XSD NAME String
XSD NCNAME String
XSD NEGATIVE INTEGER int
XSD NMTOKEN String
XSD NON NEGATIVE INTEGER int
XSD NON POSITIVE INTEGER int
XSD NORMALIZED STRING String
XSD POSITIVE INTEGER int
XSD SHORT short
XSD STRING String
XSD TOKEN String
XSD UNSIGNED BYTE byte
XSD UNSIGNED INT int
XSD UNSIGNED LONG long
XSD UNSIGNED SHORT short

18XML-Schema: http://www.w3.org/TR/xmlschema-2/
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E Examples

The examples in this section illustrate already advanced features of the system.

E.1 Multiple Inheritance Example

The example in this section illustrates the treatment of the OWL multi-inheritance in the Java2OWL
framework. Instances of an OWL class which is a subclass of more than one OWL class and
which has no corresponding Java class are mapped to several Java objects. We use the no-
torious Ship/Surface-Vehicle/Amphibious-Vehicle example. At the Java side we define classes
TestVehicle, TestShip and TestSurfaceVehicle. The example has no background ontology, but
generates an extension ontology Vehicle.owl. This ontology is then extended by adding a common
subclass AmphibiousVehicle and some individuals. The new ontology AmphibiousVehicle.owl

is then loaded into a Java program and the OWL individuals are mapped to Java objects. The
class TestVehicle has attributes name, owners (as ArrayList<String>) and predecessors (as
TestVehicle[]). The attributes are inherited to the subclasses TestShip and TestSurfaceVehicle.
The class TestShip has a further attribute knots (as float). The class TestSurfaceVehicle has
a further attribute enginePower (as double).

The main-method of the TestVehicle class calls the J2OCompiler for translating the classes
to OWL.

@J2OWLClass(name = ” Veh ic l e ” )
public class TestVehic l e {

private St r ing name ;
@J2OWLProperty(name = ”hasName” , s e t t e r=”setName” , t o t a l=true )
public St r ing getName ( ) {return name ;}
public void setName ( St r ing name) { this . name = name ;}

private ArrayList<Str ing> owners = new ArrayList<Str ing >() ;
@J2OWLProperty(name = ”hasOwner” , adder=”addOwner” ,

remover = ”removeOwner” )
public ArrayList<Str ing> getOwners ( ) {return owners ;}

public void addOwner ( S t r ing owner ) {owners . add ( owner ) ; }
public void removeOwner ( S t r ing owner ) {owners . remove ( owner ) ; }

private TestVehic l e [ ] p r e d e c e s s o r s ;
@J2OWLProperty(name = ” hasPredeces sor ” , adder=” addPredecessor ” )
public TestVehic l e [ ] g e tPr edec e s so r s ( ) {return p r e d e c e s s o r s ;}

public void addPredecessor ( TestVehic l e v e h i c l e ) {
i f ( p r e d e c e s s o r s == null )

p r e d e c e s s o r s = new TestVehic l e [ ] { v e h i c l e } ;
else { p r e d e c e s s o r s =

Arrays . copyOf ( predece s so r s , p r e d e c e s s o r s . l ength +1);
p r e d e c e s s o r s [ p r e d e c e s s o r s . length −1] = v e h i c l e ;}}

@J2OWLClass(name = ” Ship ” )
public stat ic class TestShip extends TestVehic l e {

private f loat knots ;
@J2OWLProperty(name = ” speed ” , s e t t e r=” setKnots ” )
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public f loat getKnots ( ) {return knots ;}
public void setKnots ( f loat knots ) { this . knots = knots ;}}

@J2OWLClass(name = ” Sur f a c eVeh i c l e ” )
public stat ic class TestSur faceVeh i c l e extends TestVehic l e {

private double enginePower ;
public double getEnginePower ( ) {return enginePower ;}
public void setEnginePower (double enginePower ) {

this . enginePower = enginePower ;}}

public stat ic void main ( St r ing [ ] a rgs ) {
args = new St r ing [ ] {

” bu i ld / t e s t / c l a s s e s /TestPackage/ TestVehic l e . c l a s s ” ,
” exo i ” , ” http ://www. lmu . de/ Veh ic l e . owl” ,
” exo f ” , ” bu i ld / t e s t / c l a s s e s /TestPackage/ Veh ic l e . owl” ,
” sync ” , ” t rue ” , ”debug” , ” t rue ” } ;

J2OCompiler . main ( args ) ;}}

The generated ontology Vehicle.owl can be loaded into the OWL editor Protégé19 [4] and exported
as LaTeX file:

Classes

SurfaceVehicle

SurfaceVehicle v Vehicle

Ship

Ship v Vehicle

Vehicle

Vehicle v ∃ hasName

Object properties

hasPredecessor

> v ∀ hasPredecessor Vehicle

Data properties

enginePower

> v ≤ 1 enginePower

19Protégé: http://protege.stanford.edu/
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hasName

> v ≤ 1 hasName

hasOwner

speed

> v ≤ 1 speed

Now we extend the ontology manually by adding a common subclass AmphibiuosVehicle and
some individuals. The LaTeX dump generated by of Protégé is20:

Classes

AmphibiuosVehicle

AmphibiuosVehicle v Ship
AmphibiuosVehicle v SurfaceVehicle

SurfaceVehicle

Ship

Vehicle

Object properties

hasPredecessor

Data properties

enginePower

hasName

hasOwner

speed

Individuals

KingGeorge

KingGeorge : SurfaceVehicle
hasName: ”King George”

QueenMary

QueenMary : AmphibiuosVehicle
hasName: ”Queen Victoria”
hasOwner: (”QueenElizabeth”,”PrinceCharles”)
enginePower: 200
speed: 40.0f
hasPredecessor(KingGeorge,QueenVictoria)

20Protégé’s LaTeX dump is still incomplete. Therefore the text had to be modified slightly.
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QueenVictoria

QueenVictoria : Vehicle
hasName: ”Queen Victoria”

The ontology AmphibiousVehicle.owl can now be loaded into a Java programm and the OWL
individuals can be imported into Java. As an example we list the JUnit code for testing the
ontology.

stat ic J2OManager manager ;
stat ic J2OOntologyManager omg ;
stat ic J2OClassManager clm ;
stat ic J2OIndividualManager img ;

// This i s the i n i t i a l i s a t i o n code .
@BeforeClass
public stat ic void setUpClass ( ) throws Exception {

manager = new J2OManager ( ”TestManager” , J2OManager . Status .RUN, true ) ;
manager . getLogger ( ) . a c t i v a t e I n f o ( fa l se ) ;

AutoIRIMapper ir iMapper =
new AutoIRIMapper ( new F i l e ( ” bu i ld / t e s t / c l a s s e s /TestPackage” ) , true ) ;

omg = manager . getOntologyManager ( ) ;
omg . addIRIMapper ( ir iMapper ) ;

clm = manager . getClassManager ( ) ;
S t r ing name = ” bu i ld / t e s t / c l a s s e s /TestPackage/ AmphibiousVehicle . owl” ;
OWLOntology extOntology = omg . loadExtens ionOntology (name ) ;

J2OCompiler comp = manager . getCompiler ( ) ;
comp . class2OWL ( TestVehic l e . class ) ;

// l i n k i n g the Java c l a s s e s to the OWL c l a s s e s .
comp . f i n i s h T r a n s l a t i o n ( ) ;

img = manager . getIndvidualManager ( ) ; }

Now the ontology AmphibiousVehicle.owl is loaded, linked, and ready to be used. The following
statements illustrate how the ontology can be used.

@Test
public void t e s t I n d i v i d u a l 2 J a v a ( ) throws ParserExcept ion {

Set<OWLNamedIndividual> i n d i v i d u a l s = omg . g e t I n s t a n c e s ( ” Ship ” ) ;
OWLNamedIndividual QueenMary = i n d i v i d u a l s . i t e r a t o r ( ) . next ( ) ;
// Notice , QueenMary ’ s OWL c l a s s i s AmphibousVehicle

IndividualWrapper qm = img . ind iv idua l2Java (QueenMary ) ;

//Now we acc ess the ’ s h i p a s p e c t ’ o f the AmphibousVehicle
TestShip sh ip = ( TestShip )qm. getObject ( TestShip . class ) ;
// Ship i s the l o w e s t c l a s s above AmphibousVehicle
// wi th a correspondence in Java .
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a s s e r tEqua l s ( ”QueenMary” , sh ip . getName ( ) ) ;
a s s e r tEqua l s ( 4 0 . 0 , sh ip . getKnots ( ) , 0 . 0 ) ;
a s s e r tEqua l s (2 , sh ip . getOwners ( ) . s i z e ( ) ) ;
a s s e r tEqua l s ( ” [ QueenElizabeth , Pr inceChar l e s ] ” ,

sh ip . getOwners ( ) . t oS t r i ng ( ) ) ;

TestVehic l e [ ] p r e d e c e s s o r s = sh ip . g e tPredec e s s o r s ( ) ;
TestVehic l e pd1 = p r e d e c e s s o r s [ 0 ] ;
a s s e r tEqua l s ( ”King George” , pd1 . getName ( ) ) ;
a s s e r tEqua l s ( ” Tes tSur faceVeh i c l e ” , pd1 . ge tC la s s ( ) . getSimpleName ( ) ) ;
TestVehic l e pd2 = p r e d e c e s s o r s [ 1 ] ;
a s s e r tEqua l s ( ”Queen V i c t o r i a ” , pd2 . getName ( ) ) ;
a s s e r tEqua l s ( ” TestVehic l e ” , pd2 . ge tC la s s ( ) . getSimpleName ( ) ) ;

//Now we acc ess the ’ sur face−v e h i c l e a s p e c t ’ o f the AmphibousVehicle
TestSur faceVeh i c l e s u r f a c e V e h i c l e =

( Tes tSur faceVeh i c l e )qm. getObject ( Tes tSur faceVeh i c l e . class ) ;
a s s e r tEqua l s ( ”QueenMary” , s u r f a c e V e h i c l e . getName ( ) ) ;
a s s e r tEqua l s (2000 , s u r f a c e V e h i c l e . getEnginePower ( ) , 0 . 0 ) ;
a s s e r tEqua l s ( ” [ QueenElizabeth , Pr inceChar l e s ] ” ,

s u r f a c e V e h i c l e . getOwners ( ) . t oS t r i ng ( ) ) ;

// Notice t h a t the common a t t r i b u t e s o f the
// ’ s h i p a s p e c t ’ and the ’ sur face−v e h i c l e a s p e c t ’ are p o i n t e r e q u a l .
asse r tTrue ( sh ip . getOwners ( ) == s u r f a c e V e h i c l e . getOwners ( ) ) ;
a s se r tTrue ( sh ip . getName ( ) == s u r f a c e V e h i c l e . getName ( ) ) ;
a s se r tTrue ( sh ip . g e tPredec e s s o r s ( ) == s u r f a c e V e h i c l e . g e tPredec e s s o r s ( ) ) ; }
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E.2 Reclassification Example

The next example illustrates the reclassification feature of the Java2OWL library. We define a class
SimpleStudent with an attribute semester and a subclass Freshman of SimpleStudent where the
semester is set to 1. The Freshman class has an extra attribute Mentor. A SimpleStudent instance
with semester = 2 whose semester is changed to 1 can be reclassified to become a Freshman

instance. The Java class definitions are:

@J2OWLClass
public class SimpleStudent {

private int semester ;

@J2OWLProperty(name = ” semester ” , s e t t e r=” setSemester ” )
public int getSemester ( ) {return semester ;}
public void se tSemester ( int semester ) { this . s emester = semester ;}

public SimpleStudent ( ){}
public SimpleStudent ( int semester ) { this . s emester = semester ;}

@J2OWLClass( Equiva lentClass = ” semester va lue 1” )
public stat ic class Freshman extends SimpleStudent {

@Override
public int getSemester ( ) {return 1 ;}

St r ing mentor ;
@J2OWLProperty(name = ”hasMentor” , s e t t e r=” setMentor ” )
public St r ing getMentor ( ) {return mentor ;}
public void setMentor ( S t r ing mentor ) { this . mentor = mentor ;} }

public stat ic void main ( St r ing [ ] a rgs ) {
args = new St r ing [ ] {

” bu i ld / t e s t / c l a s s e s /TestPackage/ SimpleStudent . c l a s s ” ,
” exo i ” , ” http ://www. lmu . de/ SimpleStudent . owl” ,
” exo f ” , ” bu i ld / t e s t / c l a s s e s /TestPackage/ SimpleStudent . owl” ,
” sync ” , ” t rue ” , ”debug” , ” t rue ” } ;

J2OCompiler . main ( args ) ; }}

Notice the annotation EquivalentClass = "semester value 1" for the class Freshman. To-
gether with class Freshman extends SimpleStudent this causes the OWL class Freshman to
become equivalent with SimpleStudent and semester value 1. Therefore a SimpleStudent

OWL individual whose semester is set to 1 becomes an instance of the OWL class Freshman.

The following code snippet shows how the reclassification works. After some preparation steps
we generate a Java SimpleStudent object James in the 4th semester and map it to the OWL
side. Then we give it a property hasMentor = “Billy” by attaching it at the corresponding OWL
individual. Afterwards the semester is set to 1, and the object is reclassified. As expected, the
new object is an instance of the Java class Freshman, and we can call the getMentor() method
for the new Freshman instance to retrieve the mentor “Billy”.

J2OManager manager = new J2OManager ( ”Manager” , J2OManager . Status .RUN, true ) ;
J2OOntologyManager omg = manager . getOntologyManager ( ) ;
S t r ing name = ” bu i ld / t e s t / c l a s s e s /TestPackage/ SimpleStudent . owl” ;
OWLOntology extOntology = omg . loadExtens ionOntology (name ) ;
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J2OCompiler comp = manager . getCompiler ( ) ;
comp . class2OWL ( SimpleStudent . class ) ;
comp . f i n i s h T r a n s l a t i o n ( ) ;
J2OIndividualManager img = manager . getIndvidualManager ( ) ;
img . act ivateSynchForClass ( SimpleStudent . class ) ; // do not f o r g e t t h i s !

//The p r e p a r a t i o n i s f i n i s h e d now .

SimpleStudent James = new SimpleStudent ( 4 ) ;
IndividualWrapper james = img . object2OWL ( James ) ;

OWLDataProperty hasMentor = omg . getOWLDataProperty ( ”hasMentor” ) ;

James . se tSemester ( 1 ) ;
james . setDataPropertyValue ( hasMentor , ” B i l l y ” ) ;

james . r e c l a s s i f y ( ) ;

//Now we t e s t the r e c l a s s i f i c a t i o n
Object student = james . g e tF i r s tOb j e c t ( ) ;
a s se r tTrue ( student instanceof Freshman ) ;
Freshman freshman = ( Freshman ) student ) ;
a s s e r tEqua l s ( ”James” , freshman . getName ( ) ) ;
a s s e r tEqua l s ( ” B i l l y ” , freshman . getMentor ( ) ) ;
// Notice t h a t the ’ hasMentor ’ p rop er ty o f the OWL i n d i v i d u a l
// has been t r a n s f e r r e d to the new Freshman o b j e c t .

St r ing mentor = ( St r ing ) (
james . getDataPropertyValues ( hasMentor ) . i t e r a t o r ( ) . next ( ) ) ;

//We can s t i l l acc es s the ’ hasMentor ’ p rope r ty .
a s s e r tEqua l s ( ” B i l l y ” , mentor ) ;
a s se r tTrue ( freshman . getMentor ( ) == mentor ) ;
//The Java a t t r i b u t e and the OWL pro per ty are p o i n t e r e q u a l .

Now the example gets extended a bit further. We define another class Teacher who teaches some
students. The generated OWL class is made equivalent to "teaches some SimpleStudent", such
that every object which teaches some students becomes automatically an instance of the OWL class
Teacher. The Java class Teacher itself is not related at all with SimpleStudent or Freshman.

@J2OWLClass( Equiva lentClass = ” teaches some SimpleStudent ” )
public class Teacher {

Set<SimpleStudent> s tudents = new HashSet<SimpleStudent >() ;

@J2OWLProperty(name = ” teaches ” , adder=”addStudent” )
public Set<SimpleStudent> getStudents ( ) {return s tudents ;}
public void addStudent ( SimpleStudent student ) {

s tudents . add ( student ) ;}}

The tests are done in the same setting as above. There is the SimpleStudent James who became
a Freshman. We ask him to teach himself by adding James as OWLObjectProperty teaches. Now
he should still be a Freshman, but in addition he should also be a Teacher, and, as a Java object
Teacher, he should have himself as a student.
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OWLObjectProperty teaches = omg . getOWLObjectProperty ( ” teaches ” ) ;

james . setObjectPropertyValue ( teaches , James ) ;
james . r e c l a s s i f y ( ) ; // Now he shou ld be a Freshman and a Teacher

Teacher t eacher = ( Teacher ) james . getObject ( Teacher . class ) ;
a s se r tTrue ( freshman == teacher . getStudents ( ) . i t e r a t o r ( ) . next ( ) ) ;
a s se r tTrue ( freshman == james . getObject ( Freshman . class ) ) ;

Notice that after reclassification there are two Java objects for the OWL individual James, one
in the Freshman class and one in the Teacher class. Only the Freshman instance, however, was
inserted into the students attribute of the Teacher object. The Teacher instance has the wrong
class to be inserted into the students attribute.

E.3 Reclassification Example with Relations with Properties

This example illustrates reclassification of objects with a reflexive-transitive relational attribute.
The reflexive-transitive closure is computed by the reasoner and mapped back to the Java side.
The Java class is

@J2OWLClass(name = ”Item” )
public class TestItem {

Set<TestItem> components = new HashSet<TestItem >() ;

@J2OWLProperty(name = ” hasPart ” , adder = ”addItem” , c l e a r e r = ” c l e a r I t ems ” ,
t r a n s i t i v e = true , r e f l e x i v e = true )

public Set<TestItem> getItems ( ) {return components ;}

public void addItem ( TestItem item ) {components . add ( item ) ; }

public void c l e a r I t ems ( ) {components . c l e a r ( ) ; } }

The following code snippet demonstrates the effect:

TestItem item1 = new TestItem ( ) ;
TestItem item2 = new TestItem ( ) ;
IndividualWrapper i t 1 = img . object2OWL ( item1 ) ;
IndividualWrapper i t 2 = img . object2OWL ( item2 ) ;

item1 . addItem ( item2 ) ;
TestItem item3 = new TestItem ( ) ;
IndividualWrapper i t 3 = img . object2OWL ( item3 ) ;
item2 . addItem ( item3 ) ;

a s s e r tEqua l s (1 , item1 . getItems ( ) . s i z e ( ) ) ;
i t 1 . r e c l a s s i f y ( true ) ;

a s s e r tEqua l s (3 , item1 . getItems ( ) . s i z e ( ) ) ;

After reclassification, item1.getItems() returns in fact all three items, and this is the reflexive-
transitive closure of the hasPart relation.
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E.4 Example with Map Types

The next example illustrates the treatment of Map-type attributes. Some of the accessor methods
below, for example setTexts, have an argument of type Object instead of the expected generic
type, in this case HashMap<Locale,String>. This circumvents a bug in the BCEL-5.2 library.
The class files of compiled Java classes store information about generic local variables in a Local-
VariableTypeTable. If BCEL-5.2 manipulates methods with such a LocalVariableTypeTable the
resulting binary class file is no longer syntactically correct, even if the LocalVariableTypeTable is
not touched at all. This bug is fixed in BCEL-5.3, but the version 5.3 is not yet released and still
has other problems. The way to get around these problems is to avoid local variables with generic
types in the accessor methods21.

@J2OWLClass(name=”Mapper” , synchron i s e=true )
public class TestMapper {

// F i r s t we t e s t f u n c t i o n a l d a t a P r o p e r t i e s

HashMap<Locale , Str ing> t e x t s = new HashMap<Locale , Str ing >() ;

@J2OWLProperty(name = ”hasText” , s e t t e r = ” setTexts ” ,
adder=”addText , addTextLogged” , remover=”removeText , removeTextLogged” ,
c l e a r e r=” c l earText ” , getKey=”getKey” )

public HashMap<Locale , Str ing> getTexts ( ) {return t e x t s ;}

public void setTexts ( Object t e x t s ) {
a s s e r t ( t e x t s instanceof HashMap ) ;
this . t e x t s = (HashMap<Locale , Str ing >) t e x t s ;}

public St r ing getText ( Loca le l o c a l e ) {return t e x t s . get ( l o c a l e ) ; }

public St r ing addText ( Loca le l o c a l e , S t r ing s t r i n g ) { . . . }
public void addTextLogged ( Locale l o c a l e , S t r ing s t r i ng , boolean l og ) { . . . }

public void removeText ( Locale l o c a l e ) { t e x t s . remove ( l o c a l e ) ; }

public void removeTextLogged ( Locale l o c a l e , boolean l og ) { . . . }

public void c l earText ( ) { t e x t s . c l e a r ( ) ; }

public Locale getKey ( St r ing s ) {return new Locale ( s ) ; }

// Now we t e s t r e l a t i o n a l o b j e c t P r o p e r t i e s o f type Map

HashMap<Str ing , Set<TestMapper>> f r i e n d s =
new HashMap<Str ing , Set<TestMapper>>();

@J2OWLProperty(name = ” hasFr iends ” , s e t t e r = ” se tFr i end s ” ,
adder=” addFriends , addFriend ” ,
remover=” removeFriends , removeFriend ” , c l e a r e r=” c l e a r F r i e n d s ” )

public HashMap<Str ing , Set<TestMapper>> getFr i ends ( ) {return f r i e n d s ;}

public void s e tFr i ends ( Object f r i e n d s ) {
a s s e r t ( f r i e n d s instanceof HashMap ) ;

21BCEL-5.3 has changed the treatment of RuntimeVisibleAttributes. Therefore the class J2OSynchroniser needs
to be adapted to BCEL 5.3 once it is released.
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this . f r i e n d s = (HashMap<Str ing , Set<TestMapper>>) f r i e n d s ;}

public Set<TestMapper> getFr i ends ( S t r ing key ) {return f r i e n d s . get ( key ) ; }

public void addFriends ( S t r ing key , Object f 1 ) {
a s s e r t ( f 1 instanceof Set ) ;
f r i e n d s . put ( key , ( Set<TestMapper>) f 1 ) ; }

public void addFriend ( St r ing key , TestMapper f ) { . . . }

public void removeFriends ( S t r ing key ) { f r i e n d s . remove ( key ) ; }

public void removeFriend ( St r ing key , TestMapper f ) { . . . }

public void c l e a r F r i e n d s ( ) { f r i e n d s . c l e a r ( ) ; }

// Now we t e s t r e l a t i o n data p r o p e r i e s o f type Map

HashMap<Str ing , S t r ing []> owners = new HashMap<Str ing , S t r ing [ ] > ( ) ;

@J2OWLProperty(name = ”hasOwner” , s e t t e r = ”setOwners ” ,
adder=”addOwner , addOwners” ,
remover=”removeOwner , removeOwners” , c l e a r e r=” clearOwners ” )

public HashMap<Str ing , S t r ing []> getOwners ( ) {return owners ;}

public void setOwners ( Object owners ) {
a s s e r t ( owners instanceof Map) ;
this . owners = (HashMap<Str ing , S t r ing [ ] >) owners ;}

public void addOwner ( S t r ing key , S t r ing owner ) { . . . }

public void addOwners ( S t r ing key , S t r ing [ ] owns ) {owners . put ( key , owns ) ; }

public void removeOwner ( S t r ing key , S t r ing owner ) { . . . }

public void removeOwners ( S t r ing key ) {owners . remove ( key ) ; }

public void clearOwners ( ) {owners . c l e a r ( ) ; }

The following code snippet from JUnit tests illustrates the usage of this class.

Loca le l o c d e = new Locale ( ”de” ) ;
Loca le l o c e n = new Locale ( ”en” ) ;
Loca le l o c f r = new Locale ( ” f r ” ) ;

TestMapper mapper1 = new TestMapper ( ) ;
img . object2OWL ( mapper1 ) ;
IndividualWrapper mapperWr1 = img . getIWR( mapper1 ) ;
TestMapper mapper2 = new TestMapper ( ) ;
img . object2OWL ( mapper2 ) ;
IndividualWrapper mapperWr2 = img . getIWR( mapper2 ) ;
TestMapper mapper3 = new TestMapper ( ) ;
img . object2OWL ( mapper3 ) ;
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IndividualWrapper mapperWr3 = img . getIWR( mapper3 ) ;

@Test
public void testTextAdd ( ) throws ParserExcept ion {

System . out . p r i n t l n ( ”addText” ) ;
mapper1 . addText ( loc de , ” Dies i s t e in deutscher Text” ) ;
mapper1 . addText ( loc en , ” This i s an Engl i sh Text” ) ;
iwr = img . g e t I n s t a n c e s (

” hasText de value \” Dies i s t e in deutscher Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s (

” hasText en value \” This i s an Engl i sh Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
mapper1 . c l earText ( ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasText en ” ) ) ;
mapper1 . addTextLogged ( loc de , ” Dies i s t e in neuer deutscher Text” , fa l se ) ;
iwr = img . g e t I n s t a n c e s (

” hasText de value \” Dies i s t e in neuer deutscher Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ; }

@Test
public void t e s tTextSet ( ) throws ParserExcept ion {

mapper1 . c l earText ( ) ;
Map<Locale , Str ing> s t r i n g s = new HashMap<Locale , Str ing >() ;
s t r i n g s . put ( loc de , ” Dies i s t e in Text” ) ;
s t r i n g s . put ( loc en , ” This i s a Text” ) ;
mapper1 . se tTexts ( s t r i n g s ) ;
iwr = img . g e t I n s t a n c e s ( ” hasText de value \” Dies i s t e in Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasText en value \” This i s a Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;

Map<Locale , Str ing> newstr ings = new HashMap<Locale , Str ing >() ;
newst r ings . put ( loc de , ” Dies i s t e in neuer Text” ) ;
newst r ings . put ( loc en , ” This i s a new Text” ) ;
mapper1 . se tTexts ( newst r ings ) ;
iwr = img . g e t I n s t a n c e s ( ” hasText de value \” Dies i s t e in Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (0 , iwr . s i z e ( ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasText en value \” This i s a Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (0 , iwr . s i z e ( ) ) ;
iwr = img . g e t I n s t a n c e s (

” hasText de value \” Dies i s t e in neuer Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s (

” hasText en value \” This i s a new Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;

@Test
public void testRemoveSet ( ) throws ParserExcept ion {

mapper1 . c l ea rText ( ) ;
Map<Locale , Str ing> s t r i n g s = new HashMap<Locale , Str ing >() ;
s t r i n g s . put ( loc de , ” Dies i s t e in Text” ) ;
s t r i n g s . put ( loc en , ” This i s a Text” ) ;
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mapper1 . se tTexts ( s t r i n g s ) ;
mapper1 . removeText ( l o c d e ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasText de ” ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasText en value \” This i s a Text\”ˆˆ s t r i n g ” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
mapper1 . removeTextLogged ( loc en , fa l se ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasText en ” ) ) ; }

@Test
public void t e s tFr i endSe t ( ) throws ParserExcept ion {

HashMap<Str ing , Set<TestMapper>> f r iendsmap =
new HashMap<Str ing , Set<TestMapper>>();

Set<TestMapper> f r i e n d s = new HashSet<TestMapper >() ;
f r i e n d s . add ( mapper2 ) ;
f r i e n d s . add ( mapper3 ) ;
fr iendsmap . put ( ” goodFriends ” , f r i e n d s ) ;
mapper1 . s e tFr i ends ( fr iendsmap ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr iends goodFr iends some {Mapper 1}” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr iends goodFr iends some {Mapper 0}” ) ;
a s s e r tEqua l s (0 , iwr . s i z e ( ) ) ;

HashMap<Str ing , Set<TestMapper>> o ld f r i endsmap =
new HashMap<Str ing , Set<TestMapper>>();

Set<TestMapper> o l d f r i e n d s = new HashSet<TestMapper >() ;
o l d f r i e n d s . add ( mapper1 ) ;
o ld f r i endsmap . put ( ” o ldFr i ends ” , o l d f r i e n d s ) ;
mapper1 . s e tFr i ends ( o ld f r i endsmap ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasFr iends goodFr iends ” ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr i ends o ldFr i ends some {Mapper 0}” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;

mapper1 . c l e a r F r i e n d s ( ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasFr i ends o ldFr i ends ” ) ) ; }

@Test
public void testFriendAdd ( ) throws ParserExcept ion {

mapper1 . c l e a r F r i e n d s ( ) ;
mapper1 . addFriend ( ” goodFriend ” , mapper2 ) ;
mapper1 . addFriend ( ” goodFriend ” , mapper3 ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr iends goodFr iend some {Mapper 1}” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr iends goodFr iend some Mapper” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;

Set<TestMapper> f r i e n d s = new HashSet<TestMapper >() ;
f r i e n d s . add ( mapper1 ) ;
mapper1 . addFriends ( ”ownFriend” , f r i e n d s ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFriends ownFriend some {Mapper 0}” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
}

@Test
public void testFriendRemove ( ) throws ParserExcept ion {
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mapper1 . c l e a r F r i e n d s ( ) ;
mapper1 . addFriend ( ” goodFriend ” , mapper2 ) ;
mapper1 . addFriend ( ” goodFriend ” , mapper3 ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr iends goodFr iend some {Mapper 1}” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;

mapper1 . removeFriend ( ” goodFriend ” , mapper2 ) ;
iwr = img . g e t I n s t a n c e s ( ” hasFr iends goodFr iend some {Mapper 1}” ) ;
a s s e r tEqua l s (0 , iwr . s i z e ( ) ) ;

mapper1 . removeFriends ( ” goodFriend ” ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasFr iends goodFr iend ” ) ) ; }

@Test
public void testOwnerSet ( ) throws ParserExcept ion {
HashMap<Str ing , S t r ing []> ownermap = new HashMap<Str ing , S t r ing [ ] > ( ) ;
S t r ing [ ] owners = new St r ing [ ] { ” M i l l e r ” , ” Jones ” } ;
ownermap . put ( ” regularOwners ” , owners ) ;
mapper1 . setOwners ( ownermap ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner regularOwners some {\” Jones \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner regularOwners some {\” M i l l e r \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;

owners = new St r ing [ ] { ”Bush” , ”Obama” } ;
ownermap . put ( ” secretOwners ” , owners ) ;
mapper1 . setOwners ( ownermap ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\”Obama\”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner regularOwners some {\” M i l l e r \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;
mapper1 . c learOwners ( ) ; }

@Test
public void testOwnerAdd ( ) throws ParserExcept ion {

mapper1 . c learOwners ( ) ;
mapper1 . addOwner ( ” secretOwners ” , ” Char les ” ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\” Char les \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ;

S t r ing [ ] owners = new St r ing [ ] { ”Tom” , ”Tim” } ;
mapper1 . addOwners ( ” secretOwners ” , owners ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\” Char les \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (0 , iwr . s i z e ( ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\”Tom\”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (mapperWr1 , iwr . get ( 0 ) ) ; }

@Test
public void testOwnerRemove ( ) throws ParserExcept ion {
mapper1 . c learOwners ( ) ;
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System . out . p r i n t l n ( ”removeOwner” ) ;
mapper1 . addOwner ( ” secretOwners ” , ” Char les ” ) ;
mapper1 . addOwner ( ” secretOwners ” , ”Jaque” ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\” Char les \”ˆˆ s t r i n g }” ) ;
mapper1 . removeOwner ( ” secretOwners ” , ” Char les ” ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\” Char les \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (0 , iwr . s i z e ( ) ) ;
iwr = img . g e t I n s t a n c e s ( ” hasOwner secretOwners some {\” Jaque \”ˆˆ s t r i n g }” ) ;
a s s e r tEqua l s (1 , iwr . s i z e ( ) ) ;
mapper1 . removeOwner ( ” secretOwners ” , ”Jaque” ) ;
a s s e r t N u l l (omg . getFirstOWLDataProperty ( ” hasOwner secretOwners ” ) ) ; }

// Now we t e s t the OWL to Java d i r e c t i o n .
// The o n t o l o g y TestMapperExt . owl con ta i ns some i n d i v i d u a l s .
@Test

public void testOWL2Java ( ) throws ParserExcept ion {
St r ing name = ” t e s t /TestPackage/TestMapperExt . owl” ;
omg . loadExtens ionOntology (name ) ;

Set<OWLNamedIndividual> inds = omg . g e t I n s t a n c e s ( ”Mapper” ) ;
a s s e r tEqua l s (3 , inds . s i z e ( ) ) ;
I t e r a t o r <OWLNamedIndividual> i t = inds . i t e r a t o r ( ) ;
OWLNamedIndividual NewMapper1 = i t . next ( ) ;
OWLNamedIndividual NewMapper2 = i t . next ( ) ;
OWLNamedIndividual NewMapper3 = i t . next ( ) ;
IndividualWrapper iwr1 = img . ind iv idua l2Java (NewMapper1 ) ;
TestMapper map1 = ( TestMapper ) ( iwr1 . getObject s ( ) [ 0 ] ) ;
a s s e r tEqua l s ( ” He l lo ” ,map1 . getText ( l o c e n ) ) ;
a s s e r tEqua l s ( ”Bonjour” ,map1 . getText ( l o c f r ) ) ;
I t e r a t o r <TestMapper> f r i e n d s = map1 . ge tFr i ends ( ” o ld ” ) . i t e r a t o r ( ) ;
a s s e r tEqua l s ( ”Name : Mapper3” , f r i e n d s . next ( ) . getText ( l o c e n ) ) ;
a s s e r tEqua l s ( ”Name : Mapper2” , f r i e n d s . next ( ) . getText ( l o c e n ) ) ; }
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