
Chapter 1
Keyword-Based Search over Semantic Data

Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

Abstract Enabling non-experts to publish structured or semantic data on the web is
an important achievement of the social web and one of the primary goals of the so-
cial semantic web. Making this data easily accessible in turn has received only little
attention. Querying in semantic wikis typically uses full text search for the textual
content and a web query language for the annotations. This has two shortcomings:
combined queries over content and annotations are not possible, and users either are
restricted to simple but vague keyword queries or have to learn a complex web query
language. In this chapter, we present an overview of KWQL, a query language that
combines keyword search and web querying. KWQL scales with a users’ experi-
ence and the sophistication of its information need by a seamlessly transition from
basic keyword queries to precise, sophisticated structured analysis queries. KWQL
allows for rich combined queries of full text, metadata, document structure, and
annotations. KWQL’s companion language visKWQL eases the authoring of such
combined queries further through a set of visual building blocks. The underlying
query engine provides the full expressive power of first-order queries, but at the
same time can evaluate basic queries at almost the speed of a conventional search
engine. Results of a user study suggest validate that users can quickly and with very
little training formulate KWQL and visKWQL queries, including structured queries.

Klara Weiand, Andreas Hartl, Steffen Hausmann, François Bry
Ludwig-Maximilians-Universität München, Oettingenstr. 67, 80538 München, Germany, e-mail:
klara.weiand@ifi.lmu.de, andreas-hartl@gmx.de, steffen.hausmann@ifi.lmu.de, bry@lmu.de

Tim Furche
Department of Computer Science and Institute for the Future of Computing, Oxford University,
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom e-mail: tim@furche.net

1

2 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

1.1 Introduction

For a long while, the creation of web content required at least basic knowledge of
web technologies, meaning that for many web users the web was de facto a read-
only medium. This changed with the arrival of the “social web,” when web applica-
tions started to allow users to publish web content without technological expertise.
Here, content creation is often an inclusive, iterative, and interactive process. Ex-
amples of social web applications include blogs, social networking sites, as well as
many specialized applications, for example for saving and sharing bookmarks and
publishing photos.

Social semantic web applications are social web applications in which knowl-
edge is expressed not only in the form of text and multimedia, but also through
informal to formal annotations that describe, reflect, and enhance the content. These
annotations often take the shape of RDF graphs backed by ontologies, but less for-
mal annotations such as free-form tags or tags from a controlled vocabulary may
also be available.

Wikis [29] are one example of social web applications for collecting and sharing
knowledge. They allow users to easily create and edit documents, so-called wiki
pages, using a web browser. The pages in a wiki are often heavily interlinked, which
makes it easy to find related information and browse the content.

Semantic wikis [43] are wikis that also offer – more or less sophisticated – formal
languages for expressing knowledge as machine processable annotations to wiki
pages. In traditional wikis, knowledge is given in the form of text in natural lan-
guage, and is not directly amenable to automated semantic processing. Information
can therefore only be located through full text keyword search or via simple, mostly
user-generated, structures like tables of content and links between pages. More so-
phisticated functionalities such as querying, reasoning, and semantic browsing are
not available. The goal behind semantic wikis is to provide at least some of these en-
hancements by relying on semantic technologies, that is, knowledge representation
formalisms and methods for automated reasoning.

To be able to leverage the knowledge contained in rich data repositories such as
semantic wikis and other social semantic applications, a query language for social
semantic web applications should be expressive enough to allow for precise selec-
tions using complex criteria and to enable the aggregation and combination of data,
and thus the derivation of new data through a simple form of reasoning. Automation
in the form of embedded queries – queries that are contained in a piece of content
and are evaluated when this content is retrieved – and continuous queries – queries
that are evaluated repeatedly at set intervals or when the data changes – further
requires query evaluation to operate without the need for human intervention.

Making it easy for non-experts to publish data on the web is an important
achievement of the social web and a primary goal of the social semantic web. The
goal of making the data thus produced easily accessible in turn has received rela-
tively little attention. This is problematic because users are likely to be less moti-
vated to participate in the creation of content if they cannot leverage the data that
they and others have contributed and the exploitation of the data is reserved to ex-

1 Keyword-Based Search over Semantic Data 3

pert users. The success of a social semantic web application crucially depends on
the active participation and the contributions of its users, most of which cannot and
should not be expected to have much experience with query languages.

Data retrieval in semantic wikis and other social (semantic) web applications is
currently realized through keyword search or web query languages. Keyword search
is the prevalent paradigm for search on the web. Its strength, and presumably the
main reason for its success, is that it is very accessible: there is no syntax that has
to be learned before queries can be issued, and relevant information can be found
without any knowledge of the structure of the underlying data. On the downside,
keyword search is inherently imprecise and inexpressive. It does not allow for the
specification of structure-based selection criteria, and often not even for logical op-
erations. As a consequence, queries remain vague. Even when users know precisely
which data they are interested in, they may not be able to express the corresponding
selection criteria merely through keywords.

Web query languages are in many respects the exact opposite of keyword search:
similar to queries on relational databases, web queries are highly specific and select
individual data items which can then be processed further to re-format the data or
deduce and display new knowledge. Once defined, these tasks can be performed au-
tomatically and without human intervention. Web query languages are comparable
to programming languages both in their expressive power and their complexity of
use. A high cognitive investment is required before a user can employ a web query
language to retrieve data from a given dataset: in addition to the schema, the user
has to know and understand the data types involved as well as the query language
itself. Especially for casual or beginning web users, acquiring this knowledge can be
a hard and laborious process, and many may lack the time, dedication, motivation,
or confidence to tackle it.

In summary, keyword search is generally more appropriate for search over
weakly structured or unstructured text, while web query languages are well suited
for querying structured data. In a social semantic web application one typically finds
both types of data. None of the methods currently available provides both a suffi-
cient level of expressiveness and ease of use.

This article describes the design and implementation of KWQL, a query lan-
guage for the semantic wiki KiWi. KWQL allows for rich combined queries over
textual content, metadata, document structure, and informal to formal semantic an-
notations. The language combines keyword search and web querying to enable a
form of querying that adapts to the user’s information need and knowledge and ac-
commodates simple search and complex selections alike. A novel aspect of KWQL
is that it combines both paradigms, keyword search and web queries, in a bottom-up
fashion. It treats neither of the two as an extension to the other, but instead inte-
grates both in one framework. Depending on the user’s knowledge and query intent,
the language can behave more like keyword search or more like web querying.

While querying the semantic wiki KiWi [44] is the main focus of this article,
the underlying ideas apply more generally to querying and search on the social and
social semantic web. As such, the concepts of KWQL could be transferred to de-

4 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

rive similar languages targeting other social semantic applications, and we consider
KWQL to be exemplary of a novel family of query languages.

The remainder of the article is structured as follows: Section 1.2 introduces wikis
and semantic wikis and gives an overview over the state of the art in querying in
semantic wikis and keyword querying of semi-structured data. The next section,
Section 1.3 describes the KiWi wiki and its conceptual model. Section 1.4 then
introduces KWQL and its syntax, and Section 1.5 gives a relational semantics for
the language. visKWQL, KWQL’s visual rending, is described in Section 1.6. A first
user evaluation of KWQL and visKWQL is described in Section 1.7. The following
section, Section 1.8, describes KWilt, KWQL’s patchwork-based implementation,
and gives the results of a performance evaluation.

1.2 State of the Art

This section introduces wikis and semantic wikis and gives an overview of the
search and querying functionalities provided by current semantic wiki engines. We
further summarize recent research on keyword search over semi-structured data.

1.2.1 Wikis: Collaborative Content Creation

In many respects, wikis are a prototypical social web application, and their success
is tightly connected to the proliferation of the social web: wikis are conceptually
simple, easy to use, and support users in the content creation process.

Apart from the original WikiWikiWeb1 wiki engine, there exists a large number
of wiki engines differing in their features, implementation, and application area, for
example MediaWiki,2 Atlassian Confluence,3 and PhpWiki.4

The basic elements of the conceptual model of a wiki are wiki pages and links
between them. Creating or editing a wiki page is no harder than using a word-
processing application, and content can be formatted using WYSIWYG editors or
wiki markup. Wikis are particularly well-suited for the collaborative, gradual cre-
ation of content, and they live from user participation: a wiki page may start out
as a short outline and grow and evolve as more people participate or more details
become known. A typical wiki pages is edited and enhanced repeatedly, meaning
that a final, definite version does not necessarily exist, but that each wiki page is a
perpetual work in progress.

1 http://c2.com/cgi/wiki/
2 http://www.mediawiki.org/
3 http://www.atlassian.com/software/confluence/
4 http://phpwiki.sourceforge.net/

1 Keyword-Based Search over Semantic Data 5

At the same, wikis as knowledge management applications could profit from im-
proved methods for structuring knowledge, making it more accessible and amenable
to automatic processing. As mentioned above, wiki pages are often heavily inter-
linked, meaning that related concepts are often connected. In terms of structuring
knowledge, this is a valuable contribution. Individual wiki pages, on the other hand,
are often weakly structured and only express knowledge as free text or multimedia.

The term “semantic wiki” is used to refer to two different types of systems [28,
43]: Semantic wikis of the first type (“wikitology” [24] or “wikis for semantics”)
use wiki technology as a means for the collaborative authoring of ontologies. The
main focus here is on creating semantic web data, and human-readable wiki con-
tent is only needed to support the editing process. When used in the second sense,
“semantic wiki” refers to a wiki that uses (social) semantic web technologies to en-
hance the functionality of the wiki and support the process of collaborative content
creation (“semantics for wikis”). Here, the focus is not (only) on metadata, but text
and multimedia content. Some semantic wiki engines fall clearly into one of these
two categories, while others can be used for both purposes [43]. In the following,
we use “semantic wiki” in the second meaning.

Semantic wikis extend conventional wikis by providing functionalities for ex-
pressing knowledge in a structured form. This is realized mainly by adding support
for annotations to data items, most frequently wiki pages and tags, but also smaller
portions of text [23]. The annotations may be freely chosen tags [12], but some-
times more formal mechanisms such as RDF backed by (imported) RDFS or OWL
ontologies are offered as well. In particular, several semantic wikis support limited
RDF annotations where the subject is always the URI of the annotated resource, and
predicate and object are provided by the user [47, 3, 4].

The annotations, whether they have been assigned manually or extracted (semi-)
automatically, may be used for realizing functionalities like consistency checking,
improved navigation, search, querying, personalization, context-dependent presen-
tation, and reasoning. Annotations are often represented in RDF. They can thus be
exported and integrated with data from other sources and are compatible with stan-
dard RDF technologies such as SPARQL.

The annotation of wiki content is optional, and semantic wikis do not require
users to add annotations. While in particular only some of the users may actually
annotate content, this can still enable all users of the semantic wiki to benefit from
the functionalities that semantic wikis offer over conventional wikis, for example
an automatically generated table of contents [43]. Furthermore, the semantic wiki
data may be formalized in a collaborative fashion over time, with different users
providing the textual content and informal and formal annotations. This holds espe-
cially when different modes of annotations are available, for example free-form tags
and RDF. Semantic wikis thus maintain, at least to some extent, the ease of use of
conventional wikis.

6 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

1.2.2 Searching and Querying in Semantic Wikis

Better search and querying is one of the main ways in which semantic wikis in-
tend to improve upon conventional wikis. The need for simple yet powerful data
retrieval [40, 2] and for combined queries over content and annotations [3] have
been pointed out in particular. So far, however, all semantic wikis that we are aware
of treat the querying of content and annotations separately [40, 43], while other
sources of data such as content structure and system metadata cannot be queried at
all.

In many cases, semantic wikis provide simple full text search for the querying
of textual content or RDF literals [23, 47, 39]. In addition, a standard RDF query
language such as SPARQL or RDQL can often be used for querying the annota-
tions [42, 12, 2, 1]. A number of semantic wikis also come with their own language
for querying annotations that can be used in addition to or instead of a conventional
RDF query language.

• KAON, the query language of COW [13], can make use of simple reasoning to
find query answers.

• Rhizome [46] and its query language RxPath aim at making RDF querying easy
for users who are already familiar with XML. To this end, RDF triples are
mapped to a virtual, possibly infinitely recursive tree which can then be queried
with XPath expressions.

• WikSAR [4] uses queries consisting of a series of predicate-object pairs. The an-
swer to such a query then consists of all wiki pages whose annotations match all
predicate-object conditions. Predicate and object can be connected by operators
for equality, ranges, and regular expressions.

• Two different query languages have been suggested for Semantic MediaWiki.
The first, referred to as “SMW-QL” by Bao et al [6], has a syntax similar to that
used to express annotations in SMW. SMW-QL supports subqueries, (implicit)
conjunction, disjunction, negation and comparison operators, but no variables.
By default queries return wiki pages, but so-called print requests can be used to
display specific property values in the query answers. Krötzsch and Vrandecic
[25] provide a semantics for SMW-QL through a translation to DL queries, Bao
et al [6] define a semantics that is based on the translation of SMW-QL queries
into logic programs. The second query language [17] employs keyword search
over RDF data (see Section 1.2.3). Users express their query intent using a num-
ber of keywords which are matched in the data using a fuzzy scheme that consid-
ers semantic and syntactic similarity and translated into SPARQL queries which
are displayed to the user in a visual, table-based form. The user can then select
the query that corresponds to her query intent and the matching entity tuples are
returned.

AceWiki [26] differs from all approaches discussed above in that it employs a
controlled natural language, Attempto Controlled English [15] (or ACE), to repre-
sent information in the wiki. The language is a subset of English but can be trans-
lated into a variant of first-order logic, meaning that it can be understood by humans

1 Keyword-Based Search over Semantic Data 7

and machines alike. Consequently, there is no distinction between content and an-
notations in AceWiki. The authors suggest that using ACE, queries can simply be
represented as questions.

Usability and expressiveness of the above query languages vary widely, however
none of the existing languages fulfills all criteria outlined in Section 1.1, namely
that it can be used without prior training, is expressive enough to allow complex
selections, and can be used to query not only annotations, but also content, content
structure and metadata.

1.2.3 Keyword Querying over Semi-Structured Data

When we talk about web queries, we subsume two distinct areas of research
and technology: Web search as provided for example by Google or Yahoo!, and
database-style queries on web data (mostly in the form of XML or RDF) as pro-
vided through languages such as XQuery or SPARQL.

Where web search allows us to operate on (nearly) all the web, database-style
web queries operate only on a small fraction. Where web search is limited to filter-
ing relevant documents for human consumption, web queries allow for the precise
selection of data items in web documents as well as their formatting, reorganiza-
tion, aggregation, and the generation of new data. Where web search can operate on
all kinds of web documents, web queries are usually restricted to a more homoge-
neous collection of documents (e.g., XHTML documents or DocBook documents).
Where web search requires a human in the loop to ultimately judge the relevance of
a search result, web queries allow automated processing, aggregation, and deduc-
tion of data. Where web search can be used by untrained users, web queries usually
require significant training to be employed effectively.

In the context of social semantic software, both aspects of web queries play an
essential role: We want to be able to precisely specify selection criteria for data
items and automatically derive new information, operations that squarely fall into
the domain of database-style web queries. On the other hand, the essential premise
of the social semantic web is accessibility to untrained users. In this sense a mecha-
nism closer to web search is needed. Web search and web queries have mostly been
treated separately in the past, but recently this has started to change in more than
one way.

The most significant effort towards combining some of the virtues of web search,
viz. being accessible to untrained users and being able to cope with vastly heteroge-
neous data, are keyword-based web query languages for XML and RDF documents.
Theses languages operate in the same setting as XQuery or SPARQL, but with an
interface suitable for untrained or barely trained users instead of a complex query
language. The interface is often (in label-keyword query languages) enhanced to al-
low not only bag-of-word queries but some annotations to each word, most notably
a context (e.g., that a term must occur as the author or title of an article). Results
are excerpts of the queried documents, though the precise extent is often determined

8 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

automatically rather than by the user. Thus, keyword-based query languages trade
some of the precision of languages like XQuery for a more accessible interface. The
yard- stick for these languages becomes an easily accessible interface (or query lan-
guage) that does not sacrifice the essential premise of database-style web queries,
namely that selection and construction are precise enough to allow for automated
processing of data.

We can distinguish three types of keyword-based query languages for structured
data according to the extent to which structure can be used as a selection criterion.

• In keyword-only query languages, queries consist of a number of terms which
are matched to the textual content of nodes in an XML or RDF document, and
in some cases to node or (in the case of RDF) edge labels. Queries make no
reference to the structure of the data. This category includes most keyword query
languages, like XKeyword [5, 20], XRank [16], Spark [54], and XKSearch [53].

• In label-keyword query languages such as XSearch [10] and XBridge [33], a
query term is a label-keyword pair of the form l:k. The term matches data where
a node with the label l contains, either directly or through a descendant node, text
matching the associated keyword k. It is thus possible to indicate the context in
which the keyword should occur.

• Keyword-enhanced query languages [35, 14, 45] extend traditional web query
languages with simple keyword querying. They allow for the specification of
structure to the extent to which it is known, but also include constructs for the
use of keyword querying where it is not. Keyword-enhanced query languages
constitute an extension of traditional query languages and therefore provide their
full expressive power.

Given that (some) web query languages also offer ways to specify queries when the
user lacks knowledge about the schema, for example through regular path expres-
sions in XPath, one might wonder what distinguishes traditional query languages
and keyword-enhanced query languages. As pointed out by Florescu et al [14] and
Schmidt et al [45], regular path expressions are useful when the schema is not com-
pletely known to the user, but not when the user has no knowledge of the schema
at all. The reason for this is that query evaluation in web query languages is not
optimized for evaluating vague queries. Furthermore, while the schema of the data
may not have to be known, knowledge of the query language itself is still necessary,
making web query languages unsuitable for casual users.

A second, orthogonal characteristic of keyword query languages is the way they
are implemented.

• Most keyword query languages are implemented as stand-alone systems that han-
dle all steps of the query evaluation.

• Another group of keyword query languages translate the keyword queries into
another query language and thus outsource the query evaluation. This category
includes many RDF keyword query languages [48, 54, 50], but to the best of our
knowledge only one XML language, XBridge [33], which translates keyword
queries into XQuery. The approach of Ladwig and Tran [27] takes an exceptional

1 Keyword-Based Search over Semantic Data 9

position in that it tightly integrates query translation and query evaluation, and
generates queries and candidate answers at the same time.

• Keyword-enhanced query languages finally build on existing systems by com-
bining conventional query languages like XPath or XML-QL with keyword-
querying techniques.

The majority of keyword query languages for semi-structured data in the litera-
ture are concerned with keyword-only querying of XML data. Fewer proposals exist
for querying RDF data, and a majority of them translate keyword queries into tra-
ditional query languages. Most XML keyword query languages, on the other hand,
evaluate queries without mapping them to another query language.

At the same time, keyword query languages for XML usually limit themselves
to the processing of tree-shaped data, that is, roughly to XML without hyperlinks.
Those languages that do work on graph-shaped XML, like XRank, ignore hyperlinks
during the matching and grouping process and only use them for ranking. A notable
exception is SAILER [31], which models XML and HTML documents as graphs.
As Schmidt et al [45] point out, one reason for the relative lack of keyword querying
for graph-shaped XML is the expected increase in complexity and thus processing
time, which would be very problematic in an application area dealing with large
amounts of data.

Similarly, the lack of RDF keyword query languages that evaluate queries di-
rectly can be attributed to the fact that RDF is graph-shaped and cannot be converted
into tree-shaped data as easily as XML. In addition, querying RDF poses additional
challenges because of labeled edges and blank nodes. A possible way to overcome
these challenges is to summarize the RDF graph into a different structure [41, 50],
but this comes at the cost of partially ignoring the structure of the data and thus
reducing the granularity of the query result.

For XML querying, on the other hand, the grouping of matches is of great impor-
tance, and it is a central aspect of many approaches. The reason why determining
these semantic entities in structured data is so important to keyword querying is that,
in contrast to traditional query languages, queries are never fully specified, and in
fact often cannot be fully specified by the user. The inferred semantics are what is
used to determine what constitutes a relevant result.

Various heuristics for grouping have been proposed, a large majority of which are
refinements of the established concept of the Lowest Common Ancestor (LCA) [18],
the most specific element that is an ancestor to at least one match instance of each
keyword. These include for example SLCA [53], MLCA [35], CVLCA [30], and
interconnection semantics [10]. All of these approaches add constraints to LCA in
order to remedy the problem of false positives in LCA and improve the grouping
of matched nodes according to their semantic entities. The approaches differ in the
filter that they apply to remove undesirable results from the set of LCA nodes; each
of them produces a set of results that is a subset of the results obtained by applying
LCA.

The different heuristics for grouping aim at being universal or at least versatile;
on the other hand, they are data-driven and make assumptions about the relations
between structure and semantics that may not be universal. Consequently, all LCA-

10 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

based grouping strategies are not universally applicable and under certain circum-
stances may lead to both false positives and false negatives [49]. This raises the
question to what extent it is possible to reliably deduce semantics from structural
characteristics of data alone.

While most of the approaches determine the LCA or a variant thereof automat-
ically based on keyword match instances, an alternative approach that was used
in XKeyword [5, 20] but also mentioned in connection with XRank [16] and em-
ployed in keyword querying databases [8, 11] is to manually group the data into
concepts and thus pre-define the possible query answer components. This method
uses an extra level of processing where parts of query answers are defined a priori
and therefore independent of a specific query. An obvious disadvantage is that it
requires users or administrators to invest time and effort to define the groupings.

A small number of very recent approaches group keyword matches not just based
on structure, but also take the distribution of keyword matches and node types in the
data into account [34, 7]. Whether these methods will solve the problems associated
with LCA-based grouping remains to be seen.

An important characteristic of traditional query languages, namely the targeted
and flexible retrieval of elements, can be found only in two of the presented stand-
alone keyword query languages, in that of Cohen et al [10] and in XSeek [37, 36].
Both of these languages return the content of a node whose label is matched. How-
ever, neither of them allows for the binding of specific values to variables. Query
results thus cannot be used further in construction terms. Furthermore, it is not pos-
sible in XSeek to specify explicitly that the content of a node with a specific label
should be retrieved. Rather, the necessary information is inferred from the keyword
query and is therefore relatively hard to control by the user, even if she knows ex-
actly which nodes she would like to have returned.

Keyword-enhanced query languages, on the other hand, allow for a more targeted
selection and enable construction to varying degrees. Schmidt et al [45] only retrieve
the label of the LCA node, the approach of Florescu et al [14] makes the granular-
ity of the return value dependent on the specificity of the query, and Schema-Free
XQuery allows for the binding of variables to specific nodes in an entity subtree.

Flexibility with respect to the data type, i.e., the ability to query data in differ-
ent formats, has received relatively little attention. XRank and Sailer can be used
to query both XML and HTML documents, but do so mainly by treating HTML
documents as unstructured text. The combined querying of XML and RDF is par-
ticularly desirable in the context on the semantic web, where not all content of the
(XML) data is necessarily represented in (e.g., RDF) metadata, or vice versa [9]. If
both could be queried using a single query language, recall would be increased, and
users would only have to familiarize themselves with one query language.

While to the best of our knowledge there are currently no systems for the com-
bined keyword querying of XML and RDF data, a number of approaches to keyword
querying are explicitly concerned with queries over HTML and XML data and re-
lational databases [22, 32], thereby realizing data type flexibility to a certain extent.

1 Keyword-Based Search over Semantic Data 11

1.3 The KiWi Wiki

KiWi5 is a semantic wiki with extended functionality in the areas of information ex-
traction, personalization, reasoning, and querying. KiWi relies on a simple, modular
conceptual model consisting of the following building blocks:

Content Items are the primary units of information in KiWi, they correspond
roughly to Wiki pages in other Wikis, but they can be nested: A content item can
include other content items. The nesting of content items then forms a tree struc-
ture. Each content item has a URI through which it is accessible and uniquely
identifiable. Content items can contain fragments, links and tags. A content item
consists of text or multimedia and an optional sequence of contained content
items. Thus, content item nesting provides a conventional structuring of docu-
ments, for example a chapter may consist of a sequence of sections. For reasons
of simplicity, content item containment precludes any form of overlapping or of
cycles, and thus a content item can be seen as a directed acyclic graph (of content
items).

Text Fragments are user-defined continuous portions of text within contents
items. They can consist of a word, a sentence, or any other section of text, and can
be annotated. Text fragments are useful for – especially collaborative – document
editing for adding annotations like “improve transition”, “style to be polished”
or “is this correct?”. While content item express the structure of written text, text
fragments convey narratives. Fragments can be nested but do not overlap and
do not span over content items. Fragments of this kind are generally desirable,
but are problematic with respect to query evaluation. While content items allow
the authors to create and organize their documents in a modular and structured
way, the idea behind fragments is to enable the annotation of pieces of content
independently of the canonical structure given through content item nestings. If
content items are like chapters and sections in a book, then fragments can be seen
as passages that readers mark; they are individual and linear and in that transcend
the structure of the document, possibly spanning, fragment across paragraphs or
sections.

Links are simple hypertext links and can be used for relating content items to
each other or to external web sites. Links have a single origin, which is a content
item, an anchor in this origin, and a single target, which is also a content item.
Links can be annotated.

Tags are meta-data that can be attached to content items, fragments and links,
describing their content or properties. They can be added by users, but can also
be created by the system through automatic reasoning. Two kinds of annotations
are available: tags and RDF triples. Tags allow to express knowledge informally,
that is, without having to use a pre-defined vocabulary, while RDF triples are
used for formal knowledge representation, possibly using an ontology or some
other application-dependent pre-defined vocabulary. KWQL as presented here

5 http://www.kiwi-project.eu

12 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

only supports the querying of tags, but the integration of RDF query facilities is
discussed in Weiand [51].

Structure, within as well as between resources, plays an important role for ex-
pressing knowledge in the wiki, ranging from tags to complex graphs of links or
content item containment.

In the following, resources refers to the basic concepts in the data model – content
items, links, fragments and tag assignments (in the following referred to as “tag”)
and qualifiers refers to properties of resources like meta-data and content. Qualifier
values, that is, the content associated with qualifiers, are of different types depending
on the type of the qualifier. Qualifiers referring to data and metadata are associated
with data in the form of dates, integers, URIs or text. Structural qualifiers on the
other hand describe nesting and linking relationships among pairs of content items
or fragments. When used in a query, they take as a value a subquery describing the
linked or nested resource.

1.4 KWQL: Principles and Syntax

KWQL, pronounced “quickel,” is a rule-based query language that combines the
characteristics of keyword search with those of web querying in order to enable ver-
satile querying in the KiWi wiki. The language allows for rich combined queries
of textual content, metadata, document structure, and informal to formal seman-
tic annotations. KWQL queries range from elementary and relatively unspecific to
complex and fully specified (meta-)data selections.

The key principle of KWQL is that the complexity of queries increases with
their expressiveness, enabling a gradual learning of the language where required.
Beginning users can immediately profit from using KWQL by posing basic keyword
queries. As users learn more about the system and the data contained in it, their
information needs might begin to become more complex. KWQL allows users to
learn the advanced features of the language bit by bit as required to realize their
query intents.

KWQL does not require a specific amount of learning from the user – it is likely
that some users will never venture past basic keyword queries, while others may
only learn to use some slightly advanced constructs but not the full language. A
third group may invest more time, study the full syntax, and use it to write complex
rules. The goal for KWQL is to equally accommodate all of these users, letting them
use as much or as little of the language as suits their needs.

KWQL queries may be vague and amount to simple full text search, or take the
shape of selections of individual data items using precise constraints. The language
is designed to support both types of queries, one similar in functionality to web
search, the other similar to web querying, as well as the range of queries in between.

Full KWQL rules consist of a query body which specifies the data to be selected,
and an optional head indicating how this data should be processed further. In the

1 Keyword-Based Search over Semantic Data 13

following, we will focus on query bodies, that is, pure selection queries, and exclude
the discussion of construction and reasoning in KWQL.

Query bodies can express selections of varying levels of complexity using any
combination of data sources in the wiki. For example, a content item selection can
refer not only to the textual content of the content item to be selected, but also to the
structuring of its contained content items, to the links from or to the content item,
and to its annotations. In short, KWQL is fully aware of the underlying conceptual
model.

To improve the user experience, and simplify the mental transfer of the query
intent into a query, query bodies take the shape of abstracted descriptions of the data
to be matched. This query-by-example-like syntactic style is further substantiated by
the fact that KWQL query terms are injective, meaning that no two query terms may
match the same data item. For example, when a query body describes a content item
with two tags, one with name “wiki” and one created by the user Mary, the query
will retrieve only content items where the two conditions hold for two distinct tags,
but not those where a single tag satisfies both criteria but no other tag meets either of
them. Apart from enhancing the expressive power of KWQL, injectivity also more
tightly couples the user experience – what the user sees and perceives when he uses
the wiki – to the way in which queries are expressed in KWQL.

Each query body evaluates to a set of content items, namely those that are com-
patible with the given description. Compatibility here means that the content item
has all the properties specified in the query body and may in addition have any
number of other properties not in contradiction with the selection criteria.

KWQL’s scaling with user experience and the specificity of the query intent, is
realized through far-reaching and comprehensive support for the under-specification
of queries. The simplest – and at the same time most vague – description of content
items to be matched consists of one or several keywords that the content items must
contain. When the context in which the keywords may occur is not restricted fur-
ther, all content items that contain the given keywords in their text, title, fragments,
links, tags, or associated metadata – but not in linked or nested content items – are
compatible with the query and returned as results. Basic keyword queries in KWQL
therefore constitute a true full text search over all parts of the individual content
items.

To make queries more selective and precise, the structural context in which the
keywords should occur can be specified fully or in part. In addition to conjunction,
which is implicitly assumed when no operator is given, operators for disjunction
and negation may be used. KWQL bodies thus amount to descriptions of the data to
be retrieved that, depending on the users’ knowledge and information need, can be
more or less specific.

This approach lends itself particularly well to stepwise querying, the gradual re-
finement of queries: starting with explorative queries using a small set of keywords,
users can go through several iterations of evaluating a query, examining the results,
and then further substantiating the query until the desired information is found.

KWQL allows for the selection of data based on the structure of content items and
fragments through the child and descendant qualifiers. To keep the language

14 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

simple, navigational queries are avoided and no qualifiers are offered for parents
and ancestors. Olteanu et al [38] have shown that adding these backward axes does
not increase the expressiveness of a query language.

KWQL’s structural qualifiers give rise to recursive data retrieval through a wiki
page structure. These qualifiers take subqueries as a value, that is, arbitrary KWQL
queries specifying selection constraints on a linked or nested content item or frag-
ment. Structure qualifiers can thus be seen as edges to other content items or frag-
ments, and recursive querying as traversal of the resulting graph.

Link traversal can be expressed similarly. It should be noted that, despite the fact
that structural queries and link traversals can be nested, no infinite loops can occur.
This is due to the fact that queries are always finite and KWQL does not support
Kleene closure.

Query bodies may also contain variables. In the query evaluation process, these
are bound to specific values of the matching content items, for example their authors
or the titles of the content items that they link to. Variables can serve three purposes:

• To bind values for further use in the construction part of a rule.
• As a wildcard or existential quantifier.
• To enforce that two qualifiers have identical values. In KWQL, all occurrences

of a variable in a query body must have the same value; using the same variable
several times therefore amounts to imposing equality constraints on the values of
the respective qualifiers.

KWQL supports two types of queries: regular queries, evaluated only once, and
embedded queries. Embedded queries are part of a content item and are evaluated
every time the content is loaded. They enable pre-defined views that always display
the latest information without need for manual updating.

Syntax
Table 1.1 lists all qualifier types together with the resources in which they can

appear, the data type of their value, and the arity of the qualifier term. * and +
here are used as in regular expressions, indicating that the qualifier can appear any
number of times (*), or arbitrarily often but at least once (+).

Non-structural qualifiers and sub-resources describe the intra-content item struc-
ture. Structural qualifiers impose constraints on the inter-content item structure, and
the inter-fragment structure in the case of child and descendant.

A (somewhat simplified) grammar for KWQL query bodies is given in Fig-
ure 1.1. Examples of KWQL queries together with their natural language trans-
lations are shown in Table 1.2.

1.5 Semantics

For defining a formal semantics of KWQL, we introduce an abstraction of the data
model of KWQL, called KWQL graphs.

1 Keyword-Based Search over Semantic Data 15

Qualifier Resource Type(s) Value Type Arity

data

title content item string 1
text content item; fragment string 1
anchorText link string 1
name tag string 1

metadata

URI content item; fragment; tag URI 1
author content item; fragment; tag string +
created content item; fragment; tag date 1
lastEdited content item date 1
numberEdits content item integer 1

structure

child content item content item *
child fragment fragment *
descendant content item content item *
descendant fragment fragment *
target link content item 1

Table 1.1 KWQL qualifier types

〈kwql-query〉 ::= 〈resource-term〉
〈resource-term〉 ::= 〈value-term〉 | 〈qualifier-term〉

| 〈structure-term〉
| 〈resource-term〉 (‘OR’ | ‘AND’)? 〈resource-term〉
| ‘(’ 〈resource-term〉 ‘)’
| ‘NOT’ 〈resource-term〉
| 〈resource〉 ‘(’ 〈resource-term〉 ‘)’

〈resource〉 ::= ‘link’ | ‘ci’ | ‘fragment’ | ‘tag’
〈structure-term〉 ::= (‘child’ | ‘descendant’ | ‘target’) ‘:’

〈resource-term〉
〈value-term〉 ::= 〈STRING〉
〈qualifier-term〉 ::= 〈qualifier〉 ‘:’ (〈value-term〉 | 〈variable〉)
〈qualifier〉 ::= ‘text’ | ‘title’ | ‘name’ | ‘URI’ | ‘agree’

| ‘disagree’ | ‘lastEdited’ | ‘numberEd’
| ‘author’ | ‘created’ | ‘anchorText’

〈variable〉 ::= ‘$’〈IDENTIFIER〉

Fig. 1.1 KWQL Syntax

Definition 1 (KWQL Graph). Let Q = {text, title, . . .} be the set of all n KWQL
qualifiers and V the set of all qualifier values. Then, a KWQL graph is a (n+ 6)-
tuple G = (C ,F ,L ,T ,S,C,Qλ1 , . . . ,Qλn), where
• C is the set of all content items (wiki pages),
• F is the set of all fragments,
• L is the set of all links,

16 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

Java Content items containing “java” di-
rectly or in any of its tags or other
meta data

ci(author:Mary) Content items authored by Mary
ci(Java OR (tag(XML) AND author:Mary)) Content items that either contain

“java” or have a tag containing
“XML” and are authored by Mary

ci(tag(name:$x author:Mary) tag(name:$x author:John)) Content items that are tagged with the
same tag by both John and Mary

ci(tag(episode) tag(name:like author:Mary) tag(name:like
author:John))

“Episode” content items that both
Mary and John like

ci(tag(Java) link(target:ci(Lucene))) Content items with a tag containing
“java” that contain a link to a content
item containing “lucene”

ci(URI:$a tag(character) link(target:ci(tag(location)
link(target:ci(URI: $a)))))

Character content items that link to a
location content item that links back
to them

Table 1.2 KWQL example queries

• T is the set of all tags,
• R := C]L]T]F is the set of all resources,
• S ⊂ (C ×C<)∪ (F ∪F<)∪ (L ∪L<) is the association relation between re-

sources where C< = F ∪L ∪T ,F< = L ∪T ,L< = T ∪C ∪F ,
• C⊂ C × (C ∪F) is the containment relation between wiki pages and fragments

and C+ =
⋃

n≥1 Cn is the transitive closure of C, and
• for each qualifier λ ∈Q, Qλ ⊂R×V associates the values for λ to a KWQL

resource.

The KWQL semantics is defined based on KWQL graphs and given in Table 1.3
in terms of three functions, JKci, JK, and JKdir. A KWQL query is constrained by JKci
to return only content items (i.e., elements of C). Most expressions can occur in two
contexts, represented by the semantic functions JK and JKdir: In the first context a
query such as Java returns all resources that contain “Java” directly in any of their
qualifiers or indirectly in the qualifiers of any of their fragments, tags, and links.
In the second context only resources that contain “Java” directly are returned. The
exception to this rule are keyword queries which are always interpreted in the first
manner.

The semantics in Table 1.3 handles variables, but omits the injectivity constraints
for readability reasons. To handle variables, we introduce the set I of KWQL vari-
ables and the set B = 2I×V of possible variable assignments (pairs of variables
and value). We further extend the set operators ∪ and ∩ to pairs of resources and
variable assignments as follows: Let A,B ∈ 2R×B .

Then AuB = {(r,β) ∈ R ×B : (r,β ′) ∈ A∧ (r,β ′′) ∈ B∧ β = β ′ ∩ β ′′ ∧ β 6=
/0}, AtB = {(r,β ′ ∪β ′′) ∈R×B : (r,β ′) ∈ A∧ (r,β ′′) ∈ B}∪{(r,β ′) ∈R×B :
(r,β ′) ∈ A∧@β ′′ : (r,β ′′) ∈ B}∪{(r,β ′) ∈R×B : (r,β ′) ∈ B∧@β ′′ : (r,β ′′) ∈ A}.

1 Keyword-Based Search over Semantic Data 17

J〈kwql-query〉Kci = π1(J〈kwql-query〉K(/0))∩C

J〈STR〉Kdir(β) = J〈STR〉K(β) =
{
(r,β) ∈R×B : ∃λ ,v : Qλ (r,v)∧contains(v,〈STR〉)

}
∪{

(r,β) : ∃r′ ∈R : S(r,r′)∧ (r′,β) ∈ J〈STR〉K)(β)
}

J〈qualifier〉‘:’〈STRING〉Kdir(β) =
{
(r,β) ∈R×B : Q〈qualifier〉(r,v)∧contains(v,〈STRING〉)

}
J〈qualifier〉‘:’〈STRING〉K(β) = J〈qualifier〉‘:’〈STRING〉Kdir(β)∪{

(r,β) : ∃r′ ∈R : S(r,r′)∧ (r′,β) ∈ J〈qualifier〉‘:’〈STRING〉K(β)
}

J〈qualifier〉‘:’‘$’〈IDENT〉Kdir(β) =
{
(r,β ∪{(〈IDENT〉,v)}) ∈R×B : Q〈qualifier〉(r,v)∧

(@v′ : (〈IDENT〉,v′) ∈ β ∨ (〈IDENT〉,v) ∈ β)
}

J〈qualifier〉‘:’‘$’〈IDENT〉K(β) = J〈qualifier〉‘:’〈STRING〉Kdir(β)∪{
(r,β) : ∃r′ ∈R : S(r,r′)∧ (r′,β) ∈ J〈qualifier〉‘:’‘$’〈IDENT〉K(β)

}
J〈resource〉‘:’〈res-term〉Kdir(β) =

{
(r,β ′) ∈R×B : type(r,〈resource〉)∧ (r,β ′) ∈ J〈res-term〉Kdir

}
J〈resource〉‘:’〈res-term〉K(β) = J〈resource〉‘:’〈res-term〉Kdir(β)∪{

(r,β) : ∃r′ ∈R : S(r,r′)∧ (r′,β) ∈ J〈resource〉‘:’〈res-term〉K(β)
}

J‘child’‘:’〈kwql-query〉K(β) =
{
(r,β ′) ∈ (C ∪F)×B : ∃r′ ∈R : C(r,r′)∧ (r′,β ′) ∈ J〈kwql-query〉K

}
J‘descendant’‘:’〈kwql-query〉K(β) =

{
(r,β ′) ∈ (C ∪F)×B : ∃r′ ∈R : C+(r,r′)∧ (r′,β ′) ∈ J〈kwql-query〉K

}
J‘target’‘:’〈kwql-query〉K(β) =

{
(r,β ′) ∈L ×B : ∃r′ ∈R : S(r,r′)∧ (r′,β ′) ∈ J〈kaw-query〉K

}
J〈res-term〉1 〈res-term〉2K(β) = J〈res-term〉1K(β)uJ〈res-term〉2K(β)
J〈res-term〉1‘AND’〈res-term〉2K(β) = J〈res-term〉1K(β)uJ〈res-term〉2K(β)
J〈res-term〉1‘OR’〈res-term〉2K(β) = J〈res-term〉1K(β)tJ〈res-term〉2K(β)
J‘(’〈res-term〉‘)’K(β) = J〈res-term〉K(β)
J‘NOT’‘(’〈res-term〉‘)’K(β) = R \π1(J〈res-term〉K(β))×{β}
J〈res-term〉1 〈res-term〉2Kdir(β) = J〈res-term〉1Kdir(β)uJ〈res-term〉2Kdir(β)

J〈res-term〉1‘AND’〈res-term〉2Kdir(β) = J〈res-term〉1Kdir(β)uJ〈res-term〉2Kdir(β)

J〈res-term〉1‘OR’〈res-term〉2Kdir(β) = J〈res-term〉1Kdir(β)tJ〈res-term〉2Kdir(β)

J‘(’〈res-term〉‘)’Kdir(β) = J〈res-term〉Kdir(β)

J‘NOT’‘(’〈res-term〉‘)’Kdir(β) = R \π1(J〈res-term〉Kdir(β))×{β}

Table 1.3 Semantics for KWQL

1.6 visKWQL

This chapter describes visKWQL Hartl et al [19], a visual rendering of KWQL that
allows to expressing queries using a visual formalism.

visKWQL fully supports KWQL in the sense that every KWQL query can be ex-
pressed as an equivalent visKWQL query and vice versa. In order to avoid introduc-
ing additional constructs and thus additional complexity, the rendering stays close
to the textual language in its visual representation: visKWQL uses a form-based
approach. All KWQL elements, including resources, qualifiers, and operators, are
represented as boxes. Resource-value or qualifier-value associations are represented
box nestings. Boxes consist of a label, the name of the represented KWQL element,
and a body, which can hold one or more child boxes. This approach has several
advantages: it stays close to KWQLs textual structure, keeping visKWQL simple
and making it easy to translate between the two representations; it also lends itself
well to rendering in HTML. Figure 1.2 shows an example of a visKWQL query cor-
responding to the textual KWQL query tag(author:Mary AND name:wiki), which

18 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

Fig. 1.2 A visKWQL query

Fig. 1.3 The KiWi Query Builder

retrieves content item that Mary has tagged with “wiki” or that contain a fragment
or link with such a tag.

An accompanying editor, the KWQL Query Builder (KQB, see Figure 1.3), al-
lows for the easy and straightforward construction of queries using drag-and-drop,
and in addition supports the user during query construction by displaying tooltips,
preventing syntactic errors where possible, and by pointing the user to syntactically
incorrect parts of a query. All actions in the editor apart from entering text into text
fields consist of drag-and-drop or left-click operations. There are no context menus
or other interaction modes that might confuse users.

1 Keyword-Based Search over Semantic Data 19

The KQB further provides features like information hiding to only display parts
of larger queries, and the highlighting of all occurrences of a variable when the
mouse pointer is positioned over a variable in a query.

One particularly important feature of KQB is round-tripping, which allows users
to edit a query in both representations, visual and textual, at the same time, and
see any changes made to one representation reflected in the other. The side-by-
side display of both representations offers the additional advantage of helping users
to learn KWQL by creating queries in visKWQL. Users do not have to decide in
advance which formalism, textual or visual, they use to create a query, but should
be able to switch between both at any time. For example, the user can start with a
simple textual query, add an element to it in the visual representation, and finally
edit a value in the textual representation before evaluating the query.

The visual KWQL query editor does not require the installation of special soft-
ware or browser plug-ins, but instead is implemented using DHTML, with HTML
and CSS for the presentation and Java Script for the program logic and user inter-
action. As a consequence, the system runs completely on the client side, within the
users web browser and the translation from visKWQL to KWQL can be seen as a
serialization of the visual query.

1.7 User Evaluation

This section describes the setup and results of a user study performed to evaluate
the suitability of KWQL and visKWQL for querying tasks in the KiWi wiki. A
question of particular interest is whether the results differ (1) between users with
varying amounts of previous experience in the area of query languages and social
semantic software and (2) between participants using textual KWQL and those using
its visual rendering.

The evaluation discussed here was performed as a single-session experiment
where participants were given a short introduction into the KiWi wiki and, depend-
ing on the group they had been assigned to, KWQL or visKWQL, were then asked
to formulate queries ranging from simple and vague to precise and expressive. In a
second task, participants were confronted with KWQL or visKWQL queries which
they then translated into natural language descriptions of the data selected by the
queries. Throughout the process, participants were encouraged to write down their
thoughts and opinions on KiWi, the query language and individual tasks.

However, to limit the scope of the experiment and focus on the aspects outlined
above, several factors are intentionally not treated in this first evaluation. These in-
clude the gradual, self-paced learning process, user’s individual query intents, long-
distance effects and individual preferences for either KWQL or visKWQL.

20 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

1.7.1 Experimental Setup and Execution

To reflect the collaborative process of content creation and annotation, several user
accounts were created in an installation of the KiWi wiki. Each account was used to
compose a number of content items containing text from a wiki on the TV show The
Simpsons.6 These content items were then annotated with tags. The final dataset,
used in this study, consisted of 653 content items.

Twenty-one participants were recruited via an internet forum aimed at LMU Mu-
nichs computer science students and via announcements in several computer science
lectures at the university. Sixteen of the participants were students of computer sci-
ence or media computer science, one was a researcher in a non-related area of com-
puter science, and four participants were students of subjects other than computer
science.

Before the experiment, participants were asked to fill out a questionnaire about
their previous experience in areas relevant to semantic wikis and KWQL such as the
semantic web, tagging and XML; participants were also asked which programming
and query languages they knew. Each participant was then randomly assigned to
either the KWQL or the visKWQL group.

In an introductory phase, participants were allowed to familiarize themselves
with the KiWi wiki and KWQL or visKWQL for 30 minutes. This was followed
by a query creation task and a query understanding task, which respectively lasted
45 and 15 minutes. The objective of the query creation task was to use KWQL
or visKWQL to answer questions, given in natural language, about the data in the
wiki. In total, the task consisted of ten assignments of increasing difficulty. In the
query understanding task, participants were given six KWQL or visKWQL queries
of intermediate to advanced complexity, and were asked to describe the underlying
query intent, that is, the common characteristics of the content items selected by
each query, using natural language.

1.7.2 Results

Participants’ self-assessed average knowledge of various areas relevant to KWQL
and visKWQL was very similar for the two groups. The only concepts participants
were familiar with to some extent were wikis, XML, and tags.

For the analysis, participants were divided into two groups based on their previ-
ous knowledge of query languages, social software and semantic web technologies.
In the following, participants will often be referred to as “novice participants” or
“advanced participants” based on the group they were assigned to. Depending on
previous knowledge and the query language used, each participant thus belonged to
one of four groups. The number of participants in each group was between four and
six.

6 http://simpsons.wikia.com/wiki/Simpsons Wiki

1 Keyword-Based Search over Semantic Data 21

KWQL visKWQL overall
novice 7.8 8.2 8.02
advanced 8.6 8.0 8.34
overall 8.20 8.12 8.16

Table 1.4 Average number of questions (out of 10) answered

KWQL visKWQL overall
novice 53.33 35.66 43.70
advanced 78.17 93.33 84.91
overall 65.75 58.73 62.24

Table 1.5 Average percentage of given answers that are correct

Task 1: Query creation
Table 1.4 shows the average number of questions, out of a total of ten, answered

by the participants in each group (ignoring whether the solution was correct or not).
The number is higher for advanced participants (8.34) compared to novice partici-
pants (8.02), and slightly higher for KWQL users (8.20) than for visKWQL users
(8.12). Furthermore, KWQL and visKWQL show reversed effects with respect to
how the amount of questions answered differs with proficiency: while advanced
KWQL participants on average answered 0.8 questions more than their less expe-
rienced counterparts, advanced visKWQL users answered 0.2 questions less than
visKWQL novices.

Table 1.5 shows the average percentage of the given answers that were correct.
Among all participants, almost two thirds of all answers given, 62.24%, were cor-
rect. The visKWQL group was responsible for both the best and the worst results,
with 93.33% correct answers for advanced visKWQL users and 35.66% correct an-
swers for novice visKWQL. This result is particularly noteworthy since both groups
answered a very similar amount of questions, as shown in Table 1.4. While novice
visKWQL users answered more questions on average than novice KWQL users,
a smaller percentage of those answers were correct, leading to a higher absolute
number of correct answers for the KWQL group. Among the advanced groups, the
situation is different: visKWQL users answered fewer questions but did so at a very
high rate of correctness. As a consequence, the average absolute number of correct
answers is higher for advanced visKWQL users.

Out of the total of 171 queries given as answers to questions in the query creation
task, only seven, four KWQL queries and three visKWQL queries, were invalid in
the sense that they could not be parsed or violated a validity constraint.7 Conse-
quently, 95% of all KWQL queries and 97% of all visKWQL queries given as an-
swers were valid. The majority of incorrect answers therefore consisted of queries
that were valid but did not correspond to the assignment.

Task 2: Query understanding In the query understanding task, all advanced
participants provided answers to all six questions, while the novice participants an-

7 In addition, six queries were bracketed incorrectly, but since participants had to write down their
answers by hand, this is likely due to clerical errors and was ignored.

22 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

KWQL visKWQL overall
novice 5.5 5.5 5.5
advanced 6 6 6
overall 5.75 5.7 5.72

Table 1.6 Average number of questions (out of 6) answered in task 2

KWQL visKWQL overall
novice 4.75 4.0 4.34
advanced 5.5 5.5 5.5
overall 5.13 4.6 4.89

Table 1.7 Average number of questions (out of 6) answered correctly

swered 5.5 questions on average (see Table 1.6). Overall, participants answered 4.89
of the questions correctly. There was no difference in the number of correct answers
between advanced participants who used KWQL and those who used visKWQL:
both gave 5.5 correct answers on average. The situation is different for the novice
users: here, those using KWQL had 4.75 correct answers on average, while partic-
ipants in the visKWQL group only answered 4.0 questions correctly on average.
Overall, this means that KWQL users gave more correct answers than visKWQL
users by 0.53 questions, while advanced users on average answered 1.16 more ques-
tions correctly than novice users did.

User Judgments After completing the two tasks, participants were asked about
their opinion on KWQL or visKWQL. Most participants, 13 out of 20, said that they
felt they had understood how to use the respective query language. Six participants
stated that they had understood the language to some extent, but had trouble with
specific concepts or needed more time to understand it fully. Only one participant
claimed to not have understood visKWQL at all.

With respect to the question whether KWQL or visKWQL was easy to use, a ma-
jority of participants answered that it was. However, many qualified their response
and listed particular aspects they found hard to understand. Specifically, participants
experienced problems with variables, URIs, injectivity, nesting of content items, and
links. In several cases, participants did not understand the question or were unsure
how to translate it into a query.

Finally, participants were asked what they considered to be advantages and dis-
advantages of KWQL and visKWQL. All participants thought that KWQL and
visKWQL are powerful and allow for precise queries, while some remarked that
they are harder to use than web search and take some time to learn.

1.7.3 Discussion

All in all, the results of the experimental evaluation are very positive: KWQL and
visKWQL were well perceived by the participants. Given only a very short intro-

1 Keyword-Based Search over Semantic Data 23

duction and a small amount of time to solve the assignments, participants overall
could provide correct answers to more than half the questions in the query writing
task and over eighty percent of the questions in the query understanding task.

The amount of learning required could explain why visKWQL novices per-
formed worse than the participants in the novice KWQL group: apart from having to
learn all the new concepts, they also had to acquaint themselves with visual query-
ing, which likely was unfamiliar to them. The novice KWQL users, on the other
hand, had to write textual queries, which, given that all participants can be assumed
to have used web search engines before, was more familiar to them.

Another contributing factor to the comparatively bad performance of novice
visKWQL users could be that visKWQL is not ideally suited for creating vastly un-
derspecified queries. visKWQL makes it easy to understand the structure of queries
and to create structured queries, but offers no advantage when then queries involved
are very simple. Indeed, novice visKWQL participants performed particularly badly
compared to novice KWQL participants on questions that require underspecified
queries, and the difference in the percentage of correct answers was smaller when
the answer queries contained more structure.

This result indicates that it might be better to introduce beginning users whose
queries exclusively consist of keywords to textual KWQL, and to only add visKWQL
once the queries become more complex. On the other hand, given the round-tripping
capabilities of visKWQL, it is possible that users could achieve equivalent or bet-
ter results when textual and visual query editing are introduced simultaneously; a
follow-up study could investigate which of the three methods yields the best results.

Advanced participants achieved good results regardless of the query language: on
average, they answered 71% of the questions in the query creation task and over 90%
of the questions in the query understanding task correctly. Their results also showed
that visKWQL can help to improve the performance: advanced visKWQL partic-
ipants gave fewer answers overall than advanced KWQL participants, but nearly
all of their answers were correct. These findings indicate that participants who are
familiar with querying and structured data and to whom the information in the in-
troductions is less novel, can make effective use of visKWQL and the advantages it
offers over textual KWQL. This result gives further weight to the explanation that
the comparatively bad performance of novice visKWQL participants is due to them
being confronted with an overwhelming amount of new information that makes it
hard for them to additionally absorb the concepts of visual querying and visKWQL.

Across all groups, participants had more success understanding queries than writ-
ing them. In the query understanding task, novice KWQL users again outperformed
novice visKWQL users, both of which had a lower percentage of correct answers
than either advanced group. Both advanced groups on average answered more than
90% of the questions correctly, indicating that this task was very easy for them
overall. The fact that participants performed better at understanding queries than at
writing them indicates that users could benefit from the addition of query templates
that users can modify according to their needs.

24 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

1.8 KWilt: Patchwork Knowledge Management

KWilt is the implementation of KWQL in KiWi. It provides an easily extensible,
yet performant implementation of the KWQL features over the wide range of data
available in KiWi. Previous approaches have often tried to engineer a knowledge
information systems for such diverse information and user needs from the start. By
contrast, KWilt uses a “patchwork” approach, combining performant and mature
technologies where available. For example, KWilt uses a scalable and well estab-
lished information retrieval engine to evaluate keyword queries. The patchwork ap-
proach has three main advantages:

• Many queries can be evaluated at the speed of search engines, yet all the power
of first-order logic is available if needed. The three steps use increasingly more
expressive, but also less scalable technologies. Thus, even for queries that in-
volve full first-order constraints, we can in many cases substantially reduce the
number of candidates in the information retrieval engine. This property is partic-
ularly relevant in the context of KWQL, as (novice) users that use KWQL like a
search engine also expect the speed of a search engine, unaware of the additional
expressiveness provided by KWQL.

• Each part is implemented using proven technologies and algorithms with mini-
mal “glue” between the employed tools.

• The separation makes it easy to adapt each of the parts, e.g., to reflect additional
data sources. If KiWi would introduce data with different structural properties,
e.g., strictly hierarchical taxonomies in addition to RDF ontologies, only the part
of KWilt that evaluates structural constraints needs to be modified. Similarly, if
KWQL would introduce other content primitives other than keywords (e.g., for
image retrieval), only the first (retrieval) part of KWilt would be affected.

1.8.1 Architecture and Evaluation Phases

Despite the unique combination of features found in KWQL, KWilt does not try to
“reinvent the wheel.” Instead, we used a patchwork, or integration, approach to com-
bine off-the-shelf state-of-the-art tools in a single framework. To this end, the eval-
uation is split into three different evaluation phases which are dedicated to certain
aspects of the query, see Figure 1.4. Each step makes use of a tool that is particu-
larly suitable for evaluating the query constraints covered by that aspect of the entire
evaluation. Thus, efficient and mature algorithms form the basis of our framework.

Evaluation of keyword queries Most KWQL queries, in particular by novice
users, mainly or exclusively regard the content of the pages. Therefore, the first
evaluation phase regards the keyword parts of a query in order to evaluate them in an
early phase of the evaluation with as little overhead as possible. If all constraints of
the query can be validated in this phase, the two subsequent phases can be skipped.

1 Keyword-Based Search over Semantic Data 25

Fig. 1.4 The evaluation pipeline of the framework

The information retrieval engine Solr provides a highly optimized inverted list
index structure to carry out keyword queries on a set of documents. Each document
consists of an arbitrary number of named fields which are most commonly used to
store the text of a document and its meta data.

In order to use Solr for the evaluation of KWQL queries, the meta data of wiki
pages and further the meta data of its tags, fragments and links are stored in a Solr
document. The main principle of the translation is to materialize joins between con-
tent items and the directly connected resources.

The transformation of the resources connected to a content item to fields in the
Solr index is lossy, since the value of multiple resources is stored in a single field.
Thus, if multiple properties of a resource are queried, it cannot be guaranteed that
hits in the index belong to the same resource.

To keep the index small, only dependencies to flat resources are materialized,
which omits in particular nesting and linking of content items. Therefore, only
queries that access content items together with their content, meta-data and directly
related flat resources can be evaluated entirely in Solr. As soon as nesting and link-
ing of content items comes into play, however, we use Solr only to generate a set of
candidates which match those parts of the query for which all necessary information
stored in the Solr index.

In order to evaluate a KWQL query through Solr, a portion of the KWQL query
(that can be evaluated by Solr) is converted to the query language of Solr. Informa-
tion which is not covered by the materialized joins and variables are either disre-
garded or at least converted to an existential quantification in order to reduce the
number of false positives.

Evaluation of structural constraints The second phase takes the structural parts
of a query into account. All resources are represented as common objects in the
KiWi system and their dependencies are modeled by references between the inter-
related objects. The objects are persisted using a common relational database in
combination with an object-relational mapping.

In the current prototype, we validate the structural properties of a query for each
candidate item individually. That means, nested resources (tags, fragments, links
and contained content items) which are specified in the query are considered by
traversing the references of the currently investigated object.

We choose this approach, as structural constraints are often validated fairly
quickly and far less selective than the keyword portions of KWQL queries. How-
ever, for future work we envision an extension of KWilt that improves on the current
implementation in two aspects: (a) It estimates whether the structural part is selec-
tive enough to warrant its execution without considering the candidates from the

26 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

previous phase, followed by a join between the candidate sets from the two phases.
(b) If structural constraints become more complex, specialized evaluation engines
for hierarchical (XML-style) data, e.g, a high-performance XPath engine, for link
data, e.g., various graph reachability indices, and for RDF data might be advantages.

In addition to the verification of the structural constrains, the structural depen-
dencies of the contributing resources and the required values of their qualifiers are
stored in relations which are needed during the last evaluation phase.

Evaluation of first-order constraints over wiki resources In the final evaluation
phase, first-order constraints over wiki resources are considered, as induced by the
KWQL variables (and some advanced features of KWQL such as injectivity).

Following constraint programming notation, we consider a first-order constraint
a formula over logical relation on several variables. In order to use these constraints
to express a KWQL query, every expression of a query that is involved in con-
straints not yet fully validated is represented by some variables. These variables
are then connected using relations which reflect the structural constraints between
the resources from the query and their meta data. These relations are constructed
during the prior evaluation phase since all required values and dependencies of the
resources are regarded in this phase anyhow.

Thus the relations are used to connect the formal representation of the query and
the candidate matches. The first-order constraints are evaluated using the constraint
solver choco [21].

Any content item that fulfills the constraints validated in all three phases is a
match for the entire query. In fact, since we only feed candidate matches from
the prior phase to each subsequent phase, the content item (identifiers) returned
by choco immediately give us the KWQL answers.

1.8.2 Skipping Evaluation Phases: KWQL’s Sublanguages

The evaluation of a general KWQL query in KWilt is performed in three phases as
described in the previous section. However, not all evaluation phases are required for
every KWQL query. In the following, we give a characterization of KWQL queries
that can be evaluated using only the first phase (and skipping the remaining ones),
or only the first and second.

Keyword KWQL or KWQLK KWQLK is the restriction of KWQL to mostly
flat queries where resource terms may not occur nested inside other resource terms
and structure terms are not allowed at all.

Since tags and fragments itself can not be nested more than one level, we can
also materialize all tags and fragments for each content item. However, in contrast
to (string-valued) qualifiers a content item can have multiple tags or fragments. To
allow evaluation with a information retrieval engine such as Solr, we have to en-
sure that multiple tag or fragment expressions always match with different tags or

1 Keyword-Based Search over Semantic Data 27

fragments of the surrounding content item. This avoids that we have to enforce the
injectivity of these items in a later evaluation phase.

To ensure this, we allow tag and fragment queries but disallow

• two keyword queries as siblings expressions in tag or fragment queries and
• two tag or fragment queries as sibling expressions

KWQLK expressions can be evaluated entirely by the information retrieval en-
gine, here Solr.

Tree-shaped KWQL or KWQLT KWQLT allows only queries corresponding
to tree-shaped constraints. Thus, no multiple occurrences of the same variable, and
no potentially overlapping expression siblings.

We define an equivalence relation on expressions, called potential overlap, as a
conservative approximation of overlapping. It holds between two expressions if they
have the same return type in the KWQL semantics (see Section 1.5) or if the return
type of one is a subset of that of the other one.

KWQLT expressions can be evaluated by using only Solr and checking the re-
maining structural conditions in the second evaluation phase. Full first-order con-
straints are not needed and the third (choco) phase can be skipped.

Proposition 1. Given an arbitrary KWQL query, we can decide in linear time and
space in the size of the query if that query is a KWQLK query and in quadratic time
if it is a KWQLT query.

Proof. From the definitions of KWQLK and KWQLT it is easy to see that testing membership of
a general KWQL expression can be done by a single traversal of the expression tree. In the case of
KWQLT we also have to test each (of the potentially quadratic) pairs of siblings for overlap and
storing already visited variables.

The test whether a query is a KWQLT query can actually be achieved as a side
effect of transforming the KWQL query into first-order constraints in the third eval-
uation phaseconstraints are generated during this transformation we need to execute
the constraint solver at all. In practice, this is often cheaper than a separate test, as
the generation of first-order constraints is fairly cheap and polynomial, except for
queries with many potentially overlapping expression siblings.

1.8.3 Performance Evaluation

To analyze the performance of the KWilt prototype, the evaluation times of various
queries of all three types were measured. For the experiment, the KiWi system was
executed on a virtual server with a dual core 2.5 GHz processor and 4 GB of RAM
running Ubuntu Linux.

In a first experiment, a number of queries, among them our example query from
the introduction, were evaluated on a dataset consisting of 339 content items on
the KiWi project. For all queries, preprocessing, that is, parsing, verification and

28 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

query
phase 1 phase 2 phase 3 total time

time [ms] results time [ms] results time [ms] results [ms]

KiWi
31 14 – – – – 31

ci(text:KWQL title:KiWi)
6 1 – – – – 6

KiWi tag(name:$t)
42 9 – – – – 42

ci(tag(name:KWQL) child:ci(tag(Example)))
10 5 44 1 – – 54

ci(Munich link(target:ci(KiWi)))
33 4 52 4 – – 85

ci(KiWi link(target:ci(KiWi)))
60 10 206 4 – – 266

ci(tag(name:r)text :r)
149 9 53 9 103 9 305

ci(tag(author:admin) tag(name:KWQL))
9 5 55 5 67 4 131
ci(KiWi tag(name:$t) link(target:ci(URI:$u tag(name:$t))))

44 9 181 4 194 3 419

Table 1.8 Evaluation times in the KiWi dataset

determining whether the query can be fully processed using only phase 1, was found
to take between 27 and 42 milliseconds. Table 1.8 further shows the processing
times and number of results per query and processing phase. The first part of the
table gives the numbers for queries that are covered by KWQLK . As the results
show, these queries can overall be evaluated fairly quickly.

The second group of queries displayed in the table are those that can be evaluated
using KWQLT . As the table illustrates, those queries can be evaluated quickly, but
only if the first evaluation step has sufficiently reduced the candidate set. One un-
derlying assumption behind KWilt is that most queries exclusively or predominantly
use value-based selection criteria, that is, selection criteria that can be covered by
the information retrieval engine in the first phase of the evaluation. When this as-
sumption does not hold, the candidate set still contains a considerable amount of
content items after the first evaluation phase. As the second evaluation phase is con-
siderably slower than the first, evaluation times in such a situation can become very
high. Correspondingly, the evaluation times for all four KWQLT queries is roughly
inversely proportional to the size of the candidate set after the first evaluation phase.

Finally, the lower three queries in the table make use of the full power of KWQL
and require all three evaluation phases.

Overall, the results of this first experiment show that KWQLT queries can be
evaluated using Solr with only little overhead for preprocessing the query. However,
Solr queries involving wildcards are evaluated comparatively slowly. More criti-
cally, the second evaluation phase constitutes a bottleneck in the query evaluation

1 Keyword-Based Search over Semantic Data 29

query
phase 1 phase 2 phase 3 total time

time [ms] results time [ms] results time [ms] results [ms]

tag(author:Mary)
48 35 – – – – 48

semantic web
51 22 – – – – 51

tag(name:web author:Peter)
99 34 1769 34 – – 1868

ci(link(target:ci(semantic)))
644 2049 43123 0 – – 43767

ci(example title:rtext :r)
105 38 21 38 15 1 141

ci(title:rtext :r)
679 505 15 505 75 58 769

ci(tag(name:web) tag(author:Peter))
92 34 863 34 3246 34 4201

Table 1.9 Evaluation times in the RSS dataset

process, particularly when the first phase does not sufficiently decrease the size of
the candidate set.

In summary, this first small-scale evaluation of KWilt shows that the approach
overall is viable and delivers good results as long as the underlying assumption
holds true, namely that most selection criteria used in queries are value-based. As
long as this is true, KWilt can employ Solr which quickly evaluates the query, either
in total or by reducing the candidate set to a size that is manageable for the following
evaluation phases.

These, in particular the second evaluation phase, constitute the weak point of
KWilt as it is currently implemented: The simple traversal of all candidate content
items that constitutes the second phase in the current implementation performs very
slowly. When a query does not use mainly value-based selection criteria or when
the dataset is big, the size of the candidate set is not sufficiently decreased in the
first evaluation phase and the second evaluation phase can take several seconds or
longer.

Overall, the system delivers good results, but changes to the system are required
to improve the performance of the second evaluation phase. The following section
discusses possible steps that could be taken:

Despite the two possibilities for improving the second evaluation phase discussed
above, namely an evaluation strategy more closely tailored to the individual queries
and their keyword and structure constraints and a reimplementation of the second
evaluation phase using web querying technology, two further changes could be em-
ployed to improve query performance:

• While saving all information about structurally connected content items in the in-
dex representation of a content item is clearly not practicable, some basic struc-
tural information could be represented. For example, the index could indicate

30 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

whether a content item has any children or links to any other content items. De-
pending on how frequently nesting and linking relations are used in the wiki, this
information could then help narrow down the candidate set, meaning that fewer
content items have to be processed in the second evaluation phase.

• Queries that cannot be fully evaluated using Solr could be handled through a
translation into SQL that treats both the second and third evaluation phases. The
relational semantics given in Section 1.5 can serve as a basis for such a translation
of KWQL into SQL. The resulting alternative implementation of KWQL would
not be based on the principle of gradually refining the query results like KWilt,
but rather on choosing the best-suited tool before query evaluation begins. An
evaluation of the resulting system could also show whether the use of Solr is
justified, or whether translating fully translating KWQL into SQL is preferable.

1.9 Outlook

At least two extensions to KWQL as described here are desirable: To add two impor-
tant features of keyword search to the language, fuzzy matching and ranking should
be provided. Towards this end, we suggest PEST [52], a PageRank-like approach
to approximate querying of structured data that exploits the structure to propagate
term weights between related data items and uses the resulting modified index for
ranking as well as fuzzy matching over data structure. Secondly, one issue that has
not been addressed so far is that of querying RDF with KWQL. While dealing with
complex RDF graphs may indeed overburden many users, simple RDF triples are
intuitive and easy to understand. KWQL should therefore allow users to query at
least these simple RDF annotations that they and others have created. Weiand [51]
discussed three solutions for adding support for RDF queries, one native and two
based on the integration of existing RDF query languages.

1.10 Conclusion

The work presented in this article addresses the question how ease of use and rich
functionality, two seemingly conflicting characteristics, can be consolidated in the
context of the social semantic web, and more specifically in the semantic wiki KiWi.
We feel that this issue is crucial to the success of the social semantic web: social
semantic web applications live from user participation and the adoption by a broad
user base, but often fail to provide annotation and querying formalisms that allow ca-
sual and expert users alike to formalize knowledge and compose expressive queries
to fully leverage the functionality of the application at hand. We presented KWQL, a
query language for the KiWi wiki based on the label- keyword query paradigm that
allows for rich combined queries of textual content, metadata, document structure,
and annotations.

1 Keyword-Based Search over Semantic Data 31

We described the underlying principles and the syntax of KWQL, provided a for-
mal semantics for the language, and discussed KWilt, an implementation of KWQL
query evaluation based on a patchwork approach. We then distinguished three sub-
languages of increasing complexity and showed that it is possible to efficiently rec-
ognize the sublanguage a given KWQL query belongs to and to adapt the evaluation
process accordingly. The power of full first-order queries can be leveraged where
needed, but at the same time KWilt can evaluate basic queries at almost the speed
of the underlying search engine, as we showed in a performance evaluation. Partic-
ipants in a user study reacted positively to KWQL and visKWQL. They found the
languages useful, expressive, and easy to use, at least given some time and practice.
Even after a short introduction and a minimal amount of time to solve the assign-
ments, participants overall were able to provide correct answers to more than half
of the questions in a query writing task and over eighty percent of the questions in a
query understanding task.

References

[1] Auer S, Dietzold S, Lehmann J, Riechert T (2007) OntoWiki: A tool for so-
cial, semantic collaboration. In: Proceedings of the Workshop on Social and
Collaborative Construction of Structured Knowledge

[2] Aumueller D (2005) Semantic authoring and retrieval within a wiki. In: Pro-
ceedings of the 2nd European Semantic Web Conference

[3] Aumueller D (2005) SHAWN: Structure helps a wiki navigate. In: Proceedings
of the BTW-Workshop WebDB Meets IR

[4] Aumueller D (2005) Towards a semantic wiki experience – desktop integration
and interactivity in WikSAR. In: Proceedings of the 1st Workshop on The
Semantic Desktop

[5] Balmin A, Hristidis V, Koudas N, Papakonstantinou Y, Srivastava D, Wang
T (2003) A system for keyword proximity search on XML databases. In: Pro-
ceedings of 29th International Conference on Very Large Data Bases, pp 1069–
1072

[6] Bao J, Ding L, Hendler J (2008) Knowledge representation and query in se-
mantic MediaWiki: A formal study. Technical Report TW-2008-42, Tetherless
World Constellation (RPI)

[7] Bao Z, Ling TW, Chen B, Lu J (2009) Effective XML keyword search with rel-
evance oriented ranking. In: Proceedings of the 25th International Conference
on Data Engineering, pp 517–528

[8] Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S (2002) Keyword
searching and browsing in databases using BANKS. In: Proceedings of the
18th International Conference on Data Engineering, pp 431–440

[9] Bischoff K, Firan CS, Nejdl W, Paiu R (2008) Can all tags be used for search?
In: Proceedings of the 17th ACM Conference on Information and Knowledge
Management, pp 193–202

32 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

[10] Cohen S, Mamou J, Kanza Y, Sagiv Y (2003) XSearch: A semantic search
engine for XML. In: Proceedings of 29th International Conference on Very
Large Data Bases, pp 45–56

[11] Dar S, Entin G, Geva S, Palmon E (1998) DTL’s DataSpot: Database explo-
ration using plain language. In: Proceedings of 24rd International Conference
on Very Large Data Bases, pp 645–649

[12] El Ghali A, Tifous A, Buffa M, Giboin A, Dieng-Kuntz R (2007) Using a
semantic wiki in communities of practice. In: Proceedings of the 2nd Inter-
national Workshop on Building Technology Enhanced Learning Solutions for
Communities of Practice

[13] Fischer J, Gantner Z, Rendle S, Stritt M, Schmidt-Thieme L (2006) Ideas and
improvements for semantic wikis. In: Proceedings of the 3rd European Seman-
tic Web Conference, pp 650–663

[14] Florescu D, Kossmann D, Manolescu I (2000) Integrating keyword search into
XML query processing. Computer Networks 33(1-6):119–135

[15] Fuchs NE, Kaljurand K, Schneider G (2006) Attempto Controlled English
meets the challenges of knowledge representation, reasoning, interoperability
and user interfaces. In: Proceedings of the 19th International Florida Artificial
Intelligence Research Society Conference, pp 664–669

[16] Guo L, Shao F, Botev C, Shanmugasundaram J (2003) XRANK: Ranked key-
word search over XML documents. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp 16–27

[17] Haase P, Herzig D, Musen MA, Tran T (2009) Semantic wiki search. In: Pro-
ceedings of the 6th European Semantic Web Conference, pp 445–460

[18] Harel D, Tarjan RE (1984) Fast algorithms for finding nearest common ances-
tors. SIAM Journal on Computing 13:338–355

[19] Hartl A, Weiand K, Bry F (2010) visKQWL, a visual renderer for a semantic
web query language. In: Proceedings of the 19th International Conference on
World Wide Web, pp 1253–1256

[20] Hristidis V, Papakonstantinou Y, Balmin A (2003) Keyword proximity search
on XML graphs. In: Proceedings of the 19th International Conference on Data
Engineering, pp 367–378

[21] Jussien N, Prud’homme C, Cambazard H, Rochart G, Laburthe F (2008)
choco: an open source java constraint programming library. In: Proceedings
of the Workshop on Open-Source Software for Integer and Constraint Pro-
gramming

[22] Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Karambelkar H
(2005) Bidirectional expansion for keyword search on graph databases. In:
Proceedings of the 31st International Conference on Very Large Data Bases,
pp 505–516

[23] Kiesel M (2006) Kaukolu: Hub of the semantic corporate intranet. In: Proceed-
ings of the 1st Workshop on Semantic Wikis

[24] Klein B, Höcht C, Decker B (2005) Beyond capturing and maintaining soft-
ware engineering knowledge – “Wikitologies” as shared semantics. In: Pro-

1 Keyword-Based Search over Semantic Data 33

ceedings of the Workshop on Knowledge Engineering and Software Engineer-
ing

[25] Krötzsch M, Vrandecic D (2009) Semantic Wikipedia. In: Blumauer A, Pelle-
grini T (eds) Social Semantic Web, Springer, pp 393–421

[26] Kuhn T (2008) AceWiki: A natural and expressive semantic wiki. CoRR
abs/0807.4618

[27] Ladwig G, Tran T (2010) Combining query translation with query answering
for efficient keyword search. In: Proceedings of the 7th Extended Semantic
Web Conference, pp 288–303

[28] Landefeld R, Sack H (2007) Collaborative web-publishing with a semantic
wiki. In: Proceedings of the 1st Conference on Social Semantic Web, pp 23–
34

[29] Leuf B, Cunningham W (2001) The Wiki way: quick collaboration on the Web.
Addison-Wesley

[30] Li G, Feng J, Wang J, Zhou L (2007) Effective keyword search for valuable
LCAs over XML documents. In: Proceedings of the 16th ACM Conference on
Information and Knowledge Management, pp 31–40

[31] Li G, Feng J, Wang J, Song X, Zhou L (2008) SAILER: an effective search
engine for unified retrieval of heterogeneous XML and web documents. In:
Proceedings of the 17th International Conference on World Wide Web, pp
1061–1062

[32] Li G, Ooi BC, Feng J, Wang J, Zhou L (2008) EASE: an effective 3-in-1 key-
word search method for unstructured, semi-structured and structured data. In:
Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp 903–914

[33] Li J, Liu C, Zhou R (2008) XBridge: Answering XML keyword search with
structured queries

[34] Li J, Liu C, Zhou R, Wang W (2010) Suggestion of promising result types for
XML keyword search. In: Proceedings of the 13th International Conference
on Extending Database Technology, pp 561–572

[35] Li Y, Yu C, Jagadish HV (2004) Schema-free XQuery. In: Proceedings of the
13th International Conference on Very Large Data Bases, pp 72–83

[36] Liu Z, Chen Y (2007) Identifying meaningful return information for XML key-
word search. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp 329–340

[37] Liu Z, Walker J, Chen Y (2007) XSeek: A semantic XML search engine using
keywords. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, pp 1330–1333

[38] Olteanu D, Meuss H, Furche T, Bry F (2002) XPath: Looking forward. In:
Proceedings of the EDBT Workshop on XML-Based Data Management, pp
109–127

[39] Oren E (2005) SemperWiki: A semantic personal wiki. In: Proceedings of the
1st Workshop on The Semantic Desktop

[40] Panagiotou D, Mentzas G (2007) A comparison of semantic wiki engines. In:
Proceedings of the 22nd European Conference on Operational Research

34 Klara Weiand, Andreas Hartl, Steffen Hausmann, Tim Furche, and François Bry

[41] Qu Y (2008) Q2RDF: Ranked keyword query on RDF data. Technical report,
Southeast University, China

[42] Schaffert S (2006) IkeWiki: A semantic wiki for collaborative knowledge man-
agement. In: Proceedings of the 15th IEEE International Workshops on En-
abling Technologies: Infrastructures for Collaborative Enterprises, pp 388–396

[43] Schaffert S, Bry F, Baumeister J, Kiesel M (2008) Semantic wikis. IEEE Soft-
ware 25(4):8–11

[44] Schaffert S, Eder J, Grünwald S, Kurz T, Radulescu M (2009) Kiwi – a plat-
form for semantic social software. In: Proceedings of the 6th European Se-
mantic Web Conference, pp 888–892

[45] Schmidt A, Kersten ML, Windhouwer M (2001) Querying XML documents
made easy: Nearest concept queries. In: Proceedings of the 17th International
Conference on Data Engineering, pp 321–329

[46] Souzis A (2005) Building a semantic wiki. IEEE Intelligent Systems 20(5):87–
91

[47] Tazzoli R, Castagna P, Campanini S (2004) Towards a semantic wiki wiki web.
In: Proceedings of the 3rd International Semantic Web Conference

[48] Tran T, Wang H, Rudolph S, Cimiano P (2009) Top-k exploration of query
candidates for efficient keyword search on graph-shaped (RDF) data. In: Pro-
ceedings of the 25th International Conference on Data Engineering, pp 405–
416

[49] Vagena Z, Colby LS, Özcan F, Balmin A, Li Q (2007) On the effectiveness of
flexible querying heuristics for XML data. In: Proceedings of the 5th Interna-
tional XML Database Symposium, pp 77–91

[50] Wang H, Zhang K, Liu Q, Tran T, Yu Y (2008) Q2Semantic: A lightweight
keyword interface to semantic search. In: Proceedings of the 5th European
Semantic Web Conference, pp 584–598

[51] Weiand K (2011) Keyword-based querying for the social semantic web – the
kwql language: Concept, algorithm and system. PhD thesis, University of Mu-
nich

[52] Weiand K, Kneißl F, Furche T, Bry F (2010) PEST: Term-propagation over
wiki-structures as eigenvector computation. In: Fifth Workshop on Semantic
Wikis (to be published)

[53] Xu Y, Papakonstantinou Y (2005) Efficient keyword search for smallest LCAs
in XML databases. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp 537–538

[54] Zhou Q, Wang C, Xiong M, Wang H, Yu Y (2007) SPARK: Adapting keyword
query to semantic search. In: Proceedings of the 6th International Semantic
Web Conference and 2nd Asian Semantic Web Conference, pp 694–707

