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Preface

This document is a report about the prototype implementation if the complex event processing
language Dura and its evaluation engine Event-Mill. Dura is the high-level event, state and ac-
tion language developed within WP4 of the EMILI project. Dura is tailored to the requirements
of the three emergency management use-cases of WP3. Event-Mill is the evaluation engine for
the Dura language. As Dura, Event-Mill is designed to meet the specific requirements of the
WP3 use-cases.

Since the last report on the implementation contained in Deliverable D4.5 has been improved
significantly. Most notably are the modularization mechanisms for Dura described in Deliver-
able D4.6., the “Temporal Stream Algebra” which serves as operational semantics for Dura and
forms the basis of the evaluation and the Generic Bus API that was defined to simplify the in-
tegration with the SITE component of WP6 and the specific components of the WP3 use-cases.
Furthermore the error analysis and the error reporting of the Dura compiler has been improved
and two Eclipse plug-ins were adopted to support the development of Dura programs. Finally
the integration of the Event-Mill engine with the MonetDB database of WP5 has been continued,
the EVent-Mill engine has become more configurable and the capabilities of its command-line
interface have been extended.

The report complements the implementation code and the documentation files which are avail-
able from http://www.pms.ifi.lmu.de/cep/releases/. The implementation code forms
the main part of Deliverable D4.7. The report is focused on information that the other work
packages WP2, WP3, WP5, WP6 need to use and integrate the prototype in their systems.

First the report describes the command-line and Java-API interfaces for providing a Dura pro-
gram and for compiling and executing that program (Section 1-3). Moreover the SQL, Java-API
and command-line interfaces for providing the initial data of states and the stream data of events
are explained (Section 4). All interfaces are illustrated by small code snippets. Furthermore the
Hello World example in Section 6 shows how to go the whole way from compiling, initializing
and running a program to the use of the Generic Bus API for providing input data and retrieving
results. This description of the interfaces is particularly important for the integration with the
SITE component of WP6, but also for WP3 and WP2.

Second the report provides details on the compilation and evaluation of Dura programs. It
introduces Temporal Stream Algebra which is used to specify the operational semantics of
Dura and serves as an abstraction barrier for the compilation from Dura to SQL. The report
sketches the translation of Dura to Temporal Stream Algebra and shows that expressions of
Temporal Stream Algebra can be transformed to parametrized expressions of relational algebra.
The final generation of SQL statements based on the parametrized relational algebra expressions
is not described in the report because the close relationship between relational algebra and SQL
is commonly known. Finally the report describes the principles for the evaluation of a Dura
program on top of the MonetDB database (WP5) based on the parametrized SQL statements
that are the outcome of the compilation process.
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Part I.
Manual

1. Setup & Configuration

1.1. Needed Software

• MonetDB SQL database (http://www.monetdb.org/Downloads)

Best known compatible version: July 2012

• Java 1.6 or higher (http://www.oracle.com/technetwork/java/javase/downloads/
index.html)

• event-mill-0.3.3.zip (or event-mill-and-examples-0.3.3.zip) or higher (http://www.pms.
ifi.lmu.de/cep/releases/)

1.2. Getting started

1. Install Java 1.6 (or higher)

2. Install MonetDB SQL Server

3. Unzip the event-mill-X.X.X.zip archive

4. Adopt the event-mill.configuration.xml file if necessary.

The event-mill.configuration.xml file contained in the zip archive should cooperate by
default with a local out of the box installation of MonetDB when the DB-server is started
manually before starting the Event-Mill engine. If MonetDB is running on an external
server or ports or login information have been changed then event-mill.configuration.xml
needs to be adopted to reflect these changes (see Section 1.3.1). If the Event-Mill engine
needs to start the DB-server by itself the start-up command for the DB-server is likely to
need some adoption (see Section 1.3.3).

5. Adopt the event-mill.io.configuration.xml file if necessary.

The event-mill.io.configuration.xml file contained in the zip archive should cooperate
by default with a local out of the box installation of MonetDB. If the MonetDB con-
figuartion deviates from the defaults the event-mill.io.configuration.xml file needs to be
adopted accordingly (see Section 1.4.1). Furthermore additional message formats and
bus implementations need to be registered in the event-mill.io.configuration.xml file (see
Sections 1.4.3 and 1.4.4).

6. Execute event-mill.jar. It is recommended to start the MonetDB server manually before
executing event-mill.jar, however if the DB-server start-up command is correctly config-
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urated this should not be required.

1.3. Main Configuration

1.3.1. The Database Connection

The Event-Mill engine needs to build a JDBC connection to the MonetDB database. For this it
needs some information on how to connect to MonetDB. This information can be specified in
the following section of the event-mill.configuration.xml file:

<configuration >
<stream -buffer -store . . . >

...
<connection . . . use -prepared - statements ="false">

<server url=" localhost "/>
<database name="demo"/>
<property key="user" value=" monetdb "/>
<property key=" password " value=" monetdb "/>

</ connection >
...

</stream -buffer -store >
...

</ configuration >

The following Information can be specified:

• The url of the database server

<server url="URL OF THE DATABASE SERVER "/>

• The name of the database

<database name="NAME OF DATABASE "/>

• The user-name

<property key="user" value="USER NAME"/>

• The password

<property key=" password " value=" PASSWORD "/>

• The prepared statement flag

<connection . . . use -prepared - statements ="FLAG">

This flag specifies whether the Event-Mill engine should use prepared SQL statements or
ordinary (adhoc) SQL statements. Currently the recommended value is false.
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1.3.2. The Meta Schema

The Event-Mill engine needs one schema in the database, the so-called “meta schema”, where
it can create tables for storing meta informations, like the available program specifications, the
instances of these specification and the database schemas used by these instances to store their
data. The meta schema can be specified using

<meta_schema name="NAME OF THE META SCHEMA "/>

in the following section of the event-mill.configuration.xml file:

<configuration >
<stream -buffer -store . . . >

...
<meta_schema name="meta"/>
...

</stream -buffer -store >
...

</ configuration >

1.3.3. The start-up and stop commands

The start and stop commands are optional. They are used when the Event-Mill engine finds that
the MonetDB database server is not yet running at the start of the engine. In that case the Event-
Mill engine attempts to start MonetDB using the start command and to stop MonetDB using the
stop commands when the engine is stopped itself. The two commands can be specified using

<start - command >START COMMAND </start - command >
<stop - command >STOP COMMAND </stop - command >

in the following section of the event-mill.configuration.xml file

<configuration >
<stream -buffer -store . . . >

...
<start - command >START COMMAND </start - command >
<stop - command >STOP COMMAND </stop - command >

</stream -buffer -store >
...

</ configuration >

1.4. I/O Configuration

The I/O configuration is separated from the main configuration of the Event-Mill engine. The
reason is that the I/O only affects the Java I/O API for the Event-Mill. However the Java I/O
API is not mandatory for delivering or retrieving data to or from Event-Mill. Delivering or
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retrieving data can also be done by a direct interaction with MonetDB following some simple
rules described in Section 4. Therefore the implementation of the Event-Mill engine and the
implementation of the Java I/O API are mostly independent and thus their configuration files
should be separated, too.

1.4.1. Database Connection

The Java I/O API needs to build a JDBC connection to the MonetDB database. For this it needs
some information on how to connect to MonetDB. This information can be specified in the
following section of the event-mill.io.configuration.xml file:

<configuration >
<io>

<streams . . . >
<stream iri="de.lmu.ifi.pms.cep.event -mill. prototype " . . . >

...
<connection . . . use -prepared - statements ="false">

<server url=" localhost "/>
<database name="demo"/>
<property key=" password " value=" monetdb "/>
<property key="user" value=" monetdb "/>

</ connection >
...

</ stream >
</ streams >
...

</io>
</ configuration >

The following Information can be specified:

• The url of the database server

<server url="URL OF THE DATABASE SERVER "/>

• The name of the database

<database name="NAME OF DATABASE "/>

• The user-name

<property key="user" value="USER NAME"/>

• The password

<property key=" password " value=" PASSWORD "/>

• The prepared statement flag

<connection . . . use -prepared - statements ="FLAG">
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This flag specifies whether the Event-Mill engine should use prepared SQL statements or
ordinary (adhoc) SQL statements. Currently the recommended value is false.

1.4.2. Meta Schema

The Java I/O API needs to access the meta data an available programs and their instances stored
by the Event-Mill engine. Thus Java I/O API has to know the database schema where the
Event-Mill engine puts this information. The meta schema can be specified using

<meta_schema name="NAME OF THE META SCHEMA "/>

in the following section of the event-mill.io.configuration.xml file:

<?xml version ="1.0" encoding ="UTF -8"?>
<configuration >

<io>
<streams . . . >

<stream iri="de.lmu.ifi.pms.cep.event -mill. prototype " . . . >
...
<meta_schema name="meta"/>

</ stream >
</ streams >
...

</io>
</ configuration >

1.4.3. Providing Message Formats

Internally the Event-Mill engine represents events and other data as tuples. However, outside
of the Event-Mill engine events are represented as some kind of messages with a more or less
arbitrary format depending on the use-case ad the other components Event-Mill has to integrate
with for that use-case. For this reason the Java I/O API for Event-Mill provides a way to specify
new Message formats. A message format basically specifies how a a message is converted into a
tuple and conversely how a tuple is converted into a message. In this way Event-Mill can easily
integrate with different message formats. The Java I/O API can even be used to integrate with
different message formats of multiple proprietary components that might need to cooperate for
reaching the goals of some use-case.

New message formats can be defined by implementing the interface specified by the abstract
class de.lmu.ifi.pms.cep.event_mill.io.format.MessageFormatProvider. The new
formats need to be registered in the following section of the event-mill.io.configuration.xml
file:

<?xml version ="1.0" encoding ="UTF -8"?>
<configuration >

<io>
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...
<formats >

<format iri="de.lmu.ifi.pms.cep.io. format .semi - structured "
class="de.lmu.ifi.pms.cep. event_mill .io. format . SemiStructuredMessageFormatProvider "/>

<format iri="de.lmu.ifi.pms.cep.io. format .xml"
class="de.lmu.ifi.pms.cep. event_mill .io. format . XmlMessageFormatProvider "/>

... further formats
</ formats >
...

</io>
</ configuration >

A format can be referenced using its iri. Note that a format might be parametrized and thus
the iri of a format can not be equal to the name of the Java class implementing the format in
general.

1.4.4. Providing Bus Implementations

The Java I/O API for Event-Mill allows to integrate with quite arbitrary bus systems. A bus is
just a mechanism to transfer messages of some format from one endpoint of the bus to other
endpoints of the bus. The Java I/O API makes no implications on the way this transmission is
actually done and which policies are used to distribute the messages between the endpoints of
the bus. This is fully left to the implementation of the bus system. One prominent example for
such a bus system is the Enterprise Service Bus (ESB) proposed in WP6 ([]).

The employed bus system can be specified in the following section of the event-mill.io.configuration.xml
file:

<?xml version ="1.0" encoding ="UTF -8"?>
<configuration >

<io>
...
<buses class="de.lmu.ifi.pms.cep. event_mill .io.bus. HeapBroadcastMessageBusProviderCollection ">

<format ref="de.lmu.ifi.pms.cep.io. format .xml"/>
</buses >
...

</io>
</ configuration >

1.5. Log Configuration

The Event-Mill engine uses the slf4j (http://www.slf4j.org/) logging facade together with
its standard binding, the logback logging framework (http://logback.qos.ch/index.html).
In this way the logging of the Event-Mill engine can easily be integrated with the logging exter-
nal components even if these components use different logging frameworks. Such components
could particularly originate from WP2 and WP3.
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The Event-Mill engine employs the log4jdbc package(http://code.google.com/p/log4jdbc/)
for logging JDBC queries. log4jdbc internally uses the slf4j logging facade.

The logging of Event-Mill can be configured using the logback.xml, logback-test.xml, event-
mill.logback.xml and event-mill.logback-test.xml files. The intentions of these files are ex-
plained in the following. Details on the syntax and structure of the files and the configuration
of logback can be found at http://logback.qos.ch/manual/index.html.

1.5.1. The logback.xml and the logback-test.xml files

The logback logging framework is usually configured using the the logback.xml file. As the
Event-Mill engine is likely to be used as one of a number of different components the log-
back.xml file contained in the Event-Mill installation was designed in such a way that it supports
a modular configuration of the logging. Therefore the logback.xml file contains only some very
general specifications and delegates the configuration of the logging for the particular compo-
nents to configuration files corresponding to each component. For the Event-Mill engine this
file is called event-mill.logback.xml.

The following shows the structure of the logback.xml file. Note the inclusion of the event-
mill.logback.xml file at the end of the configuration.

<?xml version ="1.0" encoding ="UTF -8"?>
<configuration debug="false">

<timestamp key=" logFileTimestamp " datePattern ="yyyyMMdd ’-’HHmmss ’-’SSS"/>
<property name=" logFileDir " value="log/" />

<!-- directs logging to the System .out stream -->
<appender name=" STDOUT " class="ch.qos. logback .core. ConsoleAppender ">
...
</ appender >

<!-- directs logging to the System .err stream -->
<appender name=" STDERR " class="ch.qos. logback .core. ConsoleAppender ">
...
</ appender >

<root level="WARN">
<appender -ref ref=" STDERR " />

</root >

<include resource ="event -mill. logback .xml"/>
... log configurations for other modules

</ configuration >

For testing and debugging purposes logback supports an easy mechanism to override the usual
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log configuration. If a file called logback-test.xml is available then the configuration in that
file is preferred before the one in the logback.xml file. Usually the logback-test.xml file will
configure a more extensive logging than the logback.xml file.

1.5.2. The event-mill.logback.xml and the event-mill.logback-test.xml files

As mentioned before the event-mill.logback.xml file is referenced from the logback.xml file and
actually configures the logging for the Event-Mill engine. The event-mill.logback-test.xml file
is used instead if the logback-test.xml file is present.

The following shows the structure of the event-mill.logback.xml file contained in the installa-
tion.

<?xml version ="1.0" encoding ="UTF -8"?>
<included >

<!-- Creates the YearMonthDay - HourMinuteSecond -Millis -event -mill.log file -->
<appender name=" EVENT_MILL_LOG " class="ch.qos. logback .core. FileAppender ">
. . .
</ appender >

<!-- Creates the YearMonthDay - HourMinuteSecond -Millis -event -mill -io.log file -->
<appender name=" EVENT_MILL_IO_LOG " class="ch.qos. logback .core. FileAppender ">
. . .
</ appender >

<!-- Creates the YearMonthDay - HourMinuteSecond - Millisecond -sql.log file -->
<appender name=" SQL_LOG " class="ch.qos. logback .core. FileAppender ">
. . .
</ appender >

<!-- logging of engine execution -->

<logger name="de.lmu.ifi.pms.cep" level="TRACE">
<appender -ref ref=" EVENT_MILL_LOG "/>

</ logger >

<logger name="de.lmu.ifi.pms.cep. event_mill .io" level="TRACE" additivity ="false">
<appender -ref ref=" EVENT_MILL_IO_LOG " />

</ logger >

<logger name="de.lmu.ifi.pms.cep. event_mill .sql.io" level="TRACE" additivity ="false">
<appender -ref ref=" EVENT_MILL_IO_LOG " />

</ logger >

<!-- logging of jdbc queries -->

<!--configuration of the database internal logging -->

<!-- Creates the YearMonthDay - HourMinuteSecond -Millis -event -mill.log file -->
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<logger name="nl.cwi. monetdb " level="DEBUG" additivity ="false"/>

<!-- log4jdbc logger configuration -->

<logger name="jdbc" level="OFF" additivity ="false">
<appender -ref ref=" EVENT_MILL_LOG " />
<appender -ref ref=" SQL_LOG " />

</ logger >

<logger name="jdbc. sqlonly " level="INFO"/>
<logger name="jdbc. sqltiming " level="OFF"/>
<logger name="jdbc.audit" level="OFF"/>
<logger name="jdbc. resultset " level="OFF"/>
<logger name="jdbc. connection " level="OFF"/>

<!-- log4jdbc internal logging -->
<!-- logger name=" log4jdbc .debug" level="WARN"/-->

</ included >

The following line in the configuration above has a special meaning, though it follows the usual
syntax of configuration files for logback.

<!-- Creates the YearMonthDay - HourMinuteSecond -Millis -event -mill.log file -->
<logger name="nl.cwi. monetdb " level="DEBUG" additivity ="false"/>

</ included >

The JDBC driver of MonetDB seems to use a proprietary kind of logging. Thus ist could usually
not be configured using slf4j and logback. To work around this problem the specification for
logger “nl.cwi.montetdb” is internally used to set the log level of the MonetDB JDBC driver. In
this way the configuration of the logging remains homogeneous.

1.6. Eclipse Plug-ins

1.6.1. Syntax Highlighting

Syntax highlighting is very useful to show the structure of a program. The Eclipse update site
http://sunshade.sourceforge.net/ provides a modified version of the worldfile editor
plug-in for Eclipse (http://marketplace.eclipse.org/content/wfe-wordfile-editor)
that enables syntax highlighting for Dura.

1.6.2. Error Linking

It is very helpful for the development process of a program if the error messages from the
compiler directly point to the location, i.e. the file and line, in a program that cause the error.
The Eclipse update site http://www.pms.ifi.lmu.de/cep/plugins/sunshade/ provides a
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modified version of the sunshade plug-in for Eclipse (http://sunshade.sourceforge.net/)
that creates hyperlinks from the error messages of the Dura compiler that allow to directly jump
to the file and the line in that file that caused the error.

The following screen-shot shows the appearance of Eclipse with both plug-ins installed. The
visible Hello World example contains an error, that is detected by the compiler. The line causing
the error is marked as a result of clicking the hyperlink in the error message.
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2. The Main Dialog – Compiling and Initialising a Dura Program

2.1. Important Parameters

• The module specifies a kind of entry-point into a Dura program. It refers to the modular-
ization mechanism of Dura (see [].)

• The source folder or folders specify the set of Dura files that are searched for specifica-
tions contained in or referenced by the specified module.

• The DTSA file denotes the file where the outcome of the compilation should be saved.
As the compilation of a Dura program involves some sophisticated analysis, loading the
outcome of the compilation is much faster than recompiling the program.

• The instance of a program is the instantiation of a program specification. The instantiation
of a program specification mainly assigns a “memory area” to the program, i.e. a set
of database schemata where the program may store its data and perform the evaluation.
There may exist multiple instances of the same program specification.

• The full name of an instance consists of the name of the program followed by the name
of the instance.

String sourceFolder = " examples /";
String module = " example .hello -world";
String dtsaFile = " examples /hello -world.xml";
String instance = "test";

final String instanceFullName =
TSA_SyntaxPatterns . programInstFullName (module , instance );

2.2. Creating an Event-Mill instance

The de.lmu.ifi.pms.cep.event_mill.EventMill class provides a way to easily interact
with the Event-Mill engine using Java. An instance of this class can be created in the following
way, where Configuration.read() deserializes the event-mill.configuration.xml file into an
instance of de.lmu.ifi.pms.cep.event_mill.configuration.Configuration.

API call

EventMill eventMill = new EventMill ( Configuration .read ());
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2.3. The clear command

Syntax: clear

Removes all existing program instances and specifications. Same effect as clear progs fol-
lowed by clear specs.

API call

eventMill .clear ();

2.4. The compile command

Syntax [Deprecated]: compile MODULE, SOURCE_FILE.dura

Compiles the Dura program specified in SOURCE_FILE.dura and stores the compiled program
specification under name MODULE. Fails if there already exists a program specification with
name MODULE.

This command has become deprecated due to the introduction of the modularization features
described in Deliverable D4.6 [8]. According to that feature programs are intended to consist of
multiple files. However a generalization of this command using several source files could not
be disambiguated from the compile command described below.

API call

DTSA_Program dtsa_program = eventMill . compile (module ,
sourceFile );

eventMill . addSpec ( dtsa_program );

Syntax: compile MODULE, DTSA_File.xml, SOURCE_PATH_1, SOURCE_PATH_2, . . .

Compiles the Dura program specified in SOURCE_PATH_1, SOURCE_PATH_2, . . . and stores
the compiled program specification together with the specified name NAMESPACE.PROGRAM_NAME
in the DTSA_File.xml file.

API call

DTSA_Program dtsa_program =
eventMill . compile (module , sourcePath1 , sourcePath2 , . . . );

eventMill .save(dtsa_program , dtsaFile );
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2.5. The load command

Syntax: load spec DTSA_FILE.xml

Loads the compiled form of a program specification contained in the file DTSA_FILE.xml and
stores the program specification in the database using the name specified in the file. Fails if
there already exists a program specification with the same name.

API call

dtsa_program = eventMill .load( dtsaFile );
eventMill . addSpec ( dtsa_program );

2.6. The list specs command

Syntax: list specs

Lists the names of all available program specifications.

API call

eventMill . availableProgramSpecifications ()

2.7. The remove spec command

Syntax: remove spec MODULE

Removes the program specification with name MODULE if such exists.

API call

eventMill . removeSpec (module);

2.8. The clear specs command

Syntax: clear specs

Removes all existing program specifications.

API call

eventMill . clearSpecs ();
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2.9. The init command

Syntax: init MODULE:INSTANCE, META_SCHEMA, INPUT_SCHEMA,
WORKING_SCHEMA, OUTPUT_SCHEMA, LOG_SCHEMA

Initialize the program instance named MODULE:INSTANCE at the database location given by
META_SCHEMA, INPUT_SCHEMA, WORKING_SCHEMA, OUTPUT_SCHEMA and LOG_SCHEMA. Here
META_SCHEMA, INPUT_SCHEMA, WORKING_SCHEMA, OUTPUT_SCHEMA and LOG_SCHEMA denote
different not yet existing schema which are used for storing the meta data of the program, the
input buffers (tables) for the incoming events, the buffers for the internal query evaluation,
the buffers (tables) for providing the derived events and actions and the tables for writing a
log. During initialization all necessary schema and tables are created and the meta data of the
program is set to its initial state.

API call

String [] schemas = new String []{
" sample_meta ",
" sample_input ",
" sample_working ",
" sample_output ",
" sample_log "

};

eventMill . instanciate (module , instance , schemas );

2.10. The list progs command

Syntax: list progs

Lists the name of all instantiated program instances.

API call

eventMill . availablePrograms ()

2.11. The run command

Syntax: run MODULE:INSTANCE_NAME

Loads the program instance named MODULE:INSTANCE_NAME and switches to the so-called
“Control Dialog” (see Section 3) which serves for controlling the execution of the program
instance.
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API call

// Obtain program instance
ExecutableProgram <?, ?, ?> executableProgram =

eventMill . getProg (module , instance );

// Create engine for program instance
Engine engine = new Engine( executableProgram );

2.12. The remove prog command

Syntax: remove prog NAMESPACE.PROGRAM_NAME:INSTANCE_NAME

Removes the program instance named MODULE:INSTANCE_NAME if such exists. Also deletes all
schemas and therefore data used by the program instance.

API call

eventMill . removeProg (module , instance );

2.13. The clear progs command

Syntax: clear progs

Removes all existing program instances. Also deletes all schemas and therefore data used by
these program instances.

API call

eventMill . clearProgs ();

2.14. The uninstall command

Syntax: uninstall

Deletes the schema used for the meta data of the Event-Mill engine but does not remove the
data of existing program instances. When carried out after the clear progs command, no data
related to Event-Mill remains in the database.

API call

eventMill . uninstall ();
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2.15. The quit command

Syntax: quit

Exits the Event-Mill engine.

API call

eventMill .close ();

3. The Control Dialog – Running a Dura Program

The Control Dialog is entered using the run command and serves for controlling the execution
of an program instance.

3.1. The init command

Syntax: init

Performs last initialization steps for running the program Particularly copies the initial static
and stateful data from the input buffers (tables) into the working buffers (tables).

API call

SchedulerFactory scheduler = eventMill . configuration ().
scheduler ;

// retrieving the scheduler from the configuration of the
Event -Mill instance

engine.init( eventMill . configuration (). scheduler );
// initializing the engine instance for the given program with

the assigned scheduler

3.2. The start command

Syntax: start

Starts/Resumes the query execution for the current program.

API call

engine.start ();
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3.3. The stop command

Syntax: stop

Stops the query execution for the current program. Resume with start.

API call

engine.stop ();

3.4. The quit command

Syntax: quit

Stops the query execution for the current program if it is running. Returns to the administration
command level.

Note: Using the run command for the same program instance, the program execution can be
resumed at the point it had been stopped.

API call

engine.close ();

4. Delivering and Retrieving Data

4.1. The IOConfiguration object

As described in Section 1.4 the event-mill.io.configuration.xml file contains the required infor-
mation for connecting to MonetDB or the Event-Mill Engine respectively and for attaching to
the configured bus system. This configuration can be accessed using an instance of the de.lmu.
ifi.pms.cep.event_mill.configuration.IOConfiguration class. This instance can be
obtained in the following way:

IOConfiguration ioConfiguration = IOConfiguration .read ();

4.2. The SQL_EngineIO object

For each initialized Dura program an instance of class de.lmu.ifi.pms.cep.event_mill.
sql.io.SQL_EngineIO can be used to access the data catalog of the Dura program and to
generate the relevant SQL statements for delivering and retrieving data to and from the Event-
Mill engine. The SQL_EngineIO instance for an initialized Dura program can be obtained from
the ioConfiguration in the following way, where engineIdentifier identifies the instance
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of the Event-Mill engine that should be used and programInstanceIdentifier is the name
for the stream corresponding to the instantiated Dura program:

String engineIdentifier =
"de.lmu.ifi.pms.cep.event -mill. prototype ";

String programInstanceIdentifier = PATTERNS
. programIdentifier ( engineIdentifier , instanceFullName );

SQL_EngineIO sql_engineIO =
( SQL_EngineIO ) ioConfiguration .stream(

engineIdentifier ,
programInstanceIdentifier

);

4.3. The Generic Bus API

The Generic Bus API is a convenience API that significantly helps to integrate the Event-Mill
engine with almost arbitrary bus systems used for distributing event messages like the Enterprise
Service Bus (ESB) described in Deliverable D6.3 [27] The generic Bus ABI bases on three
concepts, streams which carry events represented as tuples, buses which distribute events using
arbitrarily formatted event messages and connectors which serve for interconnecting streams
and buses.

4.3.1. Streams

Streams represent events using tuples. Tuple sinks, i.e. instances of the class de.lmu.ifi.pms.
cep.event_mill.io.stream.SinkStream are used to write tuples to the stream. Conversely
tuple sources, i.e. instances of the class de.lmu.ifi.pms.cep.event_mill.io.stream.
SourceStream are used to read tuples from the stream. Each sink or source is attached to
a single event type and a fixed tuple schema.

Instances of the class de.lmu.ifi.pms.cep.event_mill.io.stream.StreamIO provide of
tuple sinks and tuples sources for a set of input and output event types. Such sets of input and
output event types are usually constituted by the definitions of input and output types in a Dura
program.

The StreamIO object corresponding to an instantiated Dura program named instanceFullName
can be obtained in the following way:

String engineIdentifier =
"de.lmu.ifi.pms.cep.event -mill. prototype ";

String programInstanceIdentifier = PATTERNS
. programIdentifier ( engineIdentifier , instanceFullName );
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StreamIO streamIO = ioConfiguration .stream(
engineIdentifier ,
programInstanceIdentifier

);

A tuple sink for an input type of the Dura program can be obtained by:

String nameOfInputType = . . .
SinkStream sink = streamIO . sinkStream ( nameOfInputType )

A tuple source for an output type of the Dura program can be obtained by:

String nameOfOutputType = . . .
SourceStream source = streamIO . sourceStream ( nameOfOutputType )

4.3.2. Buses

Buses represent events by some kind of messages. In principle the messages may have any
Java type, structure or format. The only requirement is that the bus must provide a way to read
and write messages from and to tuples. More precisely the bus needs to provide an instance
of class de.lmu.ifi.pms.cep.event_mill.io.format.MessageFormatProvider that al-
lows to convert a tuple into a suitable message object for the bus and vice versa.

The input and output messages for the Event-Mill engine are transmitted on two different differ-
ent buses (potentially but not necessarily of the same bus system). Though buses are basically
bidirectional, different buses for input and output messages have to be used. The reason is that
there may be input and output events with the same nominal type but with a slightly different
schema for input and output. However the conversion of tuples to messages and from messages
to tuples requires a unique schema for the tuples of one type.

The following illustrates the connection to the bus on the side of the Event-Mill engine. Any
producer or consumer of event messages can connect to the bus in mostly the same way. The
only difference is that he must use a different end point identifier (busEndpointIdentifier)
than the Event-Mill engine uses for the program instance.

String busEndpointIdentifier = programInstanceIdentifier ;

String inputBusIdentifier = PATTERNS
. inputBusIdentifier ( engineIdentifier , instanceFullName );

Class <String > inputMessageType = String.class;
String inputMessageFormatIdentifier =

SemiStructuredMessageFormatProvider . defaultIdentifier ;
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MessageBus <String > inputBus =
ioConfiguration .bus(

inputBusIdentifier ,
inputMessageType ,
inputMessageFormatIdentifier ,
programInstanceBusEndpoint

);

String outputBusIdentifier = PATTERNS
. outputBusIdentifier ( engineIdentifier , instanceFullName );

Class <String > outputMessageType = String.class;
String outputMessageFormatIdentifier =

XmlMessageFormatProvider . defaultIdentifier ;

MessageBus <String > outputBus =
ioConfiguration .bus(

outputBusIdentifier ,
outputMessageType ,
outputMessageFormatIdentifier ,
busEndpointIdentifier

);

4.3.3. Connectors

Connectors are used to interconnect buses and streams. Connectors work unidirectional. There
are connectors that connect streams to buses, buses to streams, one stream to another stream and
one bus to another bus. Connectors with a stream on one side and a bus on the other are used
to connect the Event-Mill engine to a bus system. Connectors with streams on both sides can
be used for coupling multiple instances of the of the Event-Mill instance, e.g. for a distributed
processing. Connectors with buses on both sides allow to couple different bus systems. The
situation of different bus systems that need to cooperate is likely to occur when an existing
system for emergency management should be enhanced by advanced capabilities like the ones
developed in the EMILI project.

Connector objects can be obtained by calling the factory methods of the respective classes:

BusToStreamConnector <?> inputConnector =
BusToStreamConnector .create(inputBus , streamIO );

StreamToBusConnector <?> outputConnector =
StreamToBusConnector .create(outputBus , streamIO );
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Activating the Connection Connectors are passive by default. In other word, for actually
transferring data it is required to frequently call their nextBlock()method as shown below.

Thread ioThread = new Thread("IO -Thread"){
@Override
public void run () {

while (! this. isInterrupted ()){
inputConnector . nextBlock ();
outputConnector . nextBlock ();
try {

Thread.sleep (1000);
} catch ( InterruptedException e) {

break;
}

}

}
};

4.4. Exploring the data catalog

4.4.1. Schema

The Event-Mill engine uses five different schema in the database for each initialized Dura pro-
gram:

• The meta schema for storing the meta data of a program

• The input schema for the tables buffering the incoming events

• The working schema for the buffers used by the internal query evaluation

• The output schema for the tables providing the derived events and actions

• The log schema for tables that contain logs for certain events, states and actions

If a type is an input type, then for this type there is a table in the input schema and in the working
schema. If a type is an output type, then for this type there is a table in the output schema and
in the working schema. External components write to tables in the input schema and read from
tables in the output schema.

The five schema of an initialized Dura program can be obtained in the following two ways:
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SQL

SELECT
"insts"." meta_schema " AS " meta_schema ",
"insts"." input_schema " AS " input_schema ",
"insts"." working_schema " AS " working_schema ",
"insts"." output_schema " AS " output_schema ",
"insts"." log_schema " AS " log_schema "

FROM
"meta"." program_specs " AS "specs",
"meta"." program_insts " AS "insts"

WHERE
"specs"." namespace " = ’example ’

AND
"specs"." simple_name " = ’hello -world ’

AND
"insts"." instance " = ’test ’

AND
"specs"."id" = "insts"." spec_ref "

;

API call to the respective sql_engineIO object

String meta_schema = sql_engineIO . metaSchema ();
String input_schema = sql_engineIO . inputSchema ();
String working_schema = sql_engineIO . workingSchema ();
String output_schema = sql_engineIO . outputSchema ();
String log_schema = sql_engineIO . logSchema ();

4.4.2. Dura Type Names

A simple type name in Dura starts with any alphabetic or an underscore character followed by
an arbitrary number of alphabetic, digit, underscore or dash characters.

Dura provides modules as mean for structuring a program see Deliverable D4.6 [8]. A simple
module name starts with any alphabetic or an underscore character followed by an arbitrary
number of alphabetic, digit, underscore or dash characters and ends with a dot. A general
module name is an arbitrary long sequence of simple module names.

A general type name in Dura consists of a (potentially empty) module name followed by a
simple type name.
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4.4.3. Retrieving the Defined Types of a Dura Program

The names of the types defined in a Dura program can be obtained in the following two ways:

SQL

SELECT " prog_package ", " simple_name ",
FROM " META_SCHEMA "." buffers "
WHERE

"type" = ’TYPE OF BUFFER ’
;

where META_SCHEMA denotes the name of the meta schema of the respective program instance
(see Section 4.4.1) and TYPE OF BUFFER is either INPUT or OUTPUT .

API call to the respective sql_engineIOobject (see Section 4.2)

DTSA_BufferType buffer_type = . . .
FixedArrayNavigableSet <String > type_names =

sql_engineIO . bufferNames ( buffer_type )

4.4.4. Mapping of Dura Types to SQL Table Names

As SQL does not allow dots and dashes to be part of table names the following encoding for type
names is chosen when creating the corresponding database tables: Each underscore is replaced
by a double underscore, each dot is replaced by "_o_" and each dash is replaced by "_d_". This
encoding is unambiguous. As some SQL implementations impose restrictions on the length of
table names, the table name produced in the step above will be shortened if necessary.

The SQL table name mapping for some Dura type an instantiated program can be obtained in
the following two ways:

SQL

SELECT "table"
FROM " META_SCHEMA "." buffers "
WHERE "type" = ’TYPE OF BUFFER ’

AND " prog_package "=’MODULE_PART_OF TYPE_NAME ’
AND " simple_name "=’SIMPLE_NAME_PART_OF TYPE_NAME ’

;

where META_SCHEMA denotes the name of the meta schema of the respective program instance
(see Section 4.4.1), TYPE OF BUFFER is either INPUT or OUTPUT, MODULE_PART_OF TYPE_NAME
is the Dura type name up to the last dot (inclusive) if such exist and the empty string otherwise
and SIMPLE_NAME_PART_OF TYPE_NAME is the Dura type name from the last dot (exclusive) .
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API call to the respective sql_engineIOobject (see Section 4.2)

DTSA_BufferType buffer_type = . . .
String dura_type_name = . . .
String table_name = sql_engineIO

. bufferNameSQLMapping (buffer_type , dura_type_name )

4.4.5. Dura Attribute Names

A simple attribute name in Dura starts with any alphabetic or an underscore character followed
by an arbitrary number of alphabetic, digit, underscore or dash characters.

A general attribute name consists of an arbitrary number of simple attribute names which are
separated by a dot. The general attribute names are introduced to provide so-called “complex
attributes” as mean for structuring the data of an event, state or action. Basically a complex
attribute consists of those attributes where the sequence of simple attribute names forming the
name of the complex attribute is a prefix of the sequence of simple attribute of the attributes.

4.4.6. Retrieving the Attribute Names and Types of a Dura Type

The names of the attributes defined for a type of a Dura program can be obtained in the following
two ways:

SQL

SELECT " attributes "."name" AS "name",
" attributes "."type" AS "type"

FROM " META_SCHEMA "." buffers " AS " buffers ",
" META_SCHEMA "." attributes " AS " attributes "

WHERE " buffers "."id"=" attributes "." buffer_id "
AND " buffers "."type"=’TYPE OF BUFFER ’
AND " buffers "." prog_package "=’PACKAGE_PART_OF TYPE_NAME ’
AND " buffers "." simple_name "=’SIMPLE_NAME_PART_OF TYPE_NAME ’

ORDER BY " attributes "."name" ASC
;

API call to the respective sql_engineIOobject (see Section 4.2)

DTSA_BufferType buffer_type = . . .
String dura_type_name = . . .
FixedArrayNavigableSet <String > attribute_names =

sql_engineIO . attributeNames (buffer_type , dura_type_name )
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4.4.7. Mapping of Dura Attribute Names to SQL Attribute Names

As SQL does not allow dots and dashes to be part of attribute names the following encoding
for type names is chosen when creating the corresponding attribute in a database tables: Each
underscore is replaced by a double underscore, each dot is replaced by "_o_" and each dash
is replaced by "_d_". This encoding is unambiguous. As some SQL implementations impose
restrictions on the length of attribute names, the table name produced in the step above will be
shortened if necessary.

The SQL attribute name mapping for the attributes of some Dura type of an instantiated program
can be obtained in the following two ways:

SQL

SELECT " attributes "." sql_name " AS " sql_name "
FROM " META_SCHEMA "." buffers " AS " buffers ",

" META_SCHEMA "." attributes " AS " attributes "
WHERE " buffers "."id"=" attributes "." buffer_id "

AND " buffers "."type"=’TYPE OF BUFFER ’
AND " buffers "." prog_package "=’PACKAGE_PART_OF TYPE_NAME ’
AND " buffers "." simple_name "=’SIMPLE_NAME_PART_OF TYPE_NAME ’

ORDER BY " attributes "."name" ASC
;

where META_SCHEMA denotes the name of the meta schema of the respective program instance
(see Section 4.4.1), MODULE_PART_OF TYPE_NAME is the Dura type name up to the last dot
(inclusive) if such exist and the empty string otherwise , SIMPLE_NAME_PART_OF TYPE_NAME
is the Dura type name from the last dot (exclusive) and TYPE OF BUFFER is either INPUT or
OUTPUT .

API call to the respective sql_engineIOobject (see Section 4.2)

DTSA_BufferType buffer_type = . . .
String dura_type_name = . . .
String dura_attribute_name = . . .
String attribute_name = sql_engineIO

. attributeNameSQLMapping (buffer_type ,
dura_type_name ,
dura_attribute_name )
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4.4.8. Mapping of Attribute Types

All Dura types are mapped to flat tuples where the structure is encoded into the (general) at-
tribute names . The mapping of the basic Dura types to SQL types is shown in Table 1.

Dura MonetDB
TIMESTAMP BIGINT
DURATION BIGINT
BOOLEAN BOOLEAN
INT INT
LONG BIGINT
FLOAT REAL
DOUBLE DOUBLE
STRING CLOB
ID BIGINT

Table 1: Mapping of basic Dura types to MonetDB SQL types

4.5. Input

4.5.1. Delivering Events

The incoming events of a certain type have to be inserted into the corresponding table within
the input schema. The payload of the event is stored in the attributes of the inserted tuple.

The initial states of a certain type have to be inserted into the corresponding table within the
input schema. The state data is stored in the attributes of the inserted tuple.

4.5.2. Initialize Static Data

Static data is treated as states. Thus static data is provided as initial states of a certain (state)
type which never changes.

4.5.3. Inserting tuples

SQL:

The "_o_block" attribute of the inserted tuple has a special purpose and MUST NOT be set by
the payload of an event or initial state. Instead it is required to be set to a special value.

Note: "_o_block" represents the ".id" attribute on a higher level. Attributes starting with "_o_"
should never be set explicitly.
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INSERT INTO
" sample_input "." example_o_hello_d_world_o_see_d_person "
(" _o_block ", "person")

VALUES
(( SELECT " block_counter " FROM " sample_meta "." buffers "

WHERE "id" = ’1’)
, ’boy_1 ’)

;

Stream API

Initial preparation

String dura_type_name = . . .
SinkStream sink =

streamIO . sinkStream ( dura_type_name )

Actual insert of two tuples

sink.next ();
sink. setString ("person","boy_1");
sink.next ();
sink. setString ("person","girl_1");

sink. nextBlock ();

where "person" is the name of an attribute and "boy_1" and "girl_1" are the respective
values for this attribute.

Bus API

Initial preparation

MessageSink <String > messageSink = emulationOutputBus .sink ();

Sending a single message

String message = ". . .";
messageSink .write( message );
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Sending a bulk of messages

ArrayList <String > messages = new ArrayList <String >();

String message1 = ". . .";
String message2 = ". . .";
messages .add( message1 );
messages .add( message2 );

messageSink . writeBlock ( messages );

messages .clear ();

4.5.4. The parse command

Within the Control Dialog (See Section 3) the parse command can be used for initializing static
data and sending new events to the Event-Mill engine. The parse only puts the messages on the
input bus of the Event-Mill engine. A subsequent write command is needed to actually insert
the corresponding tuples into the tables of the Event-Mill engine. At the moment messages
need to be written in a single line.

Syntax: parse MESSAGE

Corresponding API call

messageSink .write( message );

4.5.5. The write command

Within the Control Dialog (See Section 3) the write command can be used to transfer messages
from the input bus to the input tables of the Event-Mill engine. The write takes all messages
available on the input bus and places the corresponding tuples int the respective tables of the
Event-Mill engine.

Syntax: write

API call

inputConnector . nextBlock ();

D4.7 Refinement of the Implementation • Page 34 of 76



Project EMILI FP7-SEC-2009-1

4.6. Output

4.6.1. Retrieving Events and Actions

The tuples for the outcoming events and actions of a certain type are stored in the corresponding
table within the output schema.

4.6.2. Retrieving Tuples

SQL:

The events/tuples can be read incrementally using their "_o_id" attribute and the first output
min-time value of the query performing the copying from the internal buffer/table for the event
type to the corresponding table in the output schema. This means:

1. Obtain value of first output min-time

SELECT " output_min_time_value_1 "
FROM META_SCHEMA ." queries "
WHERE "type" = ’OUTPUT ’

AND "output" = TYPE_NAME ;

2. Copy all tuples where the value of the "id" attribute is between the previous and the
current value of the first output min-time.

SELECT *
FROM OUTPUT_SCHEMA . CORRESPONDING_TABLE
WHERE "_o_id" > /* previous tuple_id_seq */?

AND "_o_id" <= /* current tuple_id_seq */? ;

Note: Tuples with "_o_id"> /*current tuple_id_seq*/? should not be read from
the table.

3. Store the current value of the first output min-times as previous value for the next round

Streams

Initial preparation

String dura_type_name = . . .
SourceStream source =

streamIO . sourceStream ( dura_type_name )
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Reading a bulk of tuples

source. nextBlock ();
while(source.next ()){

String person = source. getString ("person");
}

where "person" is the name of an attribute

Buses

Initial preparation

MessageSource <String > messageSource = uiInputBus .source ();

Reading a single message

String message = messageSource .read ();
// message can be null
//if there is no message available currently
if( message != null){

PERFORM ACTION
}

Note that the read() method is non-blocking. Thus, if no message is available it will return
null .

Reading a bulk of messages

for(String message : messageSource . readBlock ()){
PERFORM ACTION

}

4.6.3. The read command

Within the Control Dialog (See Section 3) the read command can be used to transfer messages
from the output tables of the Event-Mill engine. to the output bus. The read command takes
all tuples from the output tables of the Event-Mill engine and adds the corresponding messages
to the output bus.

Syntax: read

API call

outputConnector . nextBlock ();
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4.6.4. The print command

Within the Control Dialog (See Section 3) the print command can be used for reading event
and action messages from the output bus of the Event-Mill engine and displaying the messages
on the console. The print command only considers event and action messages that are avail-
able from the bus. A preceding read command is needed to to add the messages corresponding
to the tuples in the output tables of the Event-Mill engine to the bus.

Syntax: print

API call

At call

for(String message : messageSource . readBlock ()){
System.out. println ( message );

}

5. Event Scripts

Event Scripts are an easy way to run a sequence of the commands described in Sections 2, 3 and 4.
Such sequences are useful for testing a Dura program for example.

5.1. Variables

Event Scripts allow to define variables that are useful if certain parameters are reused over
several commands, or if all parameters should be specified at the beginning of the script.

Syntax:

Set Variable
set %{VARIABLE_NAME} = ’VALUE’

Drop Variable
set %{VARIABLE_NAME} =

Variable Reference
set %{VARIABLE_NAME}

5.1.1. Special Variables and Default Values

Some variables have a special meaning:

• source - The source file

Implicitly sets source.dir, result, name and all variables that are implicitly set when
setting name
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• source.dir - The source directory

• result - The name of the file for the result of the compilation

• name - The simple name of the program (The part after the last dot)

Implicitly sets meta-schema, input-schema, working-schema, output-schema, log-schema
, instance

• meta-schema - The name of the meta schema

• input-schema - The name of the input schema

• working-schema - The name of the working schema

• output-schema - The name of the output schema

• log-schema - The name of the log schema

• instance - The name of the program instance

• namespace - The namespace of the program (The part preceeding the last dot)

5.2. The inject command

The inject command executes the commands contained in the specified file name and then
continues with the sequence of commands that was available before the execution of the inject
command, if such commands existed.

Syntax: inject FILENAME

5.3. The pause command

The pause command suspends the execution of further commands for the specified amount of
milli seconds. This command is particularly useful in combination with the parse and write
commands to define a timing for the incoming events.

Syntax: pause TIME_IN_MILLIES

6. The Hello World Example

6.1. Description

The Hello World example realizes a simple politeness rule: Each time I see a person, I should
greet that person. Thus the Hello World program consists of a single rule stating that whenever
a see_person event arrives, a greet_person event should be derived. Both the see_person as well
as the greet_person event carry a "person" attribute which holds the name of the person that has
been seen or should be greeted.
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MODULE hello-world

DESCRIPTION "Hello World example ."

input
EVENT

see-person { person {string} }
END

output log
EVENT

greet-person { person {string} }
WITH

DETECT
greet-person { person { var P} }

ON
event e: see-person { person { var P} }

END
END

6.2. Input

The incoming see_person events have to be inserted into the INPUT_SCHEMA."see_d_person"
table. The table has two attributes, namely "_o_block" and "person". The insertion must not set
the "_o_block" attribute.

6.3. Output

The outcoming greet_person events are stored in the table
OUTPUT_SCHEMA."hello_d_world_o_greet_d_person".

The greet_person events/tuples can be read incrementally using their "_o_id" attribute and the
first output min-time value of the query performing the copying from the WORKING_SCHEMA.
"hello_d_world_o_greet_d_person" buffer/table for the greet_person events to the corre-
sponding OUTPUT_SCHEMA."hello_d_world_o_greet_d_person" table.

This means:

1. Obtain value of first output min-time

SELECT " output_min_time_value_1 "
FROM META_SCHEMA ." queries "
WHERE "type" = ’OUTPUT ’

AND "output" = ’hello -world.greet -person ’ ;
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2. Copy all tuples where the value of the "_o_id" attribute is between the previous and the
current value of the first output min-time.

SELECT *
FROM OUTPUT_SCHEMA ." hello_d_world_o_greet_d_person "
WHERE "_o_id" > /* previous tuple_id_seq */?

AND "_o_id" <= /* current tuple_id_seq */? ;

Note: Tuples with "_o_id"> /*current tuple_id_seq*/? should not be read from
the table.

3. Store the current value of the first output min-times as previous value for the next round

6.4. Test Sequence

set %{ source} = ’examples / hello-world .dura ’
set %{ examples .dir} = ’examples ’
set %{ namespace } = ’’

compile %{ namespace }%{ name }, %{ result }, %{ source}

remove prog %{ namespace }%{ name }:%{ instance }
remove spec %{ namespace }%{ name}

load spec %{ result}
list specs

init %{ namespace }%{ name }:%{ instance }, %{ meta-schema }, %{
input-schema }, %{ working-schema }, %{ output-schema }, %{
log-schema }

list progs

run %{ namespace }%{ name }:%{ instance }

init
start

parse hello-world . see-person { person{ "boy_1" } }
parse hello-world . see-person { person{ " girl_1" } }
write

pause 1500
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read
print

parse hello-world . see-person { person{ "boy_2" } }
parse hello-world . see-person { person{ " girl_2" } }
write

pause 1500

read
print

pause 500
stop
quit

quit

6.5. Full API example

package de.lmu.ifi.pms.cep. event_mill . sample ;

import java.io. IOException ;
import java.util. ArrayList ;

import de.lmu.ifi.pms.cep. event_mill . EventMill ;
import de.lmu.ifi.pms.cep. event_mill . configuration . Configuration ;
import de.lmu.ifi.pms.cep. event_mill . configuration . IOConfiguration ;
import de.lmu.ifi.pms.cep. event_mill . execution . engine . Engine ;
import de.lmu.ifi.pms.cep. event_mill . execution . program . ExecutableProgram

;
import de.lmu.ifi.pms.cep. event_mill . execution . scheduler .

SchedulerFactory ;
import de.lmu.ifi.pms.cep. event_mill .io. MessageSink ;
import de.lmu.ifi.pms.cep. event_mill .io. MessageSource ;
import de.lmu.ifi.pms.cep. event_mill .io. PATTERNS ;
import de.lmu.ifi.pms.cep. event_mill .io.bus. MessageBus ;
import de.lmu.ifi.pms.cep. event_mill .io. connect . BusToStreamConnector ;
import de.lmu.ifi.pms.cep. event_mill .io. connect . StreamToBusConnector ;
import de.lmu.ifi.pms.cep. event_mill .io. format .

SemiStructuredMessageFormatProvider ;
import de.lmu.ifi.pms.cep. event_mill .io. format . XmlMessageFormatProvider ;
import de.lmu.ifi.pms.cep. event_mill .io. stream . StreamIO ;
import de.lmu.ifi.pms.cep.tsa. DTSA_Program ;
import de.lmu.ifi.pms.cep.tsa. TSA_SyntaxPatterns ;
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public class Main {

public static void main(final String [] args) throws Exception {

String sourceFolder = " examples /";
String module = "hello -world";
String dtsaFile = " examples /hello -world.xml";
String instance = "test";

final String instanceFullName = TSA_SyntaxPatterns .
programInstFullName (module , instance );

String [] schemas = new String []{
" sample_meta ",
" sample_input ",
" sample_working ",
" sample_output ",
" sample_log "
};

EventMill eventMill = new EventMill ( Configuration .read ());

// clear event mill
eventMill .clear ();

DTSA_Program dtsa_program = eventMill . compile (module , sourceFolder );

assert dtsa_program . full_name . equals ( module );

eventMill .save( dtsa_program , dtsaFile );
dtsa_program = eventMill .load( dtsaFile );

eventMill . addSpec ( dtsa_program );

// list available program specifications
System .out. println (" Available specifications :");
for( String spec: eventMill . availableProgramSpecifications ()){

System .out. println (spec);
}
System .out. println ();

eventMill . instanciate (module , instance , schemas );

// list available program instances
System .out. println (" Available program instances :");
for( String spec: eventMill . availablePrograms ()){

System .out. println (spec);
}
System .out. println ();
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// Obtain program instance
ExecutableProgram <?, ?, ?> executableProgram = eventMill . getProg (

module , instance );

// Create engine for program instance
Engine engine = new Engine ( executableProgram );

// Connect Engine to message bus

IOConfiguration ioConfiguration ;
try {

ioConfiguration = IOConfiguration .read ();
} catch ( IOException e) {

throw new RuntimeException (e);
}

String engineIdentifier = "de.lmu.ifi.pms.cep.event -mill. prototype ";

String programInstanceIdentifier = PATTERNS . programIdentifier (
engineIdentifier , instanceFullName );

StreamIO streamIO = ioConfiguration . stream ( engineIdentifier ,
programInstanceIdentifier );

String programInstanceBusEndpoint = programInstanceIdentifier ;
final Class <String > messageType = String .class ;

final String inputBusIdentifier = PATTERNS . inputBusIdentifier (
engineIdentifier , instanceFullName );

String inputMessageFormatIdentifier =
SemiStructuredMessageFormatProvider . defaultIdentifier ;

MessageBus <String > inputBus = ioConfiguration .bus( inputBusIdentifier ,
messageType , inputMessageFormatIdentifier ,

programInstanceBusEndpoint );

final String outputBusIdentifier = PATTERNS . outputBusIdentifier (
engineIdentifier , instanceFullName );

String outputMessageFormatIdentifier = XmlMessageFormatProvider .
defaultIdentifier ;

MessageBus <String > outputBus = ioConfiguration .bus(
outputBusIdentifier , messageType , outputMessageFormatIdentifier ,
programInstanceBusEndpoint );

final BusToStreamConnector <?> inputConnector = BusToStreamConnector .
create (inputBus , streamIO );

final StreamToBusConnector <?> outputConnector = StreamToBusConnector .
create (outputBus , streamIO );

Thread ioThread = new Thread ("IO - Thread "){
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@Override
public void run () {

while (! this. isInterrupted ()){
inputConnector . nextBlock ();
outputConnector . nextBlock ();
try {

Thread .sleep (1000) ;
} catch ( InterruptedException e) {

break ;
}

}

}

};

// Thread for providing input
Thread simInputThread = new Thread (" Emulation "){

@Override
public void run () {

String emulationBusEndPoint = "de.lmu.ifi.pms.cep. event_mill .
sample . emulation ";

String emulationMessageFormatIdentifier =
SemiStructuredMessageFormatProvider . defaultIdentifier ;

MessageBus <String > emulationOutputBus ;

try {

emulationOutputBus = IOConfiguration .read ().bus(
inputBusIdentifier , messageType ,
emulationMessageFormatIdentifier , emulationBusEndPoint );

} catch ( IOException e) {
throw new RuntimeException (e);

}

MessageSink <String > messageSink = emulationOutputBus .sink ();

ArrayList <String > messages = new ArrayList <String >();

int round = 1;
while (! this. isInterrupted ()){

messages .add("hello -world.see - person { person { \" boy_" +
round + "\" } }");

messages .add("hello -world.see - person { person { \" girl_" +
round + "\" } }");

messageSink . writeBlock ( messages );
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messages .clear ();

try {
Thread .sleep (1000) ;

} catch ( InterruptedException e) {
break ;

}
++ round;

}
}

};

// Thread for reading output
Thread uiThread = new Thread ("UI"){

@Override
public void run () {

String uiBusEndPoint = "de.lmu.ifi.pms.cep. event_mill . sample .ui
";

String uiMessageFormatIdentifier =
SemiStructuredMessageFormatProvider . defaultIdentifier ;

MessageBus <String > uiInputBus ;

try {
uiInputBus = IOConfiguration .read ().bus( outputBusIdentifier ,

messageType , uiMessageFormatIdentifier , uiBusEndPoint );
} catch ( IOException e) {

throw new RuntimeException (e);
}

MessageSource <String > messageSource = uiInputBus . source ();

while (! this. isInterrupted ()){
for( String message : messageSource . readBlock ()){

System .out. println ( message );
}

try {
Thread .sleep (1000) ;

} catch ( InterruptedException e) {
break ;

}
}

}

};

// initialize engine
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SchedulerFactory scheduler = eventMill . configuration (). scheduler ;
// retrieving the scheduler from the configuration of the Event -Mill

instance

engine .init( scheduler );
// initializing the engine instance for the given program with the

assigned scheduler

// start program

engine .start ();

// start IO
simInputThread .start ();
ioThread .start ();
uiThread .start ();

// wait for user input
System .out. println ("Press [Enter] to stop execution .");
System .in.read ();

// stop IO
simInputThread . interrupt ();
simInputThread .join ();
ioThread . interrupt ();
ioThread .join ();
uiThread . interrupt ();
uiThread .join ();

// stop program
engine .stop ();

// release resources
engine .close ();

// remove program instance
eventMill . removeProg (module , instance );

// remove program specification
eventMill . removeSpec ( module );

eventMill .close ();
}

}
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7. The Access Control Example

7.1. Description

The Access-Control example realizes following simple access control rules:

1. If a person requests access and the person is not a member of the staff, then the access is
denied.

2. If a person requests access and the person is a member of the staff, but requested access
shortly before then the access is denied.

3. If a person requests access and the person is a member of the staff, but requested access
for more than tree time within a short period of time then the access is denied.

4. If a person requests access and there is no reason to deny access, then the person is granted
access.

5. If a person requests access and belongs to the staff, but the access is denied, then an
intrusion warning is raised.

MODULE access-control

DESCRIPTION " Access control example ."

input output
EVENT

request-access { person {string} }
END

static input
STATEFUL OBJECT

staff{ person {string} }
END

output log
EVENT

deny-access { person {string} }
WITH

DETECT
deny-access { person {var P} }

ON
and{

event e: request-access { person {var P} },
not{state s: staff { person {var P} } }

} where {state s valid-at end(event e) }
END
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DETECT
deny-access { person { var P} }

ON
and{

event e : request-access { person { var P } },
state s : staff{ person { var P} },
event f : request-access { person { var P } }

} //where { state s valid-at end(event e), event f before event e,
{e , f} within 5 sec}

where { state s valid-at end(event e), event f before event e,
end(e) <= begin(f) + 5 sec}

END

DETECT
deny-access { person { var P} }

ON
and{

event e: request-access { person { var P} },
state s: staff{ person { var P} },
event f: request-access { person { var P} }

} //where {state s valid-at end(event e), end(f) <= end(e), {e, f}
within 30 sec}

where {state s valid-at end(event e), end(f) <= end(e), end(e)
<= begin(f) + 30 sec}

group by {event e, state s} aggregate {var C = count(event f)}
where {var C >= 3}

END

END

output log
EVENT

grant-access { person {string} }
WITH

DETECT
grant-access { person { var P} }

ON
and{

event e: request-access { person { var P} },
not{event f: deny-access { person { var P} }}

} //where {end(f) <= end(e), {e, f} within 5 sec}
where {end(f) <= end(e), end(e) <= begin(f) + 5 sec}

END

END

output log
EVENT

intrusion-warning { person {string} }
WITH
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DETECT
intrusion-warning { person { var P} }

ON
and{

event f: deny-access { person { var P} },
state s: staff{ person { var P} }

}
END

END

7.2. Input

The incoming request-access events have to be inserted into the table with name
INPUT_SCHEMA."request_d_access". The table has two attributes, namely "_o_block" and
"person". The insertion must not set the "_o_block" attribute.

The staff members which should be granted access have to be stored in the
INPUT_SCHEMA."staff" table. The table has two attributes, namely "_o_id" and "person".
The insertion must not set the "_o_id" attribute.

7.3. Output

The derived grant-access events are stored in the table with name
OUTPUT_SCHEMA."access_d_control_o_grant_d_access" .

The grant-access events/tuples can be read incrementally using their "_o_id" attribute and the
first output min-time value of the query performing the copying from the
WORKING_SCHEMA."access_d_control_o_grant_d_access" buffer/table for the grant-access
events to the corresponding OUTPUT_SCHEMA."access_d_control_o_grant_d_access" ta-
ble. This means:

1. Obtain value of first output min-time

SELECT " output_min_time_value_1 "
FROM META_SCHEMA ." queries "
WHERE "type" = ’OUTPUT ’

AND "output" = ’access - control .grant -access ’ ;

2. Copy all tuples where the value of the "_o_id" attribute is between the previous and the
current value of the first output min-time.

SELECT *
FROM OUTPUT_SCHEMA ." access_d_control_o_grant_d_access "
WHERE "_o_id" > /* previous tuple_id_seq */?

AND "_o_id" <= /* current tuple_id_seq */? ;
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Note: Tuples with "_o_id"> /*current tuple_id_seq*/? should not be read from
the table.

3. store the current value of the first output min-times as previous value for the next round

The outcoming intrusion-warning events are stored in the table with name
OUTPUT_SCHEMA."access_d_control_o_intrusion_d_warning".

They can be read analogously to the grant-access events.

7.4. Test Sequence

set %{ source} = ’examples / access-control .dura ’
set %{ examples .dir} = ’examples ’
set %{ namespace } = ’’

compile %{ namespace }%{ name }, %{ result }, %{ source}

remove prog %{ namespace }%{ name }:%{ instance }
remove spec %{ namespace }%{ name}

load spec %{ result}
list specs

init %{ namespace }%{ name }:%{ instance }, %{ meta-schema }, %{
input-schema }, %{ working-schema }, %{ output-schema }, %{
log-schema }

list progs

run %{ namespace }%{ name }:%{ instance }

parse access-control .staff{ person{ " staff_1" } }
parse access-control .staff{ person{ " staff_2" } }
parse access-control .staff{ person{ " staff_3" } }
parse access-control .staff{ person{ " staff_4" } }
write

init
start

parse access-control . request-access { person{ " staff_1" } }
parse access-control . request-access { person{ " staff_2" } }
parse access-control . request-access { person{ " visitor_1" } }
write
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pause 1500

read
print

parse access-control . request-access { person{ " staff_1" } }
parse access-control . request-access { person{ " staff_3" } }
parse access-control . request-access { person{ " staff_4" } }
write

pause 1500

read
print

pause 10000

parse access-control . request-access { person{ " staff_1" } }
parse access-control . request-access { person{ " staff_3" } }
write

pause 1500

read
print

pause 1500
read
print

pause 500

stop

quit
quit
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Part II.
Building Blocks

8. Overview

The compilation and evaluation of a Dura program involves several implementation layers
where each layer takes specific tasks. This section gives a brief overview on the different build-
ing blocks and their dependencies.

Dura Dura is the high-level event, state and action language designed in WP4. Dura aims at
multiple goals that are important for emergency management:

• ease-of-use

• high-expressivity

• intuitive concepts and syntax

• precise declarative semantics

These goals are discussed more deeply in the Deliverables D4.2, D4.3 and D4.6 [5, 6, 8]. To
meet these goals Dura need to offer a flexible syntax that offers different concepts like events,
states and actions, different kinds of rules like complex event rules, event-condition-action rules
and complex action specifications and numerous syntactic abbreviations for common tasks, usu-
ally referred to as syntactic sugar.

Temporal Stream Algebra – TSA Dura programs are translated into Temporal Stream Algebra
- TSA. (See Section 10 for an example.) TSA plays the same role for Dura as relational Algebra
plays for SQL. Temporal Stream Algebra (TSA) offers a single common concept, temporal
streams, to represent the events, states and actions defined in Dura. Furthermore TSA defines
a small set of simple operators that nevertheless have the high expressivity required for the
translation of the Dura rules. The use of a common concept for events, states and actions and
of a small set of simple operators is essential for the in-depth analysis of the temporal relations
defined in the Dura rules. Actually this in-depth analysis of the temporal relations is the core
reason for the high expressivity that is achievable by Dura and TSA. Moreover the TSA layer
is particularly suited for optimizing the compiled program. For details see Section 9.

Differentiated TSA A previous TSA layer breaks a the complex definitions of a Dura program
into simple operations. However it does not yet tackle the incremental evaluation of the pro-
gram. TSA expressions conceptually take an omniscient view, i.e. assume that the whole input
streams are known, and derive all consequences at once. This view is not realistic, though. In
practice data continuously arrives over time and the consequences of the arriving data should
be derived continuously, too. Therefore the TSA expressions from the previous layer need to be
transformed into expressions that allow to derive the new consequences resulting from the new
data that arrived since the last evaluation step incrementally. This transformation from “omni-
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scient" to incremental TSA expressions bases on the results of the temporal analysis. As the
incremental expressions compute the “delta” between the old and the new consequences, they
are also called “differentiated TSA expressions, and the transformation process is refereed to as
“differentiating” TSA expressions. For details see Section 11.

Parameterized SQL expressions The differentiated are finally translated to parametrized SQL
queries which are executable on the MonetDB database. The translation is simple as the TSA
operators within a differentiated TSA expression, can directly be interpretated as operators of
relational algebra. Note that the translation can be done once at compile time. The only changes
for the subsequent steps of the incremental evaluation are the values of the parameters within the
SQL expressions. The corresponding functions for computing these values of the parameters
are an outcome of the TSA differentiation process in the previous layer.

Event-Mill run-time on MonetDB The actual evaluation of the program against the data/event
streams is done by the run-time of the Event-Mill engine on top of MonetDB. The main task of
the Event-Mill engine is

The run-time of the Event-Mill engine is not required to see the processed data. The run-time
only needs to execute the parametrized SQL expressions from the previous layer in the right
way. The execution of these SQL expressions then generates the expected results directly in the
MonetDB database. This approach minimizes the amount of data that needs to transferred from
and to the MonetDB database. MonetDB stores all data and all computations on that data are
also done within MonetDB.

9. Temporal Stream Algebra – TSA

9.1. Introduction

The Temporal Stream Algebra is designed to meet the requirements of detecting and managing
emergencies in large infrastructures like metro system, airports or power grids [23, 24, 25]. The
requirements from these use-cases are discussed Section 9.2.

TSA contributes the following:

1. A common data model for data streams and database relations

2. An algebra of operators for querying data streams and database relations

Salient properties of TSA are:

• Timestamps after different time lines/time-semantics

• Expressive temporal relations

• Rich negation, grouping and aggregation

The section on the Temporal Stream Algebra (TSA) is structured as follows: Section 9.2 the
requirements of the use-cases specific to TSA and motivates our approach using an example
from the metro use-case. Section 9.3 introduces temporal streams and the common data model
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for data streams and database relations. Section 9.6 defines the operators of Temporal Stream
Algebra (TSA). Section 9.4 explains how propagated constraints on temporal relations can be
used to decide whether an operator application or TSA expression respectively is blocking or
not. Section 11 describes the incremental evaluation of TSA.

9.2. Motivation

Combined data stream and database queries. Use cases from emergency management need
combined queries to data stream and database data1 [23, 24, 25]. Consider a train in which a
fire has broken out and that has to stop inside a metro station. Unfortunately the fire is close
to one staircase which therefore is likely to quickly fill with smoke and should not be used
for evacuation. For correctly assessing the situation and choosing an appropriate reaction, the
system needs to combine the alarm events from smoke and temperature sensors with static data
about the location of sensors and staircases. This way the system can conclude that one of the
staircases being too close to the fire should not be used for evacuation as it will be impassable
due to smoke shortly. Since persistent data are required for interpreting the volatile data arriving
on the stream, combined data stream and database queries are needed.2

Declarativity. We argue that a high-level user-language for combined data stream and database
queries should be declarative. A declarative language has a number of well-known advantages,
like ease of programming and clear and (relatively) comprehensible semantics. This is particu-
larly important for emergency management where rules have to be written (or at least have to
be verified) by security experts which typically have limited programming skills. Furthermore
emergency management requires predicable results, thus a clear semantic is mandatory. The
work presented in this document is part of the implementation of the event, state and action
language Dura [6, 7, 8, 16].

Relational Algebra. For queries to database relations declarative query languages, particularly
SQL, are widely used. Their system-level counterpart is Relational Algebra [1, 15]. Temporal
Stream Algebra (TSA) generalizes the data model and operators of Relational Algebra to apply
to both data streams and database relations. Such a generalization is by no means trivial and, so
far, has not been proposed. Preserving the data model and the operators of Relational Algebra
has at least two advantages: First the properties of the operators are well understood. For ex-
ample the laws on operator permutations are very important for the optimization of Relational
Algebra expressions. Second, there exist reliable techniques for the evaluation and optimiza-
tion of Relational Algebra expressions, like specialized join algorithms, heuristics for operator
reordering or cost-models, that base on these laws and on other properties of the operators of
Relational Algebra. As TSA preserves the operators and their characteristics these techniques

1Within this article the terms “database data” or “database relation “ refer to static data as opposed to stream data.
2 Persistent data is likely to change less frequently than the streaming data itself, but does not have to be com-

pletely static. E.g. sensor locations may change, as for instance sensors in a moving train. Using TSA it is
possible to handle dynamically changing persistent data in a semantically precise manner (i. e. without race
conditions). This also holds for the incremental evaluation of TSA (Section 11). However details on this point
it are out of the scope of this article.
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and algorithms can be reused or easily adopted for TSA. Third, preserving the operators of Re-
lational Algebra for combined data stream and database queries means that the representation
of database queries does not change at all and allows to query data streams in the same way that
is already familiar from database relations.

Blocking Operators. Some operators of Relational Algebra, the so called “blocking operators”,
like set difference or grouping and aggregation, in general need to process the complete input
before the may produce the correct results. For a data stream the complete input is only known
at the end of the stream, which in the case of an CEP application is only reached when the appli-
cation is terminated. However CEP queries are required to deliver results as the data arrives on
the stream and not when the application is terminated. Therefore the use of “blocking operators”
within CEP queries must be restricted to situations where each result only depends on a limited
section of the stream and thus can be produced before the complete stream is known.

Previous approaches [13, 20], including those not related to Relational Algebra [11], tackle
this problem on a “syntactical” level. They basically restrict operators in such a way that they
may not lead to potentially blocking query expressions. In other words, the “syntax” does not
allow to write blocking expressions. However solving this “semantic” problem on a “syntactic”
level puts unnecessary limits to expressivity. By contrast TSA does not prevent blocking query
expressions on the “syntactical” level. Instead TSA uses a “semantic" analysis of the temporal
relations specified in the query expression, to determine whether the expression is blocking or
not (See Sections 9.6 and 9.4 for details).

Common Data Model. Keeping the operators of Relational Algebra calls for a common data
model for data streams and database relations as the same operators must work on both data
sources. Using common operators for both data sources has two advantages: The number of
operators is kept low and the common operators allow arbitrary combinations of both stream and
database data. Note that a common data model for stream and database data should incorporate
constraints on temporal relations providing the information that the temporal analysis needs
to determine the validity of an query expression with respect to “blocking” or “non-blocking”.
Thus the data model is a key element of TSA (see Section 9.3).

Multiple Time Lines. Modeling the emergency management use cases showed that a single,
predefined time model (regardless of being based on time points or intervals) is insufficient. In
emergency management even atomic events may refer to at least three times. The first time is
the one at which an event, e. g. sensor message, is emitted. This time is known as application
time. The second time is set when the event message is received by the CEP system. This time
is known as system time. The third time is the time simulated data refer to. Simulated events
are used for predictions on the future development of an emergency. For simulated events the
time where the underlying data is available (application/system time) differs from the future
time for which the event makes a prediction. Whether these times are modeled as time point or
intervals depends on their usage and both, the common data model and the algebra proposed in
this article, leave this decision open.

Supporting multiple time lines requires more than having multiple timestamp attributes. For
example different time lines impose different orders on the events. An in-order processing is
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therefore only possible for at most one of the time lines. For all other time lines the evaluation
is inevitably out-of-order. However previous algebraic approaches [13, 20] assume in-order
processing and current DSMS offer only limited support for out-of-order processing, and thus
favor a single time line. By contrast TSA treats all time lines equally and imposes no limitation
on their number. The presented incremental evaluation of TSA does a bulk-wise out-of-order
processing for all time lines (Section 11).

Negation, Grouping and Aggregation. Finally emergency management needs flexible nega-
tion and grouping and aggregation that can be controlled, i. e. started and stopped, by events.
The “event-controlled” grouping and aggregation is required for queries like “Count the num-
ber of people that have left the building from the detection of the fire to the arrival of the
fire-brigade”. Similar examples exist for negation. Negation or grouping and aggregation fixed-
sized time-windows are too limited.

9.3. Data Model: Temporal Streams

The common data model for data streams and database relations is an essential part of this TSA.
Temporal streams generalize the concept of (finite) relations from Relation Algebra so as to
include data streams as well. The basic idea behind the definition is that streams may have
potentially infinite size, however they are expected to have only a finite history at each point of
time, i. e. up to some point of time only a finite amount of data may arrive on the stream.

Definition 1. (Temporal Stream)
A temporal stream is a (possibly infinite) relation R with attribute schema A (R) ⊆ ATTR and
timestamp attributes Atemp(R) = {p1, . . . , pk} that has a finite history at each point in time. I. e.
for each point in time s1, . . . ,sk ∈Q 3 the number of tuples r ∈ R occurring before that point in
time is finite:

|{r ∈ R | r(p1)≤ s1∧·· ·∧ r(pk)≤ sk}| < ∞

where ATTR is a set of attribute names. For data streams Atemp(R) contains at least one times-
tamp attribute. For ordinary (finite) database relation Atemp(R) may be empty. As database
relations are always finite they trivially fulfill the condition formulated above.

The definition of temporal streams bases on the observation that each data item in a data stream
is carrying temporal information, i.e. timestamps, that is correlated with the sequence order of
the data items in the stream.4 The timestamps may refer to different time-models, none of the
timestamps might define a total order on the incoming events and events may arrive out-of-order
with respect to each of the timestamps. However as long as the timestamps refer to clocks that
all increase over time, i.e. time does not stop for any of the clocks, also the minimum value for

3 As usually Q denotes the set of relational numbers.
4 Even the sequence numbers themselves form a kind of timestamp, admittedly with respect to a quite unusual

time model. TSA is able to manage even this special case.
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each timestamp of any future event increases over time.5 In other words, as more and more
data of the stream arrives we observe temporal progress with respect to each of the timestamps.
TSA is very flexible with respect to the used time models. TSA only requires a total order on the
domain of a time model,6 and supports the simultaneous use of multiple different time models.
However, for sake of simplicity and without loss of generality this document only uses a single
time model, namely Q.3

In Relational Algebra relations are always finite. In some way data streams, and thus the corre-
sponding relations, are finite, too. The reason is, that no application will run forever and so only
a finite amount of data may arrive on the stream. However this view is misleading as it wrongly
suggests that Relational Algebra could be applied to data streams just as it is (See “Blocking
Operators” in Section 9.2).

To stress the fact that we must not wait for the end of a data stream,7 TSA models data streams
as potentially infinite relations adopting the idea in [13, 12]. The payload of each data item
including the associated timestamps are stored in attributes of the corresponding type. However
those timestamps that are correlated to the sequence order,5 i.e. refer to the temporal progress of
the stream, play special role in the validation and the evaluation of TSA expressions. A so-called
“stream bound formula” within the schema remembers the special role of these timestamps (See
Definitions 4 and 5).

9.4. Temporal Relations

Temporal relations are an essential part of expressive data stream queries. The temporal rela-
tions specified in a query determine whether this query can be evaluated incrementally, i.e. is
valid, or not. Their important role is further discussed in Section 9.6 about the TSA operator.
Actually the propagation of the temporal relations through the TSA operators and the analysis
of the propagated temporal relations as basis for the incremental evaluation is one of the key
innovations of TSA. However the definition of the TSA operators require some prior definitions
on the terms and formulas for representing these conditions.

Temporal terms are used to specify new timestamps relative to existing timestamps. This is
for example needed when defining the timestamps p of a composite event (see Definition 8).
Assume that the composite event is composed from two events with timestamps p1 and p2. A
usual definition for the timestamp p of the composite event would be p = max{p1, p2}. Tem-
poral terms are also used when establishing a temporal relation, that is not just “equal", be-
tween two existing timestamps using the selection operator (see Definition 7). For example if
a timestamp p1 should occur at most 2 seconds after timestamp p2 then this would translate to
p1 <= p2+2sec where p2+2sec is a temporal term defining a new timestamp relative to p2. To

5The data items may also contain timestamps, that are not correlated to the sequence order, i.e. are not related to
the progress of time or the availability of data. Particularly all timestamps of database relations fall into this
category. Such timestamps are treated as ordinary data.

6This does not impose a total order on the data items.
7This implies the need for an incremental evaluation
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the best of our knowledge temporal terms allow to realize any of the usual temporal semantics
for timestamps (also intervals) of composite events [17, 3, 13, 4].

Definition 2. (Temporal Terms)
The set of temporal terms is defined inductively:

1. v ∈ ATTR∪VAR is an atomic temporal term

2. t + c is a temporal term
iff t is a temporal term and c ∈Q

3. min{t1, . . . , tk}, max{t1, . . . , tk} are temporal terms
iff t1, . . . , tk are temporal terms

where VAR is a set of temporal variables, VAR∩ATTR = /0.

Temporal relation formulas (TRFs) describe temporal relations between temporal terms, par-
ticularly between timestamp attributes and/or variables. Variables are basically required for
handling relations on attributes that are discarded by the projection or the grouping operator of
TSA (See Definitions 9,10). Temporal relations in TSA are based on timestamps (in contrast to
intervals). However time intervals can be defined using two time stamps and a TRF stating that
the first timestamp is smaller then the second. Furthermore as TRFs enable conjunctions and
disjunctions8 all 213 interval relations of Allen’s interval algebra [2] can be expressed.

Definition 3. (Temporal Relation Formulas)
The set of temporal relation formulas (TRFs) is defined inductively:

1. > and ⊥ are atomic TRFs

2. t1 op t2 is an atomic TRF for op ∈ {<,≤,=,≥,>, 6=}
iff t1 and t2 are temporal terms

3. G∧G′, G∨G′ and ¬G are TRFs iff G, G′ are TRFs

TRFs store the information about temporal relations between timestamp attributes. When using
multiple timestamp attributes there shows another effect which is not covered by TRFs, though.
The definition of temporal streams (Def. 1) requires that upper limits to the values of all times-
tamp attributes of a temporal relation result in a finite prefix of the stream. However, if input
streams carry more than one timestamp then it often suffices to limit a subset of the timestamp
attributes of the temporal stream to obtain a finite prefix. Consider for example, an input stream
with application- and system-time timestamps. An upper limit for the values of one of the two
timestamps suffice to obtain a finite prefix of the input stream. If two input streams of this kind
are combined by the cross-product operator then any subset of timestamp attributes containing
at least one timestamp attribute from each stream, can be used to get an finite prefix of the result
stream. The purpose of stream bound formulas (SBFs) is to propagate the information which
combinations of timestamps are suited for obtaining a finite prefix of a temporal stream. The
SBF for a (static) database relation may just be > as we do not need to obtain a finite prefix in
that case.

8By contrast Point Algebra [21] allows only conjunctions.
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Definition 4. (Stream Bound Formulas) The set of stream bound formulas (SBFs) is defined
inductively:

1. > is an atomic SBF

2. bounded(v,b) is an atomic SBF for v∈ ATTR∪VAR where b∈ BOUND is a stream bound
identifier.

3. H1∧H2 and H1∨H2 are SBFs iff H1 and H2 are SBFs.

Definition 4 assigns so-called “stream bound identifiers” to the atoms of a SBF. As these iden-
tifiers do not change during the propagation process (in contrast to the names of attributes and
variables) the identifiers allow to identify the input relation that a specific atom in a SBF orig-
inates from. This way the temporal analysis of a TSA query expression that is needed for
validation and incremental evaluation may base solely on the propagated formulas and does not
need to analyze the TSA query expression recursively.

9.5. Temporal Stream Schema

The schema of a relation in Relational Algebra is just its set of attributes. For temporal streams
the attribute schema is accompanied by a temporal relation formula and a stream bound for-
mula. The temporal relation formula (Definition 3) describes the temporal relations between
the timestamp attributes. The stream bound formula (Definition 4) tells about the ability of
timestamp attributes to obtain a finite prefix of a temporal stream matching the schema. Basi-
cally a timestamp attribute is able to yield a finite prefix of a temporal stream if it is correlated
to the temporal progress of the stream as described above. The two formulas carry the necessary
information for the validation and evaluation of a TSA expressions (See Section 9.4).

Definition 5. (Temporal Stream Schema)

1. A temporal stream schema is a triple S = (A,G,H) such that A is an attribute schema,
Atemp⊆A is the set of temporal attributes contained in A , G is a temporal relation formula
and H is a stream bound formula and all attributes occurring in G and H are in the attribute
schema (i.e. attr(G)⊆ Atemp and attr(H)⊆ Atemp).

2. A temporal stream schema S = (A,G,H) is valid if the set of all timestamp attributes
Atemp is a stream bound with respect to G and H (See Definition 17).

3. A relation R matches a temporal stream schema S = (A,G,H) if R has attribute schema
A (R) = A and both G and H hold in R (See Definitions 15,17). If S is valid, the latter
implies that R is a temporal stream.

9.6. Temporal Stream Definitions and TSA Operators

The common operators for queries to data streams and database relations are the second essen-
tial element of TSA. TSA generalizes the operators of Relational Algebra without changing
their definition of the result sets. As mentioned in Section 9.2 this introduces the problem of
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“blocking” operators and query expressions. It is a fundamental observation, that the answer to
the question whether a certain query expression is non-blocking, depends on the temporal rela-
tions between timestamp attributes imposed by the input streams and the query expression itself.
In Relational Algebra this information is not propagated, though. Thus subsequent operators
may not rely on the information for determining whether they can be applied correctly.

The solution of this problem (and one of the central ideas of TSA) is the propagation of con-
straints on temporal relations inside the schema of TSA expressions. The propagation of the
“temporal relation formulas” (Definition 3) and of the “stream bound formulas” (SBFs, Defini-
tion 4) contained in the schema of TSA expressions is therefore the most important part of the
TSA operator definitions.

Within a TSA program, temporal relations are established in several ways. First by constraints
that are part of the schema of an temporal stream definitions. Temporal stream definitions are
the starting point for all TSA expressions.

Definition 6. (Temporal Stream Definition)
A temporal stream definition is a pair D = (n,S) where n ∈ STREAM is a name for the temporal
stream definition, S = (A,G,H) is a temporal stream schema, STREAM is a set of names for
temporal stream definitions, Atemp ⊆ A is the set of temporal attributes in A and the following
restrictions hold:

1. G and H do not contain variables

2. H is a disjunction of atomic SBFs, i. e. has the structure

bounded(p1,b1)∨ . . .∨bounded(pk,bk)

where p1, . . . , pk ∈ A and b1, . . . ,bk ∈ BOUND

3. The atomic SBFs bounded(pi,bi) in H define an injection bD : Atemp→ BOUND with
inverse pD.

The first restriction allows to validate whether the schema of a query expressions matches the
schema of the output stream. The third restriction is merely technical, it is important when
generating the necessary formulas and functions for the incremental evaluation. The second
restriction in the above definition expresses that each stream bounds (see Definition 17) of a
temporal stream definitions must contain a stream bound that consists only of a single timestamp
attribute.9 For example, if you would like to express that both system- (psys) and application-
time (papp) are stream bounds of a stream D=(n,S) then the stream bound formula H of schema
S would look like this:

H = bounded(sys,n:sys)∨bounded(app,n:app)

All TSA expressions E have an associated schema S (E). The schema of a temporal stream
definition D = (n,S) is S (D) = S. The schema S (E) of composite TSA expressions is defined
inductively in the definitions of the TSA operators.

9 Stream bounds with multiple elements that do not fulfill this condition are allowed for the schema of TSA
expressions. They result from the application of binary operators like cross-product, set-difference or union.
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Definition 7 shows that temporal relations may also be derived from conditions on timestamp
attributes imposed by the selection operator. The definition of the resulting relation/temporal
stream is the same as for Relational Algebra.

Definition 7. (Selection σ ) Let E be a TSA expression with schema S (E) = (A,G,H) and
let R be a temporal stream which matches the schema of E and C a set of conditions with
domain(C)⊆ A.

σ [C](R) := {r ∈ R | r satisfies C}
S (σ [C](E)) := (A,(G∧Ctemp),H ′)

where Ctemp is the TRF that results from C when replacing every non-temporal atom by > if it
occurs with positive polarity or by ⊥ if it occurs with negative polarity.

The definition of Ctemp extracts the maximum temporal information from the condition C. Basi-
cally Ctemp results from C by replacing all non-temporal atoms in such a way that the condition
C is fulfilled as much as possible.

Finally temporal information is introduced by the definition of new timestamp attributes relative
to existing ones. At that point the presentation of the TSA operators slightly differs from the
usual presentation of the operators of Relational Algebra. The usual projection operator of
Relation Algebra allows both discarding attributes and defining new attributes based on existing
ones. In TSA we split these two tasks into two operators: The projection operator of TSA which
only discards attributes and the imbed operator which allows to define new attributes. These
changes in the presentation help to keep the definitions simple, as each definitions only cares
for a single aspect of the propagation of temporal relation formulas and stream bound formulas.
The following definition uses the notion of “temporal terms” that are formally introduced in
definition 2. Temporal terms are a powerful mean to define relative timestamps.

Definition 8. (Imbed ι)

Let E be a TSA expression with schema S (E)= (A,G,H) and let R be a temporal stream which
matches the schema of E. Let a′ /∈ A be a new attribute, t the term defining a′ and a1, . . . ,ak ∈ A
the attributes occurring in t.

ι [a′ = t](R) := {r′ ∈ dom(A∪{a′}) | ∃r ∈ R such that
r′(a) = r(a) for a ∈ A and
r′(a′) = ft(r(a1), . . . ,r(ak))}

S (ι [a′ = t](E)) := (A∪{a},G′,H)

G′ :=

{
G∧ (a′ = t) if t is a temporal term
G else

where ft : dom(a1)× . . .× dom(ak)→ dom(a′) is the function of the values of a1, . . . ,ak ∈ A
defined by t. If t is a temporal term, then t defines a relative timestamp.

The main point of the above definition is, that the definitions of relative timestamp attributes are
preserved within the temporal relation formula G′ of the schema.
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For projection and grouping the definition of the resulting temporal stream is almost the same
as for Relational Algebra. The only difference is that the projection may not introduce new
attributes. For both operators the temporal relation formula and the stream bound formula
are propagated in the same way: The discarded timestamp attributes are replaced by temporal
variables. The simple definition of grouping might be surprising, as grouping is one of the
“blocking” operator which are usually considered as “problematic”. But as TSA solves the
problem of blocking query expressions on the basis of the propagated temporal constraints and
not on the level of the operators, the definition of the grouping operator can actually be straight-
forward.

Definition 9. (Projection π) Let E be a TSA expression with schema S (E) = (A,G,H) and let
R be a temporal stream which matches the schema of E and A1 ⊆ A the set of retained attributes.

π[A1](R) := {r′ ∈ dom(A1) | ∃r ∈ R such that
r′(a) = r(a) for a ∈ A1}

S (π[A1](E)) := (A1,ξ (G),ξ (H))

where Atemp ⊆ A and A1temp ⊆ A1 are the sets of temporal attributes in A and A1, respectively,
and ξ is an injective substitution of the discarded timestamp attributes in Atemp \ A1temp by
variables that do not occur in G or H.

Definition 10. (Grouping γ) Let E be a TSA expression with schema S (E) = (A,G,H) and
let R be a temporal stream which matches the schema of E and A1 ⊆ A the set of grouping
attributes. Let a1, . . .ak ∈ A \A1 and a′1, . . . ,a

′
k /∈ A1 and F1, . . . ,Fk aggregation functions like

min, max, sum or avg.

γ[A1][a′1 = F1(a1), . . . ,a′k = F1(ak)](R) := {r′ ∈ dom(A1∪{a1, . . . ,ak}) | ∃r ∈ R
such that r′(a) = r(a) for a ∈ A1
and r′(a′i) = Fi((rγ(ai))rγ∈Rr) }

S (γ[A1][a′1 = F1(a1), . . . ,a′k = F1(ak)](E)) := (A1,ξ (G),ξ (H))

where Rr = {rγ ∈ R | rγ(a) = r(a) for a ∈ A1} and ξ is an injective substitution of the discarded
timestamp attributes Atemp \A1temp by variables that do not occur in G or H.

The next definition is the second deviation from the usual presentation of operators in Relation
Algebra. The basic TSA operators do not include a join but a cross-product operator.Thus using
the basic operators of TSA, a join must be expressed as a combination of cross-product and
selection. Again this change helps to keep the definitions simple.

However omitting the join as basic operator does not restrict the expressivity or efficiency of
TSA in any way. Further operators, like the usual projection, renaming, join, semi-join and
anti-join, can easily be added to TSA. Such easy extensions are not described in this article
for pace reasons. All these operators can be expressed as combinations of the basic operators
presented in this document. Sections 9.7 and 11 show that the incremental evaluation of TSA
solely depends on the correct propagation of the temporal constraints, but is independent from
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the concrete operators contained in an TSA expression. Thus, defining a composite operator
with respect to semantics, constraint propagation and incremental evaluation is just done by
providing its decomposed representation by means of basic operators.

Definition 11. (Cross Product ×) Let E1 and E2 be TSA expressions with schema S (E1) =
(A1,G1,H1) and S (E2) = (A2,G2,H2) that have disjoint attributes (A1∩A2 = /0) and let R1 and
R2 be temporal streams which match the schema of E1 and E2 respectively.

R1×R2 := {r′ ∈ dom(A1∪A2) | ∃r1 ∈ R1,r2 ∈ R2 with
r′(a) = r1(a) for a ∈ A1
r′(a) = r2(a) for a ∈ A2}

S (E1×E2) := (A1∪A2,ξ1(G1)∧ξ2(G2),ξ1(H1)∧ξ2(H2))

where ξ1 and ξ2 are injective substitutions, such that the ξ1(G1), ξ1(H1) and ξ2(G2), ξ2(H2)
use disjunct sets of temporal variables.

The definition of the cross-product operator is straight-forward. The renaming of the temporal
variable avoids unintended interferences between the temporal relation formulas and stream
bound formulas of the two subexpressions.

Definition 12. (Union ∪) Let E1 and E2 be TSA expressions with schema S (E1) = (A,G1,H1)
and S (E2) = (A,G2,H2) that have the same attributes and let R1 and R2 be temporal streams
which match the schema of E1 and E2 respectively.

R1∪R2 := {r ∈ dom(A) | with r ∈ R1 or r ∈ R2}
S (E1∪E2) := (A,G′,(ξ1(H1)∧ξ2(H2)))

G′ := (G′1∧G′′1 ∧ξ1(G1))∨ (G′2∧G′′2 ∧ξ2(G2))
G′1 := (ξ1(p1) = p1)∧ . . .∧ (ξ1(pk) = pk)
G′′1 :=

∧
v ∈ attr(H2)∪ vars(H2)

(ξ2(v)≤ p1 +−∞)∧ . . .∧ (ξ2(v)≤ pk +−∞)

G′2 := (ξ2(p1) = p1)∧ . . .∧ (ξ2(pk) = pk)
G′′2 :=

∧
v ∈ attr(H1)∪ vars(H1)

(ξ1(v)≤ p1 +−∞)∧ . . .∧ (ξ1(v)≤ pk +−∞)

where ξ1 and ξ2 are injective substitutions, that replace all timestamp attributes p1, . . . , pk ∈ A
by temporal variables and substitute temporal variables by others such that ξ1(v) 6= ξ2(w) for
any two timestamp attributes or temporal variables v and w occurring in A, G1, G2, H1 or H2.

It is far from obvious why the definition of the union is not as simple as the definition of the
cross-product. With regards to the temporal relation formulas (TRFs) only, it would in fact be
possible to define G′= ξ1(G1)∨ξ2(G2) analogously to the definition in the cross-product opera-
tor.10 The crucial point is that the attributes from the two subexpressions, despite their identical
names, are actually different, as they originate from different inputs. This does not matter for

10 The definition for the TRF in the result schema is equivalent to the simple definition w.r.t. Definition 15.
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the TRFs at the first place. However it does matter for the SBFs. Identifying the attributes from
the different inputs could result in a wrong analysis of the stream bounds (Definition 17) and
other properties of the TSA expression. Therefore the substitutions ξ1 and ξ2 and the formulas
G′1 and G′2 are used to decouple the formulas from the two inputs. The intuitive meaning of G′′1
and G′′2 is that the part of G′ corresponding to the first subexpression should not care about the
requirements ξ2(H2) on stream bounds from the the second subexpression and vice versa.

Definition 13. (Set Difference \ ) Let E1 and E2 be TSA expressions with schema
S (E1) = (A,G1,H1) and S (E2) = (A,G2,H2) that have the same attributes and let R1 and
R2 be temporal streams which match the schema of E1 and E2 respectively.

R1 \R2 := {r1 ∈ R1 | ¬∃r2 ∈ R2 with r1 = r2}
S (E1 \E2) := (A,G1∧ (G′1∨ (G′2∧ξ2(G2))),(H1∧ξ2(H2)))

G′′1 :=
∧
v ∈ attr(H2)∪ vars(H2)

(ξ2(v)≤ p1 +−∞)∧ . . .∧ (ξ2(v)≤ pk +−∞)

G′2 := (ξ2(p1) = p1)∧ . . .∧ (ξ2(pk) = pk)

where ξ2 is an injective substitution for timestamp attributes and temporal variables, such that
the substituted variants ξ2(G2), ξ2(H2) of G2, H2 and the original formulas G1, H1 use disjunct
sets of temporal variables.

The constraint propagation for set-difference is a little bit tricky, too. On the one hand, the TRF
G2 does not impose any constraints on the output tuples of the expression. Thus we could just
choose the TRF G1 of the first subexpression E1 as TRF for the schema of the full expression.
On the other hand the information in G2 needs to be propagated to correctly determine the
stream bounds with respect to the second subexpression E2. The solution is as follows: First
G1 is assumed to hold for the negative subexpression as well, as those tuples from any stream
produced by the second subexpression that do not fulfill G1 are irrelevant anyhow. Second
ξ2(G2) is combined disjunctively with G′1. As in the definition for the union G′′1 basically tells
that in case of the positive subexpression one does not need to care about the requirements
ξ2(H2) on stream bounds from the negative subexpression. A symmetric counterpart of G′′1 for
the negative subexpression is not necessary, as G1 also holds for the negative subexpression.
However G′′1 does not impose any temporal relations between the timestamp attributes of E.
Thus the same holds for G′′1 ∨ (G′2∧ξ2(G2)). TSA makes only weak, “syntactic” checks when
defining temporal streams or TSA expressions. Further “semantic” checks are done at a later
stage (see Section 9.4 about temporal analysis).

Definition 14. (TSA Query) A TSA query is a pair q = (D,E) such that E is a TSA expression
with schema S (E) = (A,GE ,HE) and D is a temporal stream definition for the output stream
with schema S (D) = (A,GD,HD) which both have the same attributes.

D4.7 Refinement of the Implementation • Page 64 of 76



Project EMILI FP7-SEC-2009-1

9.7. Temporal Analysis

As stated throughout the whole TSA section, TSA analyses the temporal constraints for a num-
ber of reasons, e. g. for the decision on the validity of a query expression and for its incremental
evaluation. This section provides the relevant definitions and briefly describes the employed
algorithms.

Normalization of Temporal Relation Formulas.
Temporal relation formulas (TRFs) can be normalized using the following equivalences in
(N ORM ).11 After normalization the TRF is equal to > or ⊥ or all atomic subformulas
have the form v≤ w+c and the normalized TRF does not contain negation. This normalization
is essential for following definitions and the algorithmic analysis of TRFs.

Neg1 : ¬(G∧G′)⇔ (¬G∨¬G′)
Neg2 : ¬(G∨G′)⇔ (¬G∧¬G′)
Neg3 : ¬¬G⇔ G
Neg4 : ¬(t1 op t2 + c) ⇔ t1 op−1 t2 + c
Neg5 : ¬>⇔⊥ and ¬⊥⇔>
Top : G∧>⇔ G and G∨>⇔>
Bot : G∧⊥⇔⊥ and G∨⊥⇔ G

Zero : v op w ⇔ v op w+0
Eq : t1 = t2 + c ⇔ (t1 ≤ t2 + c)∧ (t1 ≥ t2 + c)

Neq : t1 6= t2 + c ⇔ (t1 < t2 + c)∨ (t1 > t2 + c)
Geq : t1 ≥ t2 + c ⇔ t2 + c≤ t1

Gr : t1 > t2 + c ⇔ t2 + c < t1
Less12 : t1 < t2 + c ⇔ t1 ≤ t2 +(c− ε)
Arith1 : t1 + c op t2 ⇔ t1 op t2 +(−c)
Arith2 : t1 op (t2 + c)+d ⇔ t1 op t2 +(c+d)
Min1 : t ≤min{t1, . . . , tk}+ c ⇔

t ≤ t1 + c∧ . . .∧ t ≤ tk + c
Min2 : min{t1, . . . , tk} ≤ t + c ⇔

t1 ≤ t + c∨ . . .∨ tk ≤ t + c
Max1 : t ≤max{t1, . . . , tk}+ c ⇔

t ≤ t1 + c∨ . . .∨ t ≤ tk + c
Max2 : max{t1, . . . , tk} ≤ t + c ⇔

t1 ≤ t + c∧ . . .∧ tk ≤ t + c
for temporal terms t1, . . . , tk and c,d ∈Q and TRFs G,G′

and v,w ∈ ATTR∪VAR and op ∈ {<,≤,=,>=,>, 6=}
and <−1 7→> , ≤−1 7→ ≥ , =−1 7→ 6= , ≥−1 =≤ ,

>−1 7→< , 6=−1 7→=

11 In case of the algorithmic analysis, the equivalences are to be read from left to right.
12 Imagine ε as infinitely small value with (c− ε)+(d− ε) = ((c+d)− ε) and c− ε < c but d < c− ε if d < c.

D4.7 Refinement of the Implementation • Page 65 of 76



Project EMILI FP7-SEC-2009-1

Definition 15. (Temporal Relations) A temporal relation formula G holds in R, denoted R |=G,
iff for all tuples r ∈ R the instantiation σr(G) of G is satisfiable in Q:

|=Q ∃v1, . . . ,vl : σr(G)

where Atemp = {p1, . . . , pk} and {v1, . . . ,vl}= vars(G)
and σr := {p1 7→ r(p1), . . . , pk 7→ r(pk)}

The temporal distance13 of two temporal variables or timestamp attributes is the maximum that
the value of the second temporal variable is smaller than the value of the first [9]. This infor-
mation is essential for the incremental evaluation (see Section 11) and for automatic garbage
collection14.

Definition 16. (Temporal Distance) Let G be a temporal relation formula and R be a temporal
stream with A (R) = A. The temporal distance of two attributes or variables v,w ∈ ATTR∪VAR
with respect to G is

distG(w,v) := max
C∈dnf (G)

{distC(w,v)}

distC(w,v) := min{c |T D ,C |=Q v≤ w+ c}

where u,v,w ∈ ATTR ∪ VAR and c,d,+∞,−∞ ∈ Q and
G is the normalized form of G and C is a conjunction of atomic TRFs of the form v≤ w+c and
T D contains

Re f : v≤ v
Trans : u≤ v+ c ∧ v≤ w+d ⇒ u≤ w± (c+d)
In f : v≤ w++∞

The algorithmic analysis of the temporal distances is closely related to the simple temporal
problem (STP) [22] and the disjunctive temporal problem DTP [19]. Basically the (naive)
analysis algorithm is as follows: The TRF is normalized and converted into disjunctive normal
form. Each conjunction is an STP instance. The distance of all pairs of attributes and variables
for this instance can determined using any algorithm for the all-pair shortest path problem,
e. g. the Floyd Warshall algorithm [14], or specialized algorithms for STP. The distance of two
attributes or variables for the whole TRF is then the maximum distance of the two attributes or
variables in any of the conjunctions.

The following definition is about so-called “stream bounds” that can be derived from a SBF
and its corresponding TRF. Stream bounds are those sets of timestamp attributes of a temporal
stream that are suited to limit the stream to a finite prefix. Intuitively speaking, stream bounds
do not let any part of the stream pass infinitely. The decision whether some TSA query is
blocking or not depends on the analysis of stream bounds.

13Note that the temporal distance is usually asymmetrical.
14Automatic garbage collection is not described in this document, see [12, 9] for the idea
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Definition 17. (Stream Bounds) Let G be a temporal relation formula and H be a temporal
relation constraint and let R be a temporal stream with A (R) = A.

1. A set {p1, . . . , pk} ⊆ ATTR is a stream bound with respect to G and H iff

bounded(p1,b1), . . . ,bounded(pk,bk),G,T D ,S B |= H

for any b1, . . . ,bk ∈ BOUND15 and

S B : v≤ w+ c , c <+∞ , bounded(w,bw)⇒ bounded(v,bv)

for v,w ∈ ATTR∪VAR, bv,bw ∈ BOUND and c ∈Q
2. A set {p1, . . . , pk} ⊆ ATTR is a stream bound with respect to schema S = (A,G,H) if
{p1, . . . , pk} is a stream bound with respect to G and H.

3. The set {p1, . . . , pk} ⊆Atemp(R) of timestamp attributes is a stream bound for R iff every
upper limit s1, . . . ,sk ∈Q for the values p1, . . . , pk yields a finite prefix of R:

|{r ∈ R | r(p1)≤ s1, . . .r(pl)≤ sl}|< ∞

4. H holds in R with respect to G, denoted R |=G H, iff all stream bounds {p1, . . . , pl} ⊆
Atemp with respect to G and H are stream bounds of R.

The algorithmic analysis of the stream bounds is similar to the one for temporal distances. The
TRF G is normalized and converted into disjunctive normal form. For each conjunction C the
following is done: First the distance between all attributes and variables in the conjunction is
computed. Second for each atom in the SBF H, the atom is set to true if the distance from one
of the attributes of the potential stream bound {p1, . . . , pk} to the attribute or variable in the
atom is finite. Otherwise the atom is set to false. If the H holds under this interpretation, then
{p1, . . . , pk} is a stream bound with respect to C. If {p1, . . . , pk} is a stream bound with respect
to all conjunctions, then {p1, . . . , pk} is a stream bound with respect to G and H.

9.8. Validity of TSA Queries

Definition 18. (Validity of Temporal Stream Definitions)
A temporal stream definition D with schema S (D) = (A,G,H) is valid iff the set of all times-
tamp attributes Atemp is a stream bound with respect to G and H. The definition implies that any
relation R matching the schema S (D) is a temporal stream.

15 Actually the stream bound identifiers of atomic SBFs do not play a role here.
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Definition 19. (Validity of TSA Queries)
Let q = (D,E) be a TSA query as defined in Definition 14 and let D1, . . . ,Dk be the temporal
stream definitions occurring in E. The TSA query q is valid iff

1. D1, . . . ,Dk are valid.

2. The schema S (E) of the TSA expression E matches the schema S (D) of the definition
for the output stream, i. e. GE implies16 GD and all stream bounds with respect to GD and
HD are stream bounds with respect to GE and HE .

The most important property of valid TSA queries is, that they are non-blocking, i. e. can be
evaluated incrementally.

Proposition 20. (Non-Blocking Queries)
Let q = (D,E) be a TSA query with schema S (D) = (A,GD,HD) and let D1, . . . ,Dk be the
temporal stream definitions occurring in E.

If q is valid then q is non-blocking. This means, for any temporal streams R1, . . . ,Rk matching
the schema of D1, . . . ,Dk respectively and any stream bound {p} ⊆ Atemp

17 with respect to
S (D), the finite prefix for limit s ∈Q

{r ∈ E(R1, . . . ,Rk) | r(p)≤ s}=
{r ∈ E({r1 ∈ R1 | r1(p1,1)≤ s1,1∨·· ·∨ r1(p1,l1)≤ s1,l1},...

{rk ∈ Rk | r1(pk,1)≤ sk,1∨·· ·∨ r1(pk,lk)≤ s1,lk}
) | r(p)≤ s}

where {pi,1}, . . . ,{pi,li} are stream bounds for S (Di) and si,1, . . . ,si,li ∈Q for 1≤ i≤ k, i. e. the
prefix depends only on finite prefixes of R1, . . . ,Rk.

(Sketch). Let S (E) = (A,GE ,HE). Without loss of generality one may assume that the tempo-
ral stream definitions D1, . . . ,Dk use different stream bound identifiers, as Proposition 20 and
none of its indirectly referred Definitions depend on the actual names of stream bounds.

As q is a valid query, any stream bound {p} ⊆ Atemp with respect to S (D) is a stream bound
with respect to S (E).

Let GE be the normalized form of GE (see Section 9.7) and the DNF of GE of GE be dnf (GE) =
C1∨·· ·∨Cl , where C1, . . . ,Cl are conjunctions of normalized atomic temporal relation formulas
(Definition 3).

For each Di, 1≤ i≤ k and each C j there must exist at least one18 atomic stream bound formula
bounded(vi, j,bi, j) in HE

19 (Definition 4) where vi, j ≤ p+distC j(vi, j, p) (Definition 16) and bi, j

16Can be checked if right side does not contain variables. By definition GD and HD do not contain variables.
17 The 2. restriction in Definition 14 and Proposition 20 imply the analogous proposition for arbitrary stream

bounds.
18 If Di describes a static relation this does not hold. But in that case there is nothing to show. One can choose

li = 0.
19 Note that HE is in CNF with exactly one clause per D1, . . . ,Dk. This follows immediately from the definition of

temporal stream definitions (Definition 6)) and of TSA operators.
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belongs to Di.

However vi, j is actually a renamed version of the attribute pi, j := pDi(bi, j) associated to bi, j in
Di. Thus if p≤ s in the result relation then pi, j ≤ si, j := s−distC j(vi, j, p) in the source relation
Ri, at least for “case” C j of GH .

Proposition 21 allows to apply the formal results from the formulas to the actual relations.

Finally the disjunction ri(pi,1)≤ si,1∨·· ·∨ r1(pi,l)≤ si,l provides the condition required for the
proof for each temporal stream definition Di. This disjunction could be condensed but this is
needed for the proof.

The proof of Proposition 20. bases on the following proposition on the well-definedness of the
TSA operators.

Proposition 21. (Well-Definedness) Let E be a valid TSA expression where D1, . . . ,Dk are
temporal stream definitions occurring in E. If R1, . . . ,Rk are temporal streams matching the
schema of D1, . . . ,Dk respectively then the E(R1, . . . ,Rk) is a temporal stream and matches the
schema S (E).

(Sketch). The proof is straight-forward by induction over the structure of E.

Proposition 22. (Relational Completeness) TSA is relational complete [10] for finite (non-
stream) relations.20

Proof. On finite non-stream relations, TSA is equivalent to Relational Algebra.

10. Translating Dura to TSA

In the following a small Dura examples illustrates the translation of Dura to TSA. The example
simple rule detects a fire if smoke and high temperature are detected in the same area at almost
the same time, i.e. within 5 seconds.

DETECT
Fire{area{var A}}

ON
event s: Smoke{area{var A}}
event t: High-Temp {area{var A}}

WHERE
{s, t} within 5 sec

END

20 The term “relational complete” compares the expressive power of some formalism for querying finite relations
to the expressive power of Relational Algebra. A generalization to temporal streams is, if at all possible, non-
trivial.
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In the case of that simple example the translation is straight forward: and{...} is translated
to a cross-product followed by a selection for unifying the corresponding attributes. A further
selection translates the conditions/temporal relations in the where{...} part of the query. an
imbedding operator is used to define the attributes of the result as defined in the head of the
rule. Another imbedding operator adds the implicitly defined time-stamp attributes. Finally the
superfluous attributes from the inputs are discarded using a projection.

π[reception− time,area](
ι [r− t.begin = min(s.r− t.begin, t.r− t.begin),r− t.end = max(s.r− t.end, t.r− t.end)](
ι [area = s.area](
σ [max(s.r− t.end, t.r− t.end)−min(s.r− t.begin, t.r− t.begin)< 2sec](
σ [s.area = t.area](

δ [∗→ s.∗](Smoke)×δ [∗→ t.∗](High−Temp)
)))))

The δ operators at the very Bottom of the query serve for renaming attributes or in the case
of the example for adding a prefix to the attribute names. The delta operator is a convenience
operator and could be replaced by an imbedding operator followed ba a projection. However
the delta operator simplifies the translation and is more efficient than the combination of an
imbedding and a projection operator.

The translation Dura of queries with negation, and particularly queries referring to stateful ob-
jects and complex action definitions is much more challenging. Basically Dura rules containing
references to stateful objects and complex action definitions need to be rewritten to (potentially
recursive) rules using events with modified definitions for the implicit timestamps, only. As
translation may involve recursive rules, special care has to be taken that the resulting TSA pro-
gram is still valid/non-blocking, i.e. can be evaluated incrementally.

11. Differentiating TSA Programs

An incremental evaluation is obviously crucial for TSA. The incremental evaluation allows to
derive results continuously as the data arrives on the stream. Without an incremental evaluation
results could only be derived at the end of the stream which is too late for CEP application
and particularly for emergency management. Proposition 20 in Section 9.7 shows an important
property of valid TSA queries: Any prefix of the result stream of a query q depends only on
finite prefixes of the input streams of q.

Increment formulas are the basis for the increment conditions that are used to transform a usual
TSA expression into an incremental expression. Basically the increment conditions are derived
from the increment formulas, by replacing names b∈BOUND by their current value at run-time.
In other word, Increment formulas are the parametrized versions of the increment conditions.
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Definition 23. (Increment Formulas) Let H be a SBF. The increment formula MH to H is
defined recursively:

M> =>
M bounded(p,b) = p≤ b
M(H1∧ . . .∧Hk) = MH1∧ . . .∧MHk
M(H1∨ . . .∨Hk) = MH1∨ . . .∨MHk

where p∈ATTR∪VAR and b∈BOUND. MH results from H by replacing each atom bounded(p,b)
in H by p≤ b.

Stream bound functions are used to compute the progress of an output stream of a TSA query
with respect to the progress of the input streams of the query (see Section 11). Stream bound
function formulas are an intermediate step in the generation of these functions. Due to their
special structure, stream bound function formulas are probably a good basis for optimizing
stream bound functions using techniques for the optimization of Boolean functions [18].

Definition 24. (Stream Bound Functions) Let GE be a TRF, HE and HD be SBFs, b∈ BOUND
the name for a stream bound and p ∈ ATTR a timestamp attribute that is assigned to b (e. g. by
bounded(p,b) in a temporal stream definition).

1. The stream bound function formula for MHD, GE and MHE is defined recursively:

FMHD,GE ,MHE =
∧

CE∈dnf (GE)

FMHD,CE ,MHE

FMHD,CE ,> =>
F>,CE ,MHE =⊥ for HE 6=>

F(bD≤p),CE ,(v≤bE) =


> if distCE (p,v) =−∞

⊥ if distCE (p,v) = +∞

bD ≤ bE −distCE (p,v) else
FMHD,C,(MHE 1∧...∧MHE k) = FMHD,C,MHE 1 ∧ . . .∧FMHD,C,MHE k

FMHD,C,(MHE 1∨...∨MHE k) = FMHD,C,MHE 1 ∨ . . .∨FMHD,C,MHE k

F(MHD1∧...∧MHDl),C,MHE = FMHD1,C,MHE ∨ . . .∨FMHDl ,C,MHE

F(MHD1∨...∨MHDl),C,MHE = FMHD1,C,MHE ∧ . . .∧FMHDl ,C,MHE

where p,v ∈ ATTR∪VAR and b′ ∈ BOUND and GE is the normalized form of GE and CE
is a conjunction of atoms of the form v≤ bE .
The basic idea is, to enforce v≤ bE using p and bD and the inequation

v≤ p+distCE(p,v)≤ bD +distCE(p,v)
!
≤ (bE −distCE(p,v))+distCE(p,v)≤ bE .

The
∧

in the first case results from the fact that HE must hold in each case of GE (compare
Definition 4).
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2. Let F = FMHD,GE ,MHE be the stream bound function formula for MHD = (p≤ bD) and, GE ,
MHE . The stream bound function fF of F is defined recursively:

f> =+∞ f⊥ =−∞

fbD≤bE−d = bE −d
fF1∧...∧Fk = min{ fF1, . . . , fFk}
fF1∨...∨Fk = max{ fF1, . . . , fFk}

where bE ∈ BOUND and d ∈Q.

3. The stream bound function for MHD = (p≤ bD) and, GE , MHE is

f(p≤bD),GE ,MHE = fF(p≤bD),GE ,MHE

4. The stream bound function for a TSA query q = (D,E) ,with S (D) = (A,GD,HD) and
S (E)= (A,GE ,HE), and a stream bound identifier bD ∈BOUND, with bounded(pD(b),b)
is an atom in HD, is

fbD,q = f(pD(b)≤b),GE ,MHE

where pD is the function defined in Definition 6 that returns the timestamp attribute p ∈ A
that is assigned to b within D.

The stream bound function formula F can be normalized to be > or ⊥ or not to contain > or ⊥
at all. In that case fF is either −∞ or +∞ or does not contain −∞ or +∞ at all. If F =⊥, thus
fF =−∞, then p is not a stream bound with respect to GE and HE . If fF =+∞ then GE and HE
belong either to a static relation or a stream that is actually empty because its imposed temporal
relations are unsatisfiable.

Without loss of generality the definitions for the incremental evaluation of TSA assume that
all temporal stream definitions of a TSA program use different stream bound identifiers b ∈
BOUND. This can easily be realized if BOUND = STREAM×ATTR and for temporal stream
definition D = (n,S) and stream bound {p} of S the stream bound identifier b = bD(p) corre-
sponding to p in D has the form b = n : p.

The incremental evaluation of TSA allows for an asynchronous evaluation of the queries of a
TSA program.21 However the queries are not fully independent from each other, but need to
exchange information on the progress of their respective output streams. This is necessary as
the maximum achievable progress of of the output stream of a query depends on the progress of
the referred input streams.

The incremental evaluation uses values assigned to the stream bound identifiers occurring in
the temporal stream definitions and queries, to propagate this progress information. These
values are used to instantiate the increment formula (Definitions 23) for the current increment
computation of a query. The values for stream bound identifiers serve for a similar purpose as
the “punctuations” of [26]. However they are not only used for input streams but are propagated
through the evaluation process.
21 Actually every fair sequence for the increment computations will compute the correct result. The actual se-

quence may significantly affect the efficiency and the response-time of the evaluation, though.
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Definition 25. (Stream Bound Values)
Let P be a set of TSA Queries. For a TSA Query q = (D,E) with S (D) = (A,GD,HD) let

sq,i ∈Q and eq,i ∈Q denote the start and end time of the ith (i≥ 1) increment computation for
q. The following is defined simultaneously:

1. Value of b for query q at the ith increment computation for q and i≥ 0

vq,0(b) =−∞

vq,i(b) = fb,q(vsq,i(b1), . . . ,vsq,i(bl))

where b occurs in HD and fb,q is the function term from Definition 24 and b1, . . . ,bl are
the stream bound names occurring in fb,q.

2. Value of b for query q at time t ∈Q

vq,t(b) =

{
vq,0(b) for t < eq,1

vq,i(b) for eq,i ≤ t < eq,i+1

3. Value of b for temporal stream definition D at time t

vD,t(b) = min
q′∈P

out(q′)=D

{vq′,t(b)}

The value vD,t(b) for input streams must be provided. The values for each D must not
decrease and should exceed every limit after some finite amount of time. If so, then the
same holds for the derived values, assuming a fair execution sequence for the queries. 22

4. Value of b at time t
vt(b) = vDb,t(b)

where Db is the temporal stream definition corresponding to b.

The definition is well defined as sq,i < eq,i for i≥ 1.

The incremental evaluation is able to work with conservative approximations of the stream
bound values, too. This is particularly useful for a parallel or even distributed evaluation of a
TSA program, as the values for the stream bound identifiers do not need to be perfectly syn-
chronized. Furthermore one could use conservative approximations for the functions fb,q. The
functions fb,q are optimal with respect to the achievable progress within one step, however
approximate,i. e. simpler versions of the functions may help to reduce the computational over-
head that is potentially introduced by the computation of the stream bound values.

As the each step of the incremental evaluation of a query only depends on the current values for
the stream bound identifiers, it is easily possible to stop and resume the incremental evaluation
by storing the values persistently. This is particularly useful for crash recovery, but also allows
to switch the scheduling strategy or even to re-optimize the executed program.
22 In case of system time this is basically the current value of the local clock minus 1.“Minus 1” ensures that

definitely all new data item will receive a greater timestamp than the returned value. This assumes that the
value of a clock is never decreasing. For application time, a mechanism similar to “punctuation” [26] had to be
used.
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Definition 26. (Increment Expression)
Let q= (D,E) be a valid TSA query with output schema S (D) = (A,GD,HD). The incremental
expression for the i+1th (i >= 0) increment computation for q is:

MEi+1 = σ [MHDi+1∧¬MHDi](E)

where MHD is the increment formula for HD from Definition 23, MHDi+1 results from MHD by
replacing each stream bound name b by its new value vq,i+1(b) and MHDi results from MHD by
replacing each stream bound name b by its old value vq,i(b) from the ith execution of ME.

The increment expression for a query can be seen as parametrized expression. This is very
useful as it avoids to compile each of the increment expressions at the run-time of the TSA
program. Instead the parametrized version of the increment expression can be compiled only
once.

Furthermore, the increment expression is in fact an ordinary Relational Algebra expression,
i.e. the incremental evaluation reduces the evaluation of TSA expressions to the evaluation of
Relational Algebra expressions. In other words, TSA generalizes Relational Algebra to data
streams and the incremental evaluation of TSA reduces the evaluation of TSA to the evaluation
of Relational Algebra. Thus an efficient implementation of Relational Algebra could easily
be enhanced to an implementation of TSA that allows for processing database relations and
streams.

Proposition 27. (Correctness) The consecutive execution of the increment statements
ME1,ME2,ME3, . . . for a TSA query q = (D,E) yields the same result as if E had been applied
to the whole stream at once.
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