

SEVENTH FRAMEWORK PROGRAMME
THEME SECURITY

FP7-SEC-2009-1

Project acronym: EMILI

Project full title: Emergency Management in Large Infrastructures
Grant agreement no.: 242438

D4.6 Modularization Mechanisms

Due date of deliverable: 31/12/2011
Actual submission date:

Revision: Version 1

Ludwig-Maximilians University Munich (LMU)

Project co-funded by the European Commission within the Seventh Framework Programme (2007–2013)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Project EMILI FP7-SEC-2009-1

Author(s) Steffen Hausmann, Simon Brodt,
Francois Bry

Contributor(s)

Project EMILI FP7-SEC-2009-1

Index

1. Modular Programming 4
1.1. Need for Modularization . 4
1.2. Modularization in Rule Based Systems . 5
1.3. Good Practice in Object Oriented Languages 6

2. Modularization Mechanisms for Dura 7
2.1. Overview . 8
2.2. Schemas as Interfaces . 8

2.2.1. Types and Type Definitions . 9
2.2.2. Stream Schemas . 10
2.2.3. Constraints for Types and Schemas 10

2.3. Stream Definitions . 11
2.3.1. Structure of Definitions . 11
2.3.2. Implicit Event and Action Definitions 13
2.3.3. Specifying Success and Failure in Atomic Action Definitions 15

2.4. Modules . 17
2.4.1. Basic Concepts . 17
2.4.2. Modifiers for the Visibility of Definitions 18
2.4.3. Loading Modules . 20
2.4.4. Importing Definitions . 21
2.4.5. Imports and Reactive Rules . 21
2.4.6. Visibility of Implicit Event and Action Definitions 22
2.4.7. Controlling Information Exchange with External Components 24
2.4.8. Extensions for a looser coupling of Modules 25
2.4.9. Specifying Reactive Rules in Modules 25
2.4.10. Further Means for Structuring Rules 26

A. Example of Implicit Definitions Caused by an Explicit Definition 27

B. Dura Grammar 30

D4.6 Modularization Mechanisms • Page 3 of 38

Project EMILI FP7-SEC-2009-1

1. Modular Programming

The notion of modular programming is a very common and well established software design
technique which is included in many programming languages.

According to [?] “modularity in design refers to the splitting of a large software system into
smaller connected modules. Modules are interconnected through their interfaces. The intercon-
nection should be simple to avoid side effects and costly maintenance.”

The Linux documentation project defines modular programming as “a programming style that
breaks down program functions into modules, each of which accomplishes one function and
contains all the source code and variables needed to accomplish that function. Modular pro-
gramming is a solution to the problem of very large programs that are difficult to debug and
maintain. [?]”

Accordingly, the main benefits of modularization are that different developers can independently
work on different modules, changes within a module have only a limited effect on other modules,
and that the robustness and fault tolerance of programs is improved.

This deliverable discusses the advantages of modular programming for emergency management
software in general and introduces a modular mechanism for the reactive event processing lan-
guage Dura [?] which is developed in the context of the EMIL project.

1.1. Need for Modularization

Critical Infrastructures (CI) as they are regarded within the scope of the EMILI project are
large and complex physical systems with a myriad of different components such as sensors and
actuators. The components of CIs are often affiliated with each other to achieve certain tasks,
such as the detection of fire which incorporates several sensors of different types [?].

The airport scenario, for instance, considers currently about 430 different actuators and 460 dif-
ferent sensors [?]. The Dura program of the airport use case currently focuses on certain aspects
of emergency management in a public airport, but yet it already consists of 50 rules which will
most likely be extended to around 80 rules [?]. The components are divided into 6 different
systems which operate independently. However, in case of an emergency, the data from all sen-
sors needs to be correlated in order to gain a more abstract representation of the infrastructures
condition and of the current incidents. In addition, the different systems of the infrastructure,
that are operating independently under normal conditions, need to closely cooperate in order to
prevent harm of passengers, staff and the infrastructure itself during exceptional situations and
emergencies.

The number of different component types and their complexity has direct impact on the size
of the Dura program that is intended to support operators during exceptional and emergency
situations. The more component types are regarded the more event types need to be considered
and correlated by means of complex event queries. Likewise, the more complex the workflows
within an infrastructure are, the higher the number of rules that are required to model the work-

D4.6 Modularization Mechanisms • Page 4 of 38

Project EMILI FP7-SEC-2009-1

flows in the event processing system becomes.

However, when a large program is not carefully designed, unintended flaws and inferences
between different parts of the source program are likely. At the same time, as the size of a
program increases it becomes harder to find the origin of errors and the more difficult it gets
to eliminate errors without introducing further ones. Moreover, due to the missing structure of
the code and potentially many dependencies between functions, large monolithic programs are
harder to understand, debug, and maintain.

Modules facilitate the development of a system composed of several smaller segments instead
of one big monolithic program. The concept is therefore perfectly suited to be adapted to the
needs of emergency management and Dura.

Breaking up the program into logical segments that are separated by a clear interface mecha-
nism entails several advantages. The code is split into small and semantically meaningful pieces
which do not have (or have only litte) dependencies to other parts of the program. Therefore,
each module can be more easily maintained and tested independently which facilitates the de-
velopment of the program. It even makes it possible to develop multiple modules independently
and by different persons. For instance, rules for the low level communication and control of ex-
ternal actuators can be developed by SCADA experts whereas high level rules which describe
the behavior of complex workflows during emergencies can be developed by security experts.

Besides, modules with a clear interface mechanism can be adapted more easily and facilitate
the reuse of code. As interfaces only specify what kind of events, stateful objects and actions
are available and not how they are actually derived, the concrete implementation of rules can be
easily exchange as long as the interfaces remain identical. At the same time, changes within a
module have only a limited effect on other modules.

Modules also enable the encapsulation of auxiliary rules that provide intermediate results and
should hence not interfere with other parts of the implementation. Thus, certain information
can be hidden from the rest of the program if desired and unintended interference caused by
other parts of the program are prevented.

1.2. Modularization in Rule Based Systems

In the area of classical logic programming there has been a considerable amount of research
towards modular extensions for logic programming languages.

In the literature, several extensions for rule based languages, such as Prolog, have been proposed.
In [?] information hiding and abstraction for Prolog is realized by means of structures and
signatures which are used to control the visibility of terms and predicates. The approach is in
the spirit of the Standard ML module system.

Gödel [?] is a rule based language which comes with a simple build in module system. In
Gödel each module specifies explicitly which predicates are exported to, that is, are visible
from, other modules. Furthermore, modules can import other modules by which means all
visible predicates from the imported module become locally available. In this way, modules can

D4.6 Modularization Mechanisms • Page 5 of 38

Project EMILI FP7-SEC-2009-1

be used to share functionality whereas auxiliary predicates can be hidden from other modules.
Moreover, interferences between equally named predicates from different modules are avoided.

In [?] a very sophisticated and expressive modular framework for logic programming languages.
The authors propose a set of operators on modules, namely, ∪, ∩ and ? which can be use
to assemble separate programs and their intensional and extensional knowledge into bigger
ones. Based on these operators, which define an algebra on modules, the authors propose
ways to cover ordinary modules, that is, support basic information hiding and import/export
relationships, and exploit further and more fine grained extensions for modularization of logic
programs called logic modules.

A more pragmatic approach for modular extensions of a logic based web query language which
is based on the notion of stores is presented in [?]. The ideas behind stores is that they provide
designated data areas of modules, namely a private, in and out part, and hence provide control
over which data is visible to the according module and from other modules. Data that should
be processed by a store is injected into its in part whereas derived data that can be imported by
other modules is stored in its out part. Data that should be hidden to other modules resides in
the private part of the according store.

It is worth to mention that work from the area of classical rule bases languages, in particular [?]
and [?], focusses on programs that contain arbitrary (complex) computations which furthermore
need to be aware of potentially conflicting intensional and extensional knowledge from different
modules that are contributed from independent sources. As a consequence, these approaches
provide or even rely on means that explicitly specify which kind of data is injected from one
module to another. These means are crucial in the given area as it provides control to keep the
data from certain modules separate in order to avoid potential inconsistencies. However, for
emergency management applications these approaches seems unnecessary complex.

A comprehensive overview of modularity in logic programming can be found in [?].

Although there is a myriad of complex event processing engines and languages available, only
few of them come with built in modularization mechanisms. One of them is Drools1, a produc-
tion rule based language which is tightly integrated with Java and thus bases its modularization
on the packaging system from Java which means that modules in Drools are basically names-
paces which serve as means to distinguish equally named events from different modules.

1.3. Good Practice in Object Oriented Languages

Not only emergency management application but also large projects in general often benefit
from modularization mechanisms. This is reflected by the fact that modularization is a well
established mean in the software engineering community.

Java and C# are examples for languages which provide a mature and well proven modularization
mechanisms. In the following we will briefly introduce basic ideas and concepts of the module
mechanism of Java which relies on the notion of packages.

1 http://http://www.jboss.org/drools

D4.6 Modularization Mechanisms • Page 6 of 38

http://http://www.jboss.org/drools

Project EMILI FP7-SEC-2009-1

In the literature, modules and packages are sometimes discriminated depending on whether fur-
ther program elements can be added to a module after deployment [?]. Although this difference
is important for verification and validation purposes, we will not further discriminate between
both terms.

In Java, programs are organized in packages whereas packages are means to organize different
classes into namespaces. Packages are defined by means of a hierarchical naming pattern that
separates hierarchy levels by periods. In addition to the naming patter, the hierarchy of packages
is also reflected in the file system where the actual files containing the rules are stored. Each
package is stored in its own directory and subpackages are mapped to subdirectories. However,
for small programs it may be desirable to omit the package structure. This is also feasible in
Java and results in an unnamed package that includes all members of the given program.

Although the package hierarchy helps programmers to organize their code, there is (almost) no
semantic relationship between the structure and the content of packages. However, packages
can export their functionality by means of qualifier for the visibility of classes and functions.
The visibility determines whether the members of a package can be accessed or used by other
packages or whether they are hidden and thus not accessibly from outside the package. The
restriction of access to some (axillary) parts of a program is commonly called encapsulation
and is required to achieve a good separation of concern within a program.

There are two different ways how the provided functionality of other packages can be used
within a package. First of all, one can reference the required member by its full qualified name
that includes the name of its package. The second way is using the import declaration by which
means the imported member can be referenced just by its name (omitting the package name).

2. Modularization Mechanisms for Dura

Dura is a rule based complex event processing language with integrated support of reactive rules
and complex actions. The main purpose of Dura is the detection of abstract situations by means
of complex event queries and the (semi-)automatic execution of appropriate complex actions.
However, Dura is not designed for performing arbitrary computations as they are supported by
other rule languages, like for instance Prolog. This is also reflected by the fact that, for the sake
of efficiency and the lacking need of more expressive constructs from the use cases, only a less
generic form of terms, namely structures, are supported in Dura.

Based on this background we decided to adapt a pragmatic modularization approach for Dura
which resembles the work in [?] and other popular programming languages like Java. In this
way we obtain an easy to use language extension with clear semantics that users are already
familiar with. Although our approach seems to be straight forward, we obtain valuable insights
in modularization mechanisms which origin from the presence of reactive rules and stateful
objects in Dura.

There are arguably more expressive approaches, as for instance the work of Brigi et. al. [?]
which could be adapted for Dura. However, the additional expressiveness of these approaches

D4.6 Modularization Mechanisms • Page 7 of 38

Project EMILI FP7-SEC-2009-1

is motivated by needs that are not present in the case of emergency management. As already
mentioned, the goal of Dura is not to compute arbitrary functions but rather to detect situations
and react to them. Moreover, the higher expressiveness that is provided by these approaches
leads to a higher complexity of the semantics of the according language which does not seems
to be easily accessible for emergency management experts that have no expertise in the field of
mathematical logic and model theoretical semantics of programming languages in general.

In section 2.4.8 we discuss further extensions of our approach that incorporate ideas from [?]
and enable a looser coupling of modules.

2.1. Overview

Generally speaking, modules in Dura consist of a set of (declarative and reactive) rules. Each
module defines its own namespace and thus name clashes between definitions from different
sources are avoided. Modules can import the functionality from other modules and provide
means for information hiding and abstraction. However, the presence of reactive rules and
stateful objects requires special treatment which are further discussed in section 2.4.3 and 2.4.5.

The modularization mechanism of Dura relies on a schema for rules and stream definitions. The
basic concepts for modules are furthermore adopted from the well proven and mature module
mechanism of common high level languages, more precisely from the module mechanisms of
Java.

Note that some of the concepts that are discussed in this section have already been briefly
addressed by our preceding deliverable [?] in preparation of the adoptions that are prerequisite
for a sound modularization mechanism. Therefore, our last deliverable was also intended to
inform the project partners as early as possible of future adoptions and extensions of Dura that,
back then, had not been covered in previous work on the language, so as to get the feedback
necessary for the further development of the Dura language.

However, whereas [?] focusses on the compilation of programs, the focus of the present docu-
ment lies on the modularization mechanism of Dura. In order to give a complete description
of all required concepts it seems reasonable to recapitulate some of the already discussed ideas
from another perspective.

2.2. Schemas as Interfaces

The notion of schema in Dura is a mean to separate the specification of properties of events,
stateful objects, and actions from the actual definition of rules that describe how these events
and stateful objects are actually derived and composite actions are actually defined.

Therefore, the schema can be regarded as some kind of interface mechanism which is desirable
for modularization and in particular for encapsulation and information hiding. When certain
events are exported by a module, that is, are visible from other modules, only the schema of the
exported events becomes visible from outside the module, the respective rules that are deriving

D4.6 Modularization Mechanisms • Page 8 of 38

Project EMILI FP7-SEC-2009-1

the events remain covered.

Moreover, a schema is desirable to model events and actions that are not derived by the event
processing system itself but are instead either sent to the system from external sensors or which
are provided to the system by external actuators. This information can then be used at compile
time used to detect events that are queried but not derived by or sent to the event processing
system.

In particular in the context of emergency management these properties are essential because
programming errors, that in fact can be detected during compile time by means of a schema
mechanism, can have severe consequences for passengers and the facilities in case of an emer-
gency. This facet of Dura’s modularization mechanisms is discussed in more detail in [?].

2.2.1. Types and Type Definitions

There are two different types in Dura, atomic types, such as int and string, and composite
types that are composed of several atomic or composite types, such as room-location and
area which are given in listing 1. Types are subsequently used in the schema of event definitions
in order to provide information on how to interpret given literals and relations on these literals,
as for instance equals and lower than.

Note that the type system of Dura intentionally remains straightforward. It does not consider
overloading of used defined operators and similar concepts as the use cases currently do not
require such functionality. Therefore user defined composite types, as they are introduced in
the following, should only be considered as a mean to give names to commonly used composite
types.

Dura comes with the following atomic types: boolean, int, long, float, double, string,
identifier, duration, and timestamp. More elaborated composite types can be defined
based on these atomic types as it is shown in listing 1. However, each type definition needs to
have a unique name and although type definitions may in turn refer to composite types, type
definitions must not be cyclic.

Listing 1: Definitions of the composite types area and room-location

TYPE area IS { id{int}, name{string} } END
TYPE room-location IS { room-number {int}, location {area} } END

Note that labels, such as name and location, are used to define a structure on the composite
type. Therefore composite types in Dura are similar to data type structures (structs for short)
which are known from other programming languages, like C or C#.

Constants can be defined in a manner that is similar to the definition of composite types. In this
way, values that are used in multiple rules or even multiple times in a single rule need to be
specified only once.

D4.6 Modularization Mechanisms • Page 9 of 38

Project EMILI FP7-SEC-2009-1

Listing 2: Definitions of the constant temperature-limit

CONST temperature-limit IS 42.0 END

2.2.2. Stream Schemas

Schemas and composite types are closely related, the main difference between both notions is,
that the name of, for instance, an event is part of the event schema whereas the name that is
assigned to a composite type definition is not part of the composite type itself.

Listing 3 contains a schema for temp events. The name of the event is also referred to as
the event type and labels and types that are specified inside the schema are referred to as the
attributes of the event. In the given example, the event has the type temp and its attributes are
sensor, value, and area.

Listing 3: A sample schema for temp events
temp{

sensor {int},
value{float},
area{ id{int}, name{string} }

}

The schema contains all information on the properties of events, stateful objects and actions. In
particular it specifies the shape of the payload, that is, which type of values are contained in the
payload and how these values are structured.

2.2.3. Constraints for Types and Schemas

Constraints can be added to types and schemas to provide additional information on their at-
tributes. They are particularly useful to specify further information on temporal relationships
between different attributes which are required for the evaluation of queries. However, con-
straints can also be used for query optimization either during compile time or during runtime.

Listing 4: Definition of the build-in type time-interval
TYPE time-interval IS

{ begin{timestamp}, end{timestamp} } where {begin <= end} END

Constraints are specified in an additional where part to a type definition or schema. Thereby,
atomic types that should be constrained are referenced by the path of labels that leads to the
corresponding type. In listing 4, the constraints of the type time-interval specify that the
timestamp of the attribute begin is always lower or equal to the timestamp of the attribute end.

D4.6 Modularization Mechanisms • Page 10 of 38

Project EMILI FP7-SEC-2009-1

Likewise, constraints can be added to a schema by specifying the constraints for the schema in
a subsequent where part. Thereby constraints of types that are used in schema definitions are,
in a slightly modified form, also added to the constraints of the schema. If, for instance, the type
time-interval is used in a schema, the constraints of the attributes begin and end are added
to the schema as well. However, in doing so, the path of the constraints needs to be adapted
internally in order to match the path of the attribute that specified the time-interval type.

2.3. Stream Definitions

Stream definitions, that is, definitions of events, stateful objects, and actions, intent to combine
related schema specifications and rules. Event definitions, for instance, consist of the event
schema which specifies the properties of the according event and a (potentially empty) set of
rules which specify how the according event is actually derived from other events.

All rules deriving the same event type, type of stateful object or specify the same type of com-
plex action need to be grouped together in a common definition. Moreover, the schema of the
definition needs to correspond to the names of derived events, stateful objects, or actions of the
given rules and there must not be multiple definitions for the same name. Note that the way in
which these definitions restrict programmers to organize their rules in a program is quite com-
mon in modern high-level languages. In Java, the attributes of an object and functions which
interact with these properties need to be specified in the same class definition.

The introduction of definitions and the associated restrictions is convenient as all essential prop-
erties of a certain stream are collected in a single part of the program and cannot be scattered
arbitrarily among a (potentially huge) program or, even worse, among several files. On the
downside, one has to scan the complete program in order to get the overview of all available
definitions. However, with the emergence of techniques that enable the creation of sophisticated
editors, such an overview can be easily generated on the fly and presented to developers while
they are editing a program.

According to section 2.2.3, the schema of definitions can contain additional constraints that
need to hold for any event, stateful object or action of the corresponding definition. Hence,
specifying additional constraints in the schema introduces further stability to the properties of
the defined elements. Recall that any rule which is added to the definition needs to correspond
to the schema, in particular the properties of derived events, stateful objects and actions need to
fulfill the specified constraints. Therefore, from a more abstract perspective, definitions can also
be considered as interfaces which specify the properties of events, stateful objects and actions
whereas the concrete specification of rules is hidden inside each definition.

2.3.1. Structure of Definitions

The generic structure of definitions in Dura is given in listing 5. The WITH part of each definition
can be omitted which renders the corresponding type atomic. In case of events and actions

D4.6 Modularization Mechanisms • Page 11 of 38

Project EMILI FP7-SEC-2009-1

this implies that the definitions specify external events and actions which needs to be treated
separately and what is further discussed in section 2.4.7.

Listing 5: The generic structure of definitions
EVENT

event schema
WITH

declarative rules (event queries)
END

STATEFUL OBJECT
stateful object schema

WITH
declarative rules (stateful object queries)

END

ACTION
action schema

WITH
(a single) complex action rule

END

Note that although event and stateful object definitions may contain several rules in their with
part, action definitions can at most contain one complex action rule. This limitation is desirable
because otherwise the execution of a single action with multiple rules in the corresponding
definition actually triggers multiple actions. Therefore, the execution of a single action may
result in multiple succeeded events or, even more odd, it may result in one succeeded and
one failed event.

Definition Type Implicit Attributes
event id{identifier}, reception-time{time-interval}
stateful object id{identifier}, valid-time{time-interval}
action id{identifier}, initiation-time{time-interval}

Table 1: Implicit attributes of definitions

The schema of each definition is implicitly extended by default attributes that are specific to the
corresponding type of the definition. Table 1 contains the implicit attributes of each definition
type. Note that although implicit attributes are part of the schema, they may only be queried
in the body of rules but need to be omitted in the head of rules. As a consequence, the values
for implicit attributes of events, stateful objects and actions are always determined by the event
processing system.

D4.6 Modularization Mechanisms • Page 12 of 38

Project EMILI FP7-SEC-2009-1

2.3.2. Implicit Event and Action Definitions

Beside the events and actions that are explicitly specified in a program there are further implicit
definitions which are caused by the specification of stateful object and action definitions. Recall
that the execution of actions entails events which indicate the outcome of the action. As a result,
definitions of the entailed events are implicitly added to the program. Likewise, the modification
of stateful objects is triggered by special actions and is indicated by means of events whose
definitions are also implicitly added to the program.

The implicit definitions do not need to be given by programmers as they are automatically
generated during the compilation process. However, one needs to be aware of their form, more
specifically, of their schema, in order to used them properly in event queries and reactive rules.2

The name of implicitly defined events and actions is composed of the name of the object that
causes the implicit definition and an additional identifier, such as succeeded, which are sepa-
rated by an additional dollar sign. Consequently, the dollar sign occurs in names of events and
actions that are used in event queries, reactive rules and complex action rules. However, the
dollar sign may only occur in the context of implicit definitions and cannot be contained in the
name of arbitrary events, actions or even stateful object.

Listing 6: A generic action definition
ACTION

name{ attributes }
WITH

. . .
END

Listing 6 contains an abstract action definition. The concrete name and attributes for the action
are not of further interest for the following examples. This definition implicitly defines the three
events whose event definitions are explicitly given in listing 7. For the sake of simplicity, the
implicit attributes are omitted from this and the following definition. However, an exhaustive
example on stream definitions containing all attributes of the according definitions is given in
appendix A.

Whenever the action name is executed, a corresponding name$initiated event is derived by
the event processing system. The values of parameters that have been passed to the action recur
in the derived event. The same holds for the corresponding succeeded and failed event. Note
that hence initiated, succeeded and failed events which are caused by the same instance
of an action can be identified because the id of the common action is contained in the payload
of the respective events.

Similar to action definitions, definitions of stateful objects implicitly specify further definitions.
But whereas action definitions just implicitly specify event definitions, stateful objects defini-

2Section 2.4.6 contains examples for which it is indeed desirable to explicitly specify usually implicit definitions.

D4.6 Modularization Mechanisms • Page 13 of 38

Project EMILI FP7-SEC-2009-1

Listing 7: Events that are implicitely defined by the definition of listing 6
EVENT

name$initiated { payload { attributes } }
END

EVENT
name$succeeded { payload { attributes } }

END

EVENT
name$failed { payload { attributes } }

END

tions implicitly specify action and event definition because they can be modified by means of
actions and updates of stateful objects entail events.

Listing 8: A generic stateful object definition
STATEFUL OBJECT

name{ attributes }
WITH

. . .
END

The implicit definitions that are derived from the stateful object definition of listing 8 are explic-
itly given in listing 9. Again, for the sake of simplicity, the implicit attributes are omitted from
this definition.

Note that although attributes contains implicit attributes such as the id of the stateful object,
only attributes that are explicitly specified in the schema can be specified in the name$create
and name$update action. In addition, all explicit attributes need to be specified completely. In
particular this means for update actions that attributes which should not be updated need to be
specified as well.

Internally, the execution of an update action is realized by means of a terminate and create
action. Therefore, if an update action is executed which leaves all attributes of the stateful
object equal, that is, it actually does not modify the explicit attributes of the abject, the update
action is nevertheless executed successfully. Moreover, the execution results in an updated
event even though the attributes that have been explicitly specified in the schema of the stateful
object have not been changed. However, the implicit attributes valid-time and id are indeed
modified.

D4.6 Modularization Mechanisms • Page 14 of 38

Project EMILI FP7-SEC-2009-1

Listing 9: Implicit definitions that are derived from the definition of listing 8
ACTION

name$create { values { explicit attributes } }
END

ACTION
name$terminate { query{ id{identifier} } }

END

ACTION
name$update { query{ id{identifier} }, values { explicit attributes } }

END

EVENT
name$created { payload { attributes } }

END

EVENT
name$terminated { payload { attributes } }

END

EVENT
name$updated { payload { attributes } }

END

2.3.3. Specifying Success and Failure in Atomic Action Definitions

Receiving feedback about the progress of actions, that is, whether an action has been executed
successfully or has failed, is crucial for many applications. For instance, some actions may only
be executed if a preceding action has been executed successfully, or there may be a fallback
option which should be executed if a certain action fails.

In Dura all information is inherently communicated by means of events.3 Sensors readings and
input from the operator is sent to the event processing system in form of events, updates of
stateful actions and the initiation of actions is indicated by means of evens, simulation results
are fed into the event processing system in form of events, etc. Consequently, actuators need to
report the success or failure of an action execution by means of events as well.

Listing 10 shows on a conceptual level how events that indicate the success or failure of an ac-
tion execution can be connected with an atomic action definition. Hence, whenever the specified
event queries match, the corresponding name$succeeded and name$failed events are auto-
matically derived by the event processing system. Opposed to the given generic event queries,
these events have a special semantic that plays an important role for the definition of composite
actions.

3If they are also regarded as information, actions are exceptions to this statement.

D4.6 Modularization Mechanisms • Page 15 of 38

Project EMILI FP7-SEC-2009-1

Listing 10: Specifying success and failure of atomic actions
ACTION

name{ attributes }
succeeds on{ event query }
fails on{ event query }

END

Dura leaves it to the programmer to ensure that conditions for success and failure of actions do
not overlap. Although an automatic recognition of possible overlaps is certainly worth to be
investigated, we decided not to formally investigate issues before they have been sufficiently
experienced in practice.

A more concrete and elaborated example of how to specify the success and failure of external ac-
tions is given in listing 11. The action assign-warden is considered successful if the execution
of the action is confirmed by the corresponding warden with a matching confirmation-message
event within 20 seconds after the initiation of the action.4 Otherwise the actions is considered

as failed.

Note that the (unique) id of action instances is contained in the payload of the according name$
initiated and name$succeeded events. Indeed, the id in the payload of name$initiated
and name$succeeded events that are referring to the same action instance is the same. The
id is subsequently used in the succeeds on and fails on part of the action definition in
listing 11 in order to prevent the confusion of multiple instances of the same action that are
simultaneously executed.

Listing 11: Concrete example for the specification of success and failure
ACTION

assign-warden { area{string}, actor{string} }
succeeds on{

and{
event e: action$initiated { payload { id{var Id} } },
event f: confirmation-message { ref{var Id} }

} where { {e,f} within 20 sec }
}
fails on{

and{
event e: action$initiated { payload { id{var Id} } },
not { event f: action$succeeded { payload { id{var Id} } } }

} where { {e,f} within 20 sec }
}

END

4Mind the difference between the initiation of actions inside the event processing system and their actual execu-
tion by the actuator.

D4.6 Modularization Mechanisms • Page 16 of 38

Project EMILI FP7-SEC-2009-1

Note that in this example the name of the action is referenced by the keyword action instead
of its actual name assign-warden. Although it does not make any difference for atomic action
definitions, for the success and failure of composite actions it is crucial to properly reference
actions with the according keyword.

Although it is crucial to know whether an (external) action has been executed successfully by
an actuator, in practice there are actuators that simply cannot provide the desired feedback.
When a report on the outcome of an action is not directly provided by an actuator and yet it is
indispensable for a certain task one need to measure the status of the action indirectly by means
of sensor readings that are related to the goal of the action. For instance, if a ventilator does not
give any feedback on its current operation status and there is an anemometer close by which
measures the current wind speed one can use this information to draw conclusions whether the
ventilator is actually operating or not. However, as arbitrary queries can be specified in the
succeeds on and fails on part of action definitions this scenario can be easily covered with
Dura as well.

2.4. Modules

The Modularization mechanism of Dura is built on the notion of definitions and schemas that
are discussed in section 2.2 and 2.3. These notions are combined with ideas from [?] and Java
which are adapted for our requirements.

A simple notion of program modules is retained so as to keep the language simple and there-
fore easy to use. Our approach towards modularization mechanisms for Dura has the advantage
that programmers which are already familiar with the modularization mechanisms of common
languages are also familiar with the basic ideas of Dura’s modularization mechanisms. More-
over, there is no need to reinvent the wheel for Dura because the available concepts can be
easily adapted to our needs and yet they provide a substantial improvement to programs as it is
discussed in section 1.1.

2.4.1. Basic Concepts

Modules are sets of rules which can be distributed among several files in the filesystem and
which are associated with a unique namespace. Modules can be furthermore organized in a
hierarchical structure that may or may not be reflected in the way the different program parts
are stored on the file system.

The content of different modules is split among separate files each beginning with the decla-
ration of the module name according to the usual naming pattern which separates different
hierarchy levels by periods. Figure 1 contains an excerpt of the rule structure from the airport
use case.

According to figure 1, files associated with the module airport.alarms.detection need
to begin with the declaration MODULE airport.alarms.detection. A convenient, but not

D4.6 Modularization Mechanisms • Page 17 of 38

Project EMILI FP7-SEC-2009-1

airport

alarms

detection confirmation

situation-categorization reactions

general em-preventing . . .

Figure 1: Structure of rules from the airport use case

mandatory, convention is that all files of the module are stored in the file system under airport
/alarms/detection.5

Within each module, definitions of events, stateful objects and actions need to be unique, that is,
there must not be two definitions for the same type with the same name regardless of whether
their attributes differ or not. However, as the module name is also part of the according name
of the definition, there may indeed be two definitions with the same basic name as long as they
are associated with different modules.

2.4.2. Modifiers for the Visibility of Definitions

Modifiers specify the scope or the visibility of definitions. They specify which definitions can
be used by rules of other modules and which definitions remain hidden from outside. Hence,
modifiers are crucial to realize information hiding and encapsulation as it is desirable for high
level languages.

Similar to Java there are three different modifiers for the visibility of definitions in Dura, namely
public, private, and the default scope that is implicitly applied if no visibility is explicitly
specified.6 The meaning of these modifiers is summarized in table 2 where + denotes visible
and - denotes not visible.

Modifier File Module World
public + + +
no modifier + + -
private + - -

Table 2: Impact of modifiers on the visibility of definitions

Public definitions can be imported and used by rules of any module of the complete program
whereas private definitions can only be use by rules of definitions that are stored in the same file

5On Windows based operating systems \ needs to be substituted for /.
6Note that Java’s protected is omitted as there is no inheritance in Dura.

D4.6 Modularization Mechanisms • Page 18 of 38

Project EMILI FP7-SEC-2009-1

as the private definition itself. Definitions with the default scope are visible to rules of the same
module, whereby the rules do not need to be contained in the same file.

Note the different semantics of the term visible for event and stateful object definitions on the
one hand and action definitions on the other hand. If an event or stateful object definition is
visible within a file this means that it can be queried in the body of a rule. By contrast, if an
action definition is visible within a file it means that the action can be used in a reactive rule,
that is, it can be actually executed.

The scope is specified in front of the according definition. Listing 12 provides the definition
of unconfirmed-alarm events that is referred to in the following examples. Note that the def-
inition of unconfirmed-alarm is visible from rules of arbitrary modules whereas the stateful
object definition of area-state is only visible by rules that are associated with the airport.
alarms.detection module.

Listing 12: Event definition for unconfirmed-alarm events
MODULE airport . alarms . detection

public
EVENT

unconfirmed-alarm { area{string} }
WITH

DETECT
unconfirmed-alarm { area{var A} }

ON
event e: area-state$updated {

payload { area{var A}, mode {" alert1" } }
}

END

. . .
END

STATEFUL OBJECT
area-state { area{string}, mode{string} }

END

. . .

Opposed to the way visibility of classes is handled in Java, in Dura one file may contain several
public declarations and there is no obligatory naming scheme for filenames. This deviation
from Java’s module system is mainly caused by the lack of corresponding notion of classes
which combines properties of objects and functions on these objects in a single class definition.
In Dura, related events, stateful objects and actions are coupled loosely whereby their visibility
needs to be specified independently and thus it is reasonable that one file may contain several
public definitions.

D4.6 Modularization Mechanisms • Page 19 of 38

Project EMILI FP7-SEC-2009-1

2.4.3. Loading Modules

The definitions and functionality of the reactive rules of a module can be used by other modules
if desired. However, before any definition from a module can be used, the entire rules of the
according module need to be loaded, at least conceptually, into the set of rules that is evaluated
during runtime. Afterwards, all definitions that are visible from the loading module can be used
as if they have been defined locally.

At this point, it is important to understand that by loading a module, all its rules, in particular its
reactive rules, are added to the set of rules that is evaluated during runtime. In a certain sense,
by loading a module all its reactive rules are activated.

For instance, prior to the usage of unconfirmed-alarm from listing 12, the module airport.
alarms.detection needs to be loaded by means of the LOAD airport.alarms.detection
command. As the unconfirmed-alarm definition is visible from arbitrary modules the corre-
sponding events can subsequently be used in event queries by referencing them with their full
name, including the name of the modules they are defined in.

Listing 13: Example of the load mechanism in Dura
MODULE airport . alarms

LOAD airport . alarms . detection
LOAD airport . alarms . confirmation

. . .

Note that, submodules are only loaded if it is explicitly specified by their parent module. For
instance, in listing 13, it is explicitly specified that all submodules of airport.alarms should
also be loaded. However, without the two LOAD statements they just would not have been
loaded.

When a module is loaded, all modules that are in turn loaded by this module are indirectly
loaded as well. Therefore, when the module airport.alarms from listing 13 is loaded, the
two submodules that are explicitly specified are indirectly loaded as well. However, by default,
only definitions that are located in the module that is actually loaded can be be used. There-
fore, definition from modules that are indirectly loaded cannot be used in the loading module.
Thus, when just the module alarms is loaded, unconfirmed-alarms cannot be used in queries
although the according definition has been indirectly loaded.

This behavior seems reasonable because it makes it possible to hide auxiliary definitions that
are just loaded by a certain module for internal purposes. However, this default behavior can
be adapted by explicitly specifying which definitions from indirectly loaded modules should be
also automatically exported to other modules.

In the preceding example it is desirable that confirmed-alarms that are defined in the mod-
ule airport.alarms.confirmation are automatically available when the module airport.

D4.6 Modularization Mechanisms • Page 20 of 38

Project EMILI FP7-SEC-2009-1

alarms is loaded, whereas unconfirmed-alarms should remain hidden in the first place.7

This behavior is realized by means of the EXPORT statement as it is demonstrated in listing 14.
Note that EXPORT can either be followed by the full name of a definition, which exports only
the given definition, or it can be followed by the name of a module which exports all public
definition of the given module.

Listing 14: Example of the export mechanism in Dura
MODULE airport . alarms

LOAD airport . alarms . detection
LOAD airport . alarms . confirmation

EXPORT airport . alarms . confirmation . confirmed-alarm

. . .

Exporting definitions is a powerful mean to realize versatile submodule structures that automat-
ically provide certain definitions whereas auxiliary definitions can be easily hidden.

2.4.4. Importing Definitions

Importing definitions is basically just a shorthand that makes it possible to reference a defini-
tion by its basic name, omitting the name of the according module. However, only definitions
that can anyhow be used in a module, that is, definitions that have been loaded as it has been
described in the preceding section, can be imported by a module. Hence, importing definitions
is just a mean to abbreviate names of definitions that are anyhow available in a module.

If the import statement is omitted from listing 15, the unconfirmed-alarm events are still
available, however they then need to be referred by their full name, namely airport.alarms
.detection.unconfirmed-alarm. Depending on the concrete situation one or another way
may be more convenient.

2.4.5. Imports and Reactive Rules

In contrast to other approaches, we actually need to distinguish between loading modules and
importing definitions. This is mandatory as modules may internally rely on reactive rules that
alter stateful objects to provide their functionality. For instance, unconfirmed-alarms from
listing 12 are only derived if the according area is changes its state in a certain way. In turn,
the state of the area is adapted by a reactive rule that is contained in the airport.alarms
.detection module. Therefore, if just the definition unconfirmed-alarm is imported, the

7They can still be made available by manually loading the airport.alarms.detection module.

D4.6 Modularization Mechanisms • Page 21 of 38

Project EMILI FP7-SEC-2009-1

Listing 15: Example of the import mechanism in Dura
MODULE airport . reactions . general

LOAD airport . alarms . detection
IMPORT airport . alarms . detection . unconfirmed-alarm

ON
and{

event e: unconfirmed-alarm { area{var A} },
state s: responsible-warden { area{var A}, actor{var W} }

} where { state s valid-at end(event e) }
DO

action a: assign-warden { area{var A}, actor{var W} }
END

ACTION
assign-warden { area{string} }
succeeds on{ . . . }
fails on{ . . . }

END

adaptation of the area’s state by means of a reactive rule is missing and therefore the imported
definition does not provide the intended semantic.

According to this examples, the semantics of programs that are contained in modules differs
depending on whether the reactive rules of the according module are considered during runtime
or not. As it is natural that during the development of a certain module all its reactive rules
are considered as being evaluated, it is mandatory that this still holds if the functionality of
the module is imported by another program as well. Therefore, it is also mandatory in Dura to
maintain this behavior when the functionality of a module is imported into a program and hence
modules, more precisely all rules of a module, need to be loaded before its functionality can be
imported.

In purely declarative approaches without reactive rules it is indeed sufficient having only the
IMPORT statement included in a language. However, neither do reactive rule have a name so
that they can be addressed properly nor are they declarative, that is, they have side effects which
can directly or indirectly affect the behavior of other rules. This is a major difference to other
approaches that are described in the literature.

2.4.6. Visibility of Implicit Event and Action Definitions

The visibility that is set for implicit definitions depends on the type of the definition and the
visibility of the corresponding explicit stateful object or action definition. More precisely, the
visibility of implicit event definitions is inherited from the according explicit definition, whereas
the visibility of implicit action definitions is set to the default visibility. This behavior has

D4.6 Modularization Mechanisms • Page 22 of 38

Project EMILI FP7-SEC-2009-1

the effect that events which are related to a public stateful object are also visible within the
whole program whereas updates of the object remain in control of the module that contains the
definition.

Consider, for instance, the stateful object operation-mode which has been used in many ex-
amples of prior documents [?, ?, ?]. As this particular stateful object represents a variable that
plays an important role for many details of both the airport and the metro use case, it needs to
be visible for all rules no matter what module they are contained in. Consequently, the corre-
sponding stateful object is declared public. Hence, values of the stateful object can be queried
by rules of the entire program and the according implicit events, which inform about changes
of the stateful object, are also visible in all modules of the program. Moreover, the stateful
object can only be updated by rules that belong to the airport.situation-categorization
module.

To further restrict which rules can update the stateful object operation-mode, the scope of the
according operation-mode$update action needs to be adapted. To this end, the usually im-
plicit definition needs to be explicitly added to the program whereby the desired scope can
be explicitly specified as well.8 However, there is no need to specify the attributes of the
operation-mode$update action as they are already determined by the name of the action
and the definition of the stateful object operation-mode. Consequently, they do not need to be
specified in the according definition.

Listing 16: Definitions related to the stateful object operation-mode

MODULE airport . situation-categorization

public
STATEFUL OBJECT

operation-mode { mode{string} }
END

private
ACTION

operation-mode$update { }
END

In general, this approach can be used with all implicitly defined events and actions. An explicit
definition for usually implicit event and action definition is added to the program which just
contains the name of the corresponding event or action without any further attributes. The
visibility of the (now explicit) definition can then be adapted by adding the desired modifiers.
Listing 17 contains explicit definitions for the usually implicitly defined events of a generic
actions called name. The form of explicit definitions for usually implicitly defined actions
resembles the form of the given event definitions.

8In order to completely prevent any modifications the visibility of the actions operation-mode$create and
operation-mode$terminate needs to be adapted as well.

D4.6 Modularization Mechanisms • Page 23 of 38

Project EMILI FP7-SEC-2009-1

Listing 17: Explicit event definitions for usually implicitly defined events
EVENT

name$initiated { }
END

EVENT
name$succeeded { }

END

EVENT
name$failed { }

END

Note that listing 7 and 9 contain similar definitions which are only intended to illustrate the
form, in particularly the attributes, of the implicitly defined events and actions. However, the
definitions that were given in these two listings cannot be used in sound Dura programs.

2.4.7. Controlling Information Exchange with External Components

Modifiers as they are discussed in the preceding sections control the visibility of definitions
within the event processing system. However, neither do they consider whether external events
are visible to the event processing system nor whether events and action are visible to external
components.

To specify the flow of events and actions between external components and the event processing
system two further modifiers are introduced, namely input and output. They can be used in
combination with the three modifiers that have been introduced in section 2.4.2. The input
modifier can be used in conjunction with event definitions and specifies that events of the

corresponding types are sent to the event processing system by external components such as
sensors. In contrast, output in front of an event or action definition specifies that the event
processing system needs to provide the according events and actions to external components.
Because stateful objects cannot be queried directly by external components, only the input
modifier can be uses in combination with stateful objects in order to be able to provide initial
states.

Note that most atomic events and action definitions need to be specified as being either of
type input or output. Most likely, only atomic events and actions that are provided by the
event processing system, that is, events and actions that are implicitly defined by event and
stateful object definitions, will be specified without the two modifiers. Moreover, normally
implicitly defined events and stateful objects can only be declared with either no or just the
output modifier and actions cannot be associated with the input modifier.

A more detailed descriptions of how the concrete communication between external components
and the event processing system is realized and which impact both modifiers have inside the

D4.6 Modularization Mechanisms • Page 24 of 38

Project EMILI FP7-SEC-2009-1

event processing system can be found in [?], [?] and [?].

Listing 18: Making updates of operation-mode visible for external components
public output
EVENT

operation-mode$updated { }
END

This mechanism can also be used to forward notifications of stateful object updates to external
components. For instance, it seems desirable that the SITE Gui is automatically notified if the
operation mode changes so that it can inform the operator accordingly. This behavior can be
achieved by adapting the visibility of the operation-mode$update from listing 17 as it is
demonstrated in listing 18.

2.4.8. Extensions for a looser coupling of Modules

The mechanism that is described in the preceding section can be generalized towards a more
versatile information exchange between different modules in a manner that is similar to the
approach that is proposed in [?]. Currently, all rules that derive a certain event need to be
specified in the same definition and thus in the same file. If a module wants to use definitions
from other modules it needs to know these modules upfront in order to be able to load them. It
cannot just declare that it is interested in events of a certain type.

Our approach can be generalized so that there may be indeed several definitions for the same
type that are distributed among several files. Therefore, events of the same type can be de-
rived by several modules and the input and output qualifier control how events flow between
several modules in addition to the flow of events between external components and the event
processing system.

Therefore, modules are coupled more loosely and integration of modules from independent
sources is facilitated. However, in the context of this project modules are considered as a mean
to structure large programs rather than being a mean to integrate different modules from inde-
pendent sources. Moreover, it is crucial in the area of emergency management that all involved
components are well known and understood. Therefore it does not seems to be desirable to
provide further means that ease the integration of arbitrary modules that are not well known to
the programmer.

2.4.9. Specifying Reactive Rules in Modules

Reactive rules have a special role in the module system of Dura. Whereas declarative rules
derive new events or stateful objects and complex action rules define new actions, reactive rules
only trigger actions on the occurrence of certain events. They just make the transition from the

D4.6 Modularization Mechanisms • Page 25 of 38

Project EMILI FP7-SEC-2009-1

declarative world of events and stateful objects to the imperative world of complex actions but
do not provide new definitions of any kind. As a consequence, reactive rules do not need to be
specified within any definition.9 They are just specified where common definitions are given in
a file.

As it is described in section 2.4.3, reactive rules have a special status in modules. When a mod-
ule is loaded, all its contained reactive rules are added to the set of rules that is evaluated during
runtime. Accordingly, modifiers for the visibility of definitions cannot be used in combination
with reactive rules.

Listing 15 in section 2.4.1 already provided an example for the usage of reactive rules in com-
bination with definitions.

2.4.10. Further Means for Structuring Rules

The WHILE statement in Dura is another mean for the structuring of rules in a program. It is
orthogonal to definitions in the sense that definitions group together rules that derive the same
type of events and stateful objects or that define the same type of actions. In contrast, WHILE
groups rules according to a stateful object, that is, it groups rules that should be applied in the
same situation or context.

Consequently, the integration of the statement into the module system of Dura is somewhat
cumbersome. WHILE statements activate and deactivate the rules they contain and hence, during
runtime, they can be regarded as a set of common rules. Therefore WHILE statements need to
be included in definitions and all rules that are contained in the statement need to match the
schema of the corresponding definition. As a result, WHILE statements can only contain rules
that derive the same type of events and stateful objects or define the same type of actions.

Reactive rule that are specified in a WHILE statement are treated in a special way. For the same
reasons as they have been discussed in the preceding section, WHILE statements that only contain
reactive rules do not need to be included in any definition.

9Note that reactive rules may query several events and execute several actions which makes a unique attribution
to a single event or action definition rather unintuitive.

D4.6 Modularization Mechanisms • Page 26 of 38

Project EMILI FP7-SEC-2009-1

A. Example of Implicit Definitions Caused by an Explicit Definition

This section contains an exhaustive listing of all implicit event and action definitions that are
related to the definition of the stateful object operation-mode that is given in listing 19. In
the subsequent listings 20, 22, 21, and 23 all attributes, in particularly the implicit ones, of the
according stream definitions are contained.

Listing 19 contains a definition of the stateful object operation-mode like a programmer would
specify it in a Dura program. The definition contains only explicit attributes that actually carry
the values the programmer is interested in.

Listing 19: User defined stateful object operation-mode

STATEFUL OBJECT
operation-mode { mode{string} }

END

Internally, the definition from listing 19 is augmented with implicit attributes, like, for instance,
attributes which specify at at which time the stateful object is valid as it is shown in listing
20. Usually these attributes can be queried in a program but their value cannot be determined
explicitly by the programmer.

Listing 20: Definition of operation-mode inclusive its implicit attributes
STATEFUL OBJECT

operation-mode {
id{identifier},
valid-time {time-interval},
mode{string}

}
END

Be aware that in the following the values of name.payload.id in listing 21 are referring to
the instance of a stateful object, whereas the values of name.payload.id in listing 23 are
referring to the instance of an action. Accordingly, the values in the payload attribute of,
for instance, the operation-mode$created event are referring to the instances of the state-
ful object operation-mode. In contrast, the values of the payload attribute of, for instance,
the operation-mode$terminate$initiated event are referring to instances of the action
operation-mode$terminate.

D4.6 Modularization Mechanisms • Page 27 of 38

Project EMILI FP7-SEC-2009-1

Listing 21: Implicit event definitions caused by listing 20
EVENT

operation-mode$created / terminated / updated {
id{identifier},
reception-time {time-interval},

payload {
id{identifier},
valid-time { begin{timestamp} },
mode{string}

}
}

END

Listing 22: Implicit action definitions caused by listing 20
ACTION

operation-mode$create {
values { mode{string} }

}
END

ACTION
operation-mode$terminate {

query{ id{identifier} }
}

END

ACTION
operation-mode$update {

query{ id{identifier} },
values { mode{string} }

}
END

D4.6 Modularization Mechanisms • Page 28 of 38

Project EMILI FP7-SEC-2009-1

Listing 23: Implicit event definitions caused by listing 22
EVENT

operation-mode$create$initiated / succeeded / failed {
id{identifier},
reception-time {time-interval},

payload {
id{identifier},
initiation-time { begin{timestamp} },
values { mode{string} }

}
}

END

EVENT
operation-mode$terminate$initiated / succeeded / failed {

id{identifier},
reception-time {time-interval},

payload {
id{identifier},
initiation-time { begin{timestamp} },
query{ id{identifier} }

}
}

END

EVENT
operation-mode$update$initiated / succeeded / failed {

id{identifier},
reception-time {time-interval},

payload {
id{identifier},
initiation-time { begin{timestamp} },
query{ id{identifier} },
values { mode{string} }

}
}

END

D4.6 Modularization Mechanisms • Page 29 of 38

Project EMILI FP7-SEC-2009-1

B. Dura Grammar

program ::= preamble (eventDefinition | stateDefinition
| actionDefinition | reactiveRule)+ ;

preamble ::= description pckg imprt (constDefinition | typeDefinition)* ;

pckg ::= (’MODULE’ path)? ;

imprt ::= ((’IMPORT’|’EXPORT’) path)* ;

description ::= (’DESCRIPTION’ STRING)? ;

/**
* constraints:
* all schemaDefinition labels are pairwise distinct
* type name ID is unique
* no cyclic definitions
*/

typeDefinition ::= ’TYPE’ ID ’IS’ basicType typeSupplement ’END’
| ’TYPE’ ID ’IS’ schemaDefinition typeSupplement ’END’
| ’TYPE’ ID ’IS’ ’{’ schemaDefinition

(’,’ schemaDefinition)* ’}’ typeSupplement ’END’
;

/** constraint: const name ID is unique */
constDefinition ::= ’CONST’ ID ’IS’ constTerm ’END’ ;

/**
* constraints:
* event definition schemaDefinition needs to be unique
* schema of derived events need to comply with schmaDenfinition
*/

eventDefinition ::= modifiers ’EVENT’ schemaDefinition schemaSupplement
(’WITH’ eventSpecification*)? ’END’ ;

/** constraint: stateful object definition schemaDefinition is unique */
stateDefinition ::= modifiers ’STATEFUL OBJECT’

schemaDefinition schemaSupplement ’END’ ;

/** constraint: action definition schemaDefinition is unique */
actionDefinition ::= modifiers ’ACTION’ schemaDefinition schemaSupplement

((succeedsOn failsOn?) | (failsOn succeedsOn?))?
(’WITH’ actionSpecification)? ’END’ ;

D4.6 Modularization Mechanisms • Page 30 of 38

Project EMILI FP7-SEC-2009-1

actionSpecification ::= ’FOR’ ’action’ ID? ’:’ term ’DO’ actionComposition ’END’

actionComposition ::= ’concurrent’ ’{’ flatAction (’,’ flatAction)* ’}’
((executionConstraints ((succeedsOn failsOn?)

| (failsOn succeedsOn?))?)
| (succeedsOn ((failsOn executionConstraints?)

| (executionConstraints failsOn?))?)
| (failsOn ((succeedsOn executionConstraints?)

| (executionConstraints succeedsOn?))?)
)?

| flatAction
;

executionConstraints ::= ’where’ ’{’ atomicConditionFormula
(’,’ atomicConditionFormula)* ’}’ ;

succeedsOn ::= ’succeeds on’ ’{’ eventQuery ’}’ ;

failsOn ::= ’fails on’ ’{’ eventQuery ’}’ ;

flatAction ::= ’action’ ID? ’:’ constructTerm
| ’action’ ID? ’:’ actionComposition
;

/** constraint: query is range restricted with respect to term */
eventSpecification ::= ’DETECT’ constructTerm

(’group by’ ’{’ binding (’,’ binding)* ’}’)?
’ON’ eventQuery ’END’ ;

/** constraint: action is range restricted with respect to query */
reactiveRule ::= ’ON’ eventQuery ’DO’ limitedActionComposition ’END’ ;

limitedActionComposition ::= ’concurrent’ ’{’ flatAction (’,’ flatAction)* ’}’
executionConstraints?

| flatAction
;

/** constaint: at least one event query in every disjunct */
eventQuery ::= ’and’ ’{’ flatEventQuery (’,’ flatEventQuery)* ’}’ querySupplement

| ’or’ ’{’ flatEventQuery (’,’ flatEventQuery)* ’}’ querySupplement
| flatEventQuery
;

flatEventQuery ::= ’not’ ’{’ atomicEventQuery ’}’ querySupplement
| ’not’ atomicEventQuery

D4.6 Modularization Mechanisms • Page 31 of 38

Project EMILI FP7-SEC-2009-1

| ’exists’ ’{’ atomicEventQuery ’}’ querySupplement
| ’exists’ atomicEventQuery
| atomicEventQuery
;

complexSubquery ::= ’and’ ’{’ flatEventQuery (’,’ flatEventQuery)* ’}’ querySupplement
| ’or’ ’{’ flatEventQuery (’,’ flatEventQuery)* ’}’ querySupplement
;

atomicEventQuery ::= ’event’ ID ’:’ (’action’ ID ’$’) qualifiedTerm querySupplement
| ’event’ ID ’:’ qualifiedTerm querySupplement
| ’state’ ID? ’:’ qualifiedTerm querySupplement
| ’event’ ID? ’:’ complexSubquery
;

action ::= ’concurrent’ ’{’ atomicAction (’,’ atomicAction)* ’}’
| atomicAction

;

/** constraint: action term is actually defined */
atomicAction ::= ’action’ ID? ’:’ constructTerm ;

querySupplement ::= (where | let | grouping)* ;

actionSupplement ::= where* ;

typeSupplement ::= tupleConstraints? ;

schemaSupplement ::= tupleConstraints? relationConstraints? ;

let ::= ’let’ ’{’ unification (’,’ unification)* ’}’ ;

unification ::= typedDataVariable ’=’ expr ;

grouping ::= ’group by’ ’{’ binding (’,’ binding)* ’}’
| ’group by’ ’{’ binding (’,’ binding)* ’}’

’aggregate’ ’{’ aggregation (’,’ aggregation)* ’}’
;

binding ::= dataVariable
| identifier
;

aggregation ::= typedDataVariable ’=’ aggregationOp ’(’ dataVariable ’)’ ;

D4.6 Modularization Mechanisms • Page 32 of 38

Project EMILI FP7-SEC-2009-1

/** constraint: no variables occur in mathFormula */
tupleConstraints ::= ’where’ ’{’ atomicMathFormula (’,’ atomicMathFormula)* ’}’ ;

relationConstraints ::= ’constraints’ ’{’ atomicRelationConstraint
(’,’ atomicRelationConstraint)* ’}’ ;

atomicRelationConstraint ::= (’bound’ | ’primary-key’) ’(’ path ’)’
| (’foreign-key’) ’(’ path ’,’ path ’)’
;

where ::= ’where’ ’and’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
| ’where’ ’or’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
| ’where’ ’not’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
| ’where’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
;

conditionFormula ::= ’and’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
| ’or’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
| ’not’ ’{’ conditionFormula (’,’ conditionFormula)* ’}’
| atomicConditionFormula
;

atomicConditionFormula ::= atomicIntervalFormula
| atomicMathFormula
;

/** constraints:
* either both or none of the expressions is of type duration
*/

atomicMathFormula ::= expr arithmeticRelation expr ;

atomicIntervalFormula ::= ’{’ timeInterval ’,’ timeInterval
(’}’ ’apart-by’ duration
| (’,’ timeInterval)* ’}’ ’within’ duration)

| timeInterval (intervalRelation timeInterval
| timepointRelation timePoint)

;

/** constraint: variable is of type timeinterval */
timeInterval ::= dataVariable

| identifier
| relativeTimerOp ’(’ timeInterval ’,’ duration ’)’
;

/** constraint: variable is of type timepoint */

D4.6 Modularization Mechanisms • Page 33 of 38

Project EMILI FP7-SEC-2009-1

timePoint ::= dataVariable
| intervalOp ’(’ timeInterval ’)’
;

/** constraint: all timeunits are are pairwise distinct */
duration ::= time+ ;

time ::= NUMBER timeUnit ;

/**
* constraints:
* all term labels are pairwise distinct
* no cyclic definitions
*/

term ::= label ’{’ ’}’
| label ’{’ termLeaf ’}’
| label ’{’ term (’,’ term)* ’}’
;

qualfiedTerm ::= path ’{’ ’}’
| path ’{’ termLeaf ’}’
| path ’{’ term (’,’ term)* ’}’
;

/** constraints:
* variables are unified with basic types
* constants are unified with basic types
* identifiers are unified with identifier types
*/

termLeaf ::= dataVariable
| identifier
| constant
| duration
| STRING
| NUMBER
;

/**
* constraints:
* all constTerm labels are pairwise distinct
* no cyclic definitions
*/

constTerm ::= STRING
| NUMBER
| constant

D4.6 Modularization Mechanisms • Page 34 of 38

Project EMILI FP7-SEC-2009-1

| duration
| label ’{’ ’}’
| label ’{’ constTerm (’,’ constTerm)* ’}’
;

internalSchemaDefinition ::= internalLabel ’{’ ’}’
| internalLabel ’{’ basicType ’}’
| internalLabel ’{’ compositeType ’}’
| internalLabel ’{’ internalSchemaDefinition

(’,’ internalSchemaDefinition)* ’}’
;

internalLabel ::= aggregationOp
| intervalOp
| ID
| ID ’$’ (’initiated’ | ’failed’ | ’succeeded’)
| INTERNAL_ID
| INTERNAL_ID ’$’ (’initiated’ | ’failed’ | ’succeeded’)
;

INTERNAL_ID ::= ’_’ (’a’..’z’ | ’A’..’Z’)
(’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’-’ | ’_’)* ;

/**
* constraints:
* all schemaDefinition labels are pairwise distinct
* no cyclic definitions
*/

schemaDefinition ::= path ’{’ ’}’
| path ’{’ basicType ’}’
| path ’{’ compositeType ’}’
| path ’{’ schemaDefinition (’,’ schemaDefinition)* ’}’
;

constructTerm ::= label ’{’ ’}’
| label ’{’ expr ’}’
| label ’{’ constructTerm (’,’ constructTerm)* ’}’
;

modifiers ::= modifier* ;

modifier ::= ’input’
| ’output’
| ’log’
| ’public’

D4.6 Modularization Mechanisms • Page 35 of 38

Project EMILI FP7-SEC-2009-1

| ’private’
;

expr ::= mathExpr
| identifier
;

mathExpr ::= (multExpr) ((’+’ | ’-’) multExpr)* ;

multExpr ::= (powExpr) ((’*’ | ’/’) powExpr)* ;

powExpr ::= (atom) (’^’ atom)* ;

/**
* constraints:
* constants used in aritmetic expressions need to be a number
*/

atom ::= ’(’ mathExpr ’)’
| (’least’ | ’greatest’) ’(’ mathExpr (’,’ mathExpr)* ’)’
| intervalOp ’(’ timeInterval ’)’
| clockFunction
| dataVariable
| constant
| ’-’ atom
| aggregationOp ’(’ dataVariable ’)’
| path
| (NUMBER) (timeUnit time*)?
| STRING
;

path ::= label (’.’ label)* ;

clockFunction ::= ’system’ ’.’ (’now’ | ’tuple_id_seq’) ’(’ ’)’ ;

label ::= aggregationOp
| intervalOp
| ID
| ID ’$’ (’initiated’ | ’failed’ | ’succeeded’)
| (’action’ | ’event’ | ’state’ | ’succeeded’ | ’failed’ | ’initiated’)
;

type ::= basicType
| compositeType
;

D4.6 Modularization Mechanisms • Page 36 of 38

Project EMILI FP7-SEC-2009-1

basicType ::= (’string’ | ’int’ | ’long’ | ’double’ | ’float’ | ’boolean’
| ’identifier’ | ’timestamp’ | ’duration’) ;

/** constraint: composite type ID is actually defined */
compositeType ::= ID

| path
;

identifier ::= (’event’ | ’state’ | ’action’) ID ;

dataVariable ::= ’var’ ID ;

typedDataVariable ::= ’var’ type ID ;

/** constraint: constant ID is actually defined */
constant ::= ’const’ path ;

intervalRelation ::= (’before’ | ’contains’ | ’overlaps’ | ’after’ | ’during’
| ’overlapped-by’ | ’starts’ | ’finishes’ | ’meets’
| ’started-by’ | ’finished-by’ | ’met-by’ | ’equals’
| ’while’ | ’valid-during’) ;

timepointRelation ::= ’valid-at’ ;

relativeTimerOp ::= (’extend’ | ’shorten’ | ’extend-begin’ | ’shorten-begin’
| ’shift-forward’ | ’shift-backward’ | ’from-end’
| ’from-end-backward’ | ’from-start’ | ’from-start-backward’
|’from-begin’ | ’from-begin-backward’) ;

intervalOp ::= (’begin’ | ’end’) ;

aggregationOp ::= (’max’ | ’min’ | ’mean’ | ’avg’ | ’count’) ;

timeUnit ::= (’day’ | ’days’ | ’hour’ | ’hours’ | ’min’ | ’sec’ | ’ms’) ;

arithmeticRelation ::= (’<’ | ’<=’ | ’=’ | ’!=’ | ’>’ | ’>=’) ;

ID ::= (’a’..’z’ | ’A’..’Z’) (’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’-’ | ’_’)* ;

NUMBER ::= (’0’..’9’)+ ’.’ (’0’..’9’)* Exponent?
| (’0’..’9’)+ Exponent? ;

Exponent ::= (’e’ | ’E’) (’+’ | ’-’)? (’0’..’9’)+ ;

STRING ::= ’"’ (EscapeSequence | ~(’\\’ | ’"’))* ’"’ ;

D4.6 Modularization Mechanisms • Page 37 of 38

Project EMILI FP7-SEC-2009-1

EscapeSequence ::= ’\\’ (’b’ | ’t’ | ’n’ | ’f’ | ’r’ | ’\"’ | ’\’’ | ’\\’) ;

COMMENT ::= ’//’ ~(’\n’ | ’\r’)* ’\r’? ’\n’
| ’/*’ (.)* ’*/’
;

WS ::= (’ ’ | ’\t’ | ’\r’ | ’\n’) ;

D4.6 Modularization Mechanisms • Page 38 of 38

	Modular Programming
	Need for Modularization
	Modularization in Rule Based Systems
	Good Practice in Object Oriented Languages

	Modularization Mechanisms for Dura
	Overview
	Schemas as Interfaces
	Types and Type Definitions
	Stream Schemas
	Constraints for Types and Schemas

	Stream Definitions
	Structure of Definitions
	Implicit Event and Action Definitions
	Specifying Success and Failure in Atomic Action Definitions

	Modules
	Basic Concepts
	Modifiers for the Visibility of Definitions
	Loading Modules
	Importing Definitions
	Imports and Reactive Rules
	Visibility of Implicit Event and Action Definitions
	Controlling Information Exchange with External Components
	Extensions for a looser coupling of Modules
	Specifying Reactive Rules in Modules
	Further Means for Structuring Rules

	Example of Implicit Definitions Caused by an Explicit Definition
	Dura Grammar

