

SEVENTH FRAMEWORK PROGRAMME

THEME SECURITY

FP7-SEC-2009-1

Project acronym: EMILI

Project full title: Emergency Management in Large Infrastructures

Grant agreement no.: 242438

D4.5 Implementation

Due date of deliverable: 30/06/2011

Actual submission date: 31/08/2011

Revision: Version 1

Ludwig-Maximilians University Munich (LMU)

Project co-funded by the European Commission within the Seventh Framework Programme (2007–2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Project EMILI FP7-SEC-2009-1

Author(s) Simon Brodt, Steffen Hausmann,

Francois Bry

Contributor(s)

Project EMILI FP7-SEC-2009-1

Index

I. The Event-Mill Engine 7

1. Setup & Configuration 7
1.1. Needed Software . 7
1.2. Getting started . 7

2. The Main Dialog – Compiling and Initialising a Dura Program 7
2.1. The config command . 7
2.2. The compile command . 8
2.3. The load command . 8
2.4. The list specs command . 8
2.5. The remove spec command . 8
2.6. The clear specs command . 9
2.7. The init command . 9
2.8. The list progs command . 9
2.9. The run command . 9
2.10. The remove prog command . 9
2.11. The clear progs command . 10
2.12. The clear command . 10
2.13. The uninstall command . 10
2.14. The quit command . 10

3. The Control Dialog – Running a Dura Program 10
3.1. The init command . 10
3.2. The start command . 10
3.3. The stop command . 11
3.4. The quit command . 11

4. Delivering and Retrieving Data 11
4.1. Dura Type Names . 11
4.2. Mapping to Table Names . 11
4.3. Dura Attribute Names . 12
4.4. Mapping to SQL Attribute Names . 12
4.5. Mapping of Attribute Types . 12
4.6. Schema . 13
4.7. Input . 13
4.8. Output . 13

5. The Hello World Example 14
5.1. Description . 14

D4.5 Implementation • Page 3 of 57

Project EMILI FP7-SEC-2009-1

5.2. Input . 14
5.3. Output . 14
5.4. Input Example – see_person.jar . 15
5.5. Output Example – greet_person.jar . 16
5.6. Test Sequence . 16

6. The Access Control Example 16
6.1. Description . 16
6.2. Input . 18
6.3. Output . 18
6.4. Input Example – access-control-input.jar . 18
6.5. Output Example – access-control-output.jar 19
6.6. Test Sequence . 19

7. The Access Control Example & MonetDB 20
7.1. First Start of Engine . 20
7.2. Compile . 21
7.3. Load . 21
7.4. Init Program . 22
7.5. Run . 26
7.6. Init Execution . 26
7.7. Start Execution . 27
7.8. Stop/Pause Execution . 35
7.9. Quit Program . 35

II. An Incremental Approach for Compiling Dura Queries 36

8. A Schema for Events, Stateful Objects and Actions 36
8.1. A Schema for Dura . 37
8.2. Types and Type Definitions . 39
8.3. Constant Definitions . 40
8.4. Event Definitions . 41
8.5. Introducing More Versatile Subqueries to Dura 45
8.6. Action and Stateful Object Definition . 45

9. DuraC 46
9.1. Event Queries . 47
9.2. Range Restriction of Rules . 48
9.3. Reactive Rules . 50
9.4. Dura and DuraC compared . 50

D4.5 Implementation • Page 4 of 57

Project EMILI FP7-SEC-2009-1

III. Appendix 52

A. DuraC EBNF Grammar 52

D4.5 Implementation • Page 5 of 57

Project EMILI FP7-SEC-2009-1

Preface

This document is a report about the prototype implementation if the complex event processing
language Dura and its evaluation engine Event-Mill. It complements the implementation code
and the documentation files which were uploaded to the project server (https://bscw.iais.
fraunhofer.de/bscw/bscw.cgi/d238038/event-mill-and-examples.zip). The imple-
mentation code forms the main part of Deliverable D4.5. The report is focused on information
that the other work packages WP2, WP3, WP5, WP6 need to use and integrate the prototype in
their systems.

First the report describes the interfaces for providing a Dura program and for compiling and
executing that program (Section 1-3). Moreover the io-interfaces for providing the initial data
of states and the stream data of events are explained (Section 4). Both interfaces are illustrated
by two simple examples (Section 5-7).

Second the report provides an extended description of the Dura type and schema system (Sec-
tion 8) and introduces DuraC a subset of the Dura language that omits syntactic sugar and is used
as intermediate step in bootstrapping the compilation of the full Dura language (Section 9).

Note that the report does not intend to provide a detailed description of the internal compilation
and execution process, but concentrates on the external effects, i.e. those steps that are relevant
for the users of Dura and the Event-Mill engine.

D4.5 Implementation • Page 6 of 57

https://bscw.iais.fraunhofer.de/bscw/bscw.cgi/d238038/event-mill-and-examples.zip
https://bscw.iais.fraunhofer.de/bscw/bscw.cgi/d238038/event-mill-and-examples.zip

Project EMILI FP7-SEC-2009-1

Part I.
The Event-Mill Engine

1. Setup & Configuration

1.1. Needed Software

• MonetDB SQL database (http://www.monetdb.org/Downloads)

• Java 1.6 or higher1 (http://www.oracle.com/technetwork/java/javase/downloads/
index.html)

• event-mill.jar

1.2. Getting started

1. Install Java 1.6

2. Install MonetDB SQL Server

3. Adopt the contained emili.configuration.xml file or delete the emili.configuration.xml file,
execute event-mill.jar and insert the required config data. For help to the config dialog
see the description of the config command.

The contained config file should cooperate by default with a local out of the box installa-
tion of MonetDB when the DB-server is started manually before starting the Event-Mill
engine. If the Event-Mill engine needs to start the DB-server by itself the start-up com-
mand for the DB-server is likely to need some adoption.

4. Execute event-mill.jar if it is not already running because of the configuration. It is recom-
mended to start the MonetDB server manually before executing event-mill.jar, however
if the DB-server start-up command is correctly configurated this should not be required.

2. The Main Dialog – Compiling and Initialising a Dura Program

2.1. The config command

Syntax: config

Enters the configuaration dialog. Mostly intended for a first configuration. For configuartion
changes editing the config file is probably more convenient.

The config dialogs asks for the follwoing information:
1Currently it is recommended not to use Java 1.7 but to wait at least for its first update.

D4.5 Implementation • Page 7 of 57

http://www.monetdb.org/Downloads
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Project EMILI FP7-SEC-2009-1

• url: The JDBC url of the (MonetDB) database server

• user: Username for the database

• password: Password for the database

• database server start command: Operating system command for starting the (Mon-
etDB) database server

• schema name for meta tables of engine: The name of the schema where the meta data
of the engine should be stored. The schema may not exist, yet.

2.2. The compile command

Syntax: compile NAMESPACE.PROGRAM_NAME, DURA_FILE.dura

Compiles the Dura program specified in DURA_FILE and stores the compiled program specifica-
tion under name NAMESPACE.PROGRAM_NAME. Fails if there already exists a program specification
with name NAMESPACE.PROGRAM_NAME.

Syntax: compile NAMESPACE.PROGRAM_NAME, DURA_FILE.dura, SQL_SPEC_File.xml

Compiles the Dura program specified in DURA_FILE and stores the compiled program specifi-
cation together with the specified name NAMESPACE.PROGRAM_NAME in the SQL_SPEC_File.xml
file.

2.3. The load command

Syntax: load spec SQL_SPEC_FILE.xml

Loads the compiled form of a program specification contained in the file SQL_SPEC_FILE.xml
and stores the program specification in the database using the name specified in the file. Fails if
there already exists a program specification with the same name.

2.4. The list specs command

Syntax: list specs

Lists the names of all available program specifications.

2.5. The remove spec command

Syntax: remove spec NAMESPACE.PROGRAM_NAME

Removes the program specification with name NAMESPACE.PROGRAM_NAME if such exists.

D4.5 Implementation • Page 8 of 57

Project EMILI FP7-SEC-2009-1

2.6. The clear specs command

Syntax: clear specs

Removes all existing program specifications.

2.7. The init command

Syntax: init NAMESPACE.PROGRAM_NAME:INSTANCE_NAME, META_SCHEMA, INPUT_SCHEMA,
WORKING_SCHEMA, OUTPUT_SCHEMA, LOG_SCHEMA

Initialize the program instance named NAMESPACE.PROGRAM_NAME:INSTANCE_NAME at the database
location given by META_SCHEMA, INPUT_SCHEMA, WORKING_SCHEMA, OUTPUT_SCHEMA and LOG_SCHEMA
. Here META_SCHEMA, INPUT_SCHEMA, WORKING_SCHEMA, OUTPUT_SCHEMA and LOG_SCHEMA denote
different not yet existing schema which are used for storing the meta data of the program, the
input buffers (tables) for the incoming events, the buffers for the internal query evaluation, the
buffers (tables) for providing the derived events and actions and the tables for writing a log. Dur-
ing initialization all necessary schema and tables are created and the meta data of the program
is set to its initial state.

2.8. The list progs command

Syntax: list progs

Lists the name of all instantiated program instances.

2.9. The run command

Syntax: run NAMESPACE.PROGRAM_NAME:INSTANCE_NAME

Loads the program instance named NAMESPACE.PROGRAM_NAME:INSTANCE_NAME and switches to
the execution control for that program instance.

See the Section 3 for execution control commands.

2.10. The remove prog command

Syntax: remove prog NAMESPACE.PROGRAM_NAME:INSTANCE_NAME

Removes the program instance named NAMESPACE.PROGRAM_NAME:INSTANCE_NAME if such exists.
Also deletes all schemas and therefore data used by the program instance.

D4.5 Implementation • Page 9 of 57

Project EMILI FP7-SEC-2009-1

2.11. The clear progs command

Syntax: clear progs

Removes all existing program instances. Also deletes all schemas and therefore data used by
these program instances.

2.12. The clear command

Syntax: clear

Removes all existing program instances and specifications. Same effect as clear progs fol-
lowed by clear specs.

2.13. The uninstall command

Syntax: uninstall

Deletes the schema used for the meta data of the Event-Mill engine but does not remove the
data of existing program instances. When carried out after the clear progs command, no data
related to Event-Mill remains in the database.

2.14. The quit command

Syntax: quit

Exits the Event-Mill engine.

3. The Control Dialog – Running a Dura Program

3.1. The init command

Syntax: init

Performs last initialization steps for running the program Particularly copies the initial static
and stateful data from the input buffers (tables) into the working buffers (tables).

3.2. The start command

Syntax: start

Starts/Resumes the query execution for the current program.

D4.5 Implementation • Page 10 of 57

Project EMILI FP7-SEC-2009-1

3.3. The stop command

Syntax: stop

Stops the query execution for the current program. Resume with start.

3.4. The quit command

Syntax: quit

Stops the query execution for the current program if it is running. Returns to the administration
command level.

Note: Using the run command for the same program instance, the program execution can be
resumed at the point it had been stopped.

4. Delivering and Retrieving Data

4.1. Dura Type Names

A simple type name in Dura starts with any alphabetic or an underscore character followed by
an arbitrary number of alphabetic, digit, underscore or dash characters.

Dura provides packages as mean for structuring a program. A simple package name starts with
any alphabetic or an underscore character followed by an arbitrary number of alphabetic, digit,
underscore or dash characters and ends with a dot. A general package name is an arbitrary long
sequence of simple package names.

A general type name in Dura consists of a (potentially empty) package name followed by a
simple type name.

4.2. Mapping to Table Names

As SQL does not allow dots and dashes to be part of table names the following encoding for type
names is chosen when creating the corresponding database tables: Each underscore is replaced
by a double underscore, each dot is replaced by "_o_" and each dash is replaced by "_d_". This
encoding is unambiguous.

The table mapping for some type can be obtained from the meta schema (see below) of a pro-
gram with the following query:

SELECT "table" FROM META_SCHEMA."buffers"
WHERE

"prog_package"=’PACKAGE_PART_OF␣TYPE_NAME ’ AND
"simple_name"=’SIMPLE_NAME_PART_OF␣TYPE_NAME ’ AND
"type" = ’INPUT ’

D4.5 Implementation • Page 11 of 57

Project EMILI FP7-SEC-2009-1

;

4.3. Dura Attribute Names

A simple attribute name in Dura starts with any alphabetic or an underscore character followed
by an arbitrary number of alphabetic, digit, underscore or dash characters.

A general attribute name consists of an arbitrary number of simple attribute names which are
separated by a dot. The general attribute names are introduced to provide so-called “complex
attributes” as mean for structuring the data of an event, state or action. Basically a complex
attribute consists of those attributes where the sequence of simple attribute names forming the
name of the complex attribute is a prefix of the sequence of simple attribute of the attributes.

4.4. Mapping to SQL Attribute Names

As SQL does not allow dots and dashes to be part of attribute names the following encoding
for type names is chosen when creating the corresponding attribute in a database tables: Each
underscore is replaced by a double underscore, each dot is replaced by "_o_" and each dash is
replaced by "_d_". This encoding is unambiguous.

4.5. Mapping of Attribute Types

All Dura types are mapped to flat tuples where the structure is somehow encoded into the
(general) attribute names (See also 8.2). The mapping of the basic Dura types to SQL types
is shown in Table 1.

Dura MonetDB
TIMESTAMP BIGINT
DURATION BIGINT
BOOLEAN BOOLEAN
INT INT
LONG BIGINT
FLOAT REAL
DOUBLE DOUBLE
STRING CLOB
ID BIGINT

Table 1: Mapping of basic Dura types to MonetDB SQL types

D4.5 Implementation • Page 12 of 57

Project EMILI FP7-SEC-2009-1

4.6. Schema

The Event-Mill engine uses five different schema in the database for each initialized program:

• The meta schema for storing the meta data of a program

• The input schema for the tables buffering the incoming events

• The working schema for the buffers used by the internal query evaluation

• The output schema for the tables providing the derived events and actions

• The log schema for tables that contain logs for certain events, states and actions

If a type is an input type, then for this type there is a table in the input schema and in the working
schema. If a type is an output type, then for this type there is a table in the output schema and
in the working schema. External components write to tables in the input schema and read from
tables in the output schema.

4.7. Input

4.7.1. Delivering Events

The incoming events of a certain type have to be inserted into the corresponding table within
the input schema. The payload of the event is stored in the attributes of the inserted tuple.

The initial states of a certain type have to be inserted into the corresponding table within the
input schema. The state data is stored in the attributes of the inserted tuple.

4.7.2. Initialize Static Data

Static data is treated as states. Thus static data is provided as initial states of a certain (state)
type which never change.

The "_o_id" attribute of the inserted tuple has a special purpose and MUST NOT be set by the
payload of the event. Instead it is required to obtain the default value specified in the table
definition.

Note: "_o_id" represents the ".id" attribute on a higher level. Attributes starting with "_o_"
should never be set explicitly.

4.8. Output

4.8.1. Retrieving Events and Actions

The outcoming events of a certain type are stored in the corresponding table within the output
schema.

D4.5 Implementation • Page 13 of 57

Project EMILI FP7-SEC-2009-1

The events/tuples can be read incrementally using their "_o_id" attribute and the first output
min-time value of the query performing the copying from the internal buffer/table for the event
type to the corresponding table in the output schema. This means:

1. Obtain value of first output min-time

SELECT "output_min_time_value_1" FROM META_SCHEMA."queries"
WHERE "type" = ’OUTPUT ’ AND "output" = TYPE_NAME ;

2. Copy all tuples where the value of the "id" attribute is between the previous and the
current value of the first output min-time.

SELECT * FROM OUTPUT_SCHEMA.CORRESPONDING_TABLE WHERE "_o_id"
> /* previous tuple_id_seq */? AND "_o_id" <= /* current

tuple_id_seq */? ;

Note: Tuples with "_o_id"> /*current tuple_id_seq*/? should not be read from the
table.

3. Store the current value of the first output min-times as previous value for the next round

5. The Hello World Example

5.1. Description

The Hello World example realizes a simple politeness rule: Each time I see a person, I should
greet that person. Thus the Hello World program consists of a single rule stating that whenever
a see_person event arrives, a greet_person event should be derived. Both the see_person as well
as the greet_person event carry a "person" attribute which holds the name of the person that has
been seen or should be greeted.

5.2. Input

The incoming see_person events have to be inserted into the INPUT_SCHEMA."see__person"
table. The table has two attributes, namely "_o_id" and "person". The insertion must not set the
"_o_id" attribute. It is required that the "_o_id" attribute is set to the default value specified in
the table definition.

5.3. Output

The outcoming greet_person events are stored in the OUTPUT_SCHEMA."greet__person" table.

The greet_person events/tuples can be read incrementally using their "_o_id" attribute and the
first output min-time value of the query performing the copying from the WORKING_SCHEMA."

D4.5 Implementation • Page 14 of 57

Project EMILI FP7-SEC-2009-1

Listing 1: The Dura types and rules for the Hello World example
DESCRIPTION "Hello World example ."

input
EVENT

see_person{ person{string} }
END

output log
EVENT

greet_person{ person{string} }
WITH

DETECT
greet_person{ person{ var P} }

ON
event e: see_person{ person{ var P} }

END
END

greet__person" buffer/table for the greet_person events to the corresponding OUTPUT_SCHEMA.
"greet__person" table.

This means:

1. Obtain value of first output min-time

SELECT "output_min_time_value_1" FROM META_SCHEMA."queries"
WHERE "type" = ’OUTPUT ’ AND "output" = ’greet_person ’ ;

2. Copy all tuples where the value of the "_o_id" attribute is between the previous and the
current value of the first output min-time.

SELECT * FROM OUTPUT_SCHEMA."greet__person" WHERE "_o_id" >
/* previous tuple_id_seq */? AND "_o_id" <= /* current
tuple_id_seq */? ;

Note: Tuples with "_o_id"> /*current tuple_id_seq*/? should not be read from the
table.

3. Store the current value of the first output min-times as previous value for the next round

5.4. Input Example – see_person.jar

The see_person.jar realizes a simple console where the names of persons that have been seen
can be entered and which delivers corresponding see_person events to the Hello World program.
Note that see_person.jar expects that the name of the input schema is "hello_world_input".

D4.5 Implementation • Page 15 of 57

Project EMILI FP7-SEC-2009-1

5.5. Output Example – greet_person.jar

The greet_person.jar realizes a simple console where the names of persons that should be
greeted are displayed. It reads the derived greet_person events and writes the corresponding
names to the console. Note that greet_person.jar expects that the name of the output schema is
"hello_world_output". greet_person.jar does not look for new greet_person events immediately
when being executed, but waits for an explicit "start" command.

5.6. Test Sequence

compile example.hello_world, examples/hello_world.dura, examples/hello_world.xml

load spec examples/hello_world.xml
list specs
init example.hello_world:test, hello_world_meta, hello_world_input, hello_world_working
, hello_world_output, hello_world_log
list progs
run example.hello_world:test
start

stop

start

stop
quit
remove prog example.hello_world:test
remove spec example.hello_world
clear progs
uninstall

6. The Access Control Example

6.1. Description

The Access-Control example realizes two simple access control rules:

1. If a person requests access and the person is a member of the staff, then the access is
granted.

2. If a person requests access but was granted access less than 30 seconds ago the this might
indicate

a abuse of its identity and an intrusion warning is raised.

D4.5 Implementation • Page 16 of 57

Project EMILI FP7-SEC-2009-1

Listing 2: The Dura types and rules for the Access Control example
DESCRIPTION "Access control example ."

input
EVENT

request-access{ person{string} }
END

input
STATEFUL OBJECT

staff{ person{string} }
END

output log
EVENT

grant-access{ person{string} }
WITH

DETECT
grant-access{ person{ var P} }

ON
and{

event e: request-access{ person{ var P} },
state s: staff{ person{ var P} }

}
END

END

output log
EVENT

intrusion-warning{ person{string} }
WITH

DETECT
intrusion-warning{ person{ var P} }

ON
and{

event e: grant-access{ person{ var P} },
event f: request-access{ person{ var P} }

} where {{event e, event f} within 30 sec, event e before event
f}

END
END

D4.5 Implementation • Page 17 of 57

Project EMILI FP7-SEC-2009-1

6.2. Input

The incoming request-access events have to be inserted into the table with name
INPUT_SCHEMA."request_d_access". The table has two attributes, namely "_o_id" and "per-
son". The insertion must not set the "_o_id" attribute. It is required that the "_o_id" attribute is
set to the default value specified in the table definition.

The staff members which should be granted access have to be stored in the
INPUT_SCHEMA."staff" table. The table has two attributes, namely "_o_id" and "person". The
insertion must not set the "_o_id" attribute. It is required that the "_o_id" attribute is set to the
default value specified in the table definition.

6.3. Output

The outcoming grant-access events are stored in the OUTPUT_SCHEMA."grant_d_access" table.

The grant-access events/tuples can be read incrementally using their "_o_id" attribute and the
first output min-time value of the query performing the copying from the
WORKING_SCHEMA."grant_d_access" buffer/table for the grant-access events to the correspond-
ing OUTPUT_SCHEMA."grant_d_access" table. This means:

1. Obtain value of first output min-time

SELECT "output_min_time_value_1" FROM META_SCHEMA."queries"
WHERE "type" = ’OUTPUT ’ AND "output" = ’grant -access ’ ;

2. Copy all tuples where the value of the "_o_id" attribute is between the previous and the
current value of the first output min-time.

SELECT * FROM OUTPUT_SCHEMA."grant_d_access" WHERE "_o_id" >
/* previous tuple_id_seq */? AND "_o_id" <= /* current
tuple_id_seq */? ;

Note: Tuples with "_o_id"> /*current tuple_id_seq*/? should not be read from the
table.

3. store the current value of the first output min-times as previous value for the next round

The outcoming intrusion-warning events are stored in the table with name
OUTPUT_SCHEMA."intrusion_d_warning".

They can be read analogously to the grant-access events.

6.4. Input Example – access-control-input.jar

The access-control-input.jar realizes a simple console where the names of persons that request
access can be entered and which delivers corresponding request-access events to the Access-

D4.5 Implementation • Page 18 of 57

Project EMILI FP7-SEC-2009-1

Control program. Note that access-control-input.jar expects that the name of the input schema
is "access_control_input".

6.5. Output Example – access-control-output.jar

The access-control-output.jar realizes a simple console where grant-access and intrusion-warning
events are displayed. It reads the derived grant-access and intrusion-warming events and writes
"Grant access to NAME" or "Intrusion warning with name NAME" respectively to the con-
sole where NAME denotes the value of the person attribute contained in the event. Note that
access-control-output.jar expects that the name of the output schema is "access_control_output".
access-control-output.jar does not look for new events immediately when being executed, but
waits for an explicit "start" command.

6.6. Test Sequence

compile example.access-control, examples/access-control.dura, examples/access-control
.xml
load spec examples/access-control.xml list specs
init example.access-control:test, access_control_meta, access_control_input,
access_control_working, access_control_output, access_control_log
list progs

Execute in sql-client for setting the data for the staff members:

INSERT INTO "access_control_input"."staff" ("person")
VALUES

(’Simon ’),
(’Steffen ’),
(’Francois ’)

;

run example.access-control:test
init

start

stop

start

stop
quit
remove prog example.access-control:test
remove spec example.access-control
clear progs
uninstall

D4.5 Implementation • Page 19 of 57

Project EMILI FP7-SEC-2009-1

7. The Access Control Example & MonetDB

The section illustrates the effect of the commands introduced in Section 3 and Section 3 using
the Access Control example. The effect of each command is briefly explained particularly with
respect to changes in the database. After that the corresponding SQL statements are shown in a
condensed form. Particularly read-only queries are omitted.

A complete SQL log can be obtained easily by

1. Prefixing the JDBC url in the Event-Mill configuration file with “jdbc:log4jdbc:”
(i.e. “jdbc:log4jdbc:monetdb://localhost/demo” intead of “jdbc:monetdb://localhost/demo”)

2. Setting the log level of the “jdbc.sqlonly” logger from “WARN” to “INFO”
(i.e. replace <logger name="jdbc.sqlonly" level="WARN"/>
by <logger name="jdbc.sqlonly" level="INFO"/>)

7.1. First Start of Engine

Effect: Creates the schema ("meta") which is configured to contain the meta data of the engine
and creates the tables within that schema for storing the meta data. Currently the meta data
consists of a table ("program_specs") holding all available (compiled) program specifications
and a table ("program_insts") holding all available initialized programs and their location in
the database and their current state.

Furthermore functions for computing the maximum and minimum of two attributes of the same
tuple are defined.

SQL-Statements:

CREATE SCHEMA "meta";

CREATE TABLE "meta"."program_specs" (
"id" INT AUTO_INCREMENT PRIMARY KEY ,
"namespace" CLOB NOT NULL ,
"simple_name" CLOB NOT NULL ,
"description" CLOB NOT NULL DEFAULT ’’,
"xml_spec" CLOB NOT NULL ,
CONSTRAINT "program_spec_unique_name" UNIQUE ("namespace"

, "simple_name")
);

CREATE TABLE "meta"."program_insts" (
"id" INT AUTO_INCREMENT PRIMARY KEY ,
"spec_ref" INT REFERENCES "meta"."program_specs" ON

UPDATE CASCADE ON DELETE CASCADE ,
"instance" CLOB NOT NULL DEFAULT ’’,
"buffer_max_number_of_min_times" INT ,

D4.5 Implementation • Page 20 of 57

Project EMILI FP7-SEC-2009-1

"query_max_number_of_output_min_times" INT ,
"query_max_number_of_input_min_times" INT ,
"meta_schema" CLOB NOT NULL ,
"input_schema" CLOB NOT NULL ,
"working_schema" CLOB NOT NULL ,
"output_schema" CLOB NOT NULL ,
"log_schema" CLOB NOT NULL ,
"state" CLOB NOT NULL ,
CONSTRAINT "program_unique_name" UNIQUE ("spec_ref", "

instance")
);

CREATE FUNCTION GREATEST ("n0" BIGINT , "n1" BIGINT) RETURNS
BIGINT

BEGIN
IF ("n1" > "n0") THEN SET "n0" = "n1"; END IF;
RETURN "n0";

END;

CREATE FUNCTION LEAST ("n0" BIGINT , "n1" BIGINT) RETURNS BIGINT
BEGIN

IF ("n1" < "n0") THEN SET "n0" = "n1"; END IF;
RETURN "n0";

END;

7.2. Compile

Command: compile example.access-control, examples/access-control.dura, examples
/access-control.xml

Effect: Compiles the Access Control program specified in examples/access-control.dura
and stores the compiled program specification together with the specified name “example.access-
control” in the examples/access-control.xml file.

SQL-Statements: No effect to the database

7.3. Load

Command: load spec examples/access-control.xml list specs

Effect: Loads the compiled Access Control program from examples/access-control.xml and
store and indexes it in the the "program_specs" table of the schema "meta" containing the meta
information of the engine.

SQL-Statements:

D4.5 Implementation • Page 21 of 57

Project EMILI FP7-SEC-2009-1

INSERT INTO "meta"."program_specs"
("namespace", "simple_name", "description",

"xml_spec")
VALUES

(’example ’, ’access -control ’, ’Access␣control␣example.’,
’<program >
␣␣␣<namespace >example </namespace >
␣␣␣<simple_name >access -control </ simple_name >
␣␣␣<description >Access␣control␣example.</description >
␣␣␣<buffers >
␣␣␣␣␣␣...
␣␣␣ </buffers >
␣␣␣<queries >
␣␣␣␣␣␣...
␣␣␣ </queries >
</program >’)
;

7.4. Init Program

Command: init example.access-control:test, access_control_meta, access_control_input
, access_control_working, access_control_output, access_control_log

Effect: Creates all schema and tables needed for the execution of the program instance and
initializes the meta data necessary for controlling the incremental evaluation of the queries.
Furthermore the program instance is registered in the engine meta data.

SQL-Statements:

Register the program instance

INSERT INTO "meta"."program_insts"
("spec_ref", "instance", "buffer_max_number_of_min_times", "

query_max_number_of_output_min_times", "
query_max_number_of_input_min_times", "meta_schema", "
input_schema", "working_schema", "output_schema", "
log_schema", "state")

VALUES
((SELECT "id" FROM "meta"."program_specs"

WHERE
"namespace" = ’example ’

AND
"simple_name" = ’access -control ’

) , ’test’, 1, 1, 2, ’access_control_meta ’, ’
access_control_input ’, ’access_control_working ’, ’
access_control_output ’, ’access_control_log ’, ’CREATED ’)

D4.5 Implementation • Page 22 of 57

Project EMILI FP7-SEC-2009-1

;

Create the needed schema

CREATE SCHEMA "access_control_meta";
CREATE SCHEMA "access_control_input";
CREATE SCHEMA "access_control_working";
CREATE SCHEMA "access_control_output";
CREATE SCHEMA "access_control_log";

Create the sequence for producing unique identifiers for events, states and actions

CREATE SEQUENCE "access_control_meta"."tuple_id_seq" AS BIGINT
START WITH 0;

Create the tables for storing the meta data

CREATE TABLE "access_control_meta"."buffers" (
"id" INT AUTO_INCREMENT PRIMARY KEY ,
"prog_package" CLOB NOT NULL ,
"simple_name" CLOB NOT NULL ,
"min_times_number" INT NOT NULL ,
"type" CLOB NOT NULL ,
"table" CLOB NOT NULL ,
"has_changed" BOOLEAN DEFAULT TRUE NOT NULL ,
"min_time_name_1" CLOB ,
CONSTRAINT "unique_names" UNIQUE ("type", "prog_package", "

simple_name"),
CONSTRAINT "unique_table" UNIQUE ("type", "table")

);

CREATE TABLE "access_control_meta"."queries" (
"id" INT AUTO_INCREMENT PRIMARY KEY ,
"prog_package" CLOB NOT NULL ,
"type" CLOB NOT NULL ,
"number_of_output_min_times" INT NOT NULL ,
"number_of_input_min_times" INT NOT NULL ,
"is_active" BOOLEAN DEFAULT TRUE NOT NULL ,
"inputs" CLOB NOT NULL ,
"output" CLOB NOT NULL ,
"sql_eval_statement" CLOB NOT NULL ,
"referenced_clocks" CLOB NOT NULL ,
"min_times_computation" CLOB NOT NULL ,
"output_min_time_name_1" CLOB ,
"output_min_time_value_1" BIGINT ,
"input_min_time_name_1" CLOB ,
"input_min_time_value_1" BIGINT ,
"input_min_time_name_2" CLOB ,

D4.5 Implementation • Page 23 of 57

Project EMILI FP7-SEC-2009-1

"input_min_time_value_2" BIGINT
);

Create tables/buffers needed for storing events, states and actions

CREATE TABLE "access_control_input"."request_d_access" (
"_o_id" BIGINT NOT NULL DEFAULT NEXT VALUE FOR "

access_control_meta"."tuple_id_seq",
"person" CLOB NOT NULL

);

...

CREATE TABLE "access_control_working"."request_d_access" (
"id" BIGINT NOT NULL DEFAULT NEXT VALUE FOR "

access_control_meta"."tuple_id_seq",
"person" CLOB NOT NULL ,
"reception_d_time_o_begin" BIGINT ,
"reception_d_time_o_end" BIGINT

);

...

Register the tables/buffers in the meta data

INSERT INTO "access_control_meta"."buffers"
("prog_package", "simple_name", "min_times_number", "type", "

table" , "min_time_name_1")
VALUES

(’’, ’request -access ’, 1, ’INPUT ’, ’request_d_access ’, ’.id’)
;

...

INSERT INTO "access_control_meta"."buffers"
("prog_package", "simple_name", "min_times_number", "type", "

table" , "min_time_name_1")
VALUES

(’’, ’request -access ’, 1, ’WORKING ’, ’request_d_access ’, ’id’
)

;

D4.5 Implementation • Page 24 of 57

Project EMILI FP7-SEC-2009-1

...

Prepare queries in the meta data

...

INSERT INTO "access_control_meta"."queries"
("prog_package", "type", "number_of_output_min_times", "

number_of_input_min_times", "inputs", "output", "
sql_eval_statement", "referenced_clocks", "
min_times_computation" , "output_min_time_name_1", "
output_min_time_value_1", "input_min_time_name_1", "
input_min_time_value_1", "input_min_time_name_2", "
input_min_time_value_2")

VALUES
(’’, ’INPUT ’, 1, 1, ’<list >

␣␣␣<element␣class ="java.lang.String">request -access </element >
</list >’, ’request -access ’,
’
...SQL -STATEMENT ...
’, ’<list >
␣␣␣<element␣class ="java.lang.String">system </element >
</list >’,
’<time_function >
␣␣␣...
</time_function >’, ’id’, -9223372036854775807 , ’request -access :.

id’, -9223372036854775807 , NULL , NULL)
;

...

INSERT INTO "access_control_meta"."queries"
("prog_package", "type", "number_of_output_min_times", "

number_of_input_min_times", "inputs", "output", "
sql_eval_statement", "referenced_clocks", "
min_times_computation" , "output_min_time_name_1", "
output_min_time_value_1", "input_min_time_name_1", "
input_min_time_value_1", "input_min_time_name_2", "
input_min_time_value_2")

VALUES
(’’, ’WORKING ’, 1, 2, ’<list >

D4.5 Implementation • Page 25 of 57

Project EMILI FP7-SEC-2009-1

␣␣␣<element␣class ="java.lang.String">request -access </element >
␣␣␣<element␣class ="java.lang.String">staff </element >
</list >’, ’grant -access ’,
’
...SQL -STATEMENT ...
’, ’<list >
␣␣␣<element␣class ="java.lang.String">tuple_id_seq </element >
</list >’, ’
<time_function >
␣␣␣...
</time_function >’, ’id’, -9223372036854775807 , ’request -access:id

’, -9223372036854775807 , ’staff:id’, -9223372036854775807)
;

...

7.5. Run

Command: run example.access-control:test

Effect: Initializes the Java objects needed for controlling the execution according to the meta
data of the program instance stored in the database.

SQL-Statements: Only reading from the database.

7.6. Init Execution

Command: init

Effect: Moves the initial static and stateful data from the input buffers/tables to the working
buffer/tables and sets the state of the program instance first to initialized. After that the program
is locked for the execution.

Note: Remembering the state is particularly important when resuming the execution after an
intentional or exceptional stop of the execution.

SQL-Statements:

Moving the initial static and stateful data

SELECT get_value_for(’access_control_meta ’,’tuple_id_seq ’);

INSERT INTO "access_control_working"."staff"("id", "person", "
valid_d_time_o_begin", "valid_d_time_o_end")

SELECT
"_o_id" AS "id",

D4.5 Implementation • Page 26 of 57

Project EMILI FP7-SEC-2009-1

"person" AS "person",
CAST(/* clock.now: system */ 1314712426585 AS BIGINT) AS "

valid_d_time_o_begin",
"valid_d_time_o_end" AS "valid_d_time_o_end"

FROM
"access_control_input"."staff" AS "input0_o_staff"

;

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1
WHERE "id" = ’1’
;

Updating the state of the program instance

UPDATE
"meta"."program_insts"

SET "state" = ’INITIALIZED ’
WHERE

"id" = ’1’
;

UPDATE
"meta"."program_insts"

SET "state" = ’LOCKED ’
WHERE

"id" = ’1’
;

7.7. Start Execution

Command: start

Effect: Starts the evaluation of the program instance and sets the state of the instance to run-
ning. The evaluation is done by repeatedly executing incremental SQL statements. Some of
the statements reflect the rules in the Dura program (e.g. 3,4), some read the input (e.g. 2) and
some write the output and the logs (e.g. 5,6,7,8).

SQL-Statements:

Always consists of pair of statements one computing the increment and one updating the meta
data of the query needed for the incremental evaluation

First Round:

UPDATE
"meta"."program_insts"

D4.5 Implementation • Page 27 of 57

Project EMILI FP7-SEC-2009-1

SET "state" = ’RUNNING ’
WHERE

"id" = ’1’
;

Executing the incremental evaluation statement for query 2 (Query one was the query for mov-
ing the initial data at init)

SELECT get_value_for(’access_control_meta ’,’tuple_id_seq ’);

INSERT INTO "access_control_working"."request_d_access"("id", "
person", "reception_d_time_o_begin", "reception_d_time_o_end")

SELECT *
FROM

(
SELECT

"_o_id" AS "id",
"person" AS "person",
CAST(/* clock.now: system */ 1314712583949 AS BIGINT) AS "

reception_d_time_o_begin",
CAST(/* clock.now: system */ 1314712583949 AS BIGINT) AS "

reception_d_time_o_end"
FROM

"access_control_input"."request_d_access" AS "
input0_o_request_d_access"

) AS "subquery0"
WHERE /* input.last:request - access :.id*/ -9223372036854775807 < "id

"
AND "id" <= /* input.now:request - access :.id*/ -1

;

Updating the meta data for query 2

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1
WHERE "id" = ’2’
;

Executing the incremental evaluation statement for query 3

SELECT get_value_for(’access_control_meta ’,’tuple_id_seq ’);

INSERT INTO "access_control_working"."grant_d_access"("id", "
person", "reception_d_time_o_begin", "reception_d_time_o_end")

SELECT
"id" AS "id",

D4.5 Implementation • Page 28 of 57

Project EMILI FP7-SEC-2009-1

"person" AS "person",
"reception_d_time_o_begin" AS "reception_d_time_o_begin",
"reception_d_time_o_end" AS "reception_d_time_o_end"

FROM
(
SELECT

"e_o_id" AS "e_o_id",
"e_o_person" AS "e_o_person",
"e_o_reception_d_time_o_begin" AS "

e_o_reception_d_time_o_begin",
"e_o_reception_d_time_o_end" AS "e_o_reception_d_time_o_end

",
NEXT VALUE FOR "access_control_meta"."tuple_id_seq" AS "id"

,
"e_o_person" AS "person",
LEAST("e_o_reception_d_time_o_begin") AS "

reception_d_time_o_begin",
GREATEST("e_o_reception_d_time_o_end") AS "

reception_d_time_o_end",
"s_o_id" AS "s_o_id",
"s_o_person" AS "s_o_person",
"s_o_valid_d_time_o_begin" AS "s_o_valid_d_time_o_begin",
"s_o_valid_d_time_o_end" AS "s_o_valid_d_time_o_end"

FROM
(
SELECT

"id" AS "e_o_id",
"person" AS "e_o_person",
"reception_d_time_o_begin" AS "

e_o_reception_d_time_o_begin",
"reception_d_time_o_end" AS "e_o_reception_d_time_o_end"

FROM
"access_control_working"."request_d_access" AS "

input0_o_request_d_access"

) AS "subquery1",
(
SELECT *
FROM

(
SELECT

"id" AS "s_o_id",
"person" AS "s_o_person",
"valid_d_time_o_begin" AS "s_o_valid_d_time_o_begin",
"valid_d_time_o_end" AS "s_o_valid_d_time_o_end"

D4.5 Implementation • Page 29 of 57

Project EMILI FP7-SEC-2009-1

FROM
"access_control_working"."staff" AS "input1_o_staff"

) AS "subquery3"

) AS "subquery2"
WHERE "e_o_person" = "s_o_person"

) AS "subquery0"
WHERE

(/* input.last:request - access :id*/ -9223372036854775807 < "
e_o_id"

OR /* input.last:staff:id*/ -9223372036854775807 < "s_o_id"
)

AND "e_o_id" <= /* input.now:request - access :id*/ -1
AND "s_o_id" <= /* input.now:staff:id*/ -1

;

Updating the meta data for query 3

SELECT get_value_for(’access_control_meta ’,’tuple_id_seq ’);

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1,
"input_min_time_value_2" = -1

WHERE "id" = ’3’
;

Executing the incremental evaluation statement for query 4

SELECT get_value_for(’access_control_meta ’,’tuple_id_seq ’);

INSERT INTO "access_control_working"."intrusion_d_warning"("id",
"person", "reception_d_time_o_begin", "reception_d_time_o_end"
)

SELECT
"id" AS "id",
"person" AS "person",
"reception_d_time_o_begin" AS "reception_d_time_o_begin",
"reception_d_time_o_end" AS "reception_d_time_o_end"

FROM
(
SELECT

"e_o_id" AS "e_o_id",
"e_o_person" AS "e_o_person",
"e_o_reception_d_time_o_begin" AS "

e_o_reception_d_time_o_begin",

D4.5 Implementation • Page 30 of 57

Project EMILI FP7-SEC-2009-1

"e_o_reception_d_time_o_end" AS "e_o_reception_d_time_o_end
",

"f_o_id" AS "f_o_id",
"f_o_person" AS "f_o_person",
"f_o_reception_d_time_o_begin" AS "

f_o_reception_d_time_o_begin",
"f_o_reception_d_time_o_end" AS "f_o_reception_d_time_o_end

",
NEXT VALUE FOR "access_control_meta"."tuple_id_seq" AS "id"

,
"e_o_person" AS "person",
LEAST("e_o_reception_d_time_o_begin", "

f_o_reception_d_time_o_begin") AS "
reception_d_time_o_begin",

GREATEST("e_o_reception_d_time_o_end", "
f_o_reception_d_time_o_end") AS "reception_d_time_o_end"

FROM
(
SELECT

"id" AS "e_o_id",
"person" AS "e_o_person",
"reception_d_time_o_begin" AS "

e_o_reception_d_time_o_begin",
"reception_d_time_o_end" AS "e_o_reception_d_time_o_end"

FROM
"access_control_working"."grant_d_access" AS "

input0_o_grant_d_access"

) AS "subquery1",
(
SELECT *
FROM

(
SELECT

"id" AS "f_o_id",
"person" AS "f_o_person",
"reception_d_time_o_begin" AS "

f_o_reception_d_time_o_begin",
"reception_d_time_o_end" AS "

f_o_reception_d_time_o_end"
FROM

"access_control_working"."request_d_access" AS "
input1_o_request_d_access"

) AS "subquery3"

D4.5 Implementation • Page 31 of 57

Project EMILI FP7-SEC-2009-1

) AS "subquery2"
WHERE "e_o_person" = "f_o_person"

AND (GREATEST("e_o_reception_d_time_o_end", "
f_o_reception_d_time_o_end") - LEAST("
e_o_reception_d_time_o_begin", "
f_o_reception_d_time_o_begin")) < ’30000 ’

AND "e_o_reception_d_time_o_end" < "
f_o_reception_d_time_o_begin"

) AS "subquery0"
WHERE

(/* input.last:grant - access :id*/ -9223372036854775807 < "
e_o_id"

OR /* input.last:request - access :id*/ -9223372036854775807 < "
f_o_id"

)
AND "e_o_id" <= /* input.now:grant - access :id*/ -1
AND "f_o_id" <= /* input.now:request - access :id*/ -1

;

Updating the meta data for query 4

SELECT get_value_for(’access_control_meta ’,’tuple_id_seq ’);

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1,
"input_min_time_value_2" = -1

WHERE "id" = ’4’
;

Executing the incremental evaluation statement for query 5

INSERT INTO "access_control_output"."grant_d_access"("_o_id", "
person", "reception_d_time_o_begin", "reception_d_time_o_end")

SELECT *
FROM

(
SELECT

"id" AS "_o_id",
"person" AS "person",
"reception_d_time_o_begin" AS "reception_d_time_o_begin",
"reception_d_time_o_end" AS "reception_d_time_o_end"

FROM
"access_control_working"."grant_d_access" AS "

input0_o_grant_d_access"

D4.5 Implementation • Page 32 of 57

Project EMILI FP7-SEC-2009-1

) AS "subquery0"
WHERE /* input.last:grant - access :id*/ -9223372036854775807 < "_o_id

"
AND "_o_id" <= /* input.now:grant - access :id*/ -1

;

Updating the meta data for query 5

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1
WHERE "id" = ’5’
;

Executing the incremental evaluation statement for query 6

INSERT INTO "access_control_output"."intrusion_d_warning"("_o_id
", "person", "reception_d_time_o_begin", "
reception_d_time_o_end")

SELECT *
FROM

(
SELECT

"id" AS "_o_id",
"person" AS "person",
"reception_d_time_o_begin" AS "reception_d_time_o_begin",
"reception_d_time_o_end" AS "reception_d_time_o_end"

FROM
"access_control_working"."intrusion_d_warning" AS "

input0_o_intrusion_d_warning"

) AS "subquery0"
WHERE /* input.last:intrusion - warning :id*/ -9223372036854775807 < "

_o_id"
AND "_o_id" <= /* input.now:intrusion - warning :id*/ -1

;

Updating the meta data for query 6

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1
WHERE "id" = ’6’
;

Executing the incremental evaluation statement for query 7

D4.5 Implementation • Page 33 of 57

Project EMILI FP7-SEC-2009-1

INSERT INTO "access_control_log"."grant_d_access"("_o_id", "
person", "reception_d_time_o_begin", "reception_d_time_o_end")

SELECT *
FROM

(
SELECT

"id" AS "_o_id",
"person" AS "person",
"reception_d_time_o_begin" AS "reception_d_time_o_begin",
"reception_d_time_o_end" AS "reception_d_time_o_end"

FROM
"access_control_working"."grant_d_access" AS "

input0_o_grant_d_access"

) AS "subquery0"
WHERE /* input.last:grant - access :id*/ -9223372036854775807 < "_o_id

"
AND "_o_id" <= /* input.now:grant - access :id*/ -1

;

Updating the meta data for query 7

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1
WHERE "id" = ’7’
;

Executing the incremental evaluation statement for query 8

INSERT INTO "access_control_log"."intrusion_d_warning"("_o_id",
"person", "reception_d_time_o_begin", "reception_d_time_o_end"
)

SELECT *
FROM

(
SELECT

"id" AS "_o_id",
"person" AS "person",
"reception_d_time_o_begin" AS "reception_d_time_o_begin",
"reception_d_time_o_end" AS "reception_d_time_o_end"

FROM
"access_control_working"."intrusion_d_warning" AS "

input0_o_intrusion_d_warning"

) AS "subquery0"
WHERE /* input.last:intrusion - warning :id*/ -9223372036854775807 < "

D4.5 Implementation • Page 34 of 57

Project EMILI FP7-SEC-2009-1

_o_id"
AND "_o_id" <= /* input.now:intrusion - warning :id*/ -1

;

Updating the meta data for query 8

UPDATE "access_control_meta"."queries"
SET "output_min_time_value_1" = -1,

"input_min_time_value_1" = -1
WHERE "id" = ’8’
;

7.8. Stop/Pause Execution

Command: stop

Effect: Stops the evaluation of the program instance and sets the state of the instance back to
locked.

SQL-Statements:

UPDATE
"meta"."program_insts"

SET "state" = ’LOCKED ’
WHERE

"id" = ’1’
;

7.9. Quit Program

Command: quit

Effect: Exits the evaluation of the program instance sets the state of the instance back to initial-
ized and frees all resources and releases the Java objects used for controlling the execution.

SQL-Statements:

UPDATE
"meta"."program_insts"

SET "state" = ’INITIALIZED ’
WHERE

"id" = ’1’
;

D4.5 Implementation • Page 35 of 57

Project EMILI FP7-SEC-2009-1

Part II.
An Incremental Approach for Compiling
Dura Queries

Dura2 is a high level, declarative and uniform reactive event query language. It is designed to
ease the development and implementation of versatile and advanced emergency management
related scenarios.

Dura has been carefully designed to meet the requirements of the use cases and to enable an ef-
ficient and robust implementation of programs. The language combines event queries, queries
of stateful objects and the specification of complex actions in a homogeneous and integrated
fashion. These concepts are highly desirable for modern emergency management systems in
order to obtain a reactive and dynamic behavior. Moreover, Dura comes with various high-level
language constructs, as for instance composite and time aware actions, which are intended to
support programmers by simplifying the development of rules, but do not increase the expres-
siveness of the language itself. However, a language that combines a wide range of high-level
constructs and integrates reactive rules and declarative event queries in a uniform and time
aware fashion is rather unique in the field of complex event processing. Hence, it enables new
approaches for modern and more reliable emergency management systems.

For the compilation of Dura queries we decided to use an incremental compilation approach.
Dura queries are not directly compiled to an algebra for temporal streams named temporal
stream algebra (TSA) that can be evaluated by Event-Mill, which would yield a very complex
and monolytic compiler that is hard to program, understand and to maintain. Instead, Dura
queries are translated to a simplified variant of Dura called DuraC (pronounced “Dura Core”)
in a first step and then translated from DuraC to TSA in a second step. The simplified language
DuraC contains all mandatory constructs to remain as expressive as Dura whereas syntactic
sugar is omitted. However, transforming Dura to DuraC and subsequently compiling DuraC to
TSA is substantially easier than compiling Dura directly into TSA. A complete description of
DuraC is given in section 9.

8. A Schema for Events, Stateful Objects and Actions

Having a notion of schema that describes the properties and characteristics of available objects
is very common in high level programming languages. There are several reasons which makes
a schema desirable for emergency management applications.

First of all, a schema defines which kinds of (atomic) events are needed for a program and how

2The language has been formerly known as DEAL. Due to name conflicts with other event processing languages
it has been renamed to Dura.

D4.5 Implementation • Page 36 of 57

Project EMILI FP7-SEC-2009-1

they look like, that is, what data they carry, which type the data has, etc. Therefore, rules that
are querying unavailable event types or attributes of events that do not exist and thus cannot
derive any events can be detected during compile time.

Second of all, a schema simplifies the development of large programs. It describes the character-
istics of derived events. As a consequence, even if rules that are deriving a particular event are
modified, the described characteristics of the event in the schema remain the same. Therefore,
the schema can be regarded as some kind of interface mechanism. Modification of a rule have
only local effect on the program as long as the schema remains the same. The schema only
defines which kinds of events are available and how they look like but it does not specify how
events are derived. Consequently, the information given in the schema provides a good and
concise overlook of available events without going into the detail of how the events are actually
derived. Furthermore, schemas can be easily extended towards a sophisticated module system.

Third, the availability of a schema simplifies the handling of rules not only for humans but also
for the compiler. Especially if modules are considered, it is important for the programmer as
well as for the compiler to be able to quickly determine where rules that derive certain events
are located and how the derived events look like. Because a module mechanism for Dura is due
by the next round of deliverables, these requirements are already considered in order to enable
a smooth transition to programs with modules and to reduce potentially required adaption of
rules.

8.1. A Schema for Dura

In Dura, the schema describes the payload of events, stateful objects, and actions including
the type of their attributes without giving concrete rules or definitions of how these objects are
actually derived or executed.

A schema is given by a semi-structured expressions that specifies the name and type of all avail-
able attributes. These semi-structured expressions are tree-like structures with certain restriction
that enable an efficient mapping of events to tuples of a database.

Listing 3: A sample schema for temp events
temp{

sensor{int},
value{float},
area{ id{int}, name{string} }

}

The purpose of using semi-structured expressions is to give programmers a mean to structure,
for instance, the payload of events in a manner similar to composite data type structures (structs
for short) which are known from other programming languages, like C or C++. Therefore, the
schema definitions of Dura are a compromise between flat tuples that bear no structure at all

D4.5 Implementation • Page 37 of 57

Project EMILI FP7-SEC-2009-1

but can be implemented very efficiently and generic semi-structured expressions which have an
arbitrary structure but cannot be easily represented in a relational database.

temp

sensor

int

value

float

area

id

int

name

string

Figure 1: Tree representation of the schema given in listing 3

Figure 1 contains the tree representation of the schema given in listing 3. In order to be a
valid schema definition, the following constraints need to hold for the corresponding tree-like
structure:

• The leaf nodes of the tree need to contain types and must not have any siblings,

• for all inner nodes it must hold that all their siblings contain different labels, and

• the tree-like structure must be a proper tree without references, that is, definitions must
not be cyclic.

This characterisation ensures that the path to each leaf, which can be described by the labels of
the nodes on this path, is unique. Accordingly, the schema given in listing 3 is a valid schema
definition, whereas temp{ sensor{int, int} } and temp{ value{float}, value{int} } are
not.

Because each leaf node of the schema has a unique id and only leaf nodes are actually carrying
data, the schema or respectively data instances of the schema can be efficiently mapped to flat
tuples in a database by storing only the leaf nodes and referencing them with their path.

Grammar for Schema Definitions Please note that the given grammars in this text are only
used to to illustrate the most important aspects of the language and are thus not intended to be
complete. The complete grammar is contained in appendix A.

schemaDefinition ::= label ’{’ basicType ’}’
| label ’{’ compositeType ’}’
| label ’{’ schemaDefinition (’,’ schemaDefinition)* ’}’

basicType ::= (’string’ | ’int’ | ’long’ | ’double’ | ’float’ |
’identifier’ | ’timestamp’ | ’duration’ | ’boolean’)

D4.5 Implementation • Page 38 of 57

Project EMILI FP7-SEC-2009-1

compositeType ::= ID

label ::= ID

8.2. Types and Type Definitions

For the definition of schemas and subsequently the mapping of values to tuples, types are re-
quired that indicate which kind of values are expected for certain attributes of the data. To this
end, a simple type system is introduced to the language. Note that, although types which can
be defined by the user are supported, they are only a mean to give names to frequently used
composite types. A more powerful type system can be elaborated in the future, but this is rather
a computer science than an emergency management issue.

Dura comes with the following (basic) types: boolean, int, long, float, double, string,
identifier, duration, and timestamp. Further types can be defined using the TYPE <name>
IS <type definition> END statement. However, each type definition needs to have a unique
name and although type definitions may refer to (other) user defined types, there must not be
any cyclic type definitions.

Listing 4: Type definition for type area and room-location

TYPE area IS { id{int}, name{string} } END
TYPE room-location IS { room-number{int}, location{area} } END

Note that, because the applications we consider in the use cases do not require type specific func-
tions and overloading of operators a sophisticated type system is not required in the language.
Therefore, user defined types should be considered as a mean to give names to commonly used
composite type definitions, like for instance the type area which is defined in listing 4 and
which is used in numerous event definitions.

The type definition in listing 4 ties multiple attributes together without naming their parent
node explicitly. Hence, the defined type can only be stated in leaf nodes of a schema or type
definition.

Listing 5: An similar definition of room-location
TYPE room-location IS

{ room-number{int}, location{ id{int}, name{string} } } END

A, from a low level perspective, equivalent definition of the type room-location is given in
listing 5. In the alternative definition, the user defined types are substituted such that only
basic types remain in the definition of room-location. Therefore, the composite type area is
substituted by its definition id{ int }, name{ string }. However, with this kind of definition,

D4.5 Implementation • Page 39 of 57

Project EMILI FP7-SEC-2009-1

fewer type checks can be carried out and thus the definition of listing 4 should be chosen over
the latter.

Adding Constraints to Types Constraints can be added to types which is particularly useful
to specify temporal relationships between different attributes. The given information of tempo-
ral dependencies may either be required for the evaluation of queries or can support the engine
in deriving certain events earlier.

Constraints are for instance used to define the type time-interval which is given in listing 6.
The constraint specifies that the timestamp of the attribute begin needs to be lower or at most
equal to the timestamp of the attribute end.

Listing 6: Definition of the build-in type time-interval

TYPE time-interval IS
{ begin{timestamp}, end{timestamp} } where {begin <= end} END

The same mechanism is not only used for (data) type definitions, but also for the definition of
events and stateful object which is discussed in section 8.4.

Grammar for Type Definitions

typeDefinition ::= ’TYPE’ ID ’IS’ basicType ’END’
| ’TYPE’ ID ’IS’ schemaDefinition (’,’ schemaDefinition)*

typeSupplement? ’END’

typeSupplement ::= ’where’ ’{’ pathFormula (’,’ pathFormula)* ’}’

pathFormula ::= path arithmeticRelation path

8.3. Constant Definitions

Constants can be defined in a manner similar to that of types. In this way, values that are used
in multiple rules or even multiple times in a single rule need to be specified only once. This
increases the readability of the code, because so-called magic numbers are substituted by more
meaningful identifiers. Furthermore, the code becomes easier to maintain, because if the value
needs to be adapted, the value of the constant definition needs to be modified only once whereas
otherwise the value needs to modified throughout the whole code.

Listing 7 contains the constant definition max-temp for a temperature threshold. Wherever a
number can be specified in a rule, the name of the constant preceded by the keyword const can
be specified instead.

D4.5 Implementation • Page 40 of 57

Project EMILI FP7-SEC-2009-1

Listing 7: Definition of the constants max-temp and office-location

CONST max-temp IS 42.5 END
CONST office-location IS

room{ roon-number {7}, location{ id {23}, name{"E4"} } } END

Definition of constants are not limited to basic types as the definition of office-location
demonstrates. However, defining constants for basic types, that is, giving names to instances of
a basic type, seems to be way more important for the use cases than the definition of constants
for user defined types. Note that office-location is an instance of the type room-location
which is defined in listing 4.

Grammar for Constant Definitions

constDefinition ::= ’CONST’ ID ’IS’ constTerm ’END’

8.4. Event Definitions

Event definitions bracket the schema of events and rules that derive the corresponding event
type together. Event definitions are similar to the definition of classes in object oriented lan-
guages such as Java. In a Java class definition, class variables define the properties of the class
whereas functions specify how the specified (and only the specified) class variables are altered.
In Dura, the schema defines the properties of the event without specifying how events are de-
rived, whereas the rules define how events are derived and how the concrete values for their
properties are computed.

All rules that are deriving the same event need to be grouped together in the same event defini-
tion. The definition includes not only rules but also a schema that specifies the properties of the
derived event. For all rules that are contained in an event definition, the derived events need to
be in accordance with the given schema of the definition. Furthermore, for every event type that
is used in the program there must be exactly one event definition.

Grouping rules according to a schema, that is, by their derived event type, has several advan-
tages. Event definitions can thus be regarded as some kind of interface mechanism. As long as
the schema is not modified, rules can be added and removed from the definition without chang-
ing the properties of the event. Without an explicit schema, the properties of an event need
to be automatically reconstructed by the compiler. Hence, adding a single rule to a program
can substantially alter the properties of an event and thus break accidentally other rules that are
located in a totally different part of the program. Therefore, an explicit schema brings stability
and continuity to the program because as long as the schema remains untouched the impact of
local modifications of rules remains local to the corresponding event definition.

Furthermore, grouping similar rules makes large programs clearer and easier to understand. One
can quickly get an overview of how a certain event type is derived by looking at a small and

D4.5 Implementation • Page 41 of 57

Project EMILI FP7-SEC-2009-1

Listing 8: A complex event definition including a schema and declarative rules
EVENT

temp{
sensor{int},
value{float}

}
WITH

DETECT
temp{ sensor{var Id}, value{var C} }

ON
measurement{ temperature{var C},

sensor{var Id}, unit{" centigrade"} }
END

DETECT
temp{ sensor{var Id}, value{(var F - 32) * 5/9} }

ON
event: sensor-reading{ value-t3{var F},

id{var Id}, type{"e3"} }
END

...
END

particularly coherent part of the program. Moreover, because rules are clustered in a small re-
gion of the program instead of being scattered throughout the whole program, rules that derives
a certain event are easier to find and to compare.

In addition, we consider the concept of event definition beneficial when modules are included
in the language which is due to deliverable D4.6. When modules are introduced, the potential
problems that are described above become even more severe, because without a schema, rules
are not only scattered within a single file but also among several files.

Modifiers for Event Definitions Event definitions are also used to define external and atomic
events, respectively. The WITH part of an event definition is optional and can be omitted. There-
fore, the only given information about an event are its properties and hence the event cannot be
derived by the event processing system itself.

There are three different modifiers that specify further properties of event definitions, namely
input, output, and log. These modifiers correspond to the schema types of Event-Mill that
are discussed in section 4.6. Each event definition can be preceded by multiple modifiers, for
instance to specify that an external event should be stored in the long-term archive.

External events that are sent to the event processing system, for instance by a sensor, need to be
marked with the input keyword. (Derived) events that should be sent to components which are
outside the event processing system need to be marked with output. Finally, log results in the

D4.5 Implementation • Page 42 of 57

Project EMILI FP7-SEC-2009-1

storage of events in a long-term archive for later analysis.3

Listing 9: An atomic event specification
input log
EVENT

measurement{
sensor{int},
temperature{float},
unit{string}

}
END

The information about external events is used during compile time to identify rules which query
events that either do not exist or do not correspond the specified schema. In both cases unin-
tended programming flaws in the rules are likely because the body of the rules can never be
satisfied and thus according rules will never derive any event and is thus redundant.

Especially in emergency management applications robust and error tolerant programs are highly
desirable and thus the described analysis during compile time is a auxiliary mean that supports
the programmer during the development of rules in writing less error prone rules and programs.

Implicit Attributes of Events Each event has some implicit attributes for the reception time
and the event reference in addition to its explicitly specified attributes. The implicit attributes
of the event definition given in listing 9 are made explicit in listing 10.

Listing 10: Event specification including the implicit attributes
input log
EVENT

measurement{
id{identifier},
reception-time{time-interval },
sensor{int},
temperature{float},
unit{string}

}
END

Note that although this is a valid event definition, implicit attributes do not need to be specified
by programmers. Moreover, the reception time and the event identifier are implicitly set by
the event processing system for every event, regardless whether it is received from an external
source or derived by a rule.

3Recall that events, unless they are marked with the log keyword, are automatically deleted when they are no
longer needed by the event processing system.

D4.5 Implementation • Page 43 of 57

Project EMILI FP7-SEC-2009-1

Static Type Checks Listing 11 contains a Dura program that looks reasonable in the first
place, but reveals some flaws when it is examined more closely.

Listing 11: A (statically) incorrect Dura program
TYPE area IS { id{int}, name{string} } END

2
EVENT

temp-average{ area{area}, value{float} }
5 WITH

DETECT
temp-average{ area{var A},

8 value{avg(var T)} } group by {event i}
ON

and{
11 event i: temp{ area{var A} },

event j: temp{ area{var A}, valeu{var T} }
} where { {i,j} within 2 min, j before i}

14 END
END

17 EVENT
temp{ sensor{int}, area{int}, value{float} }

END

First, line 12 contains a query for temp event. However, the attribute of the event is not spelled
correctly. Therefore, the query will never match any temp event, because none of them has a
valeu attribute.

In addition, var A is bound to an integer value (line 11 and 12), namely the id if the sensor’s
area, and therefore the area attribute of the derived event is bound to the id of the area as well.
However, in the schema of the event definition the area attribute has the type area. Therefore,
temp-average events do not have an id and a name attribute, and every rule that queries those
attributes will never match any temp-average event.

Both errors occurred very likely accidentally and were not intended by the programmer in the
first place, however they render all rules that depend on temp-average events useless. With a
statical analysis of the rules, both errors can be detected and reported to the programmer during
compile time, that is, before the program is actually executed and thus helps to write less error
prone and more robust programs.

Grammar for Event Definitions

eventDefinition ::= modifiers ’EVENT’ schemaDefinition typeSupplement?
(’WITH’ eventSpecification*)? ’END’

modifiers ::= modifier*

D4.5 Implementation • Page 44 of 57

Project EMILI FP7-SEC-2009-1

modifier ::= ’input’ | ’output’ | ’log’

8.5. Introducing More Versatile Subqueries to Dura

Having considered the first actual queries of the use cases, we recognized that allowing aggrega-
tion and mathematical expressions only in the head of a Dura rule can be cumbersome and too
restrictive. Especially if subqueries are considered, that is, compound queries without a head
that are used in the body of rules, it is more convenient to be able to specify aggregation also in
the body of an event query.

To this end, two new constructs are added to Dura which can be specified, similar to the already
existing where construct, after atomic queries, conjunctions, and disjunctions. let is used to
create new variable bindings based on the value of other variables and group by /aggregate is
used to aggregate values.

After each atomic query, conjunction, and disjunction an arbitrary number of let, where and
group by/aggregate constructs can be specified. Listing 12 contains an example that uses a
subquery to determine the id of all temperature sensors that reported a temperature in the same
area of the alarm’s origin that is 50% above the mean temperature of the last two minutes.

Listing 12: A Dura rule with an anonymous subquery
DETECT

mean-temp-exceeded{ id{var Id}, value{var Temp} }
ON

and{
event e: temp{ area{var A}, id{var Id}, value{var Temp} },
event f: and{

event g: alarm{ area{var A} },
event h: temp{ area{var A}, value{var AggTemp} }

} where { {g,h} within 2 min, h before g }
group by {event g} aggregate { var Mean = mean(var AggTemp) }

} where { e during f, var Temp >= var Mean *1.5 }
END

A similar behaviour can be realized by two separate rules that contain no subqueries. The usage
of anonymous subqueries keeps single rules shorter and clearer whereas explicit rules without
anonymous subqueries increase the reusability of code among several rules. Depending on the
concrete situation one or another way may be more suitable.

8.6. Action and Stateful Object Definition

External actions and stateful objects are defined in a manner similar to the definition of (exter-
nal) events. The properties of available objects and external actions are specified by means of a

D4.5 Implementation • Page 45 of 57

Project EMILI FP7-SEC-2009-1

stateful object/action definition without specifying how the stateful object is derived from other
stateful objects or how actions are actually executed, respectively.

Note that the modifiers of actions and stateful object are limited to log. In contrast to event
definitions they cannot be preceded by input or output.

Listing 13: Definition of Stateful Objects and (External) Actions
STATEFUL OBJECT

operation-mode{ mode{string} }
END

ACTION
open-dampers{ area{string} }

END

ACTION
turn-on-lights{ area{string} }

END

Build-In Events and Actions Dura already comes with some atomic actions which deal with
the manipulation of stateful objects. These internal actions are implicitly defined by the def-
inition of stateful objects and hence do not need to be defined manually by the programmer.
The same applies for events that are automatically derived either as a result of the execution of
actions or as a consequence of manipulating of stateful objects.

More precisely, actions and events which do not need to be defined by the programmer us-
ing action or event definitions include create/delete/update-object actions, object-created
/deleted/updated events, and action-initialized/succeeded/failed events.4

Grammar for External Action and Stateful Object Definition

stateDefinition ::= ’log’? ’STATEFUL OBJECT’ schemaDefinition
(’WITH’ stateSpecification*)? ’END’

actionDefinition ::= ’log’? ’ACTION’ schemaDefinition
(’WITH’ actionSpecification*)? ’END’

9. DuraC

DuraC (pronounced “Dura Core”) is a simplified subset of the Dura language. DuraC contains all
mandatory constructs of Dura which are needed to gain a high expressiveness, whereas syntactic

4Note that external actions are not executed by the event processing system itself but rather by external actuators.
Therefore external actions are only initiated by the event processing system.

D4.5 Implementation • Page 46 of 57

Project EMILI FP7-SEC-2009-1

sugar is omitted. As a result, both languages are equally expressive, but the compilation of
DuraC is far easier because only less complicated and fewer constructs need to be translated.

For the compilation of Dura programs, Dura is translated to DuraC in a first step and subse-
quently compiled to the temporal stream algebra (TSA) in a second step. TSA is finally evalu-
ated by the event processing system on top of a relational database.

The stepwise compilation of Dura has several advantages over a direct compilation of Dura to
TSA. Because the basic constructs that are supported by DuraC and TSA are quite similar, the
complexity of compiling DuraC to TSA is moderate and therefore the the implementation of the
compiler is straight forward. Although translating Dura to DuraC is more complicated, the trans-
formation is still easier than directly compiling Dura to TSA. Therefore, a stepwise respectively
incremental compiler will be easier to develop and to maintain and thus the whole compilation
process will be less error prone and more robust. Furthermore, the different compilation steps
can be approached in parallel which leads to a faster results and further functionality can be
subsequently added if required.

9.1. Event Queries

One major difference between event queries of Dura and DuraC is the nesting of queries. Dura
allows (almost) arbitrarily nested anonymous queries whereas DuraC supports only flat conjunc-
tions and disjunctions in combination with negated queries.

Furthermore, the query head of DuraC queries may not contain computation of new values. If
desired such computations need to be specified in the let part of the query body. However, in
contrast to Dura, variables that are introduced in a let or aggregate part of a query need to
explicitly specify their type.

Listing 14: A sample DuraC event query
DETECT

temp-stats{ area{var A}, avg{var MinMaxAvg} }
ON

and{
event e: alarm{ area{var A} },
event f: temp{ area{var A}, value{var Temp} }

} where { {event e, event f} within 2 min,
event f before event e}

group by {event e} aggregate { var float Max = max(var Temp),
var float Min = min(var Temp) }

let { var float MinMaxAvg = (var Max + var Min)/2 }
END

Grammar for DuraC Event Queries

D4.5 Implementation • Page 47 of 57

Project EMILI FP7-SEC-2009-1

eventSpecification ::= ’DETECT’ term ’ON’ query ’END’

query ::= ’and’ ’{’ flatQuery (’,’ flatQuery)* ’}’ querySupplement?
| ’or’ ’{’ flatQuery (’,’ flatQuery)* ’}’ querySupplement?
| flatQuery (’,’ flatQuery)*

flatQuery ::= ’not’ ’{’ atomicQuery ’}’ querySupplement
| ’not’ atomicQuery
| atomicQuery

atomicQuery ::= ’event’ ID ’:’ term querySupplement?
| ’state’ ID ’:’ term querySupplement?

querySupplement ::= (where | let | grouping)+

9.2. Range Restriction of Rules

All rules of a program need to be range restricted which means that variables which occur either
in the query head or in the supplement of a query, that is, a combination of where, let, and
group by /aggregate constructs, need to be positively bound.

For now, lets assume that the body of rules consists only of con/disjunctions of queries and
where constructs. Then, every variable and reference of an event, stateful object or action that is
used in either the head of the rule or in a where part of a con/disjunction needs to occur at least
once in a positive query in case of a conjunction of queries and in every positive query in case
of a disjunction of queries. Note that queries with a preceding not or exists are not considered
as being positive queries. Furthermore, where constructs that are part of a negation can contain
all variables of the negated query and positive variables and references of the conjunction they
are contained in.5

Therefore, both rules given in listing 15 are not range restricted. In the first rule, var T is used in
the where part in line 7, although the variable is only bound in one query (and not as requested
in both queries) of the disjunction in the rule body. In the second rule, the variable var Id is
used in the query head even though it is only bound in a negated query in the conjunction of the
rule body.

Things get slightly more difficult if let and grouping is considered. If let occurs in the supple-
ment of a query, the newly introduced variables can be used in every subsequent query supple-
ment and in the head of the rule. However, if grouping occurs in the supplement of a query, then
only variables and identifiers that occur either in the group by or variables that are introduced
in the corresponding aggregate part can be used in subsequent query supplements and in the
query head. In general one can say that let increases the amount of variables that can be used

5Using negated queries in combination with disjunctions makes no sense for continuous queries on unbounded
event streams.

D4.5 Implementation • Page 48 of 57

Project EMILI FP7-SEC-2009-1

Listing 15: Examples of rules that are not range restricted
DETECT

uncertain-alarm{ area{var A} }
3 ON

or{
event: temp{ area{var A}, value{var T} },

6 event: smoke{ area{var A} }
} where { var T >= const max-temp }

END
9

DETECT
sensor-malfunction{ id{var Id} }

12 ON
and{

event e: uncertain-alarm{ area{var A} },
15 not { event f: temp{ area{var A}, id{var Id} } }

where { {e,f} within 1 min }
}

18 END

in the head of a query whereas aggregate replaces variables by other variables that contain
aggregated values.

Accordingly, the rule in listing 16 is not range restricted for two reasons. Although the variable
var Temp which is used in the where part in line 9 occurs in a positive query in line 6, it does
neither occur in the group by nor is it defined in the aggregate part of line 8. Likewise, var Id
is used in the query head but it does not occur in the grouping of line 8. This conflict can be
resolved by introducing a subquery which yields a query that is similar to the one of listing 12.

Listing 16: Another non range restricted rule
DETECT

mean-temp-exceeded{ sensor-id{var Id} }
3 ON

and{
event e: alarm{ area{var A} },

6 event f: temp{ area{var A}, value{var Temp} }
} where { {e,f} within 2 min, f before e }

group by {event e} aggregate {var float Mean = mean(var Temp)}
9 where { var Temp >= var Mean *1.5 }

END

D4.5 Implementation • Page 49 of 57

Project EMILI FP7-SEC-2009-1

9.3. Reactive Rules

Reactive rules in DuraC are a restriction of reactive rules that are available in Dura. Only the
concurrent execution of atomic actions is possible in DuraC. Sophisticated constructs for the
specification of complex actions, such as FOR . . . DO . . . and IF . . . THEN . . ., are only available
in Dura.

Listing 17: Concurrent execution of multiple actions
ON

event e: uncertain-alarm{ area{var A} }
DO

concurrent{
action a: open-dampers{ area{var A} },
action b: turn-on-lights{ area{var A} }

}
END

The reactive rule in listing 17 refers to the atomic actions that have been given in listing 13.
Whenever an uncertain alarm occurs, both actions are initiated by the event processing system
and subsequently concurrently executed by some external actuators.

Reactive rules make a transition from declarative rules without side effects to the actual execu-
tion of actions. They do not need to be clustered together like event, stateful object, and action
definitions.

Grammar for DuraC Reactive Rules

reactiveRule ::= ’ON’ query ’DO’ action ’END’

action ::= ’concurrent’ ’{’ atomicAction (’,’ atomicAction)* ’}’
| atomicAction (’,’ atomicAction)*

atomicAction ::= ’action’ ID ’:’ term

9.4. Dura and DuraC compared

As already pointed out, DuraC contains only a subset of the constructs of Dura. However, both
languages are equally expressive, that is, the language differ only in the amount of syntactic
sugar. In the following, the differences of both languages are pointed out and discussed.

Rule Heads Rule heads in DuraC may only contain variables, constants, identifiers and literals,
such as, strings, numbers, etc. Hence, arithmetic expressions and groupings cannot be
specified in a rule head. They need to be specified in the supplement of the rule body
instead.

D4.5 Implementation • Page 50 of 57

Project EMILI FP7-SEC-2009-1

Subqueries and Existential Quantification Subqueries are not allowed in the body of DuraC
rules. They need to be made explicit by introducing further rules to the program. Never-
theless, negation can be used in (conjunction) of queries. As with subqueries, existentially
quantified queries are not supported by DuraC but they can be realized by introducing fur-
ther queries.

Typing of Variables In DuraC, each variable that is defined in a let or aggregate part of a
query needs to be explicitly typed.

Action Composition and Complex Actions In DuraC, actions can only be executed concur-
rently. Further constraints, for instance on the execution order of actions or additional
specifications which state when actions are considered to be executed successfully, can-
not be be specified. Furthermore complex action specifications and the IF statement are
not supported by DuraC.

Constructs for Stateful Objects The two constructs WHILE and DERIVE which are intended to
simplify the handling of stateful objects are not available in DuraC.

Variables and Identifiers In DuraC, identifiers, variables, and constants always need to be
preceded by an according keyword. Moreover, variables can only be bound to basic
types, such as int and string.

Note that the described restrictions of DuraC are only of a syntactical nature. Hence, Dura rules
can always be rewritten to (semantically) equivalent DuraC rules. An automatic transformation
of Dura to DuraC will be implemented by the Dura compiler.

D4.5 Implementation • Page 51 of 57

Project EMILI FP7-SEC-2009-1

Part III.
Appendix

A. DuraC EBNF Grammar

program ::= preamble (eventDefinition | stateDefinition
| actionDefinition | reactiveRule)+

preamble ::= (typeDefinition | constDefinition)*

/**
* constraints:
* all schemaDefinition labels are pairwise distinct
* type name ID is unique
* no cyclic definitions
*/
typeDefinition ::= ’TYPE’ ID ’IS’ basicType ’END’

| ’TYPE’ ID ’IS’ ’{’ schemaDefinition (’,’ schemaDefinition)* ’}’
typeSupplement? ’END’

/** constraint: const name ID is unique */
constDefinition ::= ’CONST’ ID ’IS’ constTerm ’END’

/**
* constraints:
* event definition schemaDefinition needs to be unique
* schema of derived events need to comply with schmaDenfinition
*/
eventDefinition ::= modifiers ’EVENT’ schemaDefinition typeSupplement?

(’WITH’ eventSpecification*)? ’END’

/** constraint: each modifier occurs at most once */
modifiers ::= modifier*

modifier ::= ’input’ | ’output’ | ’log’

/** constraint: stateful object definition schemaDefinition is unique */
stateDefinition ::= ’STATEFUL OBJECT’ schemaDefinition typeSupplement? ’END’

/** constraint: action definition schemaDefinition is unique */
actionDefinition ::= ’ACTION’ schemaDefinition ’END’

D4.5 Implementation • Page 52 of 57

Project EMILI FP7-SEC-2009-1

/** constraint: query is range restricted with respect to term */
eventSpecification ::= ’DETECT’ term ’ON’ query ’END’

/** constraint: action is range restricted with respect to query */
reactiveRule ::= ’ON’ query ’DO’ action ’END’

/** constraint: at least one event query in every disjunct */
query ::= ’and’ ’{’ flatQuery (’,’ flatQuery)* ’}’ querySupplement?

| ’or’ ’{’ flatQuery (’,’ flatQuery)* ’}’ querySupplement?
| flatQuery (’,’ flatQuery)*

flatQuery ::= ’not’ ’{’ atomicQuery ’}’ querySupplement
| ’not’ atomicQuery
| atomicQuery

atomicQuery ::= ’event’ ID ’:’ term querySupplement?
| ’state’ ID ’:’ term querySupplement?

action ::= ’concurrent’ ’{’ atomicAction (’,’ atomicAction)* ’}’
| atomicAction (’,’ atomicAction)*

/** constraint: action term is actually defined */
atomicAction ::= ’action’ ID ’:’ term

querySupplement ::= (where | let | grouping)+

actionSupplement ::= where+

typeSupplement ::= ’where’ ’{’ pathFormula (’,’ pathFormula)* ’}’

let ::= ’let’ ’{’ unification (’,’ unification)* ’}’

unification ::= typedVariable ’=’ expr

grouping ::= ’group by’ ’{’ binding (’,’ binding)* ’}’
| ’group by’ ’{’ binding (’,’ binding)* ’}’

’aggregate’ ’{’ aggregation (’,’ aggregation)* ’}’

binding ::= variable
| identifier

aggregation ::= typedVariable ’=’ aggregationOp ’(’ variable ’)’

where ::= ’where’ ’{’ conditions (’,’ conditions)* ’}’

D4.5 Implementation • Page 53 of 57

Project EMILI FP7-SEC-2009-1

conditions ::= ’and’ ’{’ conditions (’,’ conditions)* ’}’
| ’or’ ’{’ conditions (’,’ conditions)* ’}’
| condition

condition ::= intervalFormula
| mathFormula

/** constraints:
* either both or none of the expressions is of type duration
*/

mathFormula ::= expr arithmeticRelation expr

pathFormula ::= path arithmeticRelation path

intervalFormula ::= ’{’ timeInterval ’,’ timeInterval
(’}’ ’apart-by’ duration
| (’,’ timeInterval)* ’}’ ’within’ duration
)

| timeInterval (intervalRelation timeInterval | ’at’ timePoint)

/** constraint: variable is of type time-interval */
timeInterval ::= variable

| identifier
| relativeTimerOp ’(’ timeInterval ’,’ duration ’)’

/** constraint: variable is of type timepoint */
timePoint ::= variable

| intervalOp ’(’ timeInterval ’)’

/** constraint: all timeunits are are pairwise distinct */
duration ::= time+

time ::= NUMBER timeUnit

/**
* constraints:
* all term labels are pairwise distinct
* no cyclic definitions
*/
term ::= label ’{’ ’}’

| label ’{’ termLeaf ’}’
| label ’{’ term (’,’ term)* ’}’

/** constraints:
* variables are unified with basic types

D4.5 Implementation • Page 54 of 57

Project EMILI FP7-SEC-2009-1

* constants are unified with basic types
* identifiers are unified with identifier types
*/
termLeaf ::= variable

| constant
| identifier
| STRING
| NUMBER

/**
* constraints:
* all constTerm labels are pairwise distinct
* no cyclic definitions
*/
constTerm ::= STRING

| NUMBER
| duration
| label ’{’ ’}’
| label ’{’ constTerm (’,’ constTerm)* ’}’

/**
* constraints:
* all schemaDefinition labels are pairwise distinct
* no cyclic definitions
*/
schemaDefinition ::= label ’{’ basicType ’}’

| label ’{’ compositeType ’}’
| label ’{’ schemaDefinition (’,’ schemaDefinition)* ’}’

expr ::= mathExpr
| identifier

mathExpr ::= (multExpr) ((’+’ | ’-’) multExpr)*

multExpr ::= (atom) ((’*’ | ’/’) atom)*

/**
* constraints:
* constants used in aritmetic expressions need to be a number
*/
atom ::= ’(’ mathExpr ’)’

| intervalOp ’(’ timeInterval ’)’
| variable
| constant
| (NUMBER) (timeUnit time*)?

D4.5 Implementation • Page 55 of 57

Project EMILI FP7-SEC-2009-1

| STRING

path ::= label (’.’ label)*

label ::= aggregationOp
| intervalOp
| ID

type ::= basicType
| compositeType

basicType ::= (’string’ | ’int’ | ’long’ | ’double’ | ’float’
| ’boolean’ | ’identifier’ | ’timestamp’ | ’duration’)

/** constraint: composite type ID is actually defined */
compositeType ::= ID

identifier ::= (’event’ | ’state’ | ’action’) ID

variable ::= ’var’ ID

typedVariable ::= ’var’ type ID

/** constraint: constant ID is actually defined */
constant ::= ’const’ ID

intervalRelation ::= (’before’ | ’contains’ | ’overlaps’ | ’after’ | ’during’
| ’overlapped-by’ | ’starts’ | ’finishes’ | ’meets’
| ’started-by’ | ’finished-by’ | ’met-by’ | ’equals’ | ’while’)

relativeTimerOp ::= (’extend’ | ’shorten’ | ’extend-begin’ | ’shorten-begin’
| ’shift-forward’ | ’shift-backward’ | ’from-end’
| ’from-end-backward’ | ’from-start’ | ’from-start-backward’
| ’from-begin’ | ’from-begin-backward’)

intervalOp ::= (’begin’ | ’end’)

aggregationOp ::= (’max’ | ’min’ | ’mean’ | ’avg’ | ’count’)

timeUnit ::= (’day’ | ’days’ | ’hour’ | ’hours’ | ’min’ | ’sec’ | ’ms’)

arithmeticRelation ::= (’<’ | ’<=’ | ’=’ | ’!=’ | ’>’ | ’>=’)

/* TOKENS */

D4.5 Implementation • Page 56 of 57

Project EMILI FP7-SEC-2009-1

ID ::= (’a’..’z’ | ’A’..’Z’) (’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’-’ | ’_’)*

NUMBER ::= (’0’..’9’)+ ’.’ (’0’..’9’)* Exponent?
| (’0’..’9’)+ Exponent?

Exponent ::= (’e’ | ’E’) (’+’ | ’-’)? (’0’..’9’)+

STRING ::= ’"’ (EscapeSequence | ~(’\\’ | ’"’))* ’"’

EscapeSequence ::= ’\\’ (’b’ | ’t’ | ’n’ | ’f’ | ’r’ | ’\"’ | ’\’’ | ’\\’)

COMMENT ::= ’//’ ~(’\n’ | ’\r’)* ’\r’? ’\n’
| ’/*’ (.)* ’*/’

WS ::= (’ ’ | ’\t’ | ’\r’ | ’\n’)

D4.5 Implementation • Page 57 of 57

	The Event-Mill Engine
	Setup & Configuration
	Needed Software
	Getting started

	The Main Dialog – Compiling and Initialising a Dura Program
	The config command
	The compile command
	The load command
	The list specs command
	The remove spec command
	The clear specs command
	The init command
	The list progs command
	The run command
	The remove prog command
	The clear progs command
	The clear command
	The uninstall command
	The quit command

	The Control Dialog – Running a Dura Program
	The init command
	The start command
	The stop command
	The quit command

	Delivering and Retrieving Data
	Dura Type Names
	Mapping to Table Names
	Dura Attribute Names
	Mapping to SQL Attribute Names
	Mapping of Attribute Types
	Schema
	Input
	Output

	The Hello World Example
	Description
	Input
	Output
	Input Example – see_person.jar
	Output Example – greet_person.jar
	Test Sequence

	The Access Control Example
	Description
	Input
	Output
	Input Example – access-control-input.jar
	Output Example – access-control-output.jar
	Test Sequence

	The Access Control Example & MonetDB
	First Start of Engine
	Compile
	Load
	Init Program
	Run
	Init Execution
	Start Execution
	Stop/Pause Execution
	Quit Program

	An Incremental Approach for Compiling Dura Queries
	A Schema for Events, Stateful Objects and Actions
	A Schema for Dura
	Types and Type Definitions
	Constant Definitions
	Event Definitions
	Introducing More Versatile Subqueries to Dura
	Action and Stateful Object Definition

	DuraC
	Event Queries
	Range Restriction of Rules
	Reactive Rules
	Dura and DuraC compared

	Appendix
	DuraC EBNF Grammar

