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Two Semantics for CEP, no Double Talk:
Complex Event Relational Algebra (CERA)
and its Application to XChange®Q

Michael Eckert, Francois Bry, Simon Brodt, Olga Poppe, and Steffen Hausmann

Abstract Complex Event Processing (CEP) denotes algorithmic methods for deriv-
ing higher-level knowledge, or complex events, from a stream of lower-level events
in a continuous and timely fashion. High-level Event Query Languages (EQLs) are
designed for expressing complex events in a convenient, concise, effective and main-
tainable manner. CEP differs fundamentally from traditional database or Web query-
ing, as CEP continuously evaluates standing queries against a stream of incoming
event data whereas traditional querying evaluates incoming ad hoc queries against
(more or less) standing data.

However EQLs and traditional query languages share a need for clear formal se-
mantics which typically consist of two parts: A declarative semantics specifying
what the answer of a query should be and an operational semantics telling how this
answer is actually computed. The declarative semantics serves as reference for the
operational semantics which is the basis for query evaluation and optimization.
While formal semantics is well-understood for traditional query languages it has
been rather neglected for EQLS so far. In this chapter we use the EQL XChangeFQ
to demonstrate a general, easily transferable approach for defining both, the declar-
ative and operational semantics of an EQL. The operational semantics on the one
hand, bases on CERA, a tailored variant of relational algebra, and incremantal eval-
uation of query plans. Although the basic idea might sound familiar from previous
approaches like [3, 12, 16], the way it is realized here is significantly different. The
declarative semantics on the other hand, is defined using a Tarski-style model theory
with accompanying fixpoint theory.
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1 Introduction

In databases, relational algebra describes the order in which operators are applied
to relations to compute answers for queries. It serves as a theoretical fundament
for the operational semantics of database query languages (e.g., SQL) and query
optimization.

A recent trend in information systems are continuous queries against event (or
data) streams. This continuous querying of events is fundamentally different from
the traditional ad hoc querying of databases or Web data, since event queries are
standing queries evaluated continuously over time against changing event data re-
ceived as an incoming stream.

Querying events often involves the notion of Complex Event Processing (CEP)
which denotes algorithmic methods for making sense of events by deriving higher-
level knowledge, or complex events, from lower-level events in a timely fash-
ion and permanently. We refer the reader to the chapter “A CEP Babelfish: Lan-
guages for Complex Event Processing and Querying Surveyed”, in this volume,
for a discussion of Event Query Languages (EQLs). Specific evaluation methods
have been conceived for the efficient, stepwise evaluation of complex event queries
against event data streams. We demonstrate the usage of one of these languages,
XChangeFQ [5, 117, in a sensor network use case in Section 2.

We present Complex Event Relational Algebra (CERA), an extended and tailored
variant of relational algebra, to represent execution plans for complex event queries
in Section 3. Starting out with relational algebra and thus building on the founda-
tion of database queries is not just helpful for understandability, it also lets event
queries benefit from many results in database research (e.g., join algorithms, adap-
tive query evaluation). Further, the uniformity in the foundations of event queries
and traditional queries is beneficial in systems and languages where event and non-
event data is processed together — and queries should be optimized and evaluated
together. This is quite common, especially for Event Condition Action (ECA) rules,
where the E part is an event query, the C part a traditional query, and the parts share
information through variable bindings.

The basic idea of transferring relational algebra to CEP is not new [3, 12, 16].
However we propose a significantly different way of doing so. Previous approaches
like CQL [3, 12, 16] use stream-to-relation operators like time windows to concep-
tually convert the stream into a finite relation for each point of time. After that, quite
ordinary relational algebra expressions are applied to this finite relation. In contrast
to that, CERA views the whole stream as one potentially infintite relation. Tailored
variant of relational operators are then applied to this infinite relation. The trick is
that these operators are restricted in such a way that for each point of time it is suf-
ficient to know the finite available part of the stream to compute the result up to
that time point (see Section 3.4.1). Therefore CERA is suitable for an incremental,
step-wise evaluation as required for complex event queries.

We illustrate CERA by its application to XChangeF? [5, 11] which is one of the
recently developed, expressive and easy-to-use high-level EQLs. We also provide
details on how XChangeFQ rules are translated into CERA expressions and how
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query plans consisting of CERA expressions can be optimized and incrementally
evaluated.

An important aspect of any query evaluation method is its correctness. Yet, this
aspect has often been neglected in CEP so far. Proving the correctness of an opera-
tional semantics, which focuses on Zow an answer for a query is computed, entails
the existence of a declarative semantics, which focuses on what the answers should
be. To this end, in Section 4 we introduce a declarative semantics for XChangeF?
that is quite natural for event streams and in Section 5 we sketch a proof of the cor-
rectness of the operational semantics based on CERA with respect to the declarative
semantics. Section 6 concludes this chapter.

The contributions of this chapter are:

1. Formal definition of CERA as the first corner stone of the operational semantics
for EQLs

2. Description of incremental evaluation of query plans with materialization points
as the second corner stone of the operational semantics for EQLs

3. Formal definition of the declarative semantics for EQLs by a Tarski-style model
theory with accompanying fixpoint theory

4. Tlustration of both semantics by an XChange®Q program in the realm of sensor
network use case

5. Proof of the correctness, i.e., soundness and completeness of the operational se-
mantics for EQLs with respect to their declarative semantics

2 CEP Examples

Figure 1 contains an XChange®? program P which will be used as an example
throughout this chapter. In this section we briefly describe the program and refer the
reader to the chapter on “A CEP Babelfish: Languages for Complex Event Process-
ing and Querying Surveyed”, in this volume, for the informal definitions of the basic
notions in the realm of CEP (Section 2), the explanation of the syntax of XChangeFQ
(Section 8), and the description of the sensor network use case (Section 1).

The first rule of the program in Figure 1 triggers fire alarm for an area if smoke
and high temperature were measured in the area within one minute. For the second
rule, assume all sensors of our network send their temperature measurements every
12 seconds. The second rule of the program infers that a sensor had been burnt down
if it measured high temperature and did not send its measurements afterwards. And
the last query computes average temperature reported by a sensor during the last
minute every time the sensor sends a temperature measurement.
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DETECT fire { area { var A } }

ON and { event s: smoke {{ area {{ var A }} }},
event t: temp {{ area {{ var A }}, value {{ var T }} }}
} where { s before t, {s,t} within 1 min, var T > 40 }
END
DETECT burnt_down { sensor { var S } }
ON and { event n: temp {{ sensor {{ var S }}, value {{ var T }} }},
event i: timer:from-end [ event n, 12 sec ],
while i: not temp {{ sensor {{ var S }} }}
} where { var T > 40 }
END
DETECT avg_temp { sensor { var S }, value { avg(all var T) } }
ON and { event m: temp {{ sensor {{ var S }} }},
event i: timer:from-start-backward [ event m, 1 min ]
while i: collect temp {{ sensor {{ var S }}, value {{ var T }} }} }
END

Fig. 1 XChange®Q program P

3 CERA: An Operational Semantics for Event Query Languages

This section is devoted to the formal definition of the operational semantics for
EQLs. In Section 3.1 we clarify the purpose of an operational semantics for query
languages in general and describe its desiderata for an EQL in particular. Complex
Event Relational Algebra (CERA) builds the first corner stone of the operational
semantics. CERA bases on relational algebra and extends it with operators which
are able to treat notions specific for events such as event occurrence time. In Sec-
tion 3.2 we define the operators formally and illustrate their usage by translating
the XChangeFQ rules in Figure 1 into CERA expressions. Section 3.3 is devoted to
the formal specification of the translation of a single XChangeFQ rule into a CERA
expression. But keep in mind that CERA is independent from a particular EQL. Fi-
nally, Section 3.4 explains how query plans consisting of CERA expressions can be
optimized and incrementally evaluated (the second corner stone of the operational
semantics).

3.1 Purpose and Desiderata

In general, the purpose of an operational semantics is to provide an abstract de-
scription of an implementation of the evaluation engine of a language. For EQLSs in
particular, an operational semantics must fulfill the following core desiderata:

1. It should be an incremental, data-driven evaluation method storing and updating
intermediate results instead of computing them anew in each step. The notion “in-
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cremental” derives from the idea that in each step we compute only the changes
relative to the previous steps.

2. Since the incoming event stream is unbounded, a naive query evaluation engine
storing all intermediate results forever, runs out of memory sooner or later. Hence
an operational semantics must enable garbage collection of irrelevant events, i.e.,
events which cannot contribute to a new answer any more. For the sake of brevity,
we do not formalize garbage collection of events in this chapter and refer the
reader to [7].

3. An operational semantics should provide a framework for query optimization
since it must be able to capture the whole space of different query plans. In this
chapter we only provide a general idea of event query optimization and refer the
reader to [6, 4, 10, 18] for more details.

4. An operational semantics for EQLs must be correct with respect to the declarative
semantics of EQLs and it must terminate for each incremental step.

3.2 CERA: Complex Event Relational Algebra

For the operational semantics we will restrict ourselves to hierarchical rule pro-
grams, i.e., programs that are free of any recursion of rules (see [11] for the formal
definition). Note that this is a common restriction not just for event queries but also
database views and queries, and causes no problems in most practical applications.

We want to base CERA on traditional relational algebra. There are three prob-
lems arising when doing so: the treatment of XML data carried by events, the incor-
poration of the time axis and the infinity of streams. We approach these problems
in the following way: Streams are regarded from an omniscient perspective, i.e.
as if all events ever arriving on the stream were already known. From this point
of view the (complete infinite) stream is just a relation with tuples representing
the events arriving on the stream. Each tuple representing an event consists of two
timestamp attributes representing the begin and end of the occurrence interval of the
event and a data-term attribute representing the XML data carried by the event. Of
course this relation is potentially infinite and never known completely at any point
of time. However this can be ignored for now. We will see below that due to a spe-
cial property of CERA called “temporal preservation” (Section 3.4.1) and the “finite
differencing” technique (Section 3.4.3), the evaluation is nevertheless able to incre-
mentally compute the desired result working only on the finite part of the relation
known up to some point of time.

All three points, the integration of XML-data, the explicit representation of the
time axis by means of timestamp attributes and the way to cope with the infinity of
streams, are fundamentally different to previous approaches. The chapter “A CEP
Babelfish: Languages for Complex Event Processing and Querying Surveyed”, in
this volume, shows that composition operator based languages, data stream lan-
guages and production rule languages have none or only weak support for XML.
These language groups also lack an explicit representation of time (though time
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plays a role of course) limiting the temporal relations expressible in these ap-
proaches. Data stream languages like CQL also intend to use a kind of relational
algebra for their semantics however they approach the infinity of streams by (con-
ceptually) converting parts of the stream into a finite relation for every point of time
by, for example, time windows. After that, relational algebra is applied and the re-
sulting relation is then converted back into a stream using another operator. (We
refer the reader to the chapter “A CEP Babelfish: Languages for Complex Event
Processing and Querying Surveyed”, in this volume, for more details). This signifi-
cantly differs from our approach as we do not do any conversion at all but just view
the complete potentially infinite stream as a relation and directly apply relational
algebra to that relation.

With regards to the XML integration we are not finished yet at this point as
we need a possibility to access the data contained in the data-term attribute of an
event (or its tuple respectively), for example, for selections or joins. Therefore we
introduce the matching operator Q* which extracts the desired data into attributes
of the resulting relation. The complementary operator to QX is the construction
operator C* which is used to construct the new data-terms for the derived complex
events from a number of attributes of a relation. It will be explained more closely
on Page 10. In this way applying a complete CERA expression, i.e., an expression
with QX at the bottom and C* at the top, to an event stream, or more precisely to the
relation representing the stream, results in a relation with the same schema, or an
event stream, again. Thus CERA 1is answer closed. In the following we will mainly
describe the effect of Q% and CX to the schema of a relation as XML matching and
construction are not in the focus here. For details on the exact semantics of the XML
matching in Q* and XML construction in CX see [11].

The event matching operator Q* takes two arguments, an event stream (i.e. the
corresponding relation) of course and a simple event query event i : q. The result of
applying Q% to the event stream E using the simple event query event i : q is the
relation Rj = Qf(l-: q] (E). Each event (or tuple) in the stream (or relation) matched

by ¢ corresponds to one or many tuples in R; (see the definition of Q%in [11]).

The schema sch(R;) of R; corresponds directly to the free variables of ¢q. Each
free variable of ¢ is a data attribute of R;. Furthermore R; contains an event refer-
ence attribute i.ref identifying the event a tuple was derived from, and two times-
tamp attributes i.begin, i.end representing the occurrence time interval of this event.
Consequently, R; has the schema sch(R;) = {i.begin,i.end,i.ref , X;,...,X,}, where
Xj,...,X, are the free variables of g. We denote the set of data attributes of R; with
schyaa(Ri), the set of timestamp attributes with schyme (R;) and the set of event ref-
erence attributes with sch,.r(R;).

Note that we use the named perspective on relations here, i.e., tuples are viewed
as functions that map attribute names to values. This is more intuitive than the un-
named perspective identifying attribute values by their positions in ordered tuples.

XChangeFQ program P in Figure 1 gives rise to the relations in Figure 2. These
relations will be the input for the CERA expressions into which we will translate
the rules of P.
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Smokes = Qf(l\.: smoke{{area{{var 411}y 1(E); sch(Smokes) = {s.bej;ii;f.end,
s.ref,

Tempy = Q. omp({areal frar A1) watue(var 71} 1 (E)s - sch(Tempy) = {; 1::?"2 f;fdv

Tempy = Q. emp{{sensor{{var 5}pvatue(var 7313} 1 (E): sch(Tempy) - = {Zi;:;g:lf;: V;ind,

Temp, = Qf(‘,: remp{{sensor{ {var s}11} 1 (E); sch(Temp,) = {v..be;gcgl;7;v.end,
v.ref,

Temp,, = Qf(m: remp{{sensor{ {var S}}}} ](E)7 sch(Temp,,) = {m.b.eﬁir;,}m.end,
m.ref,

Tempy = Q. romp({sensori{var 5} watuel prar 71} 1 () sch(Tempy,) = {xlr’:j;i'g V;;;"dx

Fig. 2 Input relations for the CERA expressions for the program P in Figure 1

Beside the relations shown in Figure 2, the program P makes use of relative
timer events. Figure 3 contains generic definitions of the relative timer events used
in P. Relative timer events are expressed by means of auxiliary event streams S and
auxiliary relations X. The definitions take an event stream E and a relative timer
specification as parameters. Each auxiliary event stream S contains one relative
timer event s for each event r of the event stream E. The timestamps of s are de-
fined relatively to the timestamps of r. The matching operator QX sets the value of
attribute j.ref of X to a reference to event r (denoted ref(r)). We need the attribute
j.ref to join X with another relation to drop superfluous tuples of X.

X[ i from-end([j,d] ](E) = Of(i: rel-timer-event[var j.ref] ](S[ from-end[d] ](E))’ where
s(begin) = r(end),
S[ from_end[d]](E) ={s|3IreEwiths:={ s(end) =r(end)+d, }

s(term) = rel-timer-event(ref(r))

X[ i: from-start-backward(j,d] ](E) = Of(i: rel-timer-event{var j.ref] ](S[ from-start-backward[d] | (E)), where
s(begin) = r(begin) —d,

S| from-start-backwardid] (E) = {s|3r € Ewiths:= { s(end) = r(begin), }
s(term) = rel-timer-event(ref(r))

Fig. 3 Generic definitions of the relative timer events used in the program P in Figure 1

Beside event matching QX, CERA allows the following operators: natural join X,
selection o, projection 7, temporal join X,5;, temporal anti-semi join X;5;, merg-
ing of time intervals u, renaming p, and event construction C*X. The definitions of
natural join, selection and projection are just the same as in traditional relational
algebra. There is only one important limitation of projection. It is only allowed to
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discard data attributes (e.g., X), but it is not allowed to discard time attributes (e.g.,
i.begin) and event references (e.g., i.ref).

The translation of while/collect in XChangeFQ is expressed by temporal join.
Temporal join is a new operator of CERA, it does not exist in traditional relational
algebra and cannot be expressed as a combination of operators of traditional rela-
tional algebra. Let R and S be relations. In a temporal join R X g S, the condition 0
has the form i.begin < j.begin A j.end < i.end, where {i.begin,i.end} C schyjy.(R)
and {j.begin, j.end} C schyy.(S). We abbreviate these conditions with i J j. To
achieve the right implicit groupng by event references (see the description of the
event construction operator c* below), the reference j.ref must be dropped. This is
possible because the temporal restriction i 1 j guarantees that the groups stay finite
after j.ref is dropped.

Definition 0.1 (Temporal join). Let R and S be relations such that {i.begin,i.end} C
Schiime(R), i.ref € schy.r(R), {j.begin, j.end} C schyjme(S), and j.ref € schy.f(S).

R %;5; S ={o|3r € R 3s € S such that
r(X) =s(X)if X € sch(R) N Sch,
r(i.begin) < s(j.begin) and s(j.end) < r(i.end),
o(X) =r(X)if X € sch(R) and o(X) = s(X) if X € Sch,
o(X) = L otherwise },

where Sch := sch(S) \ {j.begin, j.end, j.ref},
SCh(R Miaj S) = SC/’Z(R) USch.

In order to express negation of an event in CERA we introduce a 0-anti-semi-
join that uses the 6 condition to define the event accumulation window (just anal-
ogously to the above definition of temporal join). The temporal anti-semi-join
R x;3; S takes two relations R and S as input, where {i.begin,i.end} C schyjme(R)
and {j.begin, j.end} = schyjm.(S). (Note that it is “C” for the timestamps of the left
side of the anti-semi-join and “="" for timestamps on the right side!) Its output is R
with those tuples r removed that have a “partner” is S, i.e., a tuple s € S that agrees
on all shared attributes with r and whose timestamps s(j.begin), s(j.end) are within
the time bounds r(i.begin), r(i.end).

Definition 0.2 (Temporal anti-semi-join). Let R and S be relations with {i.begin,
i.end} C schyime(R) and {j.begin, j.end} = schyime(S).

R%;5;8 = {r € R|As € S such that VX € sch(R) Nsch(S). r(X) = s(X)
and r(i.begin) < s(j.begin), s(j.end) < r(i.end)},

sch(R x;g; §) = sch(R).

In contrast to temporal join and temporal anti-semi-join, natural join maintains
the time attributes of both input relations in order to ensure temporal preserva-
tion, an important property of CERA operators allowing them to work on finite
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available parts of streams.! But as the reader will see in Section 3.4.1, to guar-
antee temporal presevation, CERA operators must not maintain all timestamps of
an input event but only the grearest timestamp of each input event. To reduce the
number of timestamps of an event, merging operator is used. It computes a single
time interval of an event out of many time intervals it carries. Let R be a relation.
A merging operator [[[begin,end] — jiU---U j,](R) computes a new time inter-
val [begin,end] from existing ones ji,...,j, so that the time interval [begin,end)]
covers all the intervals j,..., j, i.e., begin = min{j).begin, ..., j,.begin} and
end = max{j.end,..., j,.end}. Further, the merging operator extracts the begin-
ning begin and the end end of the new time interval as well as all attributes of R
except of ji.begin, ji.end,..., j,.begin, j,.end in the manner of a projection. Merg-
ing of time intervals is not really a new operation in CERA. It is equivalent to an
extended projection [14], a common practical extension of relational algebra used
to compute new attributes from existing ones.

Definition 0.3 (Merging of time intervals). Let R be a relation and j,..., j, time
intervals such that { j;.begin, ji.end, ..., j,.begin, j,.end} C schyjme(R). Merging of
J1,--+,Jjn is a relation defined as follows

U[[begin,end] — jiU---Uj,](R) = {r | Ir € R with

t(begin) = min{r(j.begin),...,r(j,.begin)},

t(end) = max{r(ji.end),...,r(jy.end)},

t(X) =r(X)if X € sch(R) \ {begin,end, j, .begin, ji.end, ..., j,.begin, j,.end},
t(X) = L otherwise},

sch(u[[begin,end] — jiU---Uj,](R)) =
{begin,end} U (sch(R) \ {ji.begin, ji.end, ..., j,.begin, j,.end}).

For technical reasons (i.e., usage of natural join), the named perspective of
relational algebra sometimes requires a renaming operator, which changes the
names of attributes without affecting their values. Renaming is denoted by p[da} <
ai,...,a, < ay)(R). It renames attributes ay,...,a, of the relation R to a},...,a,
respectively. Note that if an attribute a; is a data attribute of R it must be a data
attribute in the resulting relation, if it is a timestamp, then ag must also be a time
attribute, and if it is an event reference so also ag. Note also that timestamps must

always occur pairwise; accordingly, they can only be renamed pairwise.

Definition 0.4 (Renaming). Let R be a relation such that {ay,...,a,} C sch(R) and
{d}, ....d,}Nsch(R) = 0.

pld, < ai,...,d, < a,](R) = {t | 3r € R such that t(a}) = r(a;) and

VX e} 1X) = ()},

! Temporal restriction of temporal join and temporal anti-semi-join ansures temporal preservation.
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Vie{l,....n}. a; Cschyme(R) iff a; C schyime (pla) — ai,...,a, — ay)(R)),
a; C schyef(R) iff a) C schyer (pla) — ai,...,a, — a,(R)),
a; C schyuq(R) iff a; C schyyq (pld) < ai,...,d, — ay)(R)),

js—ise{d) —ai,....d, —ay}iff je—iec{d —a,...,d, —a,},
where {i.s,i.e} C schyime(R) and {j.s, j.e} C schyme(pla) < a,...,a}, — ay)(R)),

sch(pld) « ay,...,d, < ay)(R)) = (sch(R) \ {a1,...,a,})U{d},....d,})

We will see the necessity of the operator in Section 3.4.

Finally, the event construction operator C* serves for the construction of the
data-terms carried by the derived complex events. The output schema of CX is the
same as the input schema of QX, i.e. the output relation of C* can be regarded
as a stream of derived events. The operator takes two arguments, a relation R with
schyime(R) = {begin, end} and a rule head h. The result of applying C* to the relation
R using the rule head 4 is the stream (or relation) E/ = Cffl] (R). One event (or tuple)
in E’ corresponds to one or many tuples in R depending on whether / contains
grouping and aggregation constructs or not.

If i does not contain grouping and aggregation constructs like all, then c*
constructs for each tuple r € R one event represented as the data term annotated with
the time interval [r(begin), r(end)]. The data term results from substituting each free
variable X of h by r(X), i.e., by the value of attribute X of the tuple r.

cf (
[ fire{area{var A}} ]
W[[begin,end] — sUt](
o[max{s.end,t.end} — min{s.begin,t.begin} < 1 min](
ols.end < t.begin](
o[T > 40|(
Smokes x Tempy)))))

Fig. 4 CERA expression for the first rule of the program P in Figure 1

For example, the first rule of the program P in Figure 1 corresponds to the CERA
expression in Figure 4. Remember that the query triggers fire alarm for an area when
smoke and high temperature are both detected in the area within one minute. Note
that all temporal conditions (such as s before t and {s,t} within 1 min) of the query
have been turned into selections. Because temporal information is simply data in
tuples (as s.begin, s.end, etc.), no special temporal operators are needed as part of
the algebra; e.g., there is no need for a sequence operator as found in many event
algebras.

The second rule of the program P corresponds to the CERA expression in Fig-
ure 5. Recall that the rule infers that a sensor had burnt down if it reported high
temperature and did not send its measurements afterwards any more. For this rule
we assume that all temperature sensors send their measurements every 12 seconds.
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o (
[ burnt_down{sensor{var S}} ]
W[[begin,end] — nUillv](
o[T > 40)(
(Tempy, ® X[ i from-endjn, 12 sec] ] (E)) X2y Tempy)))

Fig. 5 CERA expression for the second rule of the program P in Figure 1

If the rule head & contains grouping and aggregation constructs, the operator c*
does the required grouping of tuples and computes the values of aggregation func-
tions. Note that explicit grouping happens after an implicit grouping of the tuples
of R by event references and time attributes. (Since time attributes are functionally
dependent on event references, they do not have any effect on the result of grouping
but they must be part of each resulting tuple to guarantee temporal preservation.) As
temporal joins are restricted to finite time intervals and projections may not discard
event references, after the implicit grouping by event references and time attributes,
each group is finite (but there may be of course infinitely many groups because the
stream is potentially infinite). Therefore grouping initiated by & does not need any
treatment specific for CEP.

X
C[ avg_temp{sensor{var S} value{avg(all var T)}} ](
U[[begin,end] — mLiLw|(

(Tempp, X X{i: from-start-backward[m, 1 min] 1(E)) ™0 Tempy,))

Fig. 6 CERA expression for the third rule of the program P in Figure 1

Consider the last rule of P in Figure 1 corresponding to the CERA expression in
Figure 6. Recall that the rule computes the average temperature reported by a sensor
during the last minute every time the sensor sends a temperature measurement. c*
takes the tuples of the joined input relations, groups them (first implicitly by the
event references and time attributes and then) according to the value of attribute
S (denoting a sensor). For each group the average value of attribute 7 (denoting
a temperature measurement) is computed and saved as the value of data attribute
value of the resulting event.

3.3 Translation into CERA

We now turn to the formal specification of the translation of a single XChangeF?
rule into a CERA expression. The rules are first normalized, which means that or
is eliminated and the literals in the rule body are ordered in a specific way. Figure 7
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shows the general structure of a normalized XChange®® rule.? Note that all rules of
the program in Figure 1 are normalized.

DETECT
h
ON
and{b1 yeosbigybi1, .0 by by, b b ,bn} where{cl Seen ,Ck}
S—_—— —— —,W— —,—
Simple Relative Accumulation  Accumulation
Event Timer for for
Queries Spec Collection Negation
END

Fig. 7 Normalized XChange®Q rule

Figure 8 shows the translation of a single normalized XChange®® rule. The trans-
lation of rule sets requires additionally the notion of query plans which will be in-
troduced in Section 3.4.2.

by — B
bla"'>bi+l = BH'I
and{b17...,bn} — B,
and{by,...,b,} where{cy,...,cx} — C
DETECT h ON and{by,...,b,} where{ci,...,cx} END +— Q

B, = Qf(_j: q for by =eventj:gq
B; NQE(j:q] ifbjy) =eventj:q
B — B; X X[ j: REL-TIMER-SPEC] j',d | | if bjy] =eventj: REL—TIMER—SPEC[j,,d]
i B ™ joy Qxi/: q] if biy; =whilej:q
B; ngi’ Q[ " q) if biy; =whilej:not g

where 1 <i < nand{ is a fresh event identifier

C:=0lc} A---Ac,](By) where ¢} is the translation of ¢; (see Figure 13.4 in [11] for details)

Q:= C?f(u[[begin,end} — jiu---ujl(C))

Fig. 8 Translation of a single normalized XChangeF® rule into a CERA expression

2 Note that the normalization of a single rule usually yields a set of rules not a single rule due to
the elmination of or.
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3.4 Incremental Evaluation

Till now we pretended to have a kind of “omniscience”: The relations contain con-
ceptually all events that ever happen and are probably infinite for that reason. In the
actual evaluation of event queries it is not possible to foresee future events. Event
queries are evaluated incrementally on finite event histories. This section explains
the details on incremental evaluation of programs in an EQL. We start with temporal
preservation of CERA, a property allowing incremental evaluation of CERA expres-
sions (Section 3.4.1). Then, we introduce the notion of query plans with materializa-
tion points (Section 3.4.2) and explain their incremental evaluation (Section 3.4.3).

3.4.1 Temporal Preservation

The restrictions that CERA imposes on expressions (compared to an unrestricted
relational algebra), make this approach reasonable since we do not need any knowl-
edge about future events when we want to obtain all results of an expression with
an occurrence time until now. More precisely, to compute all results of a CERA
expression Q with an occurrence time before or at time point now, we need to know
(the finite part of) its input relations up to this time point now. In order to formally
define and prove this property of CERA, called temporal preservation, we need the
following auxiliary definition.

Definition 0.5 (Occurrence time of a tuple). The occurrence time of a tuple r in
the result of a CERA expression Q is a time interval given by

occtime(r) = [ min{r(i.begin) | i.ref € schyr(Q)},
max{r(i.end) |i.ref € sch.r(Q)}]

To refer to the end of the occurrence time of a tuple, i.e., end(occtime(r)) in
selections we introduce the shorthand ENDq := max{ i;.end, ..., i,.end } where
{ij.end,... iy.end } U{ i .begin, ..., i,.begin } = schym.(Q).>

Theorem 0.1 (Temporal preservation). Ler Q be a CERA-expression with input
relations Ry, ..., R,. Then for all time points now : 6[ENDg < now|(Q) = Q’, where
Q’is obtained from Q by replacing each Ry with R, := {r € Ry | end(occtime(r)) <
now}.

Proof (Sketch). By induction. For event matching, event construction, selection, and
projection, the claim is obvious since timestamps are not changed at all. By defini-
tion, natural join maintains the timestamps of both input relations without change.
By definition, merging does not change the maximum value over all timestamps.
Temporal join and temporal anti-semi-join are only allowed with temporal restric-
tions that also ensure that the maximum value is maintained. We refer to [11] for
details.

3 Note that ENDq is a syntactical expression which can be used in selections whereas
end(occtime(r)) denotes a mathematical function on the semantic level.
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3.4.2 Query Plans with Materialization Points

In traditional relational databases, a query plan describes the order in which oper-
ators are applied to base relations to compute answers for queries and serves as a
bases for query optimization techniques such as “push selection” and storage and
reuse of shared subqueries. In CEP, queries are evaluated continuously over time
against changing event data received as an incoming stream and therefore a query
plan should additionally account for storage of intermediate results of CERA ex-
pressions to avoid their re-computation in later evaluation steps. To this end, query
plans with so-called materialization points are introduced in this section. A material-
ization point is a relation which saves and updates the results of a CERA expression
instead of computing them anew in each evaluation step.

Definition 0.6 (Query plan with materialization points). A query plan is a se-
quence QP = (M) :=Qq,...,M, := Q,) of materialization point definitions M; :=
Q;. M; is called a materialization point. Q; is either a basic stream,* a CERA (sub-
)Jexpression or a union Ry U...UR,, of materialization points. Each materialization
point M; is defined only once in QP, i.e., M; # M for all 1 <i < j < n. The materi-
alization point definitions must be acyclic, i.e., if M; occurs in Q; then j < i for all
1<i<mandalll <j<n.

Since a query plan is acyclic, its semantics is straightforward: compute the results
of its expressions from left right, replacing references to materialization points with
their (already computed) result.

Fire; := Cf(fire{area{var A}} ](
W[[begin,end] — st](
omax{s.end,t.end} — min{s.begin,t.begin} < 1 min|(
O|s.end < t.begin](
o|[T > 40|(
Smokes x Tempy)))))

Burbt,downb = Cf(burntdown{sensor{var S ](
WU[[begin,end] — nlIiLIv](
o[T > 40|( B
(Temp,, X[i:from-end[n,12 sec]](E)) Xigy Temp,)))

X
AVg*tempa = C[ avg_temp{sendor{var S} value{avg(all var T)}} ](
w|[begin,end] — mUillw](
(Tempy, ™ X[ i: from-start-backward[m,1 min] ](E)) Migw Tempy,))
Fig. 9 Query plan for the program P in Figure 1

Figure 9 shows a query plan for the program P. The plan can be significantly
improved. First, it does not account for the materialization of shared subqueries.

# When translating an XChange"Q program, the basic streams are the incoming event stream E and
the auxiliary streams for relative timer events.
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Relations Temp,, in the second expression and Temp,, in the third expression are
equal except for the names of time attributes and event references, i.e., Temp,, =
p[w.begin — n.begin,w.end «— n.end,w.ref < n.ref](Temp,,). (Compare their sim-
ple event queries in Figure 2.) But the same tuples of the relations are computed and
saved twice. To avoid this, we introduce a new relation Temp,,; (where n’ is a fresh
event identifier), save all the respective tuples only once in it, and use this relation
in both expressions.

The same holds for the relations Temp,, in the second expression and Temp,, in
the third expression, i.e., Temp, = p[v.begin «— m.begin,v.end — m.end,v.ref —
m.ref](Temp,,). We use the relation Temp,, (where m’ is a fresh event identifier)
in both expressions.

Second, selections should be as near to their respective relations as possible to re-
duce the number of tuples which must be further considered (e.g., joined with tuples
of other relations). This optimization technique, usually called “push selection”, is
adopted from the traditional relational algebra. To this end we apply the selection
o|T > 40] to the relation Temp; before Temp; is joined with the relation Smokes in
the first expression of the query plan. We analogously modify the second expression
of the query plan.

Third, intermediate results of a query should be materialized to avoid their re-
computation in later evaluation steps. For example, in the first query, if a new event
arrives and is saved in the relation Smokes we have to compute 6[T > 40](Temp)
anew in order to join it with the changed relation Smokes. To avoid this re-
computation we define a new materialization point A; := [T > 40](Temp;) and
join it with the relation Smokes. To avoid re-computations in the other expressions
we introduce the materialization points By j,Cpy, and Dy ;. Consider Figure 10 for
the improved query plan.

So far it might seem that this is just an insignificant change in notation. How-
ever, it will become clear in the next section that only those intermediate results
are “materialized”, i.e., remembered across individual evaluation steps, that have a
materialization point. Therefore the query plans in Figures 9 and 10 are different in
terms of incremental evaluation, although of course both yield the same results for
the program P. Note that the efficiency of a query plan depends on characteristics of
its event streams and there is no general principle to tell which one is more efficient.

3.4.3 Finite Differencing

Evaluation of an event query program, or rather its query plan QP, over time is a
step-wise procedure. A step is initiated by some base event (an event which is not de-
rived by a rule) happening at the current time, which we denote now. Then for each
materialization point M in QP, the required output for this step is the set of all com-
puted answers (tuples r representing materialized intermediate results and derived
events) that “happen” at this current time now, i.e., where end(occtime(r)) = now.
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Fire := Cf(fire{area{var A}} ](
W[[begin,end] — st](
omax{s.end,t.end} — min{s.begin,t.begin} < 1 min|(
O|s.end < t.begin](
Smokes x Ay)))), where

A := o[T > 40](Temp,)

X
BurntdeWnb = C[ burnt_down{sensor{var S}} | (
Ul[begin,end] — n' Lilim'](
Br i Xiow Tempy,)), where

By =Cp ™ X[ i: from-end[n’,12 sec] ](E)= where
Cp :=o[T > 40](Tempy)

X
Avg,tempa = C[ avg-temp{sendor{var S} value{avg(all var T)}} ](
U[[begin,end] — m' Uilin](

Dy, ™;gn Temp,)), where
Dri:=Tempy, & X[ i: from-start-backward[m’,1 min] ](E)7

Fig. 10 Improved query plan for the program P in Figure 1

In other words in each step, we are not interested in the full result of M, but only in
AM := 6[ENDq = now|(M).>

A naive, non-incremental way of query evaluation would be: Maintain a stored
version of each base event relation across steps. In each step simply insert the
new event into its base relation and evaluate the query plan from scratch ac-
cording to its non-incremental semantics (previous section). Then apply the se-
lection 6[ENDq = now]| to each materialization point to output the result of the
step. This is, however, inefficient since we compute not only the required result
AM = o[ENDq = now](M), but also all results from previous steps, i.e., also
6[ENDq < now|(M).

It is more efficient to use an incremental approach, where we (1) store not only
base relations but also some intermediate results, namely those of each materializa-
tion point M across steps and then (2) in each step only compute the changes of M
that result from the step. It turns out that due to the temporal preservation of CERA
(see Theorem 0.1), the change to each M involves only inserting new tuples into M
and that these tuples are exactly the ones from AM.

We can compute AM efficiently using the changes AR; of the input relations R;
of M := Q, together with oR; = 6[ENDq < now|(R;), their materialized states from

5 We assume for simplicity here that the base events are processed in the temporal order in which
they happen, i.e., with ascending ending timestamps. Extensions where the order of events is
“scrambled” (within a known bound) are possible, however. Note that while the time domain can
be continuous (e.g., isomorphic to the real numbers), the number of evaluation steps is discrete
since we assume a discrete number of incoming events.
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the previous evaluation steps.® Using finite differencing, we can derive a CERA-
expression AQ so that AQ involves only AR; and oR; and AQ = AM (for each
step). Finite differencing pushes the differencing operator /A inwards according to
the equations in Figure 11.

AQX(Q) =Q%(AQ) oQ*(Q) =Q%(cQ)
ACX(Q) =CcX(~Q) oCX(Q) =CX(Q)
Aoc(Q) = 0c(AQ) ooc(Q) = 6¢(oQ)
Apa(Q) =pa(LQ) opa(Q) =pa(eQ)
Amp(Q) =71p(AQ) omp(Q) = p(0Q)
Apn(Q) = (LQ) oum (Q) = (oQ)
AQ x Q) =AQ; xoQ UAQ; X AQ U o(Q; ¥ Q) =0Q; xoQy
UoQ; X AQ,

A(Ql Xidj Qz) = AQl Xiaj OQz UAQl Pl AQQ O(Q1 Xi3j Qz) :OQl Xi3; OQz
AQ Kinj Qp) = AQ) Kimj 0Qy UAQ) Kioj AQy o(Q) i) Qu) = oQ) x;5; 0Qy

Fig. 11 Equations for finite differencing

Finite differencing is a method originating in the incremental maintenance of ma-
terialized views in databases, which is a problem very similar to incremental event
query evaluation. We refer the reader to [11, 7] for more information on incremental
evaluation and garbage collection enabled by CERA.

4 A Declarative Semantics for Event Query Languages

Section 4.1 explains the purpose and necessity of a declarative semantics for a
programming language in general and its desiderata for an EQL in particular.
Section 4.2 is devoted to the formal definition of the declarative semantics of
XChangeFQ with a model-theoretic approach in order to prove the correctness of
its operational semantics (Section 5).

4.1 Purpose, Necessity and Desiderata

In general, a declarative semantics relates the syntax of a language to mathematical
objects and expressions that capture the intended meaning. In other words, a declar-
ative semantics focuses on expressing what a sentence in the language means, rather

6 Note that some previous results can become irrelevant in later evaluation steps, i.e., they can-
not contribute to new answers any more. Therefore they should be deleted to speed up the later
evaluation steps. See [7] for the formal definition of garbage collection enabled by CERA.
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than how that sentence might be evaluated (which is the purpose of an operational
semantics).

A declarative semantics thus provides a convenient basis to prove the correct-
ness of various operational semantics. In particular in the area of query languages
there are usually a myriad of equivalent ways to evaluate a given query, that is, of
possible operational semantics. If, on the other hand, the formal semantics of a lan-
guage were specified only in an operational way, proving the correctness of other
operational semantics would be significantly harder: since an operational semantics
focuses on how the result is computed not on what is the result, we have to reason
about the equivalence of two computations. When we prove correctness of an op-
erational semantics with respect to a declarative semantics, we instead just reason
about properties of the output of one computation. This use of a declarative seman-
tics to prove correctness of evaluation methods is particularly useful in research on
optimization.

A declarative semantics have often been neglected in EQLSs so far. Our goal is a
declarative semantics that is natural on event streams, i.e., does not require a con-
version from streams to relations and back, like SQL-based EQLs do [3, 12, 16],
and as declarative as possible and thus avoids any notion of state.

Because of these reasons we specify the declarative semantics by a Tarski-style
model theory with accompanying fixpoint theory in Section 4.2. This approach has
another important advantage, namely it accounts well for data in events and rule
chaining, two aspects that have often been neglected in the semantics of EQLSs till
now.

4.2 Model Theory and Fixpoint Theory

While the model-theoretic approach is well-established for traditional, non-event
query and rule languages, its application to EQLs is novel and we highlight the
extensions that are necessary in this section. We also show that our declarative se-
mantics is suitable for querying events that arrive over time in unbounded event
streams and illustrate this statement by the declarative semantics of the XChangeFQ
program P in Figure 1.

The idea of a model theory, as it is used in traditional, non-event query lan-
guages [15, 1, 17], is to relate expressions to an inferpretation by defining an en-
tailment relation. Expressions are syntactic fragments of the query language such
as rules, queries, or facts viewed as logic sentences. The interpretation contains all
facts that are considered to be true. The entailment relation indicates whether a given
interpretation entails a given sentence in the language, that is, if the sentence is log-
ically true under this interpretation. For the semantics of a given query program
and a set of base facts are those interpretations of interest that (1) satisfy all rules
of the program and (2) contain all base facts. Because it satisfies all rules, such an
interpretation particularly contains all facts that are derived by rules. We call these
interpretations models.
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When we replace facts that are true with events that happen, this approach can
also be applied to EQLs. The problem, of course, is that events are associated with
occurrence times and event queries are evaluated over time against a potentially
infinite event stream. At each time point during the evaluation we know only which
events have happened (i.e., been received in the event stream) so far, not any events
that might happen in the future. We start of with some basic definitions that explain
how we represent time and events in the semantics of XChangeF?.

Time is represented by a linearly ordered set of time points (T, <). The set
of time intervals is TI = {r = [begin,end| | begin € T,end € T,begin < end}.
For an interval 7, begin(r) denotes its beginning and end(¢) its end, ie., t =
[begin(t),end(t)]. We omit # in the notation if the interval is clear from the context,
i.e., we write begin and end instead of begin(t) and end(r) respectively.

The set of data terms is denoted DataTerms (see [17, 13] for the full grammar
of Xcerpt data terms). Recall that data terms are used to represent data and type
information for events. An event is a tuple of a time interval ¢ and a data term e,
written ¢’. The set of events is denoted Events; Events = DataTerms x TI. Let E C
Events denote an event stream and EventIdentifiers the set of event identifiers.

To explain how simple event queries are matched against incoming events and
how events derived by rules are constructed, we have to explain some concepts
of the Web query language Xcerpt, whose query and construct terms are used in
XChangeFQ. We try to keep these explanations brief and refer the reader to [9, 17]
for details.

An Xcerpt query term is a pattern that accesses data to extract relevant portions
of it. An Xcerpt construct term is a pattern that constructs new data. Consider
the first rule in Figure 1. fire{area{var A}} is a construct term, smoke{{area{{var
A}}}} and temp{{ area{{var A}},value{{var T}}}} are query terms. Since query
and construct terms of a rule contain variables (A and T in this case) that are bound
to values during the application of the rule, we need the concept of substitution.

Let Vars denote the set of variable names. A substitution o is a partial mapping
from variable names to data terms, i.e., 0 : Vars — DataTerms. We write substitu-
tions as 0 = {X| — vy,..., X, — v, }, meaning that o(X;) =v; fori € {1,...,n} and
oY)=LforY &{Xi,....X,}.

The application of a substitution ¢ to a query term ¢ replaces the occurrences
of variables V in g with their values 6(V). The result is denoted 6 (g). If o(g) is a
ground term, i.e., a term without variables, we call o a grounding substitution of
q.

Simple event queries in XChangeFQ are Xcerpt query terms that are matched
against data terms e of incoming events ¢'. This matching of simple event queries is
based on simulation between ground terms as defined for Xcerpt [9, 17]. Intuitively,
a ground query term ¢ simulates into a data term d, denoted g < d, if the nodes
and the structure of the graph that g represents, can be found in the graph of d.
This simulation relationship of Xcerpt is especially designed for the variations and
incompleteness in semi-structured data.

A non-ground query term ¢’ simulates into a data term d, ¢’ < d, if there is a
grounding substitution ¢ such that 6(¢’) < d. Note that for a given non-ground
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L,o,7=4 iff exists ¢ with e €1,¢ =1t and o(q) e

1,6,7 = (eventi:q) iff exists ¢ with 7(i) = ¢’ ¢’ €1,/ =t and 6(q) < e
ME (g1 ANg) iff exist #; and 1, witht =#; Ut, and M |= qt,‘ and M = q’z2
ME (@ Va) i M = g} or M =,

I,0,7 = (Q where C)' iffI,0,7 = Q" and Wy (C) = true

1,0,7 = (while j: not g)' iff exists ¢ with 7(j) = ¢, ' =1,

and not exist #” C ¢ such that I,0,7T = q"

1,6,7 = (while j: collect q)' iff exists ¢! with 7(j) =", ¢ =1,
and exist ¢ and ¢ C ¢ such that 1,6,7 = ¢'"

I,o,7 = (h—B) iff for all T with X; :={o | [,0,T=B'} Z;=0o0r Z;(h) C I

Fig. 12 Entailment relation defining the model theory for XChangeFQ

query term ¢’ and a given data term d, there are often several substitutions that
allow a simulation between the two. We denote the substitution set of ¢’ and d by
Z:={o| o) = d}.

An XChangeFQ rule head contains an Xcerpt construct term /4 for constructing
new, derived events. This construction uses the substitution set X obtained from the
evaluation of the query in the respective rule body to replace variables with values.
Application of X to h, defined in [17], returns a set of data terms representing derived
events.

Now we can define interpretation and entailment, which are the core of the model
theory of XChangeFQ.

Definition 0.7 (Interpretation). An interpretation for a given XChange®? query,
rule, or program is a 3-tuple M = (I, 0, T) where:

1. 1 C Events is the set of events ¢’ that “happen,” i.e., are either in the stream of
incoming events or derived by some rule.

2. o is a grounding substitution for (data) variables.

3. 7 : Eventldentifiers — Events is a substitution for event identifiers.

The substitution 7 for event identifiers is, compared to model theories of tra-
ditional, non-EQLs, unusual. It is needed for evaluating temporal conditions and
relative timer events. Since T signifies the events that contribute to the answer of
some query, we also call it an “event trace.”

The entailment (or satisfaction) M = F' of an XChangeFQ expression F over a
time interval ¢ in an interpretation M is defined in Figures 12 and 13. (We require
the programs to be range restricted [8].)

Figure 12 defines the more salient cases of the model theory. For the sake of
brevity, the expressions in this figure use binary “and” with symbol A and binary
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1,0,7 = (event i : from-end[ j,d])" iff exists e’ with T(j) = ¢,
7(i) = rel-timer-event(e,t’)’,
begin(t) = end(t'), end(t) = end(t') +d

1,0,7 = (event i : from-start-backward| j,d])" iff exists ¢’ with T(j) = ¢,
7(i) = rel-timer-event(e,t’)’,
begin(t) = begin(t') — d, end(t) = begin(')

Fig. 13 Entailment of the relative timer events in XChangeF? used in Figure 1

Wo 1 (i before j) = true iff end(7(i)) < begin(t(j))

Wo t({i1,...,in} within d) = true iff E — B < d with E := max{end(t(i1)),...,end(t(in))}
and B := min{begin(t(i1)),...,begin(t(in))}.

Fig. 14 Fixed interpretation for conditions in the where clause used in Figure 1

“or” with symbol V instead of the multi-ary and{ ... } and or{ ... }. Also, rules are
written as h < B instead of DETECT h ON B END.

Figure 13 defines entailment of the relative timer events used in the program in
Figure 1. (See [11] for the complete version of the figure.) For the sake of brevity,
the prefix “timer:” and the keyword “event” within the relative timer specification
have been skipped.

Our entailment relation uses a fixed interpretation W for all conditions that can
occur in the where-clause of a query. This includes the temporal relations like before
as well as conditions on data such as arithmetic comparisons. This fixed interpre-
tation of the temporal conditions is another feature of our model theory that is not
common in model theories for traditional, non-EQLs.

W is a function that maps a substitution o, an event trace 7, and an atomic con-
dition C to a Boolean value (true or false). We usually write ¢ and 7 in the index
of W. W ¢ extends straightforwardly to Boolean formulas of conditions. Figure 14
gives the definitions of W for the temporal conditions of XChangeF? that have been
used in Figure 1. (See [11] for the complete version of the figure.) The definition of
W is deliberately left outside the “core model theory” to make it more modular and
demonstrate that it is easy to integrate further conditions or even a separate, external
temporal reasoner.

Recall our primary goal in specifying declarative semantics for XChangePQ:
given an XChangeFQ program P and an event stream E, we want to find out all
events that are derived by the rules of P. This means that we must find an interpre-
tation that contains the event stream E and satisfies all rules of P. Such an interpre-
tation is called a model.

Definition 0.8 (Model). Given an XChange®Q program P and a stream of incoming
events E, we call an interpretation M = (I, 5, 7) a model of P under E if
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e M satisfies all rules r = (h « B) € P for all time intervals ¢, i.e., M = r for all
t € Tl and all r = (h + B) € P, and
e M contains the stream of incoming events, i.e., E C I.

On close inspection of the entailment relation, we can see that o and 7T are ac-
tually irrelevant to whether a given interpretation M is a model or not; it depends
only on /. We therefore can identify the notion of a model with just the I part of an
interpretation, M = I.

Consider the XChange®Q program P in Figure 1 and the event stream

E ={ temp { area{a}, sensor{s}, value{40} } [60,63]

smoke { area {a} } [65.68]
70380] 3

temp { area{a}, sensor{s}, value{41} }
We assume timestamps to be time intervals. The bounds of the intervals denote
minutes since the beginning of the current 10-minutes-long-window. In this case
an event with timestamp [0,0] happens 10 minutes before an event with timestamp
[599,599]. The life-time of all events is restricted to the window they happened
within. These assumptions are not suitable for real-life applications but they help to
keep the example simple.
The interpretation

My ={
temp{area{a},sensor{s},value{40}} [60,63] , ﬁre{area{a}}[65’80] ,
smoke{area{a}}*, burnt_down{sensor{s}}}"*?,

temp{area{a},sensor{s},value{41}}[70’80] , avg,temp{sensor{s},value{40}}“0‘80]

is a model for P under E: by applying the recursive definition of = we can check
that M; |= 7' for all 7 € TL, r € P, and we also have E C M,. Note that each rule of
P derives exactly one complex event of M| and the timestamp of a complex event
comprises the timestamps of all events this complex event was derived from. Note
also that the second temperature measurement does not fall into the time window
for aggregation of the last rule of P. That is why the avarage temperature is 40, not
40,5.
The interpretation

My ={
temp{area{a},sensor{s},value{40}}[60’63] , ﬁre{area{a}}[“’so] ’
smoke{area{a}} [65.68] ) burnuic)wn{sensor{s}}}[70’92] ;

70,80] 10,80]
)

temp{area{a},sensor{s}, value{4]}}[ , avg_temp{sensor{s}, value{40}}[

temp{area{b},sensor{t},value{ZO}}[1’2]
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where we “added” the event temp{area{b},sensor{t},value{ZO}}[1’2] in compari-
son to My, is also a model of P under E. Clearly, however, M, is not the model we
intend for our program to have, because the “additional” event is “unjustified.” More
precisely, this event is neither in the event stream E nor derived by a rule of P. M;
is the intended model, because all events in it are justified.

To unambiguously settle on a single, intended model, we will use the fixpoint
theory which builds upon the model theory. Note that the problem of specifying the
intended model out of the (infinitely) many possible models is also a common part
of the traditional model-theoretic approach. It is not specific for EQLs.

The intended model is the (least) fixpoint of the immediate consequence operator,
which derives new events from known events (based on the model theory). Non-
monotonic features such as negation and aggregation introduce well-known issues
when they are combined with recursion of rules. In particular, there might be no
fixpoint or several. To ensure that a single fixpoint exists, we restrict XChange®Q
programs to be stratifiable. Stratification restricts the use of recursion in rules by
ordering the rules of a program P into so-called strata (sets P; of rules with P =
Py ¥---wWPF,) such that a rule in a given stratum can only depend on (i.e., access
results from) rules in lower strata (or the same stratum, in some cases).

Restriction to stratifiable programs is a common approach from logic program-
ming introduced first in [2]. But in contrast to logic programming, in CEP three
types of stratification are required:

1. Negation stratification: Events that are matched by a negative simple event query
of a rule r (e.g., not temp{{sensor{{var S}}}} of the second rule in Figure 1)
may only be constructed by rules in lower strata than the stratum of r. Events
which are matched by a positive simple event query of a rule r may be constructed
by rules in lower strata or the same stratum as that of r.

2. Grouping stratification: Rules r with grouping constructs like all in the construc-
tion may only query events constructed by rules in lower strata than the stratum
of r. Therefore the last rule in Figure 1 must be in a higher stratum then all rules
the head of which is matched by temp{{sensor{{var S}}, value {{var T}} }}.

3. Temporal stratification: If a rule r defines a relative timer event, e.g., timer: from-
end [event n, 12 sec] in the second rule in Figure 1, then the anchoring event
(here: n) may only be constructed by rules in lower strata than the stratum of r.

While negation and grouping stratification are fairly standard, temporal strati-
fication is a requirement specific to complex event query programs like those ex-
pressible in XChangeF?. We are not aware of former consideration of the notion of
temporal stratification. See [11] for the formal definitions of the notions.

The basic idea for obtaining the fixpoint interpretation of a stratifiable XChange®Q
program is to apply the rules stratum by stratum: first apply the rules in the lowest
stratum to the incoming event stream, then apply the rules in the next higher stratum
to the result, and so on until the highest stratum. This requires the definition of the
immediate consequence operator Tp for an XChangePQ program.

Definition 0.9 (Immediate consequence operator). The immediate consequence
operator Tp for an XChange®Q program is defined as:
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Tp(I) =1U{¢" | there exist arule h < B € P, and 7 such that e € X;(h)
where Z;:={o |l,0,T =B} }

The operator is obviously monotonic [8]. Hence according to Knaster-Tarski theo-
rem, it has a fixpoint [8]. The repeated application of 7p until a fixpoint is reached
is denoted 7. A fixpoint means here an interpretation / such that 7p(I) = I.

Definition 0.10 (Fixpoint interpretation). Let P, = | j<jPj denote the set of all

rules in strata P; and lower. The fixpoint interpretation Mp g of an XChange®? pro-
gram P with stratification P = P; & - - - 0 P, under event stream E is defined by com-
puting fixpoints stratum by stratum:

ceey

Mpg = My = T2(M,,_1).

The fixpoint interpretation Mpg is also called the intended model of P under E and
specifies the declarative semantics.

Consider, for example, the XChange®Q program P in Figure 1 and the event
stream E above.

My=E = { temp { area{a}, sensor{s}, value{40} [6063]

smoke { area {a} } [65’68],

temp { area{a}, sensor{s}, value{41} } [70,80] }=T,°(E)
Mpg =M; =My U { fire { area {a} } [65,80]

burnt_down { sensor {s} } } [7092]

avg_temp { sensor {s}, value{40} } 108 }= Tﬁ (Mo)

In addition to giving unambiguous semantics to stratifiable XChange®Q pro-
grams, the fixpoint theory also describes an abstract, simple, forward-chaining eval-
uation method, which can easily be extended to work incrementally as it is required
for event queries.

5 Two Semantics, no Double Talk

We now want to show that semantics of XChangeEQ, the declarative one from Sec-
tion 4.2 and the operational semantics given by the translation to CERA in Sec-
tion 3.3, are equivalent. In other words we now want to show the correctness of
the translation of a normalized rule 4 < B.” We only give the main ideas here, for
details see [11].
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We consider only hierarchical programs with a single rule.” Recall that the
declarative semantics for a program {h < B} with a single rule & < B is given
by M, py - Therefore we have

My g g = T{‘LLB} (E) =Thpy(E)

meaning that the semantics is given by applying the fixpoint operator to the program
{h < B} and the event stream E once. That is, the declarative semantics of a single
rule & < B is given by:

Th—p)(E) = EU{e' | 3T such that e € X¢(h) where Z; := {0 | I,0,7T = B'}}

Let O be the CERA expression that translates the rule # < B. We identify events ¢’
with tuples r of Q(E) and E by r(begin) = begin(t), r(end) = end(t), r(term) = e.
In the other direction we identify tuples r with events r(rerm)lr(besin).r(end)] - with
this identification correctness of the translation means that

Q(E)UE =Ty py(E).
For this it suffices to show that
Q(E) ={¢' | It such that e € X (h) where X, :={o |I,0,T =B'}}  (*)

Next, we have to find a correspondence between the elements r of the relations
S(E) generated by subexpressions S of Q, i.e., By, ...,B,,C defined in Section 3.3,
and the combined o, 7 used by the declarative semantics in Section 4.2. In other
words we want to have a corresponding tuple rs ; for each pair ¢, 7 and a corre-
sponding pair o, T, for each tuple r. Figure 15 shows the correspondence.

We use this correspondence to show a lemma about each subexpression S of O
that translates a subexpression F of the rule body B (see Figure 8).

Lemma 0.1 (Equivalence of subexpressions). Let F' be the subexpression trans-
lated by S and be t = occtime(r). Then following equivalence holds:

reS(E) & E,o.,7F=F

The left to right part of Lemma 0.1 is soundness (“results produced by the oper-
ational semantics are results according to the declarative semantics”). The right to
left part is completeness (“results according to the declarative semantics are actually
produced by the operational semantics”).

Consider the definitions of B, and C in Figure 8. The proof of Lemma 0.1 is done
by induction on n over B,, and then by additionally showing that Lemma 0.1 also
holds for C.

7 Note that the proof for a hierarchical program with a single rule immediately applies to arbitrary
hierarchical programs. The reason is that there exits a topological ordering of the rules for hierar-
chical programs. Applying the proof for a single rule to the rules of the hierarchical program in
topological order yields a proof for arbitrary hierarchical programs.



26 Michael Eckert et al.

r(X) =0o(X) for all X € schgaia(S)
joref)  =ref(t(j)) foralliref € schyr(S)
Jj.begin) = begin(t(j)) for all i.begin € schyme(S)
jeend) = end(t(j) for all i.end € schyme(S)
X) =1 otherwise

r

(
(
r(
(
(

r

~

ot :
o (X) =r(X) forall X € schyg(S)
. (X) =X  otherwise
o (i) = si(Zerm)[“’f(b"g"”>’si(h"gi")] for all i.ref € schyef(S) , where s; := ref ~! (i.ref)
T nG) =1 otherwise

29

3]

Fig. 15 Correspondence between tuples and substitutions

The proof of (*) is done applying Lemma 0.1 to rule body B as used in (*) and the
translation C of B as defined in Figure 8. The details of the proof are given in [11].

6 Conclusion and Outlook

In this chapter, we have formally defined the operational and declarative seman-
tics for XChangeFQ, illustrated them on the sensor network use case and proved
their equivalence. Both semantics are generic and easily transferable to an arbitrary
EQL. On the bases of the approach described here, some other points essential for
CEP can be immediately implemented. Two of them, garbage collection and query
optimization, are addressed in this section.

As mentioned above, evaluation of complex event queries over time involves
storing events in materialization points. Naive query evaluation simply stores all
events forever. Since the event stream is not bounded into the future every naive
query evaluation engine can run out of memory sooner or later. Therefore there is a
need for garbage collection of irrelevant events, i.e., events which cannot contribute
to the derivation of new events (any more). We refer the reader to [7] for an approach
on static determination of temporal relevance for incremental evaluation of complex
event queries. Temporal relevance is particularly suitable for garbage collection be-
cause one of the main principles of a reasonable CEP engine is that no rule must
wait for an event forever.

The so-called general relevance of events including temporal, causal, structural
relevance as well as relevance with regards to event data, addresses query optimiza-
tion. In addition to the consideration of general relevance, automatic query opti-
mization is possible by means of application specific knowledge formalized as a
model. With the help of the model one can, e.g., recognize the unsatisfiability of a
(sub-) query in order to suspend or delete it and to avoid the storage of irrelevant
events.
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