
Acknowledgements

This research has been founded in part by the European Commission within the the
project “EMILI — Emergency Management in Large Infrastructures” under grant
agreement number 242438 and by the German Research Foundation (Deutsche
Forschungsgemeinschaft) within the project “QONCEPT — Query Optimization
in Complex Event Processing Technologies” under referencenumber BR 2355/1-1.

v

Contents

A CEP Babelfish: Languages for Complex Event Processing and
Querying Surveyed . 1
Michael Eckert, François Bry, Simon Brodt, Olga Poppe, andSteffen
Hausmann

1 Introduction 1
2 Terminology 3
3 Identification of Language Styles 5
4 Composition Operators 5

4.1 General Idea .. 5
4.2 Sensor Network Use Case . 6
4.3 Summary . 8

5 Data Stream Query Languages 8
5.1 General Idea .. 8
5.2 Sensor Network Use Case . 9
5.3 Summary . 11

6 Production Rules 11
6.1 General Idea .. 11
6.2 Sensor Network Use Case . 12
6.3 Summary . 13

7 Timed State Machines 14
7.1 General Idea .. 14
7.2 Sensor Network Use Case . 14
7.3 Summary . 16

8 Logic Languages 16
8.1 General Idea .. 16
8.2 Sensor Network Use Case . 17
8.3 Summary . 19

9 Application Areas of the Language Styles 19
10 Combination of Different Language Styles 20
11 Conclusion 20
References 22

vii

viii Contents

Index 27

A CEP Babelfish: Languages for Complex Event
Processing and Querying Surveyed

Michael Eckert, François Bry, Simon Brodt, Olga Poppe, andSteffen Hausmann

Abstract Complex Event Processing (CEP) denotes algorithmic methods for mak-
ing sense of events by deriving higher-level knowledge, or complex events, from
lower-level events in a timely fashion and permanently. At the core of CEP are
queries continuously monitoring the incoming stream of “simple” events and rec-
ognizing “complex” events from these simple events. Event queries monitoring in-
coming streams of simple events serve as specification of situations that manifest
themselves as certain combinations of simple events occurring, or not occurring,
over time and that cannot be detected solely from one or partsof the single events
involved.
Special purpose Event Query Languages (EQLs) have been developed for the ex-
pression of the complex events in a convenient, concise, effective and maintainable
manner. This chapter identifies five language styles for CEP,namelycomposition
operators, data stream query languages, production rules,timed state machines,
and logic languages,describes their main traits, illustrates them on a sensor net-
work use case and discusses suitable application areas of each language style.

1 Introduction

Event-driven information systems demand a systematic and automatic processing
of events. Complex Event Processing (CEP) encompasses methods, techniques, and
tools for processing eventswhile they occur, i.e., in a continuous and timely fashion.
CEP derives valuable higher-level knowledge from lower-level events; this knowl-

Michael Eckert
TIBCO Software, Balanstr. 49, 81669 Munich, Germany,
e-mail:meckert@tibco.com

François Bry, Simon Brodt, Olga Poppe, and Steffen Hausmann
Institute for Informatics, University of Munich, Oettingenstr.67, 80538 Munich, Germany,
e-mail:{bry,brodt,poppe,hausmann}@pms.ifi.lmu.de

1

2 Michael Eckert et al.

edge takes the form of so called complex events, that is, situations that can only be
recognized as combinations of several events.

The term Complex Event Processing was popularized in [45]; however, CEP
has many independent roots in different research fields, including discrete event
simulation, active databases, network management, and temporal reasoning. Only
in recent years, CEP has emerged as a discipline of its own andas an important
trend in the industry. The founding of the Event Processing Technical Society [20]
in early 2008 underlines this development.

Important application areas of CEP are the following:
Business activity monitoringaims at identifying problems and opportunities in

early stages by monitoring business processes and other critical resources. To this
end, it summarizes events into so-called key performance indicators such as, e.g.,
the average run time of a process.

Sensor networkstransmit measured data from the physical world to, e.g., Super-
visory Control and Data Acquisition systems that are used for monitoring of indus-
trial facilities. To minimize measurement and other errors, data of multiple sensors
has to be combined frequently. Further, higher-level situations (e.g., fire) usually
have to be derived from raw numerical measurements (e.g., temperature, smoke).

Market datasuch as stock or commodity prices can also be considered as events.
They have to be analyzed in a continuous and timely fashion inorder to recognize
trends early and to react to them automatically, for example, in algorithmic trading.

The situations (specified as complex events) that need to be detected in these ap-
plications and the information associated with these situations are distributed over
several events. Thus CEP can only derive such situations from a number of cor-
related (simple) events. To this end many different languages and formalisms for
querying events, the so called Event Query Languages (EQLs), have been devel-
oped in the past.

There are also some surveys in the realm of CEP. For example, in [55, 54], rule-
based approaches for reactive event processing are classified according to their ori-
gins. In [11], EQLs are divided into groups depending on the kind of system archi-
tecture they are used in. The survey of EQLs described in [63]distinguishes between
a non-logic and logic-based view on handling the event triggered reactivity. There
are also comparisons of different single CEP products, e.g., [32]. Both the multi-
tude of EQLs and the diversity of surveys on event processingand reactivity can
be attributed in part to the fact that CEP has many different roots and is only now
recognized as an independent field.

To the best of our knowledge, there are no comprehensive surveys so far that
(1) classify different EQLs into groups according to the language “style” or “flavor”
and (2) compare the groups by means of the same example queries with respect
to their expressivity, ease of use and readability, formal semantics, success in the
industry and some other features. This chapter surveys the state of the art in CEP
regarding these two points. Since CEP is a field that is very broad and without clear-
cut boundaries, this chapter focuses strongly on querying events. It concentrates on
EQLs that are known and specified at the outset. Other, less developed aspects of

Languages for CEP and Querying Surveyed 3

CEP such as detecting unknown events using approaches like machine learning and
data mining on event streams, are not discussed here.

The contributions of this chapter are:

1. Identification and abstract description of five language styles, namelycomposi-
tion operators, data stream query languages, production rules, timed state ma-
chines,andlogic languages

2. Illustration of each language style on a sensor network use case
3. Discussion on suitable application areas of each language style
4. Abstract description of some of the combined approaches

2 Terminology

Since CEP has evolved from many different research areas, a standard terminology
has not yet established and found broad adoption. For example, what is called a
(complex) event query might also be called a complex event type, an event profile,
or an event pattern, depending on the context. We will therefore devote this section
to the basic notions and our informal definitions of them.

An event is a message indicating that something of interest happens,or is con-
templated as happening. Events can be represented in different data formats such
as relational tuples, XML documents or objects of an object-oriented programming
language (e.g., Java).

In this chapter, we use the following presentation of events: event type(attribute
name1 (attribute value1), . . . , attribute namen (attribute valuen)). An event type
specifies an event structure, similar to a relational database schema specifying the
structure of tuples of a relation. For example,high temp(area)is an event type of an
eventhigh temp(area(a))indicating high temperature in areaa. In this event,area
is an attribute anda is its value. (In the following, capital letters denote variables
and small letters denote literals.) Anevent attribute is a component of the structure
of an event. It can be an entry of a tuple, an XML fragment, or a field of an object,
depending on the event representation. The set of attributevalues of an event is
calledevent data.

The formalism introduced here is by no means compelling. Onecould prefer
to use unnamed perspective identifying attribute values bytheir positions or use
any alternative event representation instead. Since in alllanguages proposed so far,
events are flat or structured records or tuples, the formalism retained for this chapter
is no restriction.

Since events happen at particular time which is essential for event processing,
all events must have a possibly implicit attribute called event occurrence time. An
event occurrence timeis a time point or time interval indicating when this event
happens. A time interval is described by two timestamps indicating its bounds. A
time point is described by a single timestamp. We shall see below that using time
points or time intervals has far reaching consequences for event processing.

4 Michael Eckert et al.

Timing and event order are difficult issues of distributed systems. Each node
(computer, device, etc.) in a distributed system has its ownlocal clock and the
clocks of different nodes are hard to be synchronized perfectly [17]. Furthermore
the transmission time of messages varies depending on sender and receiver, routing,
network load, and other factors. Therefore the reception order of some events may
differ from their emission order [42]. These issues are ignored in this chapter for the
sake of simplicity.

Another characteristical feature of events is event identification. For example,
one can assign an identifiert to the eventhigh temp(area(a)), written in the follow-
ing t : high temp(area(a)). We will see the advantages of this feature below.

Events are sent by event producers (e.g., sensors) to event consumers (e.g., Su-
pervisory Control and Data Acquisition system) on so calledevent streams.

In order to react to an evente (e.g., turn on air conditioning in an area if an event
indicating high temperature in the area arrives) or to derive a new event from another
evente (e.g., derive an event indicating high temperature from an event containing
a temperature measurement if the measurement is consideredto be high), an event
query which matchese is specified in an event query language. AnEvent Query
Language (EQL) is a high level programming language (possibly of limited ex-
pressivity) for querying events. Asimple event queryis a specification of a certain
kind of singleevents by means of an event query language. Acomplex event query
is a specification of a certaincombinationof events using multiple simple event
queries and conditions describing the correlation of the queried events.

A simple eventis either an event arriving on the event stream or an event derived
by a simple event query (i.e., from asingleevent). Acomplex eventis an event
derived by a complex event query (i.e., from a certaincombinationof at least two
events occurring or not occurring over time). In EPTS Glossary [20] many other
kinds of events are defined, such as composite event, virtualevent, derived event,
raw event and some others.

Note that the occurrence time of a complex eventecomprises the occurrence time
of all eventse it has been derived from. For example, a complex eventf:fire(area(a))
indicating fire can be derived from two simple eventss:smoke(area(a))and t:
high temp(area(a))indicating smoke and high temperature respectively.f begins
as soon ass or t begins and it ends as soon as both simple events are over.

The derivation of complex events is called Complex Event Processing.Complex
Event Processing (CEP)denotes algorithmic methods for making sense of base
events (low-level knowledge) by deriving complex events (high-level knowledge)
from them in a timely fashion and over periods of time.

These are the most important notions in the field of event processing. In this
chapter we will also need some other notions which will be informally introduced
before using.

Languages for CEP and Querying Surveyed 5

3 Identification of Language Styles

To bring some order into the multitude of EQLs, we try to grouplanguages with a
similar “style” or “flavor” together. We will focus on the general style of the lan-
guages and the variations within a style, rather than discussing each language and
its constructs separately. It turns out most approaches forquerying events fall into
one of the following five categories:

1. languages based on composition operators (sometimes also called composite
event algebras or event pattern languages),

2. data stream query languages (usually based on SQL),
3. production rules,
4. timed (finite) state machines, and
5. logic languages.

As we will see, the first, the second and the fifth approaches are languages ex-
plicitly developed for specifying event queries, while thethird one is only a clever
way to use the existing technologies of production rules to implement event queries.
Similarly, the fourth approach is the use of an established technology to model event
queries in a graphical way.

In Sections 4–8, we will describe each language style individually, mentioning
the respective important languages from the research and industry. We will also
discuss the strengths and weaknesses of each style and illustrate them on a sensor
network use case which can be implemented using, e.g., TinyDB [46]. Section 9
summarizes the comparison by a discussion on suitable application areas of each
language style. It is further worth mentioning that many industry products follow
approaches where several languages of different flavors aresupported or a single
language combines aspects of several flavors. Section 10 will therefore be devoted
to hybrid approaches. Section 11 concludes this chapter.

4 Composition Operators

4.1 General Idea

The first group of languages that we discuss builds complex event queries from sim-
ple event queries using composition operators. Historically, these languages have
their roots primarily in Active Database Systems [58], though newer systems like
Amit [3] run independently from a database. Some examples include: the COM-
POSE language of the Ode active database [29, 30, 31], the composite event detec-
tion language of the SAMOS active database [27, 28], Snoop [16] and its successor
SnoopIB [1, 2], GEM [47], SEL [68], CEDR [6], ruleCore [65, 51], the SASE Event
Language [67], the original event specification language ofXChange [18, 12, 13],

6 Michael Eckert et al.

and the unnamed languages proposed in the following papers:[59], [49], [34], [14],
[7], [61, 60].

Complex event queries are expressed by composing single events using different
composition operators. Typical operators are conjunctionof events (all events must
happen, possibly at different times), sequence (all eventshappen in the specified or-
der), and negation within a sequence (an event does not happen in the time between
two other events). Consider the use of the operators in the sensor network use case
below.

4.2 Sensor Network Use Case

Since different composition-operator-based EQLs have very different and rather un-
readable syntax we formulate the example queries in pseudo code in Figure 1. The
pseudo code illustrates the idea of this kind of EQLs but it does not mean that each
of the queries in Figure 1 can be analogously formulated in every composition-
operator-based EQL.

Composition fire(area(A)) =(smoke(area(A))∧high temp(area(A)))1 min

Sequence fire(area(A)) =(smoke(area(A)); high temp(area(A)))1 min
or
fire(area(A)) = s:smoke(area(A)); hightemp(area(A)); s+1 min

Negation failure(sensor(S)) = t:temp(sensor(S)); not temp(sensor(S)); t+12sec

Aggregation –

Fig. 1 Example queries in pseudo code for composition operators

The first query in Figure 1 triggers fire alarm for an area when smoke and
high temperature are both detected in the area within 1 minute, in other words the
query derives a complex eventfire(area(A))from the two eventssmoke(area(A))and
high temp(area(A)). The eventssmoke(area(A))andhigh temp(area(A))are joined
on variableA. Their order does not matter but it is important that both events appear
within 1 minute indicated by the time window specification(. . .)1 min. This is a typi-
cal example of event composition realized by the conjunction operator∧ and a time
window specification.

The second example is similar to the first one but the events inthe event query
are connected by the sequence operator; denoting that the order of events is impor-
tant, i.e., the eventsmoke(area(A))must appear before the eventhigh temp(area(A)).
Only if the events appear within 1 minute and in the right order the complex event
fire(area(A))is derived.

Languages for CEP and Querying Surveyed 7

Alternatively if a composition-operator-based EQL supports event identification
and relative timer events, this query can be formulated by means of the event iden-
tifier s for the eventsmoke(area(A))and a relative timer events+1 min. In this case
an EQL must decide whether the complex eventf ire(area(A)) is derived after the
eventhigh temp(area(A)) or after the events+1 min.

Sequence operator is not as intuitive as it seems at first sight. Let A,B andC
be simple event queries. Under time point semantics(A;B);C is not equivalent to
A;(B;C), i.e., both queries do not yield the same answers. Letb,a,c be events arriv-
ing in this order and matchingB, A, andC, respectively. They yield an answer for
the queryA;(B;C) sinceb andc satisfy(B;C) with the occurrence time (point) ofc
which is later than that ofa. b happens beforea which is not allowed by the query
(A;B);C.

Under time interval semanticsA;(B;C) and(A;B);C are equivalent. They both
match eventsa,b,c arriving only in this order.(B;C) matchesb,c and has the oc-
curence time interval starting as soon asb begins and ending as soon asc ends.
FurthermoreA;(B;C) requires thata is over beforeb begins. This query matches
a,b,c arriving exclusively in this order. Analogously(A;B) matchesa,b and has the
time interval described by two time points, namely the beginof a and the end of
b. Consequently(A;B);C requires thatc begins afterb is over. This query can also
match only the eventsa,b,c arriving in this order. Hence, using time points or time
intervals has far reaching consequences [25].

The third example in Figure 1 shows how negation can be expressed by means of
composition operators. The query uses event identificationand relative timer events.
It demonstrates the necessity for event identification if two events of the same type
are used within one query and it has to be distinguished between them.

Assume all sensors of our network send temperature measurements every 12 sec-
onds. The third query detects a failure of a sensor when its measurement is missing,
i.e., the query derives a complex eventfailure(sensor(S))when there is an event
temp(sensor(S))which is not followed by another eventtemp(sensor(S))within 12
seconds.

Another feature which must be supported by an EQL is aggregation. Aggrega-
tion means collection of data satisfying certain conditions, analysis of the data and
construction of new data containing the result of the analysis. An example of aggre-
gation in our use case is the computation of the average temperature reported by a
sensor during the last minute every time a temperature measurement from the sen-
sor arrives. Such a query is unfortunately not expressible by means of composition
operators (compare Figure 1).

Nesting of expressions makes it possible to specify more complicated queries but
we restrict ourselves to simple examples which should illustrate the main ideas of
the language styles without embracing their whole expressivity.

8 Michael Eckert et al.

4.3 Summary

Many composition-operator-based EQLs support restrictions on which events should
be considered for the composition of a complex event. Event instance selection, for
example, allows selection of only the first or last event of a particular type [69, 3, 34].
Event instance consumption prevents the reuse of an event for further complex
events if it has already been used in another, earlier complex event [28, 69].

Composition operators offer a compact and intuitive way to specify complex
events. Particularly temporal relationships and negationare well-supported. Event
instance selection and consumption are features that are not present in the other
approaches. Yet, there are hidden problems with the intuitive understanding of op-
erators sometimes, e.g., several variants of the interpretation of a sequence (amongst
others, interleaved with other events or not). Further, event data (i.e., access to the
attribute values of an event) is often neglected in languages of this style, in particular
regarding composition and aggregation.

Currently only very few CEP products are based on composition operators,
among them IBM Active Middleware Technology (Amit) [3] and ruleCore [65, 51].

5 Data Stream Query Languages

5.1 General Idea

The second style of languages has been developed in the context of relational data
stream management systems. Data stream management systemsare targeted at sit-
uations where loading data into a traditional database management system would
consume too much time. They are particularly targeted at nearly real-time applica-
tions where a reaction to the incoming data would already be useless after the time
it takes to store it in a database. A typical example of data stream query languages
is the Continuous Query Language (CQL) that is used in the STREAM systems [5].
The general ideas behind CQL apply to a number of open-sourceand commercial
languages and systems including Esper [21], the CEP and CQL component of the
Oracle Fusion Middleware [52], and Coral8 [50]. See also [38, 44] for the recent
research in the field of data stream query languages.

Data stream query languages are based on the database query language SQL and
the following general idea: Data streams carry events represented as tuples. Each
data stream corresponds to exactly one event type. The streams are converted into
relations which essentially contain (parts of) the tuples received so far. On these
relations a (almost) regular SQL query is evaluated. The result (another relation) is
then converted back into a data stream. Conceptually, this process is done at every
point of time. Note that this implies a discrete time axis. (See however [36] for
variations.)

Languages for CEP and Querying Surveyed 9

For the conversion of streams into relations, stream-to-relation operators like
time windows such as “all events of the last hour” or “the last10 events” are used.
For the conversion of the result relation back into a stream there are three options:
“Istream” stands for “insert stream” and contains the tuples that have been added
to the relation compared to the previous state of the relation, “Dstream” stands for
“delete stream” and contains the tuples that have been removed from the relation
compared to its previous state, or “Rstream” stands for “relation stream” and con-
tains simply every tuple of the relation. In the following weonly use “Istream”.

5.2 Sensor Network Use Case

Figure 2 shows equivalent example queries as Figure 1 but in Continuous Query
Language (CQL). A CQL query is very similar to an SQL query. The FROM part
of a CQL query is a cross product of relations, the optional WHERE part defines
selection conditions, and the SELECT part is a usual projection.

For example, the FROM part of the first query in Figure 2 joins two relations
smokeandhigh tempwhich were generated out of event streams of typesmokeand
high temprespectively by means of time windows. Generally there are several types
of time windows. For the sake of brevity only two of them are explained here.

The first one is a simple sliding window. The resulting relation contains all stream
tuples of a particular type betweennow–dandnow wherenow is the current time
point andd is a duration such as “1 Minute” or “12 Seconds”. The syntax for a
sliding window of durationd isT [Range d]whereT is an event type and the name of
the resulting relation. For example, the notationsmoke [Range 1 Minute]produces
the relationsmokecontaining tuple representations of all events of typesmokewhich
happened in the last minute.

The second time window that we explain here is a now window. The resulting
relation contains only the stream tuples of a particular type with the occurrence
time now wherenow denotes the current time point. The syntax for this window
is T [Now] whereT is the event type and the name of the resulting relation. For
example, the result of the expressionhigh temp [Now] is the relationhigh temp
containing tuple representations of all events of typehigh tempwhich happened at
the current moment. Note thatT [Range 0 Minutes]is equivalent toT [Now].

Remember that the first query triggers fire alarm for an area when smoke and
high temperature were both detected in the area within one minute. This temporal
condition can be intuitively formulated by means of 1 minute-long simple sliding
windows restricting thesmokeand thehigh tempstreams. The join condition is
specified in the WHERE block of the query. Consider the first example in Figure 2.

When the order of queried events is important the same query becomes less intu-
itive. Consider the second example in the figure. The query triggers fire alarm for an
area when high temperature is being measured in the area now and smoke has been
detected in the same area during the last minute.

10 Michael Eckert et al.

Composition SELECT Istream s.area
FROM smoke [Range 1 Minute] s,

high_temp [Range 1 Minute] t
WHERE s.area = t.area

Sequence SELECT Istream s.area
FROM smoke [Range 1 Minute] s,

high_temp [Now] t
WHERE s.area = t.area

Negation SELECT Istream t1.sensor
FROM temp [Now] t1
WHERE NOT EXISTS (SELECT *

FROM temp [Range 12 Seconds] t2
WHERE t1.sensor = t2.sensor)

Aggregation SELECT Istream t1.sensor, avg(t1.value)
FROM temp [Range 1 Minute] t1,

temp [Now] t2
WHERE t1.sensor = t2.sensor

Fig. 2 Example queries in Continuous Query Language

The definition of correct time windows is essential as it has semantic conse-
quences such as differentiation between an unordered composition and a sequence.
Observe that a sequence of more than two events can only be expressed by means
of rule chaining. E.g., the sequence of three eventse1,e2,e3 can be expressed in the
following way: The first query guarantees thate1 happens beforee2 and generates a
complex evente as an intermediate result. The second rule queries eventse ande3

in this order and derives the resulting events.
Negation is hard to express in CQL (as well as in SQL) because the negated tuples

have to be queried by an auxiliary query which is nested in theWHERE block of
the main query and must be empty to let the main query produce an answer. For
example, the third rule in the figure reports a failure of a sensor when it does not
send a temperature measurement every 12 seconds.

Aggregation is well supported by the language as shown by thelast example in
Figure 2. Every time a temperature measurement from a sensorarrives the query
computes the average temperature reported by the sensor during the last minute.

Languages for CEP and Querying Surveyed 11

5.3 Summary

Data stream query languages are very suitable for aggregation of event data, as par-
ticularly necessary for market data, and offer a good integration with databases.
Expressing negation and temporal relationships, on the other hand, is often cum-
bersome. The conversion from streams to relations and back may be considered
somewhat unnatural and as may the prerequisite of a discretetime axis.

SQL-based data stream query languages are currently the most successful ap-
proach commercially and are supported in several efficient and scalable industry
products. The better known ones are Oracle CEP, Coral8, StreamBase, Aleri and the
open-source project Esper. However, there are big differences between the various
projects and there also exist important extensions that go beyond the general idea
that has been discussed here.

6 Production Rules

6.1 General Idea

Production rules are not an event query language as such, however they offer a
fairly convenient and very flexible way of implementing event queries. The first suc-
cessful production rule engine has been OPS [23], in particular in the incarnation
OPS5 [22]. Since then, many others have been developed in theresearch and indus-
try, including systems like Drools (also called JBoss Rules) [37], ILOG JRules [35],
and Jess [62]. While the general ideas of production rules will be explained here,
we refer the reader to [8] for a deeper introduction.

Production rules, which nowadays are mainly used in business rule management
systems like Drools or ILOG JRules, are not EQLs in the narrower sense. The rules
are usually tightly coupled with a host programming language (e.g., Java) and spec-
ify actions to be executed when certain states are entered [8]. The states are ex-
pressed as conditions over objects in the so-called workingmemory. These objects
are also called facts.

Besides their use in business rule management systems that are not focused on
events, production rules are also an integral part of the CEPproduct TIBCO Busi-
ness Events, which also offers more CEP-specific features such as support for tem-
poral aspects or modelling of event types and data.

The incremental evaluation (e.g., with Rete [24]) of production rules makes them
also suitable for CEP. Whenever an event occurs, a corresponding fact must be cre-
ated. Event queries are then expressed as conditions over these facts. In doing so,
the programmer has much freedom but little guideline.

12 Michael Eckert et al.

6.2 Sensor Network Use Case

Figure 3 contains our four example queries in the open sourceproduction rule sys-
tem Drools. In Drools all events are represented as Java objects. Every time an event
arrives some Java method has to convert it into an object, insert the object into the
working memory, and call the rule engine to perform the rule evaluation (more pre-
cisely, fire all rules until no rule can fire). Note that in CEP-tailored systems such as
TIBCO Business Events this happens automatically. If a complex event is derived
by a rule it is also saved as an object in the working memory. Weassume that in this
case theinsert-method sets the occurrence time of a complex event.

The occurrence time is a usual attribute of an object. This isactually a problem
because every method can change every occurrence time inadvertently. This in turn
leads to incorrect answers.

For the sake of simplicity we use time point semantics, assume that timestamps
are given in seconds since the epoch (i.e., since the midnight of January 1, 1970) and
we do not perform any garbage collection (i.e., deletion of events). These assump-
tions are not suitable for real-life applications but they help to keep the examples
simple. Under the above assumptions we can express the temporal relations be-
tween events as simple comparisons of numbers. In real-lifeapplications temporal
relations would have to be programmed as Java methods that are called in Drools
rules.

A Drools rule consists of two parts. The WHEN part is an event query, it speci-
fies both, the types of queried events and conditions on the events. The THEN part
derives an object representing the complex event, sets its occurrence time, and saves
the object into the working memory. This newly asserted object can then also acti-
vate further rules.

Remember that the first rule detects fire in an area when smoke and high tem-
perature are both detected in this area within one minute (consider the first rule in
Figure 3). These conditions are coded into the specificationof a High tempobject.
Its attribute values are compared with the respective attribute values of aSmokeob-
ject s. In particular aHigh tempevent may happen at most one minute before or
after aSmokeevent.

In the second rule of the figure the order of the queried eventsis relevant. Smoke
appears before high temperature is measured in the area. This is expressed by chang-
ing one of the conditions on the occurrence time of aHigh tempobject.

Negation is supported in Drools as shown by the third query. Recall that the
query reports a failure of a sensor when the sensor does not send a temperature
measurement every 12 seconds.

Aggregation of events is also supported. Consider the last rule in Figure 3. Every
time a sensor sends a temperature measurement the query computes the average
temperature reported by the sensor during the last minute. As this example illustrates
aggregation is hard to express in Drools because the result of aggregation must be
represented as an object in the WHEN part of a rule (anAvg() object in this case)
to be used as a parameter of an object representing the complex event in the THEN
part of a rule (anAvg temp()object in this case).

Languages for CEP and Querying Surveyed 13

Composition when s: Smoke()
High_temp(area == s.area &&

timestamp >= (s.timestamp - 60) &&
timestamp <= (s.timestamp + 60))

then insert(new Fire(s.area));

Sequence when s: Smoke()
High_temp(area == s.area &&

timestamp > s.timestamp &&
timestamp <= (s.timestamp + 60))

then insert(new Fire(s.area));

Negation when t: Temp()
not(exists(Temp(sensor == t.sensor &&

timestamp >= t.timestamp &&
timestamp <= (t.timestamp + 12))))

then insert(new Failure(t.sensor));

Aggregation when t: Temp()
a: Avg() from accumulate(

Temp(sensor == t.sensor &&
timestamp >= (t.timestamp - 60) &&
timestamp <= t.timestamp &&
v: value),

average(v))
then insert(new Avg_temp(t.sensor, a));

Fig. 3 Example queries in Drools

As the examples show all relations between events must be programmed man-
ually and even simple temporal conditions (already in our strongly simplified time
model) require low-level code which is hard to read.

6.3 Summary

CEP with production rules is very flexible and well integrated with existing pro-
gramming languages. However, it entails working on a low abstraction level that is
— since it is primarily state and not event oriented — somewhat different from other
EQLs. Especially aggregation and negation are therefore hard to express. Garbage
collection, i.e., the removal of events from the working memory, has to be pro-
grammed manually. (See however [66] for work towards an automatic garbage col-
lection.) Production rules are considered to be less efficient than data stream query

14 Michael Eckert et al.

languages; this is however tied to the flexibility they add interms of combining
queries (in rule conditions) and reactions (in rule actions).

7 Timed State Machines

7.1 General Idea

State machines are usually used to model the behavior of a stateful system that
reacts to events. The system is modelled as a directed graph.The nodes of the graph
represent the possible states of the system. Directed edgesare labeled with events
and temporal conditions on them. The edges specify the transitions between states
that occur in reaction to in-coming events.

State machines are founded formally on deterministic or non-deterministic finite
automata (DFAs or NFAs). Since states in a state machine are reached by particular
sequences of multiple events occurring over time, they implicitly define complex
events. Timed B̈uchi Automata (TBA) [4] were the first attempt to extend automata
to temporal aspects for modelling real-time systems. In a TBA each transition be-
tween states depends not only on the type of arriving events but also on their occur-
rence time. For this, temporal conditions are added to transitions. Other examples
of this kind of EQLs are UML state diagrams and regular real-time languages [33].
Many representatives of this language style were developedto achieve a particu-
lar task or solve a problem of real-time distributed systems, examples are Timed
abstract state machine language for real-time system engineering [53], Timed au-
tomata approach to real time distributed system verification [41], Timed-constrained
automata for reasoning about time in concurrent systems [48].

7.2 Sensor Network Use Case

In this chapter we do not describe different kinds of real-time automata but ex-
plain their common principle. Figure 4 contains our examplequeries in a pseudo
code for timed state machines. The pseudo code is an extension of Timed B̈uchi
Automata [4]. The first extension is the consideration of event data. The second ex-
tension is the representation of complex events as automatain such a way that only
if the end state of an automaton is reached the respective complex event is derived.
A complex event can determinate a transition between statesof another automaton
so that arbitrary levels of abstraction can be achieved.

Remember that our first example derives a complex eventfire(area(A))out of
two eventssmoke(area(A))andhigh temp(area(A))if these events happen within
one minute. Their order does not matter. Since an automaton implicitly describes
an ordered sequence we have to specify both acceptable orders of queried events.

Languages for CEP and Querying Surveyed 15

Composition

� �

�����������	
�	������

�������������	
�	������

�����������	
�	�������������������������

��������	
�	������������������������

��
����	
�	������

Sequence

�����������	
�	������ ����������	
�	��������������������������

��
����	
�	������

Negation

������������	�
�����

������������	�
����� �	�����������������

���������	�
������������	������������

Aggregation –

Fig. 4 Example queries in pseudo code for timed state machines

Consider the first query in Figure 4. The longer the composition of events the more
acceptable orders (all possible permutations of events) must be considered by the
machine, i.e., a simple composition query provokes a complicated automaton (ex-
ponential blow-up).

The eventssmoke(area(A))and high temp(area(A))must happen within one
minute. This condition is expressed using event identifiers, an auxiliary function
end(i) which returns the end timestamp of eventi and a global clockx. (As men-
tioned above, we do not consider such problems as clock synchronization in this
chapter and refer the reader to [43].) Note that both eventssmoke(area(A))and
high temp(area(A))are joined upon the value of attributearea. If the end state of
the state machine is reached the complex eventfire(area(A))is derived.

The second query describes the sequence of eventssmoke(area(A))andhigh temp
(area(A)). The latter must happen at most one minute after the former tolet the au-
tomaton reach its end state, i.e., to derive the complex event fire(area(A)). This is a
very intuitive presentation.

Aggregation is not supported by timed state machines. Negation is not supported
also but can be simulated by a failure state without outgoingedges and with an in-
coming edge which is labeled by a temporal condition and an event which should
not arrive for the query to return an answer. For example, thethird machine in Fig-

16 Michael Eckert et al.

ure 4 detects a failure of a sensor when it does not send a temperature measurement
every 12 seconds. If a temperature measurement comes within12 seconds after the
last measurement the state machine goes into the failure state, meaning that the end
state is unreachable and the complex eventfailure(sensor(S))cannot be derived any-
more. If 12 seconds since the last temperature measurement are over (consider the
temporal condition of the incomimg edge of the end state) andno new measurement
has arrived during this time, the state machine goes into theend state and derives
the complex eventfailure(sensor(S)).

7.3 Summary

Though timed state machines provide intuitive visualization of complex events their
expressivity is limited. They do not support aggregation. Negation and even com-
position of events are cumbersome. Conditions on the event data which are more
complex than equi-joins (e.g., an attribute value must grow) cannot be expressed.

To overcome deficits of the theoretical automata, state machines are usually com-
bined with languages of other styles. An example of this is the combination of state
machines with production rules in TIBCO Business Events. There, a transition be-
tween two states is specified with a production rule. The condition of the production
rule expresses when the transition is activated. Frequently reactions to the complex
events that are implicit in a state machine are desirable. These can be specified for
a transition (in the action part of the production rule) as well as for the entry or exit
of states.

8 Logic Languages

8.1 General Idea

Logic languages express event queries in logic-style formulas. An early representa-
tive of this language style is the event calculus [39]. While event calculus is not an
event query language per se, it has been used to model event querying and reasoning
tasks in logic programming languages such as Prolog or Prova[40]. The latter com-
bines the benefits of declarative and object-oriented programming by merging the
syntaxes of Prolog and Java. Prova is used as a rule-based backbone for distributed
Web applications in biomedical data integration. One of thekey advantages of Prova
is its separation of logic, data access, and computation.

XChangeEQ [9, 19] also adopts some ideas from event calculus-like approaches,
but extends and tailors them to the needs of an expressive high-level event query
language. XChangeEQ identifies and supports the following four complementary di-
mensions (or aspects) of event queries: data extraction, event composition, temporal

Languages for CEP and Querying Surveyed 17

(and other) relationships between events, and event accumulation. Its language de-
sign enforces a separation of the four querying dimensions.

A further example of this language style is Reaction RuleML [57, 56] combining
derivation rules, reaction rules and other rule types such as integrity constraints into
the general framework of logic programming.

8.2 Sensor Network Use Case

Figure 5 contains our four example queries in XChangeEQ. An XChangeEQ rule
consists of two parts. The ON part, i.e., the rule body, is a complex event query
which is a conjunction or disjunction of simple or complex event queries and an
optional WHERE block containing temporal and other conditions on the queried
events. The DETECT part, i.e., the rule head, is a construction of a complex event
using the variable bindings returned by the respective event query.

Note that events are neither converted to relational tuplesnor to objects of an
object-oriented programming language. Furthermore, it isnot possible to manip-
ulate event timestamps neither consciously nor unwittingly. Finally, relative timer
events are supported by XChangeEQ.

Event query specifications are very intuitive and flexible inXChangeEQ. There
are four types of event queries charaterized by different kinds of brackets. Single
brackets denote a complete event query, i.e., the query matches only those events
which do not have attributes other than the ones specified in the query. In contrast
double brackets denote an incolmplete event query, i.e., events matched by the query
may have additional attributes. Curly brackets denote an unordered query, i.e., the
order of attributes does not matter. Square brackets denotean ordered event query.
Hence, there are four possible combinations of brackets, i.e., four types of event
queries (ordered complete, unordered complete and so on).

Consider the first rule in Figure 5. Its complex event query isa conjunction of
two simple incomplete and unordered event queriesevent s: smoke{{ area{{ var A
}} }} andevent t: hightemp{{ area{{ var A}} }} where variableA is bound to the
value of attributearea. Since the same variable is used in both queries the queried
events are joined on the value of this variable.

The WHERE block of the first rule in Figure 5 contains the additional tempo-
ral condition that both events, i.e., smoke and high temperature, appear within one
minute. Note the use of event identifierss andt. Note also that the temporal condi-
tions (likebeforeandwithin) are built-in into the language and must not be manually
programmed.

The second query contains the additional temporal condition that the smoke event
must appear before the high temperature event. The effect that theadditional tem-
poral condition is mapped to anadditionalstatement in the query is an outstanding
feature of XChangeEQ.

Negation and aggregation of events are supported as shown bythe last two exam-
ples in Figure 5. Both negation and aggregation are restricted to finite time intervals.

18 Michael Eckert et al.

Composition DETECT fire { area { var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: high_temp {{ area {{ var A }} }}
} where { {s,t} within 1 min }

END

Sequence DETECT fire { area{ var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: high_temp {{ area {{ var A }} }}
} where { s before t, {s,t} within 1 min }

END

Negation DETECT failure { sensor { var S } }
ON and { event t: temp {{ sensor {{ var S }} }},

event i: timer:from-end [event t, 12 sec],
while i: not temp {{ sensor {{ var S }} }} }

END

Aggregation DETECT avg_temp { sensor{ var S }, value { avg(all var T) } }
ON and { event t: temp {{ sensor {{ var S }} }},

event i: timer:from-start-backward [event t, 1 min],
while i: collect temp {{ sensor {{ var S }},

value {{ var T }} }} }
END

Fig. 5 Example queries in XChangeEQ

In the examples, the time intervals are given by relative timer events which are de-
fined as follows:

• timer:from-end[event e, d]the relative timert extends over the length of duration
d starting at the end ofe, i.e.,begin(t):=end(e), end(t):=end(e)+d

• timer:from-start-backward[event e, d]the relative timert extends over the length
of durationd ending at the start ofe, i.e.,begin(t):=begin(e)–d, end(t):=begin(e)

In the above we writebegin(t)andend(t) to denote the beginning and the end of
eventt respectively. There are of course many other relative timerevents which are
not discussed here, see [19].

Recall that the third example detects a failure of a sensor when it does not send a
temperature measurement every 12 seconds, i.e., the query derives a complex event
failure{ sensor{ var S} } when there is an eventtemp{{ sensor{{ var S}} }} which
is not followed by anothertemp{{ sensor{{ var S}} }} event within 12 seconds.

The last query of the figure computes average temperature reported by a sensor
during the last minute every time the sensor sends a temperature measurement. More
precisely, every time anevent t: temp{{ sensor{{ var S}} }} arrives, a relative

Languages for CEP and Querying Surveyed 19

timer eventi denoting the time interval of one minute beforet, is defined, all events
happening duringi and matched by the querytemp{{ sensor{{ var S}}, value{{
var T }} }} are collected and a complex eventavg temp{ sensor{ var S}, value{
avg(all var T)} } containing the average temperature from the sensorS, is derived.

8.3 Summary

As the simple examples above demonstrate, logic languages offer a natural and con-
venient way to specify event queries. The main advantage of logic languages is
their strong formal foundation, an issue which is neglectedby many languages of
other styles. (Chapter “Two Semantics for CEP, no Double Talk”, in this volume de-
scribes a general, easily transferable approach for defining both, the declarative and
operational semantics of an EQL). Thanks to the separation of different dimensions
of event processing, logic languages are highly expressive, extensible and easy to
learn and use. Some languages of this style, e.g., XChangeEQ supports an automatic
garbage collection of events [10].

9 Application Areas of the Language Styles

Having described the strengths and weaknesses of the five language styles, we sum-
marize the comparison by a discussion on suitable application areas of each lan-
guage style.

Composition operators allow an intuitive specification of event patterns. This
makes them attractive in scenarios, where business users should be allowed to de-
fine event patters such as real-time promotions and upselling (e.g., send three text
messages within one hour to receive a free ringtone).

Data stream query languages are very suitable for aggregation of event data, as
particularly necessary for applications involving marketdata (e.g., average price
over 21 day sliding window) such as algorithmic trading. They also usually offer a
good integration with databases, sharing in particular thecommon basis of SQL.

Production rules are very flexible and well integrated with existing programming
languages. Since they allow the specification of actions to be executed when certain
states are reached, they are particularly useful for applications involving tracking of
stateful objects such as track and trace in logistics (maintain and react upon changes
of the state of packages, containers, etc.) or monitoring ofbusiness processes and
objects (also called Business Activity Monitoring). Due totheir wide-spread use in
business rules management systems, production rules oftenoffer some support for
exposing part of the logic to business users such as decisiontables or trees.

Timed state machines also offer an easy and convenient way tomaintain the cur-
rent state. However they are limited to a finite set of states (e.g., “shipped”, “deliv-
ered”). This makes them suitable, e.g., for monitoring of processes (which typically

20 Michael Eckert et al.

have a well-defined, finite number of states), but not suitable for applications involv-
ing infinite state spaces (e.g., a temperature control system where the temperature is
a numeric value).

Logic languages have strong formal foundations, allow an intuitive specification
of complex temporal conditions and account for event data. They could be success-
fully used in medical applications or emergency managementin critical infrastruc-
tures.

Combination of different language styles in one approach allows to benefit from
their strengths. This is the main reason why hybrid approaches are most successful
in the industry. The next section is devoted to the combined approaches.

10 Combination of Different Language Styles

A comparison of the different language styles shows that so far there is no one-fits-
all approach to querying events. Hence particularly industry products trend towards
hybrid approaches, where several languages of different styles are supported or as-
pects of different styles are combined within one language.Hybrid approaches in-
clude the introduction of pattern matching into data streamquery languages as in
Oracle CEP [52], Esper [21], and some CQL dialects like the one used in [64], the
use of composition operators on top of data stream queries [26, 15], the addition of
composition operators to production rules [66], the combination of production rules
and state machines, e.g., in TIBCO Business Events (see Section 7), the decoupled
use of different languages (and possibly evaluation engines) that communicate only
by means of exchanging events (derived as answers to queries).

11 Conclusion

CEP is an industrial growth market as well as an important research area that is
emerging from coalescing branches of other research fields.

Even though the prevalent event query languages can be categorized roughly
into five families as done in this article, there are significant differences between the
individual languages of a family. Whether a convergence to a single, dominant query
language for CEP is possible and advisable is currently in noway agreed upon.

Efforts towards a standard for a SQL-based data stream querylanguage are on
the way [36], but not yet within an official standardization body. A standardized
XML syntax for production rules is being developed by the W3C as part of the
Rule Interchange Format (RIF); however, the special requirements of CEP are not
considered there yet. The same applies to the Production Rule Representation (PRR)
by the OMG.

Activities of the Event Processing Technical Society (EPTS) [20] aim at a coor-
dination and harmonization with the work on a glossary of CEPnotions, the inter-

Languages for CEP and Querying Surveyed 21

operability analysis of Event Processing systems from different vendors, a common
reference architecture or framework of architectures, that handles current and envi-
sioned Event Processing architectures, the analysis of theapplication areas of CEP,
and the creation of a business value for a user in order to increase the adoption of
Event Processing in the business and industry. The EPTS has also a working group
for the analysis of EQLs.

22 Michael Eckert et al.

References

1. R. Adaikkalavan and S. Chakravarthy. Formalization and detection of events using interval-
based semantics. InProc. Int. Conf. on Management of Data (COMAD), pages 58–69. Com-
puter Society of India, 2005.

2. R. Adaikkalavan and S. Chakravarthy. SnoopIB: Interval-based event specification and de-
tection for active databases.Data and Knowledge Engineering, 1(59):139–165, 2006.

3. A. Adi and O. Etzion. Amit — the situation manager.The VLDB Journal, 13(2):177–203,
2004.

4. R. Alur and D. Dill. Automata for modeling real-time systems. InProc. Int. Colloquium
on Automata, Languages and Programming, volume 443 ofLNCS, pages 322–335. Springer,
1990.

5. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic founda-
tions and query execution.The VLDB Journal, 15(2):121–142, 2006.

6. R. S. Barga and H. Caituiro-Monge. Event correlation and pattern detection in CEDR. In
Proc. Int. Workshop Reactivity on the Web, volume 4254 ofLNCS, pages 919–930. Springer,
2006.

7. M. Bernauer, G. Kappel, and G. Kramler. Composite events for XML. In Proc. Int. Conf. on
World Wide Web, pages 175–183. ACM, 2004.

8. B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-L. Pătr̂anjan. Reactive rules on the Web. In
Reasoning Web, Int. Summer School, volume 4636 ofLNCS, pages 183–239. Springer, 2007.

9. F. Bry and M. Eckert. Rule-Based Composite Event Queries: The Language XChangeEQ and
its Semantics. InProc. Int. Conf. on Web Reasoning and Rule Systems, volume 4524 ofLNCS,
pages 16–30. Springer, 2007.

10. F. Bry and M. Eckert. On static determination of temporal relevance for incremental evalua-
tion of complex event queries. InProc. Int. Conf. on Distributed Event-Based Systems, pages
289–300. ACM, 2008.

11. F. Bry, M. Eckert, O. Etzion, A. Paschke, and J. Riecke. Event processing language tutorial.
In 3rd ACM Int. Conf. on Distributed Event-Based Systems. ACM, 2009.

12. F. Bry, M. Eckert, and P.-L. P̆atr̂anjan. Querying composite events for reactivity on the Web.
In Proc. Int. Workshop on XML Research and Applications, volume 3842 ofLNCS, pages
38–47. Springer, 2006.

13. F. Bry, M. Eckert, and P.-L. P̆atr̂anjan. Reactivity on the Web: Paradigms and applications of
the language XChange.J. of Web Engineering, 5(1):3–24, 2006.

14. J. Carlson and B. Lisper. An event detection algebra for reactive systems. InProc. ACM Int.
Conf. On Embedded Software, pages 147–154. ACM, 2004.

15. S. Chakravarthy and R. Adaikkalavan. Events and streams: Harnessing and unleashing their
synergy! InProc. Int. Conf. on Distributed Event-Based Systems, pages 1–12. ACM, 2008.

16. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.Composite events for active
databases: Semantics, contexts and detection. InProc. Int. Conf. on Very Large Data Bases,
pages 606–617. Morgan Kaufmann, 1994.

17. G. Coulouris, J. Dollimore, and T. Kindberg.Distributed Systems: Concepts and Design.
Addison-Wesley, third edition, 2001.

18. M. Eckert. Reactivity on the Web: Event Queries and Composite Event Detection in
XChange. Master’s thesis (Diplomarbeit), Institute for Informatics, University of Munich,
2005.

19. M. Eckert.Complex Event Processing with XChangeEQ: Language Design, Formal Seman-
tics and Incremental Evaluation for Querying Events. PhD thesis, Institute for Informatics,
University of Munich, 2008.

20. Event Processing Technical Society (EPTS).http://www.ep-ts.com.
21. EsperTech Inc. Event stream intelligence: Esper & NEsper.http://esper.codehaus.

org.
22. C. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie Mellon Uni-

versity, 1981.

Languages for CEP and Querying Surveyed 23

23. C. Forgy and J. P. McDermott. OPS, a domain-independent production system language. In
Proc. Int. Joint Conf. on Artificial Intelligence, pages 933–939. William Kaufmann, 1977.

24. C. L. Forgy. Rete: A fast algorithm for the many pattern/manyobject pattern match problem.
Artificial Intelligence, 19(1):17–37, 1982.

25. A. Galton and J. C. Augusto. Two approaches to event definition. In Proc. Int. Conf. on
Database and Expert Systems Applications, volume 2453 ofLNCS, pages 547–556. Springer,
2002.

26. V. Garg, R. Adaikkalavan, and S. Chakravarthy. Extensions to stream processing architec-
ture for supporting event processing. InProc. Int. Conf. on Database and Expert Systems
Applications, volume 4080 ofLNCS, pages 945–955. Springer, 2006.

27. S. Gatziu and K. R. Dittrich. Events in an active object-oriented database system. InProc.
Int. Workshop on Rules in Database Systems, pages 23–39. Springer, 1993.

28. S. Gatziu and K. R. Dittrich. Detecting composite events inactive database systems using
petri nets. InProc. Int. Workshop on Research Issues in Data Engineering: ActiveDatabase
Systems, pages 2–9. IEEE, 1994.

29. N. H. Gehani, H. Jagadish, and O. Shmueli. Event specificationin an active object-oriented
database. InProc. Int. ACM Conf. on Management of Data (SIGMOD), pages 81–90. ACM,
1992.

30. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model & implementation. InProc. Int. Conf. on Very Large Data Bases, pages
327–338. Morgan Kaufmann, 1992.

31. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Compose: A system forcomposite specifica-
tion and detection. InAdvanced Database Systems, LNCS, pages 3–15. Springer, 1993.

32. M. Gualtieri and J. R. Rymer. The Forrester WaveTM: Complex Event Procecessing (CEP)
Platforms. http://www.forrester.com/rb/Research/wave%26trade%3B_
complex_event_processing_cep_platforms%2C_q3/q/id/48084/t/2,
2009.

33. T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages. InIn
Proc. 25th Int. Coll. Automata, Languages, and Programming (ICALP’98, pages 580–591.
Springer, 1998.

34. A. Hinze and A. Voisard. A parameterized algebra for event notification services. InProc.
Int. Symp. on Temporal Representation and Reasoning, pages 61–65. IEEE, 2002.

35. ILOG. ILOG JRules.http://www.ilog.com/products/jrules.
36. N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan, U. Çetintemel,

M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a streaming SQL standard. InProc. Int.
Conf. on Very Large Data Bases, volume 1, pages 1379–1390. VLDB Endowment, 2008.

37. JBoss.org. Drools.http://www.jboss.org/drools.
38. M. Kersten, E. Liarou, and R. Goncalves. A query language for a data refinery cell. InProc.

Int. Workshop on Event-Driven Architecture, Processing and Systems, 2007.
39. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation Com-

pututing, 4(1):67–95, 1986.
40. A. Kozlenkov, R. Penaloza, V. Nigam, L. Royer, G. Dawelbait, and M. Schroeder. Prova:

Rule-based Java scripting for distributed web applications: A case study in bioinformatics.
In Current Trends in Database Technology (EDBT), volume 4254 ofLNCS, pages 899–908.
Springer, 2006.

41. J. Kŕakora, L. Waszniowski, and Z. Hanzálek. Timed automata approach to real time dis-
tributed system verification. InIn Proc. of IEEE Int. Workshop on Factory Communication
Systems (WFCS), pages 407–410, 2004.

42. L. Lamport. Time, clocks, and the ordering of events in a distributed system.Communications
of the ACM, 21(7):558–565, 1978.

43. Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Transactions on
Computers, 55(2):214–226, 2006.

44. E. Liarou, R. Goncalves, and S. Idreos. Exploiting the power of relational databases for
efficient stream processing. InInt. Conf. on Extending Database Technology (EDBT), volume
360, pages 323–334. ACM, 2009.

24 Michael Eckert et al.

45. D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2002.

46. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisitional
query processing system for sensor networks.ACM Transactions on Database Systems,
30(1):122–173, 2005.

47. M. Mansouri-Samani and M. Sloman. GEM: A generalized event monitoring language for
distributed systems.Distributed Systems Engineering, 4(2):96–108, 1997.

48. M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrainedautomata. InCONCUR ’91:
2nd Int. Conf. on Concurrency Theory, volume 527 ofLNCS, pages 408–423. Springer, 1991.

49. D. Moreto and M. Endler. Evaluating composite events using shared trees.IEE Proceedings
— Software, 148(1):1–10, 2001.

50. J. Morrell and S. D. Vidich. Complex Event Processing with Coral8. White Paper.
http://www.coral8.com/system/files/assets/pdf/Complex_Event_
Processing_with_Coral8.pdf, 2007.

51. MS Analog Software. ruleCore(R) Complex Event Processing (CEP) Server.http://www.
rulecore.com.

52. Oracle Inc. Complex Event Processing in the real world. White
Paper. http://www.oracle.com/technologies/soa/docs/
oracle-complex-event-processing.pdf.

53. M. Ouimet and K. Lundqvist. The timed abstract state machine language: Abstract state
machines for real-time system engineering.Journal of Universal Computer Science,
14(12):2007–2033, 2008.

54. A. Paschke and H. Boley. Rules capturing events and reactivity. In Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches, pages
215–252. IGI Global, 2009.

55. A. Paschke and A. Kozlenkov. Rule-based event processing andreaction rules. InRule
Interchange and Applications, volume 5858 ofLNCS, pages 53–66. Springer, 2009.

56. A. Paschke, A. Kozlenkov, and H. Boley. A homogenous reaction rule language for Complex
Event Processing. InIn Proc. 2nd Int. Workshop on Event Drive Architecture and Event
Processing Systems, 2007.

57. A. Paschke, A. Kozlenkov, H. Boley, S. Tabet, M. Kifer, andM. Dean. Reaction RuleML.
http://ibis.in.tum.de/research/ReactionRuleML/, 2007.

58. N. W. Paton, editor.Active Rules in Database Systems. Springer, 1998.
59. C. Roncancio. Toward duration-based, constrained and dynamic event types. InProc. Int.

Workshop on Active, Real-Time, and Temporal Database Systems, volume 1553 ofLNCS,
pages 176–193. Springer, 1997.

60. C. Śanchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. L. Dill, and Z. Manna. Event
correlation: Language and semantics. InProc. Int. Conf. on Embedded Software, volume
2855 ofLNCS, pages 323–339. Springer, 2003.

61. C. Śanchez, M. Slanina, H. B. Sipma, and Z. Manna. Expressive completeness of an event-
pattern reactive programming language. InInt. Conf. on Formal Techniques for Networked
and Distributed Systems, volume 3731 ofLNCS, pages 529–532. Springer, 2005.

62. Sandia National Laboratories. Jess, the rule engine for the Java(TM) platform. http://
herzberg.ca.sandia.gov/.

63. K.-U. Schmidt, D. Anicic, and R. Stühmer. Event-driven reactivity: A survey and require-
ments analysis. InSBPM2008: 3rd Int. Workshop on Semantic Business Process Management
in Conjunction with the 5th European Semantic Web Conf. (ESWC’08). CEUR Workshop Pro-
ceedings, 2008.

64. B. Seeger. Kontinuierliche kontrolle.IX: Magazin f̈ur Professionelle Informationstechnik, 2,
2010.

65. M. Seirïo and M. Berndtsson. Design and implementation of an ECA rule markuplanguage.
In Proc. Int. Conf. on Rules and Rule Markup Languages for the Semantic Web, volume 3791
of LNCS, pages 98–112. Springer, 2005.

Languages for CEP and Querying Surveyed 25

66. K. Walzer, T. Breddin, and M. Groch. Relative temporal constraints in the Rete algorithm
for complex event detection. InProc. Int. Conf. on Distributed Event-Based Systems, pages
147–155. ACM, 2008.

67. E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event Processing over streams. In
Proc. Int. ACM Conf. on Management of Data (SIGMOD), pages 407–418. ACM, 2006.

68. D. Zhu and A. S. Sethi. SEL, a new event pattern specification language for event correlation.
In Proc. Int. Conf. on Computer Communications and Networks, pages 586–589. IEEE, 2001.

69. D. Zimmer and R. Unland. On the semantics of complex events in active database manage-
ment systems. InProc. Int. Conf. on Data Engineering, pages 392–399. IEEE, 1999.

Index

complex event, 4
Complex Event Processing (CEP), 4
complex event query, 4
composition operators, 5

data stream query languages, 8

event, 3
event attribute, 3
event data, 3
event occurrence time, 3
Event Query Language (EQL), 4

event streams, 4
event type, 3

logic languages, 16

production rules, 11

simple event, 4
simple event query, 4

timed state machines, 14

27

