Acknowledgements

This research has been founded in part by the European Caiomigithin the the
project “EMILI — Emergency Management in Large Infrastures” under grant
agreement number 242438 and by the German Research Faim¢@gutsche
Forschungsgemeinschaft) within the project “QONCEPT — i@Qu@ptimization

in Complex Event Processing Technologies” under referanceber BR 2355/1-1.

Contents

A CEP Babelfish: Languages for Complex Event Processing and

Querying Surveyed.

Michael Eckert, Francois Bry, Simon Brodt, Olga Poppe, Steffen
Hausmann

1 INtroduction e
2 Terminologyiiii e
3 Identification of Language Styles
4 Composition Operatorsouieiniinnennn
4.1 Generalldea.............
4.2 Sensor NetworkUseCase
4.3 SUMMANY ..o e
5 Data Stream Query Languagesc.c.ouiirnn
5.1 Generalldea.............
5.2 Sensor NetworkUseCase
5.3 SUMMAIY ..o e
6 Production RUIES.t e s
6.1 Generalldea...........
6.2 Sensor NetworkUseCase
6.3 SUMMANY . e
7 Timed State Machines i iiimun
7.1 Generalldea............ ...
7.2 Sensor NetworkUseCase
7.3 SUMMANY ..o e
8 Logic Languages.ot
8.1 Generalldea............. ... o ...
8.2 Sensor NetworkUseCase
8.3 SUMMANY ..o e

9 Application Areas of the Language Styles
10 Combination of Different Language Styles
11 CONCIUSION
References

Vii

Contents

A CEP Babelfish: Languages for Complex Event
Processing and Querying Surveyed

Michael Eckert, Francois Bry, Simon Brodt, Olga Poppe, 8teffen Hausmann

Abstract Complex Event Processing (CEP) denotes algorithmic metfmdnak-
ing sense of events by deriving higher-level knowledge,anplex events, from
lower-level events in a timely fashion and permanently. A& tore of CEP are
queries continuously monitoring the incoming stream offrijgie” events and rec-
ognizing “complex” events from these simple events. Everriggs monitoring in-
coming streams of simple events serve as specification wdtiins that manifest
themselves as certain combinations of simple events dogurmr not occurring,
over time and that cannot be detected solely from one or péite single events
involved.

Special purpose Event Query Languages (EQLS) have beetodedefor the ex-
pression of the complex events in a convenient, concisectdfeé and maintainable
manner. This chapter identifies five language styles for @aRelycomposition
operators, data stream query languages, production rufiesed state machines,
andlogic languagesdescribes their main traits, illustrates them on a sensbr ne
work use case and discusses suitable application areastofegsyuage style.

1 Introduction

Event-driven information systems demand a systematic atahatic processing
of events. Complex Event Processing (CEP) encompassesdasetbchniques, and
tools for processing evenighile they occuri.e., in a continuous and timely fashion.
CEP derives valuable higher-level knowledge from loweelevents; this knowl-

Michael Eckert
TIBCO Software, Balanstr. 49, 81669 Munich, Germany,
e-mail:meckert @i bco. com

Francois Bry, Simon Brodt, Olga Poppe, and Steffen Hausmann
Institute for Informatics, University of Munich, Oettingen€, 80538 Munich, Germany,
e-mail:{ bry, brodt, poppe, hausmann} @ns.ifi .| nmu. de

2 Michael Eckert et al.

edge takes the form of so called complex events, that isatgitus that can only be
recognized as combinations of several events.

The term Complex Event Processing was popularized in [4&lvever, CEP
has many independent roots in different research field§yding discrete event
simulation, active databases, network management, angbtafrreasoning. Only
in recent years, CEP has emerged as a discipline of its owraarath important
trend in the industry. The founding of the Event Processiechhical Society [20]
in early 2008 underlines this development.

Important application areas of CEP are the following:

Business activity monitoringims at identifying problems and opportunities in
early stages by monitoring business processes and otlieakresources. To this
end, it summarizes events into so-called key performandieators such as, e.g.,
the average run time of a process.

Sensor networkansmit measured data from the physical world to, e.g.eSup
visory Control and Data Acquisition systems that are usednonitoring of indus-
trial facilities. To minimize measurement and other errdega of multiple sensors
has to be combined frequently. Further, higher-level sitna (e.g., fire) usually
have to be derived from raw numerical measurements (ergpdrture, smoke).

Market datasuch as stock or commaodity prices can also be considerecatsev
They have to be analyzed in a continuous and timely fashiander to recognize
trends early and to react to them automatically, for exapmiplalgorithmic trading.

The situations (specified as complex events) that need teteeted in these ap-
plications and the information associated with these 8dna are distributed over
several events. Thus CEP can only derive such situatioms &amumber of cor-
related (simple) events. To this end many different langsaand formalisms for
querying events, the so called Event Query Languages (EQksg been devel-
oped in the past.

There are also some surveys in the realm of CEP. For examde5, 54], rule-
based approaches for reactive event processing are @dssiftording to their ori-
gins. In [11], EQLSs are divided into groups depending on timel lof system archi-
tecture they are used in. The survey of EQLSs described indi88hguishes between
a non-logic and logic-based view on handling the event &igd reactivity. There
are also comparisons of different single CEP products, 8]. Both the multi-
tude of EQLs and the diversity of surveys on event procesairtjreactivity can
be attributed in part to the fact that CEP has many differeatsrand is only now
recognized as an independent field.

To the best of our knowledge, there are no comprehensiveegsiiso far that
(1) classify different EQLSs into groups according to thegaage “style” or “flavor”
and (2) compare the groups by means of the same example gjuétierespect
to their expressivity, ease of use and readability, forneahantics, success in the
industry and some other features. This chapter surveystate af the art in CEP
regarding these two points. Since CEP is a field that is veygdband without clear-
cut boundaries, this chapter focuses strongly on queryiagts. It concentrates on
EQLs that are known and specified at the outset. Other, lesdaed aspects of

Languages for CEP and Querying Surveyed 3

CEP such as detecting unknown events using approachesdiieine learning and
data mining on event streams, are not discussed here.
The contributions of this chapter are:

1. Identification and abstract description of five languagkes, namelycomposi-
tion operators, data stream query languages, productidesutimed state ma-
chines,andlogic languages

lllustration of each language style on a sensor netwaglcase

Discussion on suitable application areas of each largysgde

Abstract description of some of the combined approaches

pwDD

2 Terminology

Since CEP has evolved from many different research aredandasd terminology
has not yet established and found broad adoption. For exampiat is called a
(complex) event query might also be called a complex everd,tgn event profile,
or an event pattern, depending on the context. We will tloeeedievote this section
to the basic notions and our informal definitions of them.

An eventis a message indicating that something of interest hapjens,con-
templated as happening. Events can be represented inediffdata formats such
as relational tuples, XML documents or objects of an obgg@nted programming
language (e.g., Java).

In this chapter, we use the following presentation of evesusnt typdattribute
name (attribute valug), ..., attribute name (attribute valug)). An event type
specifies an event structure, similar to a relational da@lsehema specifying the
structure of tuples of a relation. For exampgiegh_temp(area)s an event type of an
eventhigh-temp(area(a))ndicating high temperature in ar@aln this eventarea
is an attribute ana is its value. (In the following, capital letters denote adlies
and small letters denote literals.) &rent attribute is a component of the structure
of an event. It can be an entry of a tuple, an XML fragment, oela fof an object,
depending on the event representation. The set of attrimltees of an event is
calledevent data

The formalism introduced here is by no means compelling. Gméd prefer
to use unnamed perspective identifying attribute valueshieyr positions or use
any alternative event representation instead. Since iarajluages proposed so far,
events are flat or structured records or tuples, the formakgained for this chapter
is no restriction.

Since events happen at particular time which is essentia\fent processing,
all events must have a possibly implicit attribute calledrévoccurrence time. An
event occurrence timeis a time point or time interval indicating when this event
happens. A time interval is described by two timestampscatdig its bounds. A
time point is described by a single timestamp. We shall sémbthat using time
points or time intervals has far reaching consequences/éntrocessing.

4 Michael Eckert et al.

Timing and event order are difficult issues of distributedteyns. Each node
(computer, device, etc.) in a distributed system has its meal clock and the
clocks of different nodes are hard to be synchronized peyfgt7]. Furthermore
the transmission time of messages varies depending onrsamdieeceiver, routing,
network load, and other factors. Therefore the receptideroof some events may
differ from their emission order [42]. These issues are igdan this chapter for the
sake of simplicity.

Another characteristical feature of events is event ifieation. For example,
one can assign an identifieto the evenhigh_temp(area(a))written in the follow-
ingt : hightemp(area(a)). We will see the advantages of this feature below.

Events are sent by event producers (e.g., sensors) to evesuiroers (e.g., Su-
pervisory Control and Data Acquisition system) on so cadeeint streams

In order to react to an everf(e.g., turn on air conditioning in an area if an event
indicating high temperature in the area arrives) or to @inew event from another
evente (e.g., derive an event indicating high temperature fromweamecontaining
a temperature measurement if the measurement is consitebbechigh), an event
query which matches is specified in an event query language. Bvent Query
Language (EQL) is a high level programming language (possibly of limited ex
pressivity) for querying events. simple event queryis a specification of a certain
kind of singleevents by means of an event query languageo#plex event query
is a specification of a certaipombinationof events using multiple simple event
queries and conditions describing the correlation of therigd events.

A simple eventis either an event arriving on the event stream or an eveivister
by a simple event query (i.e., fromsingle event). Acomplex eventis an event
derived by a complex event query (i.e., from a cer@mbinationof at least two
events occurring or not occurring over time). In EPTS Glos$20] many other
kinds of events are defined, such as composite event, vietigalt, derived event,
raw event and some others.

Note that the occurrence time of a complex exeramprises the occurrence time
of all eventse it has been derived from. For example, a complex efiére(area(a))
indicating fire can be derived from two simple evestsmoke(area(a)pnd t:
high_.temp(area(a))ndicating smoke and high temperature respectivielyegins
as soon asort begins and it ends as soon as both simple events are over.

The derivation of complex events is called Complex EventPssingComplex
Event Processing (CEP)denotes algorithmic methods for making sense of base
events (low-level knowledge) by deriving complex eventgtfHevel knowledge)
from them in a timely fashion and over periods of time.

These are the most important notions in the field of eventgssiag. In this
chapter we will also need some other notions which will beiinfally introduced
before using.

Languages for CEP and Querying Surveyed 5

3 Identification of Language Styles

To bring some order into the multitude of EQLS, we try to gréaipguages with a
similar “style” or “flavor” together. We will focus on the geral style of the lan-
guages and the variations within a style, rather than dieg®ach language and
its constructs separately. It turns out most approacheguerying events fall into
one of the following five categories:

1. languages based on composition operators (sometimesalled composite
event algebras or event pattern languages),

. data stream query languages (usually based on SQL),

. production rules,

. timed (finite) state machines, and

. logic languages.

ab~wiN

As we will see, the first, the second and the fifth approachesasmguages ex-
plicitly developed for specifying event queries, while théd one is only a clever
way to use the existing technologies of production rulestgiément event queries.
Similarly, the fourth approach is the use of an establisbelriology to model event
gueries in a graphical way.

In Sections 4-8, we will describe each language style iddiily, mentioning
the respective important languages from the research ahdtiry. We will also
discuss the strengths and weaknesses of each style archtbuthem on a sensor
network use case which can be implemented using, e.g., BriyiB]. Section 9
summarizes the comparison by a discussion on suitablecagipl areas of each
language style. It is further worth mentioning that manyuisity products follow
approaches where several languages of different flavorsugmgorted or a single
language combines aspects of several flavors. Section Léhesiefore be devoted
to hybrid approaches. Section 11 concludes this chapter.

4 Composition Operators

4.1 General |dea

The first group of languages that we discuss builds complexteyueries from sim-
ple event queries using composition operators. Histdyicdlese languages have
their roots primarily in Active Database Systems [58], thlounewer systems like
Amit [3] run independently from a database. Some examplelside: the COM-
POSE language of the Ode active database [29, 30, 31], thpasit® event detec-
tion language of the SAMOS active database [27, 28], Sno®pdid its successor
SnooplB [1, 2], GEM [47], SEL [68], CEDR [6], ruleCore [65,h1he SASE Event
Language [67], the original event specification languag&©hange [18, 12, 13],

6 Michael Eckert et al.

and the unnamed languages proposed in the following pap&is{49], [34], [14],
[7], [61, 60].

Complex event queries are expressed by composing singiésaveing different
composition operators. Typical operators are conjunaticevents (all events must
happen, possibly at different times), sequence (all evegipen in the specified or-
der), and negation within a sequence (an event does not hapgee time between
two other events). Consider the use of the operators in tigos@etwork use case
below.

4.2 Sensor Network Use Case

Since different composition-operator-based EQLs have difierent and rather un-
readable syntax we formulate the example queries in pseadi®io Figure 1. The
pseudo code illustrates the idea of this kind of EQLSs but @gdoot mean that each
of the queries in Figure 1 can be analogously formulated aryeeomposition-
operator-based EQL.

Composition fire(area(A)) =(smokegarea(A)) A hightemparea(A)))1 min

Sequence fire(area(A)) =(smokearea(A)); hightemgareaA)))1 min
or
fire(area(A)) = s:smoke(area(A)); higtemp(area(A)); s+1 min

Negation failure(sensor(S)) = t:temp(sensor(S)); not temp(sensor(S)); Bek2

Aggregation -

Fig. 1 Example queries in pseudo code for composition operators

The first query in Figure 1 triggers fire alarm for an area whemwke and
high temperature are both detected in the area within 1 mjrintother words the
query derives a complex eveire(area(A))from the two eventsmoke(area(A)and
high_.temp(area(A)) The eventsmoke(area(A)andhigh.temp(area(A)are joined
on variableA. Their order does not matter but it is important that botmévappear
within 1 minute indicated by the time window specification.)1 min. This is a typi-
cal example of event composition realized by the conjunatiperator\ and a time
window specification.

The second example is similar to the first one but the everttseirevent query
are connected by the sequence operatlnoting that the order of events is impor-
tant, i.e., the everamoke(area(A¥nust appear before the evdnigh temp(area(A))
Only if the events appear within 1 minute and in the right oftthe complex event
fire(area(A))is derived.

Languages for CEP and Querying Surveyed 7

Alternatively if a composition-operator-based EQL supp@vent identification
and relative timer events, this query can be formulated bgmaef the event iden-
tifier sfor the evensmoke(area(A)and a relative timer evestr1 min In this case
an EQL must decide whether the complex eveirg(area(A)) is derived after the
eventhigh.temgareaA)) or after the eveng+ 1 min.

Sequence operator is not as intuitive as it seems at first. dighA B andC
be simple event queries. Under time point semani#8);C is not equivalent to
A; (B;C), i.e., both queries do not yield the same answersblaf be events arriv-
ing in this order and matchinB, A, andC, respectively. They yield an answer for
the queryA; (B;C) sinceb andc satisfy(B;C) with the occurrence time (point) af
which is later than that of. b happens befora which is not allowed by the query
(A;B);C.

Under time interval semantias; (B;C) and (A; B);C are equivalent. They both
match events, b,c arriving only in this order(B;C) matches, c and has the oc-
curence time interval starting as soonkabegins and ending as soon @gnds.
FurthermoreA; (B;C) requires that is over beforeb begins. This query matches
a, b, c arriving exclusively in this order. Analogous(; B) matches, b and has the
time interval described by two time points, namely the begfia and the end of
b. ConsequentlyA; B);C requires that begins afteb is over. This query can also
match only the eventa, b, ¢ arriving in this order. Hence, using time points or time
intervals has far reaching consequences [25].

The third example in Figure 1 shows how negation can be egpddsy means of
composition operators. The query uses event identificatiairelative timer events.
It demonstrates the necessity for event identification @ ewvents of the same type
are used within one query and it has to be distinguished leatiwem.

Assume all sensors of our network send temperature measnoteevery 12 sec-
onds. The third query detects a failure of a sensor when isaorement is missing,
i.e., the query derives a complex evdatlure(sensor(S)when there is an event
temp(sensor(S)yhich is not followed by another evetémp(sensor(S)yithin 12
seconds.

Another feature which must be supported by an EQL is agdmyahggrega-
tion means collection of data satisfying certain condgicemalysis of the data and
construction of new data containing the result of the anslys example of aggre-
gation in our use case is the computation of the average tatope reported by a
sensor during the last minute every time a temperature me@asumt from the sen-
sor arrives. Such a query is unfortunately not expressipleéans of composition
operators (compare Figure 1).

Nesting of expressions makes it possible to specify morgtioated queries but
we restrict ourselves to simple examples which shouldtiiie the main ideas of
the language styles without embracing their whole expvigsi

8 Michael Eckert et al.

4.3 Summary

Many composition-operator-based EQLS support restristamn which events should
be considered for the composition of a complex event. Evestance selection, for
example, allows selection of only the first or last event cddipular type [69, 3, 34].
Event instance consumption prevents the reuse of an everitither complex
events if it has already been used in another, earlier coneplent [28, 69].

Composition operators offer a compact and intuitive way gecffy complex
events. Particularly temporal relationships and negadi@nwell-supported. Event
instance selection and consumption are features that arpresent in the other
approaches. Yet, there are hidden problems with the imuithderstanding of op-
erators sometimes, e.g., several variants of the intexjpwatof a sequence (amongst
others, interleaved with other events or not). Furthernedata (i.e., access to the
attribute values of an event) is often neglected in langsiafjthis style, in particular
regarding composition and aggregation.

Currently only very few CEP products are based on compasitiperators,
among them IBM Active Middleware Technology (Amit) [3] andeCore [65, 51].

5 Data Stream Query Languages

5.1 General |dea

The second style of languages has been developed in thexcohtelational data
stream management systems. Data stream management sgstet@geted at sit-
uations where loading data into a traditional database geanant system would
consume too much time. They are particularly targeted atynezal-time applica-
tions where a reaction to the incoming data would alreadyde¢ess after the time
it takes to store it in a database. A typical example of datast query languages
is the Continuous Query Language (CQL) that is used in theE3WNRsystems [5].
The general ideas behind CQL apply to a number of open-s@nmdeommercial
languages and systems including Esper [21], the CEP and @@ipenent of the
Oracle Fusion Middleware [52], and Coral8 [50]. See alsq B for the recent
research in the field of data stream query languages.

Data stream query languages are based on the databaseangrade SQL and
the following general idea: Data streams carry events sgmted as tuples. Each
data stream corresponds to exactly one event type. Therstrage converted into
relations which essentially contain (parts of) the tuplkeseived so far. On these
relations a (almost) regular SQL query is evaluated. Theltrésnother relation) is
then converted back into a data stream. Conceptually, tbisegs is done at every
point of time. Note that this implies a discrete time axised$however [36] for
variations.)

Languages for CEP and Querying Surveyed 9

For the conversion of streams into relations, stream-ttiom operators like
time windows such as “all events of the last hour” or “the [Etevents” are used.
For the conversion of the result relation back into a strefaenet are three options:
“Istream” stands for “insert stream” and contains the tapleat have been added
to the relation compared to the previous state of the relatidstream” stands for
“delete stream” and contains the tuples that have been reunwem the relation
compared to its previous state, or “Rstream” stands foati@h stream” and con-
tains simply every tuple of the relation. In the following wely use “Istream”.

5.2 Sensor Network Use Case

Figure 2 shows equivalent example queries as Figure 1 bubmtil@ious Query
Language (CQL). A CQL query is very similar to an SQL querye THROM part
of a CQL query is a cross product of relations, the optional \REEpart defines
selection conditions, and the SELECT part is a usual prioject

For example, the FROM part of the first query in Figure 2 joins telations
smokeandhigh_.tempwhich were generated out of event streams of typekeand
high.temprespectively by means of time windows. Generally there everal types
of time windows. For the sake of brevity only two of them arplained here.

The first one is a simple sliding window. The resulting relattontains all stream
tuples of a particular type betwe@ow—dandnow wherenowis the current time
point andd is a duration such as “1 Minute” or “12 Seconds”. The syntaxdo
sliding window of duratiord is T [Range dwhereT is an event type and the name of
the resulting relation. For example, the notattonoke [Range 1 Minutgjroduces
the relatiorsmokecontaining tuple representations of all events of typwkevhich
happened in the last minute.

The second time window that we explain here is a now windove f@sulting
relation contains only the stream tuples of a particulaetypth the occurrence
time now wherenow denotes the current time point. The syntax for this window
is T [Now] whereT is the event type and the name of the resulting relation. For
example, the result of the expressibigh.temp [Now]is the relationhigh.temp
containing tuple representations of all events of thigh tempwhich happened at
the current moment. Note th@itfRange 0 Minutesis equivalent tar [Nowl].

Remember that the first query triggers fire alarm for an areanvgmoke and
high temperature were both detected in the area within omeitei This temporal
condition can be intuitively formulated by means of 1 minlaieg simple sliding
windows restricting thesmokeand thehigh.tempstreams. The join condition is
specified in the WHERE block of the query. Consider the firstgXa in Figure 2.

When the order of queried events is important the same quepnies less intu-
itive. Consider the second example in the figure. The quéeggers fire alarm for an
area when high temperature is being measured in the areantbgnzoke has been
detected in the same area during the last minute.

10 Michael Eckert et al.

Composition SELECT |streams. area
FROM snoke [Range 1 M nute] s,
high_temp [Range 1 Mnute] t
WHERE s. area = t.area

Sequence SELECT Istreams. area
FROM snoke [Range 1 M nute] s,

hi gh_tenp [Now] t

VWHERE s.area = t.area

Negation SELECT |streamt1.sensor
FROM tenmp [Now] t1
VWHERE NOT EXI STS (SELECT =
FROM tenp [Range 12 Seconds] t2
WHERE t 1.sensor = t2.sensor)

Aggregation SELECT Istreamt1.sensor, avg(tl.val ue)
FROM tenmp [Range 1 Mnute] t1,
tenp [Now] t2
WHERE t 1. sensor = t2.sensor

Fig. 2 Example queries in Continuous Query Language

The definition of correct time windows is essential as it hasiantic conse-
quences such as differentiation between an unordered ctignoand a sequence.
Observe that a sequence of more than two events can only bessgp by means
of rule chaining. E.g., the sequence of three eventsy, e3 can be expressed in the
following way: The first query guarantees tleathappens before, and generates a
complex event as an intermediate result. The second rule queries eeamde;
in this order and derives the resulting events.

Negation is hard to express in CQL (as well as in SQL) becdesedgated tuples
have to be queried by an auxiliary query which is nested int¢ERE block of
the main query and must be empty to let the main query prodoanawer. For
example, the third rule in the figure reports a failure of assenvhen it does not
send a temperature measurement every 12 seconds.

Aggregation is well supported by the language as shown bjagteexample in
Figure 2. Every time a temperature measurement from a sansees the query
computes the average temperature reported by the sensng the last minute.

Languages for CEP and Querying Surveyed 11

5.3 Summary

Data stream query languages are very suitable for aggoegatievent data, as par-
ticularly necessary for market data, and offer a good irtign with databases.
Expressing negation and temporal relationships, on therdtand, is often cum-
bersome. The conversion from streams to relations and bagkb® considered
somewhat unnatural and as may the prerequisite of a didoretexis.

SQL-based data stream query languages are currently thesmosessful ap-
proach commercially and are supported in several efficiadtstalable industry
products. The better known ones are Oracle CEP, Coral@i8Base, Aleri and the
open-source project Esper. However, there are big diftagibetween the various
projects and there also exist important extensions thategord the general idea
that has been discussed here.

6 Production Rules

6.1 General |dea

Production rules are not an event query language as sucteveouihey offer a
fairly convenient and very flexible way of implementing evgueries. The first suc-
cessful production rule engine has been OPS [23], in paatién the incarnation
OPS5 [22]. Since then, many others have been developed iegbarch and indus-
try, including systems like Drools (also called JBoss RL8%], ILOG JRules [35],
and Jess [62]. While the general ideas of production rulelsbsilexplained here,
we refer the reader to [8] for a deeper introduction.

Production rules, which nowadays are mainly used in businde management
systems like Drools or ILOG JRules, are not EQLSs in the naerasense. The rules
are usually tightly coupled with a host programming languégyg., Java) and spec-
ify actions to be executed when certain states are entefedlj& states are ex-
pressed as conditions over objects in the so-called workiagiory. These objects
are also called facts.

Besides their use in business rule management systemgé¢hadtafocused on
events, production rules are also an integral part of the @&Buct TIBCO Busi-
ness Events, which also offers more CEP-specific featu@sasisupport for tem-
poral aspects or modelling of event types and data.

The incremental evaluation (e.g., with Rete [24]) of pradrcrules makes them
also suitable for CEP. Whenever an event occurs, a corresgpfatt must be cre-
ated. Event queries are then expressed as conditions @a# facts. In doing so,
the programmer has much freedom but little guideline.

12 Michael Eckert et al.

6.2 Sensor Network Use Case

Figure 3 contains our four example queries in the open squmasuction rule sys-
tem Drools. In Drools all events are represented as Javatsbfevery time an event
arrives some Java method has to convert it into an objedcttittse object into the
working memory, and call the rule engine to perform the rukdwation (more pre-
cisely, fire all rules until no rule can fire). Note that in CEflored systems such as
TIBCO Business Events this happens automatically. If a dexngvent is derived
by arule it is also saved as an object in the working memoryaggeime that in this
case thénsert-method sets the occurrence time of a complex event.

The occurrence time is a usual attribute of an object. Thigigally a problem
because every method can change every occurrence timesitebly. This in turn
leads to incorrect answers.

For the sake of simplicity we use time point semantics, asstimat timestamps
are given in seconds since the epoch (i.e., since the mitdoidlanuary 1, 1970) and
we do not perform any garbage collection (i.e., deletionveings). These assump-
tions are not suitable for real-life applications but thejphto keep the examples
simple. Under the above assumptions we can express the itelmptations be-
tween events as simple comparisons of numbers. In reaifidications temporal
relations would have to be programmed as Java methods thatled in Drools
rules.

A Drools rule consists of two parts. The WHEN part is an evemrguit speci-
fies both, the types of queried events and conditions on thetevThe THEN part
derives an object representing the complex event, setsdtgi@nce time, and saves
the object into the working memory. This newly asserted cijan then also acti-
vate further rules.

Remember that the first rule detects fire in an area when smuakéigh tem-
perature are both detected in this area within one minutes{der the first rule in
Figure 3). These conditions are coded into the specificati@High_tempobject.
Its attribute values are compared with the respectivebatiivalues of &mokenb-
jects. In particular aHigh_tempevent may happen at most one minute before or
after aSmokeevent.

In the second rule of the figure the order of the queried evem&devant. Smoke
appears before high temperature is measured in the aredsBxipressed by chang-
ing one of the conditions on the occurrence time bfigh_tempobject.

Negation is supported in Drools as shown by the third queecaR that the
query reports a failure of a sensor when the sensor does ndtas¢emperature
measurement every 12 seconds.

Aggregation of events is also supported. Consider theUldsim Figure 3. Every
time a sensor sends a temperature measurement the querytesntipe average
temperature reported by the sensor during the last mingtthi.example illustrates
aggregation is hard to express in Drools because the resadfgnegation must be
represented as an object in the WHEN part of a ruleXag) object in this case)
to be used as a parameter of an object representing the coayget in the THEN
part of a rule (arAvg temp()object in this case).

Languages for CEP and Querying Surveyed 13

Compositionwhen s: Snoke()
H gh_tenp(area == s.area &&
timestanp >= (s.tinmestanp - 60) &&
timestanp <= (s.timestanp + 60))
then insert(new Fire(s.area));

Sequence when s: Snoke()
H gh_tenp(area == s.area &&
timestanp > s.tinmestanp &&
timestanp <= (s.timestanp + 60))
then insert(new Fire(s.area));

Negation when t: Tenp()
not (exi sts(Tenp(sensor == t.sensor &&
timestanp >= t.tinmestanp &&
timestanp <= (t.tinmestanp + 12))))
then insert(new Failure(t.sensor));

Aggregation when t: Tenp()
a: Avg() from accunul at e(

Tenp(sensor == t.sensor &&
timestanmp >= (t.timestanp - 60) &&
tinestanp <= t.tinmestanmp &&
v: val ue),

aver age(Vv))

then insert(new Avg_tenp(t.sensor, a));

Fig. 3 Example queries in Drools

As the examples show all relations between events must lgggmomed man-
ually and even simple temporal conditions (already in ororggly simplified time
model) require low-level code which is hard to read.

6.3 Summary

CEP with production rules is very flexible and well integchteith existing pro-
gramming languages. However, it entails working on a lowtralotion level that is
— since it is primarily state and not event oriented — somedtterent from other
EQLs. Especially aggregation and negation are therefaiek thaexpress. Garbage
collection, i.e., the removal of events from the working nogyn has to be pro-
grammed manually. (See however [66] for work towards anraati garbage col-
lection.) Production rules are considered to be less dffitlean data stream query

14 Michael Eckert et al.

languages; this is however tied to the flexibility they addaémms of combining
queries (in rule conditions) and reactions (in rule acfjons

7 Timed State Machines

7.1 General |dea

State machines are usually used to model the behavior oftefidtaystem that
reacts to events. The system is modelled as a directed grapmodes of the graph
represent the possible states of the system. Directed edgéabeled with events
and temporal conditions on them. The edges specify theiti@ms between states
that occur in reaction to in-coming events.

State machines are founded formally on deterministic orceterministic finite
automata (DFAs or NFAs). Since states in a state machineached by particular
sequences of multiple events occurring over time, they titlyl define complex
events. Timed Bchi Automata (TBA) [4] were the first attempt to extend auddmm
to temporal aspects for modelling real-time systems. In & €Bch transition be-
tween states depends not only on the type of arriving evertal®o on their occur-
rence time. For this, temporal conditions are added to itians. Other examples
of this kind of EQLs are UML state diagrams and regular reaktlanguages [33].
Many representatives of this language style were develtpeathieve a particu-
lar task or solve a problem of real-time distributed systeexamples are Timed
abstract state machine language for real-time system eagng [53], Timed au-
tomata approach to real time distributed system verifiodld], Timed-constrained
automata for reasoning about time in concurrent systenis [48

7.2 Sensor Network Use Case

In this chapter we do not describe different kinds of realetiautomata but ex-
plain their common principle. Figure 4 contains our exanpleries in a pseudo
code for timed state machines. The pseudo code is an exteosiimed Hichi
Automata [4]. The first extension is the consideration ohewlata. The second ex-
tension is the representation of complex events as autamatech a way that only
if the end state of an automaton is reached the respectivplerravent is derived.
A complex event can determinate a transition between stétasother automaton
so that arbitrary levels of abstraction can be achieved.

Remember that our first example derives a complex efiex(area(A))out of
two eventssmoke(area(A)and high.temp(area(A))f these events happen within
one minute. Their order does not matter. Since an automaipticitly describes
an ordered sequence we have to specify both acceptablesmfiqueried events.

Languages for CEP and Querying Surveyed 15

Composition
fire (area (A))
s: smoke (area (A)) high_temp (area (A)), x < end(s) + 1min
i [
t: high_temp (area (A)) smoke (area (A)), x < end(t) + 1min
Sequence
fire (area (A))
s: smoke (area (A)) high_temp (area (A)), x < end(s) + 1 min
e - -Or
Negation .
failure (sensor (S)) end(t) + 12 sec < x
O}
t: temp (sensor (S))
temp (sensor (S)), x < end(t) + 12 sec O
Aggregation -

Fig. 4 Example queries in pseudo code for timed state machines

Consider the first query in Figure 4. The longer the compmsitif events the more
acceptable orders (all possible permutations of events}) imel considered by the
machine, i.e., a simple composition query provokes a cara@dd automaton (ex-
ponential blow-up).

The eventssmoke(area(A)rand high temp(area(A))must happen within one
minute. This condition is expressed using event identifiarsauxiliary function
end(i) which returns the end timestamp of evérmtnd a global clock. (As men-
tioned above, we do not consider such problems as clock synization in this
chapter and refer the reader to [43].) Note that both evemske(area(A)and
high.temp(area(A))re joined upon the value of attribuéeea If the end state of
the state machine is reached the complex efim{area(A))is derived.

The second query describes the sequence of esamdke(area(A)andhigh_temp
(area(A)) The latter must happen at most one minute after the formlet tbe au-
tomaton reach its end state, i.e., to derive the complextdive(area(A)) This is a
very intuitive presentation.

Aggregation is not supported by timed state machines. Neygtnot supported
also but can be simulated by a failure state without outgethges and with an in-
coming edge which is labeled by a temporal condition and amtewhich should
not arrive for the query to return an answer. For exampletfiind machine in Fig-

16 Michael Eckert et al.

ure 4 detects a failure of a sensor when it does not send a tatapemeasurement
every 12 seconds. If a temperature measurement comes Witiaconds after the
last measurement the state machine goes into the failugss staaning that the end
state is unreachable and the complex ef@hire(sensor(S)annot be derived any-
more. If 12 seconds since the last temperature measuremeeovexr (consider the
temporal condition of the incomimg edge of the end state yengew measurement
has arrived during this time, the state machine goes int@titestate and derives
the complex everfailure(sensor(S))

7.3 Summary

Though timed state machines provide intuitive visual@atf complex events their
expressivity is limited. They do not support aggregatiorgation and even com-
position of events are cumbersome. Conditions on the ewaatwhich are more
complex than equi-joins (e.g., an attribute value must yamnot be expressed.

To overcome deficits of the theoretical automata, state mastare usually com-
bined with languages of other styles. An example of thisésabmbination of state
machines with production rules in TIBCO Business Event®r&ha transition be-
tween two states is specified with a production rule. The itmmdof the production
rule expresses when the transition is activated. Frequegsktions to the complex
events that are implicit in a state machine are desirables@lean be specified for
a transition (in the action part of the production rule) a8l a® for the entry or exit
of states.

8 Logic Languages
8.1 General Idea

Logic languages express event queries in logic-style ftasm\n early representa-
tive of this language style is the event calculus [39]. Whilerg calculus is not an
event query language per se, it has been used to model evagtrgiand reasoning
tasks in logic programming languages such as Prolog or BP46YaT he latter com-
bines the benefits of declarative and object-oriented progring by merging the
syntaxes of Prolog and Java. Prova is used as a rule-basieabinacfor distributed
Web applications in biomedical data integration. One okihyeadvantages of Prova
is its separation of logic, data access, and computation.

XChang&R [9, 19] also adopts some ideas from event calculus-likeagures,
but extends and tailors them to the needs of an expressiveldigl event query
language. XChang® identifies and supports the following four complementary di
mensions (or aspects) of event queries: data extractient eemposition, temporal

Languages for CEP and Querying Surveyed 17

(and other) relationships between events, and event adationu Its language de-
sign enforces a separation of the four querying dimensions.

A further example of this language style is Reaction RuleM®L, [56] combining
derivation rules, reaction rules and other rule types sséhtagrity constraints into
the general framework of logic programming.

8.2 Sensor Network Use Case

Figure 5 contains our four example queries in XCha&®geAn XChangé&® rule
consists of two parts. The ON part, i.e., the rule body, is mpex event query
which is a conjunction or disjunction of simple or complexeet queries and an
optional WHERE block containing temporal and other condgi@n the queried
events. The DETECT part, i.e., the rule head, is a constnuaf a complex event
using the variable bindings returned by the respectivetayeery.

Note that events are neither converted to relational tuptesto objects of an
object-oriented programming language. Furthermore, iitolspossible to manip-
ulate event timestamps neither consciously nor unwityinginally, relative timer
events are supported by XChaf§e

Event query specifications are very intuitive and flexibl&Xi@hangé&®. There
are four types of event queries charaterized by differemdskiof brackets. Single
brackets denote a complete event query, i.e., the queryhemtnly those events
which do not have attributes other than the ones specifieldeimtiery. In contrast
double brackets denote an incolmplete event query, i.entevnatched by the query
may have additional attributes. Curly brackets denote amdered query, i.e., the
order of attributes does not matter. Square brackets demotedered event query.
Hence, there are four possible combinations of brackets,four types of event
queries (ordered complete, unordered complete and so on).

Consider the first rule in Figure 5. Its complex event querg onjunction of
two simple incomplete and unordered event quegiemnt s: smoKg area{{ var A
+} }} andevent t: hightemp({{ area{{ var A}} }} where variablé\ is bound to the
value of attributearea Since the same variable is used in both queries the queried
events are joined on the value of this variable.

The WHERE block of the first rule in Figure 5 contains the addil tempo-
ral condition that both events, i.e., smoke and high tempeFaappear within one
minute. Note the use of event identifierandt. Note also that the temporal condi-
tions (likebeforeandwithin) are built-in into the language and must not be manually
programmed.

The second query contains the additional temporal comdiiat the smoke event
must appear before the high temperature event. The effactitbadditionaltem-
poral condition is mapped to additional statement in the query is an outstanding
feature of XChande®.

Negation and aggregation of events are supported as shothe kgst two exam-
ples in Figure 5. Both negation and aggregation are restrict finite time intervals.

18 Michael Eckert et al.

Composition DETECT fire { area { var A} }
ON and { event s: snoke {{ area {{ var A}} }},
event t: high_tenp {{ area {{ var A }} }}
} where { {s,t} within 1 mn}
END

Sequence DETECT fire { area{ var A} }
ON and { event s: snoke {{ area {{ var A}} }},
event t: high_tenp {{ area {{ var A }} }}
} where { s before t, {s,t} within 1 mn}
END

Negation DETECT failure { sensor { var S} }
ON and { event t: tenp {{ sensor {{ var S }} }},
event i: tiner:fromend [event t, 12 sec],

while i: not tenp {{ sensor {{ var S}} }} }
END

Aggregation DETECT avg_tenp { sensor{ var S}, value { avg(all var T) } }
ON and { event t: tenp {{ sensor {{ var S }} }},
event i: tinmer:fromstart-backward [event t, 1 mn],
while i: collect temp {{ sensor {{ var S }},
value {{ var T }} }} }
END

Fig. 5 Example queries in XChang@

In the examples, the time intervals are given by relativestievents which are de-
fined as follows:

e timer:from-end[event e, dhe relative timet extends over the length of duration
d starting at the end &, i.e.,begin(t):=end(e), end(t):=end(e)+d

e timer:from-start-backward[event e, dje relative timet extends over the length
of durationd ending at the start &, i.e.,begin(t):=begin(e)—d, end(t):=begin(e)

In the above we writdegin(t) and end(t)to denote the beginning and the end of
eventt respectively. There are of course many other relative tements which are
not discussed here, see [19].

Recall that the third example detects a failure of a sensenvitdoes not send a
temperature measurement every 12 seconds, i.e., the qerérgsia complex event
failure{ sensof var S} } when there is an evetemg({ sensof{ var S}} }} which
is not followed by anothetemp{{ sensof{ var S}} }} event within 12 seconds.

The last query of the figure computes average temperatuceteebby a sensor
during the last minute every time the sensor sends a tenyperaeasurement. More
precisely, every time aevent t: temp{ sensof{ var S}} }} arrives, a relative

Languages for CEP and Querying Surveyed 19

timer event denoting the time interval of one minute befayés defined, all events
happening during and matched by the quetgmp{ sensof{ var S}}, value{{
var T }} }} are collected and a complex eventg temg sensof var S}, valueg{
avg(all var T)} } containing the average temperature from the se8sisrderived.

8.3 Summary

As the simple examples above demonstrate, logic langudfggsamatural and con-
venient way to specify event queries. The main advantagedt€ llanguages is
their strong formal foundation, an issue which is negledtgdnany languages of
other styles. (Chapter “Two Semantics for CEP, no Doubl&Tal this volume de-
scribes a general, easily transferable approach for dgfmth, the declarative and
operational semantics of an EQL). Thanks to the separafidifferent dimensions
of event processing, logic languages are highly expressktensible and easy to
learn and use. Some languages of this style, e.g., XC&&symports an automatic
garbage collection of events [10].

9 Application Areas of the Language Styles

Having described the strengths and weaknesses of the fiyedge styles, we sum-
marize the comparison by a discussion on suitable applitatieas of each lan-
guage style.

Composition operators allow an intuitive specification vémt patterns. This
makes them attractive in scenarios, where business usaufddte allowed to de-
fine event patters such as real-time promotions and upgdtiny., send three text
messages within one hour to receive a free ringtone).

Data stream query languages are very suitable for aggoegatievent data, as
particularly necessary for applications involving markleta (e.g., average price
over 21 day sliding window) such as algorithmic trading. yraé&so usually offer a
good integration with databases, sharing in particulactiamon basis of SQL.

Production rules are very flexible and well integrated wiistng programming
languages. Since they allow the specification of actiongtexecuted when certain
states are reached, they are particularly useful for agpdies involving tracking of
stateful objects such as track and trace in logistics (ramirsind react upon changes
of the state of packages, containers, etc.) or monitorinigusfness processes and
objects (also called Business Activity Monitoring). Duetheir wide-spread use in
business rules management systems, production rulesaffearsome support for
exposing part of the logic to business users such as decadites or trees.

Timed state machines also offer an easy and convenient wagitttain the cur-
rent state. However they are limited to a finite set of stateg (“shipped”, “deliv-
ered”). This makes them suitable, e.g., for monitoring afgeisses (which typically

20 Michael Eckert et al.

have a well-defined, finite number of states), but not swetéda applications involv-
ing infinite state spaces (e.g., a temperature control systeere the temperature is
a numeric value).

Logic languages have strong formal foundations, allow &utime specification
of complex temporal conditions and account for event datayTcould be success-
fully used in medical applications or emergency managenmecritical infrastruc-
tures.

Combination of different language styles in one approaldwalto benefit from
their strengths. This is the main reason why hybrid appresetie most successful
in the industry. The next section is devoted to the combingui@aches.

10 Combination of Different Language Styles

A comparison of the different language styles shows thaasthkre is no one-fits-
all approach to querying events. Hence particularly ingystoducts trend towards
hybrid approaches, where several languages of differgleissare supported or as-
pects of different styles are combined within one languétydarid approaches in-
clude the introduction of pattern matching into data stremrary languages as in
Oracle CEP [52], Esper [21], and some CQL dialects like thee wsed in [64], the
use of composition operators on top of data stream queré&slp, the addition of
composition operators to production rules [66], the coratiom of production rules
and state machines, e.g., in TIBCO Business Events (se®®&3t the decoupled
use of different languages (and possibly evaluation esjitmat communicate only
by means of exchanging events (derived as answers to gueries

11 Conclusion

CEP is an industrial growth market as well as an importargae area that is
emerging from coalescing branches of other research fields.

Even though the prevalent event query languages can beocatsd) roughly
into five families as done in this article, there are signifiddifferences between the
individual languages of a family. Whether a convergence togles, dominant query
language for CEP is possible and advisable is currently iwaypagreed upon.

Efforts towards a standard for a SQL-based data stream dgegyage are on
the way [36], but not yet within an official standardizatioody. A standardized
XML syntax for production rules is being developed by the W3Cpart of the
Rule Interchange Format (RIF); however, the special reguénts of CEP are not
considered there yet. The same applies to the ProductiemfRapresentation (PRR)
by the OMG.

Activities of the Event Processing Technical Society (EP[EB] aim at a coor-
dination and harmonization with the work on a glossary of @BRons, the inter-

Languages for CEP and Querying Surveyed 21

operability analysis of Event Processing systems fronecsffit vendors, a common
reference architecture or framework of architectureg,ihadles current and envi-
sioned Event Processing architectures, the analysis @ftpkcation areas of CEP,
and the creation of a business value for a user in order teaserthe adoption of
Event Processing in the business and industry. The EPTSdwma avorking group
for the analysis of EQLSs.

22 Michael Eckert et al.
References
1. R. Adaikkalavan and S. Chakravarthy. Formalization aridadien of events using interval-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

based semantics. Proc. Int. Conf. on Management of Data (COMAPages 58—69. Com-
puter Society of India, 2005.

. R. Adaikkalavan and S. Chakravarthy. SnooplB: Intebaged event specification and de-

tection for active databaseBata and Knowledge Engineering(59):139-165, 2006.

. A. Adi and O. Etzion. Amit — the situation managérhe VLDB Journal13(2):177-203,

2004.

. R. Alur and D. Dill. Automata for modeling real-time systems. FAroc. Int. Colloquium

on Automata, Languages and Programminglume 443 oLLNCS pages 322—-335. Springer,
1990.

. A. Arasu, S. Babu, and J. Widom. The CQL continuous query lagguSemantic founda-

tions and query executiofhe VLDB Journal15(2):121-142, 2006.

. R. S. Barga and H. Caituiro-Monge. Event correlation aafdepn detection in CEDR. In

Proc. Int. Workshop Reactivity on the Weblume 4254 oL NCS pages 919-930. Springer,
2006.

. M. Bernauer, G. Kappel, and G. Kramler. Composite events KL XIn Proc. Int. Conf. on

World Wide Weppages 175-183. ACM, 2004.

. B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-&t®njan. Reactive rules on the Web. In

Reasoning Web, Int. Summer Scheolume 4636 o£ NCS pages 183-239. Springer, 2007.

. F.Bry and M. Eckert. Rule-Based Composite Event Queries: Bingliage XChan&€ and

its Semantics. IProc. Int. Conf. on Web Reasoning and Rule Systeahsme 4524 o£NCS
pages 16-30. Springer, 2007.

F. Bry and M. Eckert. On static determination of temporavahce for incremental evalua-
tion of complex event queries. Proc. Int. Conf. on Distributed Event-Based Systgmages
289-300. ACM, 2008.

F. Bry, M. Eckert, O. Etzion, A. Paschke, and J. Riecke. Epsrcessing language tutorial.
In 3rd ACM Int. Conf. on Distributed Event-Based SysteA@M, 2009.

F. Bry, M. Eckert, and P.-L.&ranjan. Querying composite events for reactivity on the Web.
In Proc. Int. Workshop on XML Research and Applicatiomsdume 3842 ofLNCS pages
38-47. Springer, 2006.

F. Bry, M. Eckert, and P.-L.&r&njan. Reactivity on the Web: Paradigms and applications of
the language XChangd. of Web Engineerind(1):3-24, 2006.

J. Carlson and B. Lisper. An event detection algebra fotiveasystems. IiProc. ACM Int.
Conf. On Embedded Softwamages 147-154. ACM, 2004.

S. Chakravarthy and R. Adaikkalavan. Events and streanmeebiing and unleashing their
synergy! InProc. Int. Conf. on Distributed Event-Based Systgmages 1-12. ACM, 2008.
S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kibomposite events for active
databases: Semantics, contexts and detectioRrde. Int. Conf. on Very Large Data Bases
pages 606—617. Morgan Kaufmann, 1994.

G. Coulouris, J. Dollimore, and T. Kindberd@istributed Systems: Concepts and Design
Addison-Wesley, third edition, 2001.

M. Eckert. Reactivity on the Web: Event Queries and Cont@dsivent Detection in
XChange. Master’s thesis (Diplomarbeit), Institute for Infotice University of Munich,
2005.

M. Eckert. Complex Event Processing with XChaRgeLanguage Design, Formal Seman-
tics and Incremental Evaluation for Querying EvenihD thesis, Institute for Informatics,
University of Munich, 2008.

Event Processing Technical Society (EPT&)t p: / / www. ep-ts. com

EsperTech Inc. Event stream intelligence: Esper & NEs$pedrp: / / esper . codehaus.
org.

C. Forgy. OPS5 user’'s manual. Technical Report CMU-C338l-Carnegie Mellon Uni-
versity, 1981.

Languages for CEP and Querying Surveyed 23

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

C. Forgy and J. P. McDermott. OPS, a domain-independentigtiod system language. In
Proc. Int. Joint Conf. on Artificial Intelligencgages 933-939. William Kaufmann, 1977.
C. L. Forgy. Rete: A fast algorithm for the many pattern/maloigct pattern match problem.
Artificial Intelligence 19(1):17-37, 1982.

A. Galton and J. C. Augusto. Two approaches to event definitin Proc. Int. Conf. on
Database and Expert Systems Applicatiormdume 2453 o£ NCS pages 547-556. Springer,
2002.

V. Garg, R. Adaikkalavan, and S. Chakravarthy. Extersstorstream processing architec-
ture for supporting event processing. Pnoc. Int. Conf. on Database and Expert Systems
Applications volume 4080 o NCS pages 945-955. Springer, 2006.

S. Gatziu and K. R. Dittrich. Events in an active objedéinted database system. Pnoc.
Int. Workshop on Rules in Database Systgmages 23—-39. Springer, 1993.

S. Gatziu and K. R. Dittrich. Detecting composite eventadtive database systems using
petri nets. InProc. Int. Workshop on Research Issues in Data Engineering: ADatabase
Systemspages 2-9. IEEE, 1994,

N. H. Gehani, H. Jagadish, and O. Shmueli. Event specificatian active object-oriented
database. IfProc. Int. ACM Conf. on Management of Data (SIGMQpages 81-90. ACM,
1992.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite evestfispéon in active
databases: Model & implementation. Rroc. Int. Conf. on Very Large Data Basgsges
327-338. Morgan Kaufmann, 1992.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Compose: A systecoifioposite specifica-
tion and detection. Ildvanced Database SysterhBICS, pages 3-15. Springer, 1993.

M. Gualtieri and J. R. Rymer. The Forrester WaleComplex Event Procecessing (CEP)
Platforms. http://wwmv. forrester. conl rb/ Resear ch/ wave%26t r ade%3B_
conpl ex_event _processing_cep_pl atforms%2C _q3/ g/ i d/ 48084/t/ 2,

2009.

T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. Thdaegeal-time languages. lim
Proc. 25th Int. Coll. Automata, Languages, and Programmi@A(LP’98, pages 580-591.
Springer, 1998.

A. Hinze and A. Voisard. A parameterized algebra for evetifioation services. IfProc.
Int. Symp. on Temporal Representation and Reasopiages 61-65. IEEE, 2002.

ILOG. ILOG JRulesht t p: / / www. i | og. conT products/jrules.

N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakan, U. Cetintemel,
M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a streaming &@ndard. IrProc. Int.
Conf. on Very Large Data Base#lume 1, pages 1379-1390. VLDB Endowment, 2008.
JBoss.org. Drooldht t p: / / www. j boss. or g/ dr ool s.

M. Kersten, E. Liarou, and R. Goncalves. A query language ftata refinery cell. I#roc.
Int. Workshop on Event-Driven Architecture, Processing and 8)ys2007.

R. A. Kowalski and M. J. Sergot. A logic-based calculus ofneveNew Generation Com-
pututing 4(1):67-95, 1986.

A. Kozlenkov, R. Penaloza, V. Nigam, L. Royer, G. Dawdlband M. Schroeder. Prova:
Rule-based Java scripting for distributed web applications: #e caudy in bioinformatics.
In Current Trends in Database Technology (EDBU9lume 4254 oLNCS pages 899-908.
Springer, 2006.

J. Kiakora, L. Waszniowski, and Z. Haaek. Timed automata approach to real time dis-
tributed system verification. Im Proc. of IEEE Int. Workshop on Factory Communication
Systems (WFCSpages 407-410, 2004.

L. Lamport. Time, clocks, and the ordering of events in aibisted systemCommunications
of the ACM 21(7):558-565, 1978.

Q. Liand D. Rus. Global clock synchronization in sensor netstdEEE Transactions on
Computers55(2):214-226, 2006.

E. Liarou, R. Goncalves, and S. Idreos. Exploiting the pavieelational databases for
efficient stream processing. Int. Conf. on Extending Database Technology (EDB®)ume
360, pages 323-334. ACM, 2009.

24

45.

46.

47.
48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

. C. Roncancio. Toward duration-based, constrained andnoignevent types. IProc. Int.

60.

61.

62.

63.

64.

65.

Michael Eckert et al.

D. C. Luckham. The Power of Events: An Introduction to Complex Event Procgssin
Distributed Enterprise SystemAaddison-Wesley, 2002.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. HongnyDB: An acquisitional
guery processing system for sensor networkSCM Transactions on Database Systems
30(1):122-173, 2005.

M. Mansouri-Samani and M. Sloman. GEM: A generalized eventitmiing language for
distributed systemdistributed Systems Engineering(2):96-108, 1997.

M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrairmagtomata. INCONCUR '91:
2nd Int. Conf. on Concurrency Thegmolume 527 oL NCS pages 408—-423. Springer, 1991.
D. Moreto and M. Endler. Evaluating composite events usiageshtreeslEE Proceedings
— Software148(1):1-10, 2001.

J. Morrell and S. D. Vidich. Complex Event Processing with al&r White Paper.
http://ww. coral 8. conf systen fil es/assets/ pdf/ Conpl ex_Event _
Processi ng_w t h_Cor al 8. pdf, 2007.

MS Analog Software. ruleCore(R) Complex Event Proces€&d) Serverht t p: / / www.

rul ecore.com

Oracle Inc. Complex Event Processing in the real world. Bhit
Paper. http://ww. oracl e. conl t echnol ogi es/ soa/ docs/

or acl e- conpl ex- event - processi ng. pdf .

M. Ouimet and K. Lundgvist. The timed abstract state machingukage: Abstract state
machines for real-time system engineeringJournal of Universal Computer Science
14(12):2007-2033, 2008.

A. Paschke and H. Boley. Rules capturing events and végctn Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open@dwtnd Approachepages
215-252. IGI Global, 2009.

A. Paschke and A. Kozlenkov. Rule-based event processingeaation rules. IrRule
Interchange and Applicationsolume 5858 oL NCS pages 53—-66. Springer, 2009.

A. Paschke, A. Kozlenkov, and H. Boley. A homogenous reagctile language for Complex
Event Processing. lin Proc. 2nd Int. Workshop on Event Drive Architecture and Event
Processing System2007.

A. Paschke, A. Kozlenkov, H. Boley, S. Tabet, M. Kifer, aidDean. Reaction RuleML.
http://ibis.in.tumde/research/ Reacti onRul eM./, 2007.

N. W. Paton, editorActive Rules in Database Syster8pringer, 1998.

Workshop on Active, Real-Time, and Temporal Database Systemse 1553 ofLNCS
pages 176-193. Springer, 1997.

C. &nchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. L. bill,Za Manna. Event
correlation: Language and semantics. Froc. Int. Conf. on Embedded Softwak®lume
2855 of LNCS pages 323-339. Springer, 2003.

C. &nchez, M. Slanina, H. B. Sipma, and Z. Manna. Expressive coemglss of an event-
pattern reactive programming language.Iih Conf. on Formal Techniques for Networked
and Distributed Systemsolume 3731 o NCS pages 529-532. Springer, 2005.

Sandia National Laboratories. Jess, the rule engine for t€TM) platform. ht t p: / /
her zber g. ca. sandi a. gov/ .

K.-U. Schmidt, D. Anicic, and R. 8hmer. Event-driven reactivity: A survey and require-
ments analysis. IBBPM2008: 3rd Int. Workshop on Semantic Business Process Maaagem
in Conjunction with the 5th European Semantic Web Conf. (E®8). CEUR Workshop Pro-
ceedings, 2008.

B. Seeger. Kontinuierliche kontrolleX: Magazin fir Professionelle Informationstechnik,
2010.

M. Seird and M. Berndtsson. Design and implementation of an ECA rule mdanguage.

In Proc. Int. Conf. on Rules and Rule Markup Languages for theaBgaiWebh volume 3791
of LNCS pages 98-112. Springer, 2005.

Languages for CEP and Querying Surveyed 25

66. K. Walzer, T. Breddin, and M. Groch. Relative temporalstoints in the Rete algorithm
for complex event detection. IAroc. Int. Conf. on Distributed Event-Based Systepages
147-155. ACM, 2008.

67. E.Wu, Y. Diao, and S. Rizvi. High-performance Complex E\Rnocessing over streams. In
Proc. Int. ACM Conf. on Management of Data (SIGMOpages 407-418. ACM, 2006.

68. D.Zhuand A. S. Sethi. SEL, a new event pattern specifictaitguage for event correlation.
In Proc. Int. Conf. on Computer Communications and Netwgages 586—589. IEEE, 2001.

69. D. Zimmer and R. Unland. On the semantics of complex eventdireatatabase manage-
ment systems. IRroc. Int. Conf. on Data Engineeringages 392—-399. IEEE, 1999.

Index

complex event, 4

Complex Event Processing (CEP), 4
complex event query, 4

composition operators, 5

data stream query languages, 8

event, 3

event attribute, 3

event data, 3

event occurrence time, 3

Event Query Language (EQL), 4

event streams, 4
event type, 3

logic languages, 16
production rules, 11

simple event, 4
simple event query, 4

timed state machines, 14

27

