
KWilt: A Semantic Patchwork for Flexible
Access to Heterogeneous Knowledge

Klara Weiand1, Steffen Hausmann1, Tim Furche1,2, and François Bry1

1 Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/
2 Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
http://web.comlab.ox.ac.uk/people/Tim.Furche/

Abstract. Semantic wikis and other modern knowledge management
systems deviate from traditional knowledge bases in that information
ranges from unstructured (wiki pages) over semi-formal (tags) to formal
(RDF or OWL) and is produced by users with varying levels of expertise.
KWQL is a query language for semantic wikis that scales with a user’s
level of expertise by combining ideas from keyword query languages with
aspects of formal query languages such as SPARQL. In this paper, we
discuss KWQL’s implementation KWilt: It uses, for each data format
and query type, technology tailored to that setting and combines, in a
patchwork fashion, information retrieval, structure matching and con-
straint evaluation tools with only lightweight “glue”. We show that it
is possible to efficiently recognize KWQL queries that can be evaluated
using only information retrieval or information retrieval and structure
matching. This allows KWilt to evaluate basic queries at almost the
speed of the underlying search engine, yet also provides all the power of
full first-order queries, where needed. Moreover, adding new data formats
or abilities is easier than in a monolithic system.

1 Introduction

To accommodate all users, modern knowledge management systems such as se-
mantic wikis must deal with both unstructured (textual or multi-modal) informa-
tion as well as structured data carrying varying degrees of semantics: hierarchical
data for document and simple classification structures, social classifications in
form of tag networks, formal ontologies in RDF or OWL. Expert users in such
systems can define semantically rich, automated analysis or derivation tasks.
However, the vast number of users has little understanding of formal knowledge
representation, produces unstructured information with lightweight semantic an-
notations such as free-form tags, and interacts with the system through simple
but imprecise keyword queries.

From these observations, we derive two properties that characterize successful
modern knowledge management systems:

(1) “Interfaces must be adaptable and flexible”: Interfaces should scale
with user experience: For novice users, simple, but imprecise queries are useful



for satisfying their information needs; for expert users precise, but necessarily
fairly complex queries that enable automated action and derivation are required.
Interfaces should also be able to adapt to different types of knowledge in a
system, providing a consistent interface.

(2) “Patchwork knowledge management”: Due to the growth in data
size and formats, knowledge management systems face a dual challenge: Users
expect high performance for (at least basic) queries regardless of the data scale,
as in Web search engines. On the other hand, knowledge management systems
must be able to adapt quickly to additional knowledge sources, providing scalable
yet sufficiently expressive interfaces to query and process such data.

In this paper, we present a patchwork approach to knowledge management
using the query language KWQL and its implementation, KWilt. We choose
the setting of a semantic wiki, KiWi, as it exemplifies many of the challenges
outlined above.

KWQL: Scale with User Experience. To illustrate how KWQL provides a
consistent interface that easily adapts to different levels of user experience, con-
sider the following scenario: “In a wiki describing KiWi, we would like to find all
wiki pages that describe (knowledge management) systems that have influenced
the development of KiWi.”

In a conventional knowledge management system, we would expect a formal
relation (e.g., wk:influences) that represents the very intent of our query.
Indeed, given an RDF representation of such a query we can query such a relation
in KWQL as (assuming wk:KiWi represents the KiWi system):

ci(rdf(predicate:’wk:influences’ object:’wk:KiWi’))

However, in most cases this relation is not present explicitly. Even if it is,
users are often not able to express their intent in such a formal manner.

Accustomed to Web search engines, novice users might start with a keyword
query that returns all resources (or content items) containing “KiWi”: KiWi

Obviously, such a query is too unspecific to capture the above query intent
and, in fact, may omit a number of systems, that are described without reference
to KiWi, but that are referenced from the description of KiWi.

Thus, we might refine the query to return such referenced resources, i.e.,
resources that are the target of a link originating from a wiki page containing
“KiWi”: $u @ ci(KiWi link(target:ci(URI:$u))

The $u @ of the query ensures, that not the content item that points to the
page, but rather the page that is pointed at, is returned by the query. However,
that query is not specific enough, as it returns also, e.g., technologies used in
KiWi. We know that KiWi is a semantic wiki and might be tempted to amend
that query to return only resources that are also semantic wikis:

$u @ ci(KiWi link(target:ci(URI:$u tag(name:’semantic wiki’)))

But there might well be other systems that have a significant influence on
KiWi. To also capture them, we choose the query:

$u @ ci(KiWi tag(name:$t) link(target:ci(URI:$u tag(name:$t)))



It returns all resources that are tagged the same as a wiki page containing “KiWi”
that also links to the returned resource. This way we likely capture resources
with similar characteristics as KiWi that are also mentioned in its description.

To summarize, KWQL’s main contributions over existing query languages
and similar interfaces for knowledge management systems are:

1. KWQL provides a consistent interface for access to the wide range of
knowledge present in the semantic wiki KiWi.

2. KWQL is designed to scale with the user experience: Queries can
take the form of bags of keywords, but also be extended with increasingly more
precise constraints on the structure, tags, and formal annotations of wiki pages.

3. KWQL is well integrated into KiWi, it covers all aspects of its data
model and is used in KiWi’s rule language.

KWilt: Patchwork Knowledge Management. Previous approaches have
often tried to engineer a knowledge information systems for such diverse infor-
mation and user needs from the start. In constrast, KWilt, KWQL’s implemen-
tation in KiWi, uses a “patchwork” approach, combining performant and mature
technologies where available. For example, KWilt uses a scalable and well estab-
lished information retrieval engine (Solr) to evaluate keyword queries. In fact,
KWilt tries to evaluate as large a fragment of any KWQL query in the informa-
tion retrieval engine as possible. If necessary, the results are further refined by
(1) checking any structural constraints of the query and (2) finally enforcing all
remaining first-order constraints, e.g., from multiple variable occurrences.

KWilt’s patchwork approach has three main advantages:
1. Many queries can be evaluated at the speed of search engines, yet all the

power of first-order logic is available if needed, as detailed in Section 4: The three
steps use increasingly more expressive, but also less scalable technologies.
Thus even for queries that involve full first-order constraints, we can, in most
cases, substantially reduce the number of candidates in the information retrieval
engine and by enforcing structural constraints before evaluating the first-order
constraints.

2. Each part is implemented using proven technologies and algorithms
with minimal “glue” between the employed tools, see Section 2.

3. The separation makes it easy to adapt each of the parts, e.g., to
reflect additional data sources. E.g., if KiWi would introduce data with different
structural properties, e.g., strictly hierarchical taxonomies in addition to RDF
ontologies only the part of KWilt that evaluates structural constraints needs to
be modified. Similarly, if KWQL would introduce other content primitives other
than keywords (e.g., for image retrieval), only the first (retrieval) part of KWilt
would be affected.

2 KWilt: Architecture and Evaluation Phases

Evaluating KWQL queries is a challenging task that cannot be accomplished by
existing query engines for (semantic) wikis. For instance, the query

ci(KiWi tag(name:$t) link(target:ci(tag(name:$t))))



combines content and structural elements with variables to find content items
that a wiki page containing “KiWi” links to and that have at least one tag in
common with their linking page.

Despite the unique combination of features found in KWQL, KWilt does
not try to “reinvent the wheel”. In particular, we have chosen not to build a
new index structure capable of combining all these aspects in a single index
access, as this approach has several drawbacks. First and foremost, the rich
data model would require a fairly complex index structure that can support
content and structure queries, fast access to hierarchical data and link graphs,
RDF graph navigation as well as navigation over (simpler, but less regular)
containment and link relations. Moreover, it is quite likely that the data model
evolves over time with new kinds of data or different representation formats
introduced, in particular in the field of social semantic media. Using a complex
index structure which is carefully adapted for a certain data model makes it
hard or even infeasible to react to these potential changes.

Instead, we used an patchwork, or integration, approach to combine off-the-
shelf state-of-the-art tools in a single framework. For that, the evaluation is split
into three different evaluation phases which are dedicated to certain aspects
of the query. Each step makes use of a tool which is particularly suitable for
evaluating the query constraints covered by that aspect of the entire evaluation,
e.g., for keyword queries we use a traditional search engine. Thus, efficient and
mature algorithms form the basis of our framework while the framework itself
remains flexible with lightweight “glue” to combine the evaluation phases.

Evaluating keyword queries: Most KWQL queries, in particular by novice
users, mostly or only regard the content of the pages. Therefore, the first evalua-
tion phase regards the keyword parts of a query in order to evaluate them in an
early phase of the evaluation with as little overhead as possible. In particular, if
all constraints of the query can be validated in this phase, the two subsequent
phases can be skipped.

The information retrieval engine Solr provides a highly optimized inverted list
index structure to carry out keyword queries on a set of documents. Each docu-
ment consists of an arbitrary number of named fields which are most commonly
used to store the text of a document and its meta data. In order to benefit from
Solr, the content of the wiki needs to be stored in this index, i.e., all resources
including their dependencies need to be translated to flat Solr documents.

In order to use Solr for the evaluation of KWQL queries, the meta data of
wiki pages and further the meta data of its tags, fragments and links are stored
in a Solr document. The main principle of the translation is to materialize joins
between content items and the directly connected resources (tags, fragments,
links) that are commonly queried together in the same query. These materialized
joins are then stored in the fields of the document representing the content item.
Thus, queries regarding the meta data of content items and even the meta data
of its tags, fragments and links can be directly answered with Solr. However, the
transformation of the resources connected to a content item to fields in the Solr
index is lossy, since the value of multiple resources is stored in a single field.



Thus, if multiple properties of a resource are queried, it cannot be guaranteed
that hits in the index belong to the same resource. Therefore is necessary for
certain kinds of queries to validate the generated result set of Solr.

To keep the index small only dependencies to flat resources (that can not be
further nested) are materialized, which omits in particular nesting and linking
of content items. Therefore, only queries that access content items together with
their content, meta-data and directly related flat resources can be evaluated
entirely in Solr. As soon as nesting and linking of content items comes into play,
however, we use Solr only to generate a set of candidates which match those
parts of the query for which all necessary information stored in the Solr index.

In order to evaluate a KWQL query through Solr, a portion of the KWQL
query (that can be evaluated by Solr) is converted to the query language of Solr.
Information which is not covered by the materialized joins and variables are
either disregarded or at least converted to an existential quantification in order
to reduce the number of false positives.

Evaluating structural constraints: The second phase takes the structural
parts of a query into account. All resources are represented as common objects
in the KiWi system and their dependencies are modeled by references between
the interrelated objects. The objects are persisted using a common relational
database in combination with an object relational mapping.

In the current prototype, we validate the structural properties of a query for
each candidate item individually. That means, nested resources (tags, fragments,
links and contained content items) which are specified in the query are considered
by traversing the references of the currently investigated object.

We choose this approach, as structural constraints are often validated fairly
quickly and far less selective than the keyword portions of KWQL queries. How-
ever, for future work we envision an extension of KWilt that improves on the
current implementation in two aspects: (a) It estimates whether the structural
part is selective enough to warrant its execution without considering the candi-
dates from the previous phase, followed by a join between the candidate sets from
the two phases. (b) If structural constraints become more complex, specialized
evaluation engines for hierarchical (XML-style) data, e.g, a high-performance
XPath engine, for link data, e.g., various graph reachability indices, and for
RDF data might be advantages.

In addition to the verification of the structural constrains, the structural
dependencies of the contributing resources and the required values of their qual-
ifiers are stored in relations which are needed during the last evaluation phase.
For instance the titles of content items are stored in the relation Rtitle which is
therefore a set of tuples of identifiers and strings.

Evaluating first-order constraints over wiki resources: In the final evalu-
ation phase, first-order constraints over wiki resources are considered, as induced
by the KWQL variables (and some advanced features of KWQL such as injec-
tivity, that are not further discussed here).

Following constraint programming notation, we consider a first-order con-
straint a formula over logical relation on several variables. In order to use these



constraints to express a KWQL query, every expression of a query that is in-
volved in constraints not yet fully validated is represented by some variables.
These variables are then connected using relations which reflect the structural
constraints between the resources from the query and their meta data. These
relations are constructed during the prior evaluation phase since all required
values and dependencies of the resources are regarded in this phase anyhow.

For instance, to express that a content item has a certain title, the relation
Rtitle is used: (C,KiWi) ∈ Rtitle. This constraint causes the variable C to be
bound only to identifiers of content items with the title “KiWi”. Likewise, the
relation Rtag is used to specify that a content item has a tag: (C, T ) ∈ Rtag.

For each KWQL variable of the query, a new first-order variable is generated
that can be used in the structural constraints. For instance, the query

ci(title:$t tag(name:$t))

can be represented as: (C, $t) ∈ Rtitle ∧ (C, T ) ∈ Rtag ∧ (T, $t) ∈ Rname.

Thus the relations are used to connect the formal representation of the query
and the candidate matches. In case of the example, the constraints ensure that
the content item’s title is equal to the name of one of its tags. The first-order
constraints are evaluated using the constraint solver choco.

Any content item that fulfills the constraints validated in all three phases is
a match for the entire query. In fact, since we only feed candidate matches from
the prior phase to each subsequent phase, the content item (identifiers) returned
by choco immediately give us the KWQL answers.

3 Skipping Evaluation Phases: KWQL’s Sublanguages

The evaluation of a general KWQL query in KWilt is performed in three phases
as described in the previous section. However, not all evaluation phases are
required for every KWQL query. In the following, we give a characterization of
KWQL queries that can be evaluated using only the first phase (and skipping
the remaining ones), or only the first and second.

Keyword KWQL or KWQLK is the restriction of KWQL to mostly flat
queries where resource terms may not occur nested inside other resource terms
and structure terms are not allowed at all.

Since tags and fragments itself can not be nested more than one level, we
can also materialize all tags and fragments for each content item. However, in
contrast to (string-valued) qualifiers a content item can have multiple tags or
fragments. To allow evaluation with a information retrieval engine such as Solr,
we have to ensure that multiple tag or fragment expressions always match with
different tags or fragments of the surrounding content item. This avoids that we
have to enforce the injectivity of these items in a later evaluation phase.

To ensure this, we allow tag and fragment queries but disallow 1. two keyword
queries as siblings expressions in tag or fragment queries and 2. two tag or
fragment queries as sibling expressions



KWQLK expressions can be evaluated entirely by the information retrieval
engine (here: Solr). This is obvious for keywords. String-valued properties, tags,
and fragments and qualifiers are materialized in Solr together with their resources
(as specific fields) and thus can be queried through Solr as well.

Tree-shaped KWQL or KWQLT allows only queries corresponding to tree-
shaped constraints. Thus, no multiple occurrences of the same variable, and no
potentially overlapping expression siblings.

Intuitively, two expressions are called overlapping if there is a KWQL node
in any document that is matched by both expressions. E.g., ci(tag(Java)) and
Java are overlapping since both match content items. Unfortunately, this defini-
tion of overlapping does not lead to an efficient syntactic condition, as it is easy
to see that containment of KWQL queries is special case of overlapping. Fur-
ther, containment of KWQL queries is NP-hard by reduction from containment
of conjunctive queries.

Therefore, we define an equivalence relation on expressions, called potential
overlap, as a conservative approximation of overlapping. It holds between two
expressions if they have the same return type in the KWQL semantics or if the
return type of one is a subset of that of the other one. E.g., desc:ci(Lucene)
and child:ci(Java) potentially overlapping, but target:ci(Java) does not
overlap with either. This is only an approximation. For instance, child:ci(
URI:a) and child:ci(URI:b) potentially overlap, though each content-item
has a unique URI and thus the two expressions never actually overlap.

KWQLT expressions can be evaluated by using only Solr and checking the
remaining structural conditions in the second evaluation phase. Full first-order
constraints are not needed and the third (choco) phase can be skipped.

Proposition 1. Given an arbitrary KWQL query, we can decide in linear time
and space in the size of the query if that query is a KWQLK query and in
quadratic time if it is a KWQLT query.

Proof. From the definitions of KWQLK and KWQLT it is easy to see that testing
membership of a general KWQL expression can be done by a single traversal of the
expression tree. In the case of KWQLT we also have to test each (of the potentially
quadratic) pairs of siblings for overlap and storing already visited variables.

4 Evaluating a KWQL Query in KWilt

Experiments were performed to analyze the evaluation times for queries of all
three types of queries in a prototype implementation of KWilt. The KiWi sys-
tem was run on a 2.66GHz Quad-Core iMac and filled with a data set of 431
content items describing the KiWi project and KWQL. The reasoning and in-
formation retrieval modules of KiWi were deactivated to constrict the amount
of background activity in the system. Every query was evaluated fifty times and
the average was taken. The resulting evaluation times are given in table 1.

During evaluation, all queries are first parsed and then (partially) translated
to the query language of Solr. For example, the query from the introduction



Query evaluation time

KiWi 34 ms
KiWi tag(name:$t) 36 ms
ci(text:KWQL title:KiWi) 29 ms

ci(KiWi tag(name:KiWi)
link(target:ci(URI:$u tag(name:KiWi)))) 416 ms

ci(KiWi tag(name:$t)
link(target:ci(URI:$u tag(name:$t)))) 580 ms

ci(tag(name:$t)
link(target:ci(URI:$u tag(name:$t)))) 796 ms

Table 1. Evaluation times for various KWQL queries

$u @ ci(KiWi tag(name:$t) link(target:ci(URI:$u tag(name:$t)))

is translated to the following Solr query:

type:ci AND (title:KiWi OR text:KiWi OR . . .) AND tags:[* TO *]

Here, not only the keyword KiWi is included in the query but also the query
for the tag, but since Solr does not support variables, the query for the tag is an
existence constraint (indicated by [* TO *] as value of the tags qualifier).

The first three queries in the table can be fully captured with Solr and no
further steps are needed. This is reflected in their low evaluation times. The
other three queries contain constraints for validation in the subsequent phases.

In the next evaluation phase, the structural properties of the content items
are validated against the query constraints. In order to gain full access to all
properties of the content item, not just the simplified version stored in the Solr
index, but the full representation is retrieved from the KiWi database.

This step is required to evaluate the “target” qualifiers in the remaining
three queries. After the second evaluation phase, the fourth query has been
fully evaluated. Its evaluation time is higher than that of the queries without
structural constraints, but lower than the evaluation times of the remaining two
queries which are further evaluated in the third evaluation phase3.

In the last evaluation phase, all valid variable bindings are determined. There-
fore, the query, or rather the still unverified parts of the query, are expressed
in a way suitable for the constraint solver choco. To this end, the relations
containing the information about the resources are connected by variables.

(C1, T1) ∈ Rtag ∧ (T1, $t) ∈ Rname ∧ (C1, L) ∈ Rlink ∧ (L,C2) ∈ Rtarget

∧ (C2, $u) ∈ RURI ∧ (C2, T2) ∈ Rtag ∧ (T2, $t) ∈ Rname

The constraint solver then tries to determine bindings for all variables which
satisfy the given constraint. The variable $t ensures that both tags of the query
have the same name, whereas $u is used to obtain the URI of the content item
that is pointed at, which will be returned as an answer to the query.

3 The current prototype always performs preparation for phase three in phase two.



If the constraint solver does not succeed in finding a valid binding for the
variables the content item is dropped from the candidate set, since it does not
fulfill the constraints and therefore does not match the query.

5 Conclusion

To summarize, KWQL and KWilt together address two of the main challenges
raised by the “democratization” of knowledge management driven by social tech-
nologies such as semantic wikis. KWQL provides a consistent interface for access-
ing knowledge in the semantic wiki KiWi. It addresses both the needs of novice
users accustomed to simple, yet imprecise keyword interfaces, and of expert users
that aim to write precise queries for automated processing.

KWilt implements KWQL by combining existing, proven technologies. This
patchwork query engine allows us to quickly adapt to changes in the data formats
and querying capabilities required by KiWi and its users. On the other hand, it
also provides a stable, performant platform for search in a Wiki. Basic, keyword
queries can be evaluated nearly at the speed of the underlying search engine and
more complex queries can benefit from the fast filter phase.

The prototype of KWilt is already integrated in the current KiWi pre-release.
First results illustrating KWilt’s performance on the different types of queries
were presented in this paper, demonstrating the effectiveness of our approach.
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