
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

EVALUATION OF THE
INSTANTIATION DEGREE

METRIC FOR INSTANCE TRIES

René Thome

Bachelor’s thesis
Supervisor Prof. Dr. François Bry
Mentor Dipl. Ing. Thomas Prokosch

Date of submission 13.04.2022

Abstract

Instance tries have been proposed as a new means of storing expressions for automated
reasoning tasks. Maintaining and querying instance tries makes heavy use of unification.
Unification algorithms with low worst-case complexity usually make use of involved data
structures which introduce non-negligible overhead for simple unification problems.

One solution to the problem is to improve the unification algorithms themselves. Another
solution, investigated by this thesis, proposes changes to instance tries which allow to per-
form unification conditionally, that is when certain (cheap) checks successfully completed.
This thesis describes the necessary changes and evaluates them based on a Rust implemen-
tation of instance tries.

i

Zusammenfassung

Instanzbäume wurden als neue Datenstruktur zur Speicherung von Ausdrücken für Auto-
mated Reasoning vorgeschlagen. Für das Aufrechterhalten der Ordnung von Instanzbäu-
men und deren Abfrage muss stark von Unifikation Gebrauch gemacht werden. Unifika-
tionsalgorithmen mit geringer Laufzeit-Komplexität erfordern für gewöhnlich komplexe
Datenstrukturen, die einen nicht vernachlässigbaren Mehraufwand für einfache Unifika-
tionsprobleme verursachen.

Eine Lösung dieses Problems besteht darin die Unifikationsalgorithmen selbst zu verbes-
sern. Eine andere Lösung, welche in dieser Arbeit untersucht wird, schlägt eine Anpassung
der Instanzbaum-Datenstruktur vor, welche erlaubt Unifikation nur unter bestimmten Be-
dingungen durchführt, das heißt wenn bestimmte vorgelagerte (einfache) Tests erfolg-
reich durchgeführt wurden. Diese Arbeit beschreibt die notwendigen Anpassungen und
beurteilt sie auf Basis einer Rust-Implementierung der Instanzbäume.

iii

Acknowledgments

I thank Prof. Dr. François Bry for giving me the opportunity to work on this topic and
thereby letting me gain experience well outside the regular curriculum of a common Bach-
elor’s degree in computer science. I am also very grateful to my mentor Thomas Prokosch
who over the course of this work offered much guidance and gave me excellent advice on
academic practice. Due to the global pandemic all work regarding this thesis needed to
be done remotely. Therefore I very much appreciate that all relevant processes were ad-
justed to this new situation by the Research Unit Programming and Modelling Languages.
Finally, I thank my family, my friends and my colleagues for their general support which
goes well beyond the course of this thesis.

v

Contents

1 Introduction 1
1.1 Expressions and substitutions . 1
1.2 Unification and relations between expressions 2
1.3 Aim of this thesis . 4

2 Term indexing 5
2.1 Early approaches to term indexing . 6
2.2 Instance tries . 6

3 Querying instance tries without optimization 9

4 Speeding up instance tries with the instantiation degree 11
4.1 Instantiation degree . 11
4.2 Using the instantiation degree to skip invocations of the matching-unification

algorithm . 13

5 Evaluation of instance tries with the instantiation degree 17
5.1 Benchmarks . 17
5.2 Performance of the benchmarks . 17
5.3 Interpretation of the results . 21

6 Conclusion and future work 23

Bibliography 29

vii

CHAPTER 1

Introduction

Automated theorem proving and logic programming are areas of research in the field of
automated reasoning, which itself can be placed in the much more general area of logi-
cal approaches to artificial intelligence [Gra96, 1,2]. Applications in both automated the-
orem proving and logic programming make use of term indexes which store logical ex-
pressions. Depending on the exact application the requirements for such a term index may
vary greatly. Generally, automated theorem proving applications operate on highly dy-
namic and continuously growing indexes, while term indexes used by logic programming
applications are rarely changing in comparison. Several term indexing data structures ex-
ist. Instance tries have been proposed only recently and aim to fulfill the requirements of
both logic programming and automated theorem proving applications.
This introduction introduces concepts and notation required to understand the aim of this
thesis. These concepts include logical expressions, substitutions and how finding substi-
tutions for given expressions is related to determining relations between said expressions.
Later in this work a method is provided to improve the process of determining the afore-
mentioned relations.

1.1 Expressions and substitutions

The noun expression refers to expressions of first-order logic. These expressions are con-
structed from a countable set of variable symbols V and a finite set of non-variable symbols
F. Non-variable symbols or expression constructors are always associated with an arity; fol-
lowing convention, non-variable symbols with zero arity are called constants.
Expressions are defined as follows:

1. A variable symbol is an expression.

2. A non-variable symbol with zero arity is an expression.

3. A non-variable symbol with arity n > 0 followed by n well-formed expressions the
latter of which are separated by commas and enclosed in parentheses, is an expres-
sion.

1

2 CHAPTER 1. INTRODUCTION

By convention, x,y,z are variable symbols. The letters a,b,c refer to non-variable symbols
with zero arity and the letters f ,g,h refer to those non-variable symbols with arity greater
zero.

Example. The expression f (g(x),a,h(y,b)) consists of a ternary constructor symbol f , a
unary constructor symbol g, a binary constructor symbol h, two variable symbols x,y and two
constants a,b.

Substitutions

Let V be the set of variable symbols and E a set of expressions. A substitution is a total
function that maps variable symbols to expressions. The domain of a substitution is the
set of unique variable symbols {v1,v2, ..,vn} ⊆V and the range of a substitution is the set of
expressions {e1,e2, ..,en}⊆E; both with n∈N0. Such a substitution σ : V → E can be written
in set notation as σ = {v1 7→ e1,v2 7→ e2, ..,vn 7→ en}. The application of a substitution σ to
an expression E yields an expression and is noted as Eσ . A bijective substitution with its
range being the same as its domain is a renaming substitution.

Example. Let σ = {x 7→ a,y 7→ b}. The example expression E1 = f (g(x),a,h(y,b)) contains
the variable symbols x and y. The application of σ to E1 yields the expression f (g(a),a,h(b,b)).
Let ρ = {x 7→ y,y 7→ x}. The substitution ρ is a renaming substitution and its application to
E1 yields the expression f (g(y)),a,h(x,b)).

1.2 Unification and relations between expressions

An essential task in both logic programming and automated theorem proving applications
is determining whether or not a certain relation is satisfied between given expressions. This
section describes these relations.

E1 is unifiable with E2

An expression E1 is unifiable with another expression E2 if a substitution σ exists such
that E1σ = E2σ . As becomes apparent from the equation, this relation is symmetric.
The expressions E1σ and E2σ are called the common instance of E1 and E2 respectively,
sometimes also referred to as their unification [Kni89, 94-95].

Example. The expressions E1 = f (g(x),a,h(b,b)) and E2 = f (g(a),a,h(y,b)) are unifiable
with the substitution σ = {x 7→ a,y 7→ b}. E1σ = f (g(a),a,h(b,b)) = E2σ .

E1 is more general than E2; E2 is an instance of E1

The expression E1 is more general than the expression E2 and E2 is an instance of E1 if
there exists a substitution σ with E1σ = E2.

Example. Let E1 = f (x,y) and E2 = f (a,b) be two expressions. The application of the
substitution σ = {x 7→ a,y 7→ b} to E1 yields E2, showing that E1 is more general than E2
or equivalently that E2 is an instance of E1.

3

E1 is a variant of E2

The expression E1 is a variant of E2 if there exists a renaming substitution ρ with E1ρ = E2.
As renaming substitutions are invertible, the variant relation is symmetric. Intuitively,
an expression is a variant of another expression if variable symbols in either of the ex-
pressions only need to be renamed to yield the respective other.

Example. Let E1 = f (x,y) and E2 = f (y,x) be expressions. The application of the renam-
ing substitution {x 7→ y,y 7→ x} to E1 yields the expression E2.

Determining whether or not two expressions are unifiable and finding a unifying substitu-
tion is a problem solved by unification algorithms. An operation closely related to unifica-
tion is matching.

E1 matches E2

The expression E1 matches the expression E2 if there exists a substitution µ such that
E1µ = E2.

While the relations described above are relevant in the context of logic programming and
automated theorem proving applications, in the context of the underlying term indexing
data structure relations between expressions are categorized slightly different, using the
following four mutually exclusive relations:

E1 is strictly more general than E2

The expression E1 is strictly more general than the expression E2 if there exists a substi-
tution σ ′ that is not a renaming substitution with E1σ ′ = E2.

E1 is a strict instance of E2

The expression E1 is a strict instance the expression E2 if there exists a substitution σ ′

that is not a renaming substitution with E1 = E2σ ′. Again, this relation is inverse to the
previous relation.

E1 is a variant of E2

The definition for the variant relation is the same as described above.

E1 is only unifiable with E2

The expressions E1 is only unifiable with the expression E2 if a substitution σ ′ exists that
is not a renaming substitution with E1σ ′ = E2σ ′ and E1 is neither a strict instance of E2
nor strictly more general than E2.

Examples. In this thesis, the relations between expressions are abbreviated as shown in
this table:

4 CHAPTER 1. INTRODUCTION

Infix
Relation notation Example
variant VR f (x,y)VR f (x,z) with substitution {y 7→ z}
strictly more general SG f (x,y)SG f (a,b) with substitution {x 7→ a,y 7→ b}
strict instance SI f (a,b)SI f (x,y) with substitution {x 7→ a,y 7→ b}
only unifiable OU f (a,y)OU f (x,b) with substitution {x 7→ a,y 7→ b}
not unifiable NU f (a,y)NU f (b,z) no substitution exists

1.3 Aim of this thesis

The instance trie data structure described in the next chapter makes heavy use of unification
and matching to determine relations between expressions, using a matching-unification al-
gorithm to solve both the matching and unification problem. However, this algorithm is
compute-intensive despite its optimizations; a simple check that can rule out certain rela-
tions without running the algorithm would hence be desirable. This check, as elaborated in
Chapter 4, considers the number of variable symbols in both expressions. To illustrate this
optimization, consider that it should be determined whether or not expression E1 is more
general than expression E2. If E1 does not contain variable symbols while E2 does, E1 cannot
be more general than E2. The following example shall make this idea more concrete.

Example Assume a term index which stores the expressions E1 = f (x,y), E2 = f (a,b) and
E3 = f (b,b). The term index shall be queried for expressions that are more general than
the expression Eq = f (a,z). The expression Eq contains one variable symbol z, so the two
expressions E2 and E3 not containing variable symbols cannot be more general than Eq.
Only E1 with two variable symbols may be more general than Eq. While considering the
number of variable symbols in the expressions does give an indication as to whether or not
the relation may be satisfied, it is not sufficient to show that E1 is actually more general
than Eq. This still needs to be determined by a matching or unification algorithm.

The aim of this thesis is to first formalize a method of using the number of variable sym-
bols in two given expressions to indicate whether or not these expressions might satisfy a
desired relation that would otherwise be determined by means of matching. This method
is then applied to instance tries and its performance impact is experimentally evaluated.

CHAPTER 2

Term indexing

As stated at the beginning of the introduction, applications in both logic programming and
automated theorem proving make use of term indexes to store logical expressions and the
requirements to the term index varies greatly between applications in the two fields. The
purpose of a term index is to act as a fast interface to a large set of expressions. Fast in
the sense that the performance impact on the application itself is minimized because im-
provements to insertion or retrieval operations on a term index data structure are tied to
performance improvements to the applications employing the index [McC92]. Especially
in the case of automated theorem proving applications, rapid growth of the index over the
application run time causes increased overhead for insertion or retrieval operations and
consequently leads to degradation of overall application performance.

Expressions are retrieved from term indexes by issuing queries to it. These queries are
issued with an expression as the query key and a query mode that indicates the relation
that should be satisfied between this query key and each one of the query results.

Query modes The four query modes a term index for applications in the fields of logic
programming and automated theorem proving should support are more general than, in-
stance of, unifiable with and variant of [RSV01, 1863]. These four modes are connected to
the mutually exclusive relations described in Section 1.2 as follows. Queries with mode
more general than shall return indexed expressions that are either variants of, or strictly more
general than the query key. Inversely, queries with mode instance of shall return indexed ex-
pressions that are either variants of, or strict instances of the query key. Lastly, queries with
mode unifiable with shall return indexed expressions that are either variants of, strictly more
general than, strict instances of, or only unifiable with the query key.

One characteristic of term indexes is whether or not their query results include only those
expressions that satisfy the query relation or a superset of those expressions which requires
subsequent filtering of included false-positive results. A term index is an imperfect filter
if false-positives need to be filtered from its query results. If queries to the term index
only return those expressions that satisfy the given query relation the term index is called
a perfect filter [Gra96, 7-8].

5

6 CHAPTER 2. TERM INDEXING

2.1 Early approaches to term indexing

Many different approaches for term index data structures emerged over time. Some of the
earliest approaches to term indexing were more necessity-driven [McC92], while younger
approaches are the product of research on term indexing itself.

Matching pretest. The matching pretest is a simple check that tests whether or not two
expressions could match. In essence, this test makes use of the fact that the application of
a substitution to an expression E must yield an instance E ′ of this expression with at least
as many symbols as E (see Section 1.1). This test may be used prior to executing more
complex methods when testing whether or not two expressions match. If the number of
symbols in a suspected instance E2 is less than that of another expression E1, no further
checks need to be conducted as E2 cannot be an instance of E1. This technique requires
counting the number of symbols in all expressions, ideally storing this value as an attribute
of each expression [Gra96, 44-45]. The matching pretest does not consider variable symbols
in expressions and is thus imperfect.

Superimposed codewords Superimposed codewords is an indexing technique that maps
attributes of indexed items to fixed-length bit masks. This technique allows the retrieval of
indexed items that shall have a set of desired attributes. Using the bitwise OR operation,
the bit masks of all desired attributes combined. The index is then searched using this
combined bit mask which is prone to errors and thus does not provide a perfect filter for
indexed items [Gra96, 47-50].

Path-Indexing. The Standard Path-Indexing method is a set-based indexing technique.
Expressions are stored in so-called path lists, which are accessed either via a referencing
hash table or trie [Sti89].

Discrimination Trees. Discrimination trees store expressions in their leaves while inner
nodes refer to prefixes of these indexed expressions. Basic discrimination trees do not dif-
ferentiate between different variable symbols and are imperfect filters, requiring the query
results to be subsequently checked for false-positive results by means of unification or
matching [McC92]. There also exist some variations of the basic discrimination tree data
structure.

Abstraction Trees. The Abstraction tree data structure stores expressions as substitutions
in a tree structure. Indexed expressions are represented by paths from the root to a leaf and
are constructed by consecutive application of all substitutions along the path to the root
[Ohl90].

Substitution Trees. Substitution trees combine aspects of both discrimination and ab-
straction trees. As with abstraction trees, expressions are also represented by substitutions
along a path from the root to a leaf.

2.2 Instance tries

Instance tries are ordered and thus a deterministic data structure designed to store logical
expressions for applications in the field of automated reasoning [PB20a, 93]. Unification
and matching are the main operations for updating and querying instance tries, requiring
most of the execution time for both retrievals and insertions. Instance tries are used with a

7

matching-unification algorithm [PB20b]. The actual number of performed matchings and
unifications during operations on an instance trie depends on the particular set of expres-
sions stored in the data structure and the exact operation performed on it.

Structure of instance tries

Instance tries are trees which store expressions for term indexing. The structure of instance
tries is such that expressions in child nodes must always be strict instances of their parent
node. Sibling nodes are ordered which makes instance tries stable in the sense that two
instance tries are structurally indistinguishable if they store exactly the same expressions.
However, the ordering is not important in this work.

An example shall visualize the concepts of instance tries. Assume that expressions
f (x1,x2), f (x1,b), f (x1,c), f (a,x2), f (a,b), f (b,b), f (a,c)

are to be stored in an instance trie. Then, the corresponding instance trie may be visualized
(in a simplified manner) as follows:

f (x1,x2)

f (x1,b) f (x1,c) f (a,x2)

f (a,b) f (b,b) f (a,c)

The previously mentioned relation between parent and child nodes becomes apparent in
the above example: All nodes are strict instances of their parent.
For example, the expression E2 = f (x1,b) at the first child of the root is a strict instance of the
expression E1 = f (x1,x2) at the root. As stated in Section 1.2 this requires a non-renaming
substitution σ for which E1σ = E2 holds; i.e. the substitution σ = {x2 7→ b}.
As stated, the visualization above is simplified. Like other trie data structures, also known
as prefix trees, expressions stored in an instance trie are not associated with only a single
node but rather with a path from the root to a node. The root node of the instance trie data
structure carries a variable symbol, all other nodes store substitutions. Expressions stored
in an instance trie are retrieved by traversing the path from the root to the desired node,
applying the composition of all substitution on this path, to the variable symbol carried by
the root [PB20a, 98]. Accordingly, the same instance trie may be visualized more accurately
as follows:

x0

{x0 7→ f (x1,x2)}

{x2 7→ b} {x2 7→ c} {x1 7→ a}

{x1 7→ a} {x1 7→ b} {x1 7→ a}

Retrieving the expression f (a,b) corresponding to the path to the leftmost leaf from the
above tree would correspond to the substitution application:

x0{x0 7→ f (x1,x2)}{x2 7→ b}{x1 7→ a}

For the rest of this work the simplified representation described above will be used.

CHAPTER 3

Querying instance tries without optimization

Queries issued to an instances trie consist of an expression as the query key and a query
mode as described at the beginning of previous chapter. Indexed expressions satisfying the
given query are searched in the index by traversal starting at the root. Traversal continues
from parent to child node while multiple sibling nodes are traversed in the order imposed
by the instance trie. For each visited node the matching-unification algorithm is used to
determine whether the expression at this node satisfies the query. The fact that child nodes
are strict instances of their parent node is used during traversal. For example when query-
ing for expressions that are more general than the query key, traversal of child nodes may
be skipped if their parent node does not satisfy the query.

Example query

The following instance trie shall be used for the query example below:

f (x1,x2)

f (x1,b) f (x1,c) f (a,x2)

f (a,b) f (b,b) f (a,c)

Generalizations of f (z,a): Executing a query on the given instance trie for expressions
more general than the query key Eq = f (z,a) only returns the expression at the root f (x1,x2)
as it is the only indexed expression that satisfies the query. The matching-unification algo-
rithm mentioned in the first paragraph of this section needs to be executed four times. The
query is performed in the following steps:

1. The relation between the query key Eq and the expression at the root node f (x1,x2)
needs to be determined. To determine relation between the expressions, the matching-
unification algorithm is used. The result of this procedure is that f (x1,x2) is strictly
more general than Eq (in short f (x1,x2)SGEq). Thus, the expression f (x1,x2) is a solu-
tion. Consequently, the child expressions need to be checked as well.

9

10 CHAPTER 3. QUERYING INSTANCE TRIES WITHOUT OPTIMIZATION

2. Proceeding to the first child of the root, the relation between Eq and f (x1,b) needs
to be determined. Again, this is done using the matching-unification algorithm.
The result of this operation is that f (x1,b) is not unifiable with E1 = f (z,a) (in short
f (x1,b)NUEq), meaning f (x1,b) is not a solution. Due to the required relation be-
tween child nodes and their parents, all children of the current node must be strict
instances. As this node is not more general than the query key, the children can also
not satisfy the query relation. Consequently, the traversal of the tree continues at the
next child of the root, this node’s sibling.

3. Proceeding to the second child of the root, the relation between Eq and f (x1,c) needs
to be determined. As with the previous node, using the matching-unification algo-
rithm yields that Eq is also not unifiable with f (x1,c) (in short f (x1,c)NUEq), and there-
fore no solution. Thus, the child of this node is disregarded and traversal continues
at the root’s last child node.

4. Determining the relation between expression f (a,x2) and Eq using the matching-
unification algorithm shows that f (a,x2) and Eq are only unifiable (in short f (a,x2)OUEq),
meaning f (a,x2) is not a solution, either.

As stated in the beginning, the query relation is only satisfied by the expression f (x1,x2)
which is strictly more general than Eq = f (z,a). In all four steps the relation between the
query key Eq and the respective indexed expression needs to be determined by means of
the matching-unification algorithm. The instance relation between parent nodes and their
children allows skipping the child nodes in steps 2 and 3 after determining the relations
between the query key and the indexed expressions.

CHAPTER 4

Speeding up instance tries with the instantiation degree

As seen in Chapter 3, querying instance tries involves using the matching-unification al-
gorithm to determine whether indexed expressions satisfy the query mode. For each of
the nodes in the instance trie whose expression might satisfy the query, the matching-
unification algorithm is called once. This chapter describes an additional check which fur-
ther restricts the number of nodes whose expressions need to be passed to the matching-
unification algorithm by examining the structure of expressions and their relations. It is
then explained in detail how this check may be used to skip invocations of the matching-
unification algorithm during retrievals from the instance trie data structure.

4.1 Instantiation degree

The instantiation degree is a simple metric proposed by Thomas Prokosch [Pro21]. The in-
stantiation degree of an expression is a single integer value which is determined as follows.

Number of symbols and unique variable symbols in an expression. Let E be an expres-
sion. The number of all variables and non-variable symbols in E is written as |E|S. The
number of unique variable symbols is written as |E|V . The following example demonstrates
this notation.

Example. In expression E1 = f (g(x),a,h(y,b)) the number of symbols is |E1|S = 7.
Expression E1 contains two variable symbols which are x and y, therefore the number of
unique variable symbols in E1 is |E1|V = 2.
Expression E2 = f (g(x),a,h(x,b)), which is quite similar to expression E1, also consists of 7
variable and non-variable symbols, i.e., |E2|S = 7. However, the number of unique variables
in E2 is |E2|V = 1 because it contains only a single unique variable symbol x, occurring twice
in the expression.

11

12 CHAPTER 4. SPEEDING UP INSTANCE TRIES WITH THE INSTANTIATION DEGREE

Instantiation degree. Let E be an expression. The instantiation degree for expression E,
short ideg(E), is the difference between the number of symbols in E and the number of
unique variable symbols in E, i.e. ideg(E) = |E|S−|E|V .

Example. Expression E = f (g(x),a,h(y,b)) contains seven variable and non-variable sym-
bols, i.e. |E|S = 7. E contains two unique variable symbols x and y, i.e. |E|V = 2. Therefore,
the instantiation degree of E is 5.

Using the instantiation degree for querying an instance trie. Consider the following
instance trie storing the expressions f (x,y), f (a,a), f (a,b), f (b,b). It is queried for expres-
sions that are more general than the query key Eq = f (a,z).

f (x,y)

f (a,a) f (a,b) f (b,b)

Eq = f (a,z)

Similar to the example of the previous chapter, the query for expressions more general
than Eq = f (a,z) only yields the expression f (x,y) which is stored at the root node but still
requires four executions of the matching-unification algorithm, one for each node in the
instance trie. This means that 3 out of 4 invocations of the matching-unification algorithm
yield a negative result. The success rate can be improved by using the instantiation degree.
For this, the instantiation degree needs to be calculated once for each node in the tree as
well as for the query key. The result of these computations are visualized as subscripts in
the following representation of the tree:

f (x,y)

f (a,a) f (a,b) f (b,b)

Eq = f (a,z) 2

1

3 3 3

It can be observed that the instantiation degree at the root node is less than those at its child
nodes which directly follows from the structure of instance tries in which child nodes are
instances of their parent nodes and thus contain more non-variable symbols and possibly
also more variable symbols than their ancestors. This idea is being formalized in the next
section.

To finish this example which aims at retrieving expressions that are more general than
Eq, only the expressions of nodes with an instantiation degree of less than or equal to 2
need to be compared with the query key using the matching-unification algorithm. This
means that the matching-unification algorithm only needs to be invoked once namely for
the expression f (x,y) at the root of the tree, whose instantiation degree is 1.

Hypothesis. The observation above leads to the hypothesis that a comparison of instanti-
ation degrees of two expressions makes it unnecessary to invoke the matching-unification
algorithm for certain queries and certain nodes.

13

4.2 Using the instantiation degree to skip invocations of the
matching-unification algorithm

Let E1 and E2 be two expressions. The instantiation degree is not sufficient to detect
whether E1 is strictly more general than E2, a strict instance of E2, or a variant of E2. How-
ever, it can detect the opposite, i.e. it can detect those cases where E1 is not strictly more
general than E2, not a strict instance of E2, or not a variant of E2. This allows to skip the invo-
cation of the matching-unification algorithm since its negative result can be anticipated by
much simpler means: The comparison of two pre-computed integer values expressing the
instantiation degree. The following shows for each of these relations in which situations
the instantiation degree can be used to make the invocations of the matching-unification
algorithm redundant.

E1 is strictly more general than E2

E1 is strictly more general than E2. Then ideg(E1)< ideg(E2).
Proof. E1 being strictly more general than E2 requires that a non-renaming substitution σ ′

must exist for E1 such that E1σ ′ = E2. The application of σ ′ to E1 cannot, by definition, yield
an expression E2 with less symbols than E1. Thus, the two cases for the number of symbols
that need to be considered are |E1|S = |E2|S and |E1|S < |E2|S.

a) Case 1. In the case of |E1|S being equal to |E2|S the application of the non-renaming
substitution σ ′ to E1 results in an expression E2 with less variable symbols:

(E1 SGE2∧|E1|S = |E2|S)⇒ |E1|V > |E2|V (4.1)

Consequently, when E1 is strictly more general than E2, and both expressions have the
same number of symbols, the instantiation degree for E1 is smaller than the instantiation
degree for E2, which was to show:

ideg(E1) = |E1|S−|E1|V
4.1
< |E2|S−|E2|V = ideg(E2) (4.2)

Example. The expression E1 := f (a,x,g(y)) is a strict generalization of the expression
E2 := f (a,a,g(b)). The required condition E1σ ′ = E2 holds for the non-renaming substi-
tution σ ′ = {x 7→ a,y 7→ b}. Both expressions E1 and E2 have the same total number of
symbols |E1|S = |E2|S. The number of unique variable symbols in the first expression
|E1|V = 2 is greater than the number of unique variable symbols in the second expression
|E2|V = 0. From this directly follows the difference in the instantiation degree for the two
expressions:

ideg(E1) = |E1|S−|E1|V = 5−2 = 3 < 5 = 5−0 = |E2|S−|E2|V = ideg(E2)

b) Case 2. Let E1, E2 be expressions. If E1 is strictly more general than E2 then there exists
a non-renaming substitution σ ′ such that E1σ ′ = E2. Further, |E1|S < |E2|S = |E1σ |S. For
the number of unique variables, the following cases emerge:
First, |E1|V = |E2|V = |E1σ ′|V . Then, ideg(E1)< ideg(E2) since |E1|S < |E2|S.
Second, |E1|V < |E1σ ′|V . Then, ideg(E1) < ideg(E2) since every unique variable symbol
also counts as a symbol, i.e. |E1σ ′|S ≥ |E1|S +(|E1σ ′|V −|E1|V).
Third, |E1|V > |E1σ ′|V . Then, ideg(E1) < ideg(E2) due to the definition of the instantia-
tion degree as the difference between the number of symbols and the number of unique
variable symbols in an expression.

14 CHAPTER 4. SPEEDING UP INSTANCE TRIES WITH THE INSTANTIATION DEGREE

Example. The expression E1 := f (a,x,g(y)) is a strict generalization of the expression
E2 := f (a,h(x,y),g(y)). The required condition E1σ ′ = E2 holds for the non-renaming
substitution σ ′ = {x 7→ h(x,y)}. The number of symbols in the first expression |E1|S = 5 is
less than that in the second expression |E2|S = 6. For the instantiation degrees follows:

ideg(E1) = |E1|S−|E1|V = 5−2 = 3 < 4 = 7−3 = |E2|S−|E2|V = ideg(E2)

Thus, if an expression E1 is strictly more general than an expression E2, the instantiation
degree of E1 must be smaller than that of E2; i.e. E1 SGE2⇒ ideg(E1)< ideg(E2)

E1 is a strict instance of E2

The case of an expression E1 being a strict instance of an expression E2 is equivalent to E2
being strictly more general than E1. Therefore, it follows with the reasoning as above:
E1 SIE2⇒ ideg(E1)> ideg(E2)

E1 is a variant of E2

E1 is a variant of E2. From this follows that ideg(E1) = ideg(E1).
Proof. E1 being a variant of E2 can only be satisfied if there exists a renaming substitution
ρ with E1ρ = E2. Due to the properties of a renaming substitution ρ , |E|S = |Eρ|S and
|E|V = |Eρ|V must hold for each expression E which means that the number of symbols
|E1|S must be equal to the number of symbols |E2|S and that the number of unique variable
symbols |E1|V must be the same as the number of unique variable symbols |E2|V :

E1 VRE2 ⇒ (|E1|S = |E2|S ∧ |E1|V = |E2|V) (4.3)

As a consequence, the instantiation degree must be equal in both expressions for them to
be variants of each other:

ideg(E1) = S1−N1
4.3
= S2−N2 = ideg(E2) (4.4)

Example. The expression E1 = f (a,x,g(y)) is a variant of the expression E2 = f (a,y,g(x))
with E1ρ = E2 holding for the renaming substitution ρ = {x 7→ y,y 7→ x}. Both expressions
have the same total number of symbols and the same unique variable symbols x and y and
thus also the same instantiation degree: ideg(E1) = 5−2 = 3 = ideg(E2)

Preventing matching-unification. The observations above show that for three relations
strictly more general than, strict instance of, and variant of statements about the instantiation
degrees for two expressions can be made. These statements may be used to rule out the
existence of relations between two expressions if their respective instantiation degrees are
known:

1. If expression E1 is strictly more general than expression E2 the instantiation degree for
E1 must be smaller than that for E2. Inversely, if the instantiation degree of E1 were
greater than or equal to that of E2, the expression E1 cannot be strictly more general
than the expression E2:

ideg(E1)≥ ideg(E2)⇒¬(E1 SGE2) (4.5)

2. On the other hand, if the instantiation degree of E1 were less than or equal to that of
E2, the expression E1 cannot be a strict instance of the expression E2:

ideg(E1)≤ ideg(E2)⇒¬(E1 SIE2) (4.6)

15

3. If an expression E1 is a variant of expression E2 the instantiation degree for E1 must
be equal to that of E2. If, however, the instantiation degree of E1 is different from that
of E2, the variant of relation cannot be satisfied for the two expressions:

ideg(E1) 6= ideg(E2)⇒¬(E1 VRE2) (4.7)

These observations should make it clear that the instantiation degree may be used to skip
invocations of the matching-unification algorithm for pairs of expressions when determin-
ing whether or not one expression is strictly more general than, a strict instance of or a variant
of another expression.

These mutually exclusive relations are usually not directly used by applications employ-
ing a term index. Instead, the query modes more general than, instance of, and variant of are
typically used and can be constructed from these mutually exclusive relations as follows:

1. If the instantiation degree of an expression E1 is greater than that of an expression E2,
using the implications 4.5 and 4.7, the expression E1 can neither be a variant of, nor
strictly more general than the E2, thus E1 cannot be more general than E2.

ideg(E1)> ideg(E2)⇒ E1 is not more general than E2

2. If the instantiation degree of an expression E1 is less than that of an expression E2,
using the implications 4.6 and 4.7, the expression E1 can neither be a variant of, nor a
strict instance of the E2, thus E1 cannot be an instance of E2.

ideg(E1)< ideg(E2)⇒ E1 is not a strict instance of E2

By comparing the instantiation degrees of expressions the existence of relations may be
ruled out in accordance with the above implications without the need for a matching-
unification algorithm. This shall be illustrated by the following example.

Example. Consider again the instance trie from the beginning of this chapter storing the
expressions f (x,y), f (a,a), f (a,b), f (b,b). This instance trie is shown in the following figure
with the instantiation degree precomputed and annotated as subscripts. Furthermore, the
instance trie should be queried for expressions more general than the expression Eq = f (a,z)
which has an instantiation degree of 2.

f (x,y)

f (a,a) f (a,b) f (b,b)

Eq := f (a,z)2
1

3 3 3

Making use of the instantiation degree, the query is processed following these steps:

1. The relation between the query key Eq and the expression at the root node f (x,y)
needs to be determined. Comparing the instantiation degree of Eq, which is 2, with
the instantiation degree of f (x,y), which is 1, shows that f (x,y) may be more general
than Eq because ideg(f (x,y)) < ideg(Eq). To determine the relation between the ex-
pressions, the matching-unification algorithm is used. This algorithm gives the result
Eq SG f (x,y). Thus, the expression f (x,y) is an answer to the query. Consequently, the
child expressions need to be checked as well.

16 CHAPTER 4. SPEEDING UP INSTANCE TRIES WITH THE INSTANTIATION DEGREE

2. Proceeding to the first child of the root, the relation between Eq and f (a,a) needs to
be determined. Comparing the instantiation degrees of the two expressions shows
that f (a,a) cannot be more general than Eq because ideg(Eq) < ideg(f (a,a)) meaning
f (a,a) is not an answer to the query. Consequently, the traversal of the tree continues
at the next child of the root, this node’s right sibling.

3. Proceeding to the second child of the root, the relation between Eq and f (a,b) needs to
be determined. As with the previous node, comparing the instantiation degrees of the
two expressions yields that f (a,b) cannot be more general than Eq, and is therefore no
answer to the query. Thus, traversal continues at this node’s right sibling, the root’s
last child node.

4. Proceeding to the last child of the root, the relation between Eq and f (b,b) needs to be
determined. As with the previous two nodes, comparing the instantiation degrees of
the two expressions yields that f (b,b) cannot be more general than Eq, and is therefore
no answer to the query.

While the first step the matching-unification algorithm is used as before to determine the
relation between the query key and the expression at the root and the instantiation degree
allows to rule out the other three indexed expressions were previously three executions of
the matching-unification algorithm were required.

The examples are not representative as they were intentionally kept simple in order to bet-
ter convey the idea of the instantiation degree. The calculation of the instantiation degrees
for each expression and comparing the instantiation degrees prior to conditionally employ-
ing the matching-unification imposes additional overhead to the query process. Whether
or not this additional overhead introduced by the instantiation degree is compensated by
a reduced need for matching-unification is not immediately obvious and needs to be as-
sessed experimentally. This is evaluated in the next chapter.

CHAPTER 5

Evaluation of instance tries with the instantiation degree

An implementation of instance tries in the programming language Rust, as described in
[PB20a, 98-102], has been adapted to make use of the instantiation degree. These two ver-
sions, the unmodified base version and the enhanced version with the instantiation degree
are compared against each other using benchmarks as described in the following section.
The degree of instantiation was implemented as a single pointer-sized integer value which
is calculated once for each expression upon its insertion.

5.1 Benchmarks

The objective of the benchmarks is to obtain empirical data which allows to make quantita-
tive statements about the usefulness of the instantiation degree for real-world applications
using the instance trie data structure. To meet this goal, the experiments of the COMPIT
benchmark suite [NHRV01a] have been used. These benchmarks try to provide realistic us-
age scenarios for term indexing data structures in the field of automated theorem proving
which are heavily based on the retrieval of generalizations of expressions. The benchmarks
are generated from a selection of problems from the TPTP library [Sut17] being solved by
the three provers Fiesta, Waldmeister and Vampire [NHRV01b].
The benchmarks were executed on an Intel Xeon Silver CPU with 16 physical cores, Linux
kernel version 4.15 and the implementation of the instance trie data structure was compiled
with Rust version 1.58.1. The benchmarks were carried out single-threaded with CPU pin-
ning.

5.2 Performance of the benchmarks

Each of the benchmarks has been executed with and without the instantiation degree and
measurements were taken three times to compensate for measuring inaccuracy. The fol-
lowing results are based on the arithmetic mean of the three series of measurements. The
raw data of the underlying measurements is listed in the appendix of this work.

17

18 CHAPTER 5. EVALUATION OF INSTANCE TRIES WITH THE INSTANTIATION DEGREE

Visualization of the results. The goal of quantitatively analysing the impact of the in-
stantiation degree on the instance trie data structure is primarily based on the observation
of its impact on the runtime of the benchmarks. To observe the impact of the instantiation
degree on the set of benchmarks the following graphs contain a pair of bars per bench-
mark. The height of each bar refers to the relative duration of the respective benchmark,
i.e. relative to the duration of the benchmark on the unaltered data structure.

The colors of the left of these bars are less saturated and these bars refer to the benchmarks
with the unaltered data structure and they are therefore always of fixed height (i.e. the
relative duration is always 100% of the runtime required with the unaltered data structure).
The results of the benchmarks with the instantiation degree are depicted in more saturated
colors on the right for each benchmark.

Furthermore, each of the bars is divided into four differently colored segments. The top
segment refers to the time required for successful searches, i.e. queries that yield a result.
The second segment from the top refers to the time required for failed searches, i.e. queries
that yield no result. The third segment refers to the deletion of expressions from the index.
Lastly, the bottom segment refers to the insertion of expressions into the index.

Fiesta

LCL10
9-2

ROB02
2-1

COL00
4-3

LAT02
3-1

LAT02
6-1

RNG02
0-6

COL00
2-5

0

20

40

60

80

100

du
ra

ti
on

re
la

ti
ve

to
un

al
te

re
d

da
ta

st
ru

ct
ur

e
[%

]

insertions deletions failed searches successful searches

Benchmark Runtime [s] Insertions [s] Deletions [s] Successful searches [s] Failed searches [s]

COL002-5 12,444.032 191.917 20.629 11,569.877 656.384
COL004-3 1,185.456 0.546 0.015 1,164.048 16.722
LAT023-1 3,720.859 16.502 4.440 3,445.396 250.919
LAT026-1 7,150.140 49.642 14.635 6,644.601 437.399
LCL109-2 2,652.820 47.632 0.786 2,457.692 145.415
RNG020-6 8,966.949 25.738 1.134 8,634.594 295.927
ROB022-1 2,841.971 8.058 0.440 2,594.479 236.071

Fiesta measurements without instantiation degree

19

Benchmark Runtime [s] Insertions [s] Deletions [s] Successful searches [s] Failed searches [s]

COL002-5 951.334 188.267 20.048 563.416 176.803
COL004-3 314.495 0.546 0.015 303.044 7.256
LAT023-1 335.581 19.587 5.975 236.096 71.567
LAT026-1 451.068 56.848 18.654 242.267 131.187
LCL109-2 241.891 55.386 0.953 139.838 44.764
RNG020-6 867.716 30.283 1.272 691.777 137.729
ROB022-1 120.416 12.149 0.522 82.297 22.814

Fiesta measurements with instantiation degree

The results for all benchmarks using the Fiesta solver show substantial performance im-
provements. The runtime for all benchmarks has considerably reduced, well below 50%
of the runtime that was measured for the unaltered implementation. As expected, the im-
provements are limited to search operations as the heuristic does not improve the insertion
or deletion process. While a certain negative impact on insertions was expected due to the
extra effort required to calculate and store the degree of instantiation for each expression,
this does not notably show in the over-all benchmark performance.

Vampire

SE
T01

5-4

HEN01
1-2

RNG03
4-1

CID
00

3-1

COL07
9-2

CIV
00

3-1

CIV
00

2-1

LCL10
9-4

LAT00
2-1

CAT00
3-4

0

20

40

60

80

100

du
ra

ti
on

re
la

ti
ve

to
un

al
te

re
d

da
ta

st
ru

ct
ur

e
[%

]

insertions deletions failed searches successful searchesinsertions deletions failed searches successful searches

Benchmark Runtime [s] Insertions [s] Deletions [s] Successful searches [s] Failed searches [s]

CAT003-4 189,554.977 1,915.564 446.157 184,119.860 3,056.989
CID003-1 51,112.401 829.198 374.924 47,445.786 2,450.878
CIV002-1 95,547.469 748.093 77.594 90,122.280 4,581.384
CIV003-1 127,458.137 3,377.345 353.496 113,822.490 9,886.848
COL079-2 71,644.490 903.276 145.481 67,597.049 2,984.347
HEN011-2 6,729.421 11.797 0.253 6,406.612 303.157
LAT002-1 187,223.703 2,261.872 90.132 170,225.327 14,629.604
LCL109-4 149,078.663 3,908.777 105.386 134,046.923 11,000.888
RNG034-1 78,227.494 498.754 113.261 75,249.820 2,349.657
SET015-4 3,462.511 5.691 0.165 3,081.947 366.838

Vampire measurements without instantiation degree

20 CHAPTER 5. EVALUATION OF INSTANCE TRIES WITH THE INSTANTIATION DEGREE

Benchmark Runtime [s] Insertions [s] Deletions [s] Successful searches [s] Failed searches [s]

CAT003-4 8,816.730 2,564.817 698.618 5,153.704 390.161
CID003-1 3,294.670 1,072.015 505.067 1,614.816 93.896
CIV002-1 17,226.533 794.560 87.714 14,925.287 1,406.159
CIV003-1 18,464.445 3,331.665 364.989 12,152.035 2,603.414
COL079-2 6,364.711 1,086.882 171.803 4,482.040 615.308
HEN011-2 713.208 12.215 0.247 594.433 101.782
LAT002-1 16,292.127 3,047.948 126.029 11,160.959 1,946.678
LCL109-4 30,751.051 4,463.271 118.791 23,540.935 2,614.035
RNG034-1 3,266.760 576.817 139.455 2,219.917 321.916
SET015-4 401.786 6.453 0.184 313.505 76.232

Vampire measurements with instantiation degree

As with the Fiesta solver, there is a substantially positive performance impact of the instan-
tiation degree metric on all Vampire benchmarks. While there are also some benchmark
related variations, the runtime for all benchmarks was also reduced to well under 50% of
the time required with the unaltered implementation.

Waldmeister

LCL10
9-2

GRP02
4-5

LAT00
9-1

RNG02
8-5

RNG03
5-7

LAT02
0-1

GRP18
7-1

ROB02
6-1

ROB00
6-2

0

20

40

60

80

100

du
ra

ti
on

re
la

ti
ve

to
un

al
te

re
d

da
ta

st
ru

ct
ur

e
[%

]

insertions deletions failed searches successful searchesinsertions deletions failed searches successful searches

Benchmark Runtime [s] Insertions [s] Deletions [s] Successful searches [s] Failed searches [s]

GRP024-5 1,040.138 0.168 0.082 938.516 93.145
GRP187-1 5,342.833 1.364 0.300 4,913.643 401.951
LAT009-1 1,192.760 0.191 0.089 1,072.819 111.600
LAT020-1 6,080.174 0.364 0.079 5,494.846 547.072
LCL109-2 110.223 0.064 0.039 95.379 13.751
RNG028-5 1,269.673 0.145 0.060 1,208.215 43.368
RNG035-7 4,732.347 0.274 0.154 4,341.184 360.506
ROB006-2 11,898.472 2.524 0.036 11,757.902 79.390
ROB026-1 7,555.298 0.533 0.002 7,439.903 60.410

Waldmeister measurements without instantiation degree

21

Benchmark Runtime [s] Insertions [s] Deletions [s] Successful searches [s] Failed searches [s]

GRP024-5 663.289 0.212 0.109 571.727 81.554
GRP187-1 2,164.341 1.401 0.326 1,868.232 273.883
LAT009-1 562.711 0.239 0.136 457.991 95.142
LAT020-1 3,651.303 0.450 0.108 3,104.529 502.269
LCL109-2 56.361 0.082 0.056 45.774 9.306
RNG028-5 1,151.701 0.194 0.082 1,086.703 42.330
RNG035-7 3,780.880 0.335 0.195 3,422.532 322.089
ROB006-2 6,410.526 2.966 0.040 6,277.076 68.099
ROB026-1 4,514.220 0.645 0.002 4,401.089 52.421

Waldmeister measurements with instantiation degree

While the results for the Waldmeister benchmarks show an improved runtime with the in-
stantiation degree, the positive performance impact is not as substantial as that for the
solvers Fiesta and Vampire. It shows that the additional overhead for insertions introduced
by the instantiation degree is negligible even when considering the result with the least
improvement.

5.3 Interpretation of the results

The results of the executed benchmarks show a general performance improvement. They
show that in all cases the impact of the additional computational resources required to cal-
culate and compare the degrees of instantiation is negligible when compared to all other
operations. As stated before, there is no average case for term index usage among all appli-
cations in logic programming and automated theorem proving. Therefore an assessment of
the impact of this heuristic on the performance of the instance trie data structure may only
be achieved by performing benchmarks that simulate such real-world applications. This
reflects in the measured results, both in the variation between different problems solved
by the same solver and in the different impact on the different solvers. The variation for
different problems solved by the same solvers can simply be attributed to different expres-
sions being indexed. The considerable difference between the results for the two solvers
Fiesta and Vampire and the results for the Waldmeister solver is certainly tied to how the
solver implementations make use of their term index. However, all results indicate that the
introduced heuristic does not negatively impact performance and instead mostly leads to
a substantial gain in performance.

CHAPTER 6

Conclusion and future work

This work suggests a method for improving the performance of the instance trie term
index. To this end, a heuristic, called instantiation degree has been introduced which is
solely based on counting the number of variable and non-variable symbols in an expres-
sion. The computation of this single integer value can reduce the number of invocations
of the matching-unification algorithm which in turn increases the overall performance of
instance tries by up to 95.8% for some experiments, and yields gains for all of the experi-
ments that have been conducted. However, given the variety of the underlying problems
there is also a variation in the positive performance impact of the introduced heuristic on
the instance trie data structure.

Future work on the instantiation degree might be related to conducting further perfor-
mance tests with granular measurements for a more detailed analysis of the heuristic in
the context of instance tries. Likewise, experiments with a focus set on logic programming
applications using instance tries may be conceivable. Furthermore, the instantiation degree
may also be applicable outside the context of instance tries when matching or matching-
unification is used.

23

Appendix

Raw measurements without instantiation degree

Benchmark Solver Run Runtime [s] Insertions [s] Deletions [s] Failed searches [s] Succ. searches [s]

CAT003-4 Vampire 1 192,849.540 1,953.113 453.781 187,301.140 3,126.210
CAT003-4 Vampire 2 188,605.360 1,909.252 447.388 183,191.970 3,039.655
CAT003-4 Vampire 3 187,210.030 1,884.326 437.302 181,866.470 3,005.102
CID003-1 Vampire 1 52,103.846 849.405 377.494 48,408.491 2,456.746
CID003-1 Vampire 2 50,483.414 817.251 371.851 46,836.483 2,446.518
CID003-1 Vampire 3 50,749.942 820.939 375.427 47,092.385 2,449.371
CIV002-1 Vampire 1 96,852.011 765.292 78.990 91,333.994 4,656.003
CIV002-1 Vampire 2 95,461.156 754.872 78.905 89,997.285 4,612.371
CIV002-1 Vampire 3 94,329.240 724.114 74.886 89,035.561 4,475.777
CIV003-1 Vampire 1 129,104.690 3,432.011 364.897 115,272.060 10,018.826
CIV003-1 Vampire 2 129,231.500 3,422.691 357.085 115,411.200 10,021.535
CIV003-1 Vampire 3 124,038.220 3,277.333 338.504 110,784.210 9,620.184
COL002-5 Fiesta 1 12,370.638 189.891 20.437 11,504.426 650.688
COL002-5 Fiesta 2 12,341.314 190.088 21.004 11,474.777 650.148
COL002-5 Fiesta 3 12,620.143 195.772 20.446 11,730.427 668.318
COL004-3 Fiesta 1 1,186.105 0.549 0.015 1,164.649 16.723
COL004-3 Fiesta 2 1,181.103 0.544 0.015 1,159.687 16.670
COL004-3 Fiesta 3 1,189.161 0.546 0.015 1,167.807 16.773
COL079-2 Vampire 1 73,146.035 919.789 148.231 69,025.212 3,038.530
COL079-2 Vampire 2 71,293.113 898.839 144.789 67,257.993 2,977.145
COL079-2 Vampire 3 70,494.322 891.200 143.423 66,507.941 2,937.366
GRP024-5 Waldmeister 1 1,041.838 0.168 0.083 940.092 93.291
GRP024-5 Waldmeister 2 1,041.733 0.168 0.082 939.952 93.290
GRP024-5 Waldmeister 3 1,036.843 0.167 0.082 935.503 92.855
GRP187-1 Waldmeister 1 5,305.257 1.362 0.299 4,879.677 398.856
GRP187-1 Waldmeister 2 5,288.072 1.370 0.300 4,863.554 397.306
GRP187-1 Waldmeister 3 5,435.171 1.362 0.302 4,997.697 409.692
HEN011-2 Vampire 1 6,625.111 11.670 0.252 6,306.968 299.107
HEN011-2 Vampire 2 6,862.966 11.946 0.254 6,535.287 308.063
HEN011-2 Vampire 3 6,700.186 11.775 0.252 6,377.581 302.303
LAT002-1 Vampire 1 192,853.820 2,333.143 92.542 175,189.760 15,221.302
LAT002-1 Vampire 2 187,907.690 2,266.985 90.648 170,821.850 14,711.658
LAT002-1 Vampire 3 180,909.600 2,185.487 87.206 164,664.370 13,955.853
LAT009-1 Waldmeister 1 1,192.743 0.190 0.087 1,072.827 111.586
LAT009-1 Waldmeister 2 1,196.292 0.191 0.089 1,075.985 111.949
LAT009-1 Waldmeister 3 1,189.244 0.192 0.090 1,069.646 111.266
LAT020-1 Waldmeister 1 6,046.755 0.362 0.078 5,465.267 544.082
LAT020-1 Waldmeister 2 6,075.674 0.362 0.080 5,491.275 546.518
LAT020-1 Waldmeister 3 6,118.092 0.366 0.079 5,527.998 550.615
LAT023-1 Fiesta 1 3,571.610 16.014 4.399 3,306.466 241.378
LAT023-1 Fiesta 2 3,765.216 16.662 4.446 3,486.697 253.761
LAT023-1 Fiesta 3 3,825.751 16.830 4.476 3,543.024 257.620
LAT026-1 Fiesta 1 7,092.118 49.344 14.946 6,590.765 433.030
LAT026-1 Fiesta 2 7,150.294 49.635 14.423 6,645.553 437.011
LAT026-1 Fiesta 3 7,208.009 49.946 14.535 6,697.486 442.157
LCL109-2 Fiesta 1 2,641.249 47.081 0.776 2,446.447 145.680
LCL109-2 Fiesta 2 2,664.700 47.887 0.791 2,468.965 145.760
LCL109-2 Fiesta 3 2,652.512 47.929 0.790 2,457.666 144.806
LCL109-2 Waldmeister 1 112.323 0.066 0.040 97.182 14.011
LCL109-2 Waldmeister 2 109.113 0.063 0.039 94.418 13.613
LCL109-2 Waldmeister 3 109.234 0.063 0.039 94.537 13.628
LCL109-4 Vampire 1 152,942.170 3,993.911 107.740 137,520.900 11,303.114

25

26 CHAPTER 6. APPEDIX

Benchmark Solver Run Runtime [s] Insertions [s] Deletions [s] Failed searches [s] Succ. searches [s]

LCL109-4 Vampire 2 148,042.810 3,890.121 104.802 133,106.680 10,924.457
LCL109-4 Vampire 3 146,251.010 3,842.299 103.614 131,513.190 10,775.092
RNG020-6 Fiesta 1 8,912.315 25.404 1.142 8,582.629 293.793
RNG020-6 Fiesta 2 9,623.073 27.235 1.175 9,270.215 314.648
RNG020-6 Fiesta 3 8,365.460 24.576 1.085 8,050.938 279.340
RNG028-5 Waldmeister 1 1,257.887 0.144 0.060 1,196.941 42.916
RNG028-5 Waldmeister 2 1,282.935 0.145 0.059 1,220.998 43.906
RNG028-5 Waldmeister 3 1,268.197 0.146 0.060 1,206.707 43.282
RNG034-1 Vampire 1 80,798.308 523.057 115.701 77,683.147 2,459.723
RNG034-1 Vampire 2 77,011.631 488.422 112.450 74,095.421 2,299.525
RNG034-1 Vampire 3 76,872.544 484.783 111.632 73,970.892 2,289.722
RNG035-7 Waldmeister 1 4,689.757 0.272 0.155 4,302.212 357.326
RNG035-7 Waldmeister 2 4,716.484 0.273 0.155 4,326.727 359.213
RNG035-7 Waldmeister 3 4,790.801 0.277 0.153 4,394.613 364.977
ROB006-2 Waldmeister 1 12,371.292 2.628 0.036 12,224.409 82.601
ROB006-2 Waldmeister 2 11,719.294 2.486 0.036 11,581.194 78.243
ROB006-2 Waldmeister 3 11,604.831 2.460 0.034 11,468.104 77.325
ROB022-1 Fiesta 1 2,837.674 8.035 0.433 2,590.106 236.198
ROB022-1 Fiesta 2 2,831.161 8.052 0.438 2,584.829 234.939
ROB022-1 Fiesta 3 2,857.079 8.087 0.449 2,608.503 237.077
ROB026-1 Waldmeister 1 7,583.870 0.536 0.002 7,468.457 60.592
ROB026-1 Waldmeister 2 7,620.333 0.536 0.002 7,504.110 60.841
ROB026-1 Waldmeister 3 7,461.691 0.529 0.002 7,347.143 59.797
SET015-4 Vampire 1 3,457.195 5.649 0.164 3,076.675 366.798
SET015-4 Vampire 2 3,452.067 5.675 0.164 3,072.470 365.830
SET015-4 Vampire 3 3,478.272 5.749 0.166 3,096.695 367.885

Raw measurements with instantiation degree

Benchmark Solver Run Runtime [s] Insertions [s] Deletions [s] Failed searches [s] Succ. searches [s]

CAT003-4 Vampire 1 9,057.266 2,631.359 711.719 5,301.221 403.229
CAT003-4 Vampire 2 8,772.713 2,546.725 691.764 5,135.690 389.139
CAT003-4 Vampire 3 8,620.209 2,516.367 692.370 5,024.201 378.114
CID003-1 Vampire 1 3,424.944 1,097.553 520.335 1,700.109 97.855
CID003-1 Vampire 2 3,214.476 1,054.804 495.913 1,563.275 91.546
CID003-1 Vampire 3 3,244.590 1,063.688 498.954 1,581.063 92.288
CIV002-1 Vampire 1 17,791.231 823.054 91.232 15,389.466 1,475.254
CIV002-1 Vampire 2 16,960.640 775.361 86.306 14,701.418 1,384.129
CIV002-1 Vampire 3 16,927.728 785.264 85.603 14,684.976 1,359.094
CIV003-1 Vampire 1 19,416.429 3,462.407 384.935 12,800.101 2,756.983
CIV003-1 Vampire 2 18,338.709 3,322.506 362.018 12,054.272 2,586.934
CIV003-1 Vampire 3 17,638.197 3,210.083 348.015 11,601.731 2,466.324
COL002-5 Fiesta 1 921.977 181.289 19.768 547.715 170.451
COL002-5 Fiesta 2 953.837 189.362 20.012 564.107 177.554
COL002-5 Fiesta 3 978.187 194.150 20.364 578.426 182.403
COL004-3 Fiesta 1 313.913 0.559 0.015 302.461 7.257
COL004-3 Fiesta 2 314.953 0.538 0.015 303.512 7.256
COL004-3 Fiesta 3 314.619 0.542 0.015 303.160 7.256
COL079-2 Vampire 1 6,660.954 1,126.011 178.881 4,699.722 647.126
COL079-2 Vampire 2 6,226.106 1,067.864 168.598 4,380.612 600.665
COL079-2 Vampire 3 6,207.073 1,066.773 167.931 4,365.786 598.135
GRP024-5 Waldmeister 1 664.103 0.212 0.108 572.528 81.739
GRP024-5 Waldmeister 2 663.113 0.215 0.110 571.560 81.548
GRP024-5 Waldmeister 3 662.651 0.210 0.109 571.094 81.376
GRP187-1 Waldmeister 1 2,143.230 1.392 0.321 1,850.142 271.197
GRP187-1 Waldmeister 2 2,189.751 1.402 0.334 1,890.320 277.152
GRP187-1 Waldmeister 3 2,160.042 1.410 0.323 1,864.233 273.298
HEN011-2 Vampire 1 684.913 11.283 0.228 571.155 97.795
HEN011-2 Vampire 2 720.551 12.525 0.253 600.452 102.839
HEN011-2 Vampire 3 734.162 12.836 0.261 611.691 104.711
LAT002-1 Vampire 1 17,000.035 3,147.120 130.736 11,660.437 2,050.624
LAT002-1 Vampire 2 16,121.093 3,010.848 124.393 11,044.976 1,930.512
LAT002-1 Vampire 3 15,755.253 2,985.877 122.959 10,777.465 1,858.897
LAT009-1 Waldmeister 1 559.468 0.238 0.135 455.485 94.671
LAT009-1 Waldmeister 2 560.808 0.238 0.136 456.491 94.800
LAT009-1 Waldmeister 3 567.856 0.240 0.136 461.996 95.956
LAT020-1 Waldmeister 1 3,658.011 0.454 0.109 3,110.291 502.910
LAT020-1 Waldmeister 2 3,620.117 0.445 0.108 3,078.082 498.248
LAT020-1 Waldmeister 3 3,675.781 0.453 0.108 3,125.214 505.649
LAT023-1 Fiesta 1 328.895 19.076 5.940 231.211 70.300
LAT023-1 Fiesta 2 335.006 19.402 5.999 235.776 71.513

27

Benchmark Solver Run Runtime [s] Insertions [s] Deletions [s] Failed searches [s] Succ. searches [s]

LAT023-1 Fiesta 3 342.842 20.282 5.986 241.300 72.886
LAT026-1 Fiesta 1 419.140 52.151 17.162 226.060 121.725
LAT026-1 Fiesta 2 463.122 58.683 19.138 248.462 134.676
LAT026-1 Fiesta 3 470.941 59.710 19.664 252.278 137.161
LCL109-2 Fiesta 1 230.381 52.421 0.924 133.130 42.976
LCL109-2 Fiesta 2 247.815 56.897 0.969 143.298 45.702
LCL109-2 Fiesta 3 247.476 56.841 0.967 143.086 45.614
LCL109-2 Waldmeister 1 58.398 0.085 0.058 47.432 9.635
LCL109-2 Waldmeister 2 55.345 0.081 0.055 44.952 9.135
LCL109-2 Waldmeister 3 55.339 0.081 0.055 44.939 9.148
LCL109-4 Vampire 1 31,555.231 4,552.491 121.065 24,169.738 2,697.243
LCL109-4 Vampire 2 30,701.687 4,448.496 118.630 23,502.537 2,617.439
LCL109-4 Vampire 3 29,996.235 4,388.827 116.679 22,950.529 2,527.424
RNG020-6 Fiesta 1 815.131 27.082 1.179 649.188 131.139
RNG020-6 Fiesta 2 895.826 31.868 1.322 714.601 141.410
RNG020-6 Fiesta 3 892.192 31.899 1.315 711.542 140.638
RNG028-5 Waldmeister 1 1,149.172 0.193 0.083 1,084.546 42.243
RNG028-5 Waldmeister 2 1,154.009 0.194 0.084 1,088.841 42.425
RNG028-5 Waldmeister 3 1,151.923 0.194 0.080 1,086.724 42.323
RNG034-1 Vampire 1 3,446.161 606.534 145.276 2,343.429 341.725
RNG034-1 Vampire 2 3,180.625 562.253 136.056 2,161.509 312.322
RNG034-1 Vampire 3 3,173.494 561.665 137.033 2,154.813 311.702
RNG035-7 Waldmeister 1 3,768.641 0.335 0.194 3,412.008 321.250
RNG035-7 Waldmeister 2 3,788.884 0.336 0.195 3,429.566 322.746
RNG035-7 Waldmeister 3 3,785.115 0.334 0.195 3,426.022 322.273
ROB006-2 Waldmeister 1 6,672.076 3.099 0.041 6,533.904 70.686
ROB006-2 Waldmeister 2 6,415.508 2.970 0.040 6,281.817 68.195
ROB006-2 Waldmeister 3 6,143.993 2.828 0.039 6,015.508 65.417
ROB022-1 Fiesta 1 117.003 11.634 0.511 80.168 22.195
ROB022-1 Fiesta 2 118.624 12.081 0.514 81.110 22.360
ROB022-1 Fiesta 3 125.620 12.732 0.542 85.612 23.887
ROB026-1 Waldmeister 1 4,500.363 0.643 0.002 4,388.046 52.292
ROB026-1 Waldmeister 2 4,526.207 0.645 0.002 4,412.150 52.585
ROB026-1 Waldmeister 3 4,516.091 0.647 0.002 4,403.070 52.388
SET015-4 Vampire 1 399.669 6.220 0.180 311.717 76.165
SET015-4 Vampire 2 401.983 6.450 0.185 313.707 76.220
SET015-4 Vampire 3 403.707 6.689 0.186 315.090 76.313

Bibliography

[Gra96] Peter Graf. Term Indexing, volume 1053 of Lecture Notes in Artificial Intelligence.
Springer, Berlin, Germany, 1996.

[Kni89] Kevin Knight. Unification: A multidisciplinary survey. ACM Comput. Surv.,
21(1):93–124, March 1989.

[McC92] William McCune. Experiments with discrimination-tree indexing and path
indexing for term retrieval. J. Autom. Reason., 9(2):147–167, oct 1992.

[NHRV01a] Robert Nieuwenhuis, Thomas Hillenbrand, Alexander Riazanov, and Andrei
Voronkov. Let’s compit! https://people.mpi-inf.mpg.de/˜hillen/
compit/, 2001. Accessed: 2022-02-01.

[NHRV01b] Robert Nieuwenhuis, Thomas Hillenbrand, Alexander Riazanov, and Andrei
Voronkov. On the evaluation of indexing techniques for theorem proving. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Automated Rea-
soning, pages 257–271, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[Ohl90] Hans Jürgen Ohlbach. Abstraction tree indexing for terms. In Proceedings of the
9th European Conference on Artificial Intelligence, ECAI’90, page 479–484, USA,
1990. Pitman Publishing, Inc.

[PB20a] Thomas Prokosch and François Bry. Give reasoning a trie. In Pascal Fontaine,
Konstantin Korovin, Ilias S. Kotsireas, Philipp Rümmer, and Sophie Tourret,
editors, Joint Proceedings of the 7th Workshop on Practical Aspects of Automated
Reasoning (PAAR) and the 5th Satisfiability Checking and Symbolic Computation
Workshop (SC-Square) Workshop, volume 2752 of CEUR Workshop Proceedings,
pages 93–108, Aachen, 2020. CEUR-WS.org. urn:nbn:de:0074-2752-0.

[PB20b] Thomas Prokosch and François Bry. Unification on the run. In Temur Kutsia
and Andrew M. Marshall, editors, The 34th International Workshop on Unifi-
cation (UNIF’20), number 20-10 in RISC Report Series, pages 13:1–13:5, Linz,
Austria, June 2020. Research Institute for Symbolic Computation, Johannes
Kepler University.

[Pro21] Thomas Prokosch. Personal communication, January 2021.

[RSV01] I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term indexing. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Rea-
soning (in 2 volumes), pages 1853–1964. Elsevier and MIT Press, 2001.

29

https://people.mpi-inf.mpg.de/~hillen/compit/
https://people.mpi-inf.mpg.de/~hillen/compit/

30 BIBLIOGRAPHY

[Sti89] Mark E. Stickel. The path-indexing method for indexing terms. 1989.

[Sut17] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

	Introduction
	Expressions and substitutions
	Unification and relations between expressions
	Aim of this thesis

	Term indexing
	Early approaches to term indexing
	Instance tries

	Querying instance tries without optimization
	Speeding up instance tries with the instantiation degree
	Instantiation degree
	Using the instantiation degree to skip invocations of the matching-unification algorithm

	Evaluation of instance tries with the instantiation degree
	Benchmarks
	Performance of the benchmarks
	Interpretation of the results

	Conclusion and future work
	Bibliography

