
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

COMO: A LEXICOGRAPHICAL
DATA STRUCTURING GAME

WITH A PURPOSE

Maximilian Kristen

Bachelorarbeit
Aufgabensteller Prof. Dr. François Bry
Betreuer Prof. Dr. François Bry

Abgabe am 23.12.2020

2

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 23.12.2020 Maximilian Kristen

i

ii

Abstract

Access to lexicographical data is an important asset for modern linguistics and related
practical applications. Wikidata, an open and collaborative Wikimedia project that hosts
structured data, has recently started to integrate lexemes into its data model.

While the project has managed to accumulate a substantial amount of lexemes in a short
time, it still struggles, for legal and other reasons, to collect a comparable amount of senses
describing the already collected lexemes.

Como is an Android app which tries to gamify the creation of those lexeme senses, to
attract new contributions. The application also checks the quality of the created senses by
letting other players guess a lexeme from its sense.

An analysis based on a month-long testing points to both, the simplicity and the effi-
ciency of Como as a mean to collaboratively collect lexemes’ senses.

iii

iv

Zusammenfassung

Zugang zu lexikografischen Daten ist ein wichtiger Stützpfeiler der modernen Linguis-
tik und im Zusammenhang dazu stehenden praktischen Applikationen. Wikidata, ein of-
fenens und kollaboratives Wikimedia Projekt, das strukturierte Daten bereitstellt, hat vor
Kurzem Lexeme in sein Datenmodel integriert.

Während das Projekt in der Lage war schnell größere Mengen von Lexemen zu akku-
mulieren, gab es Schwierigkeiten, legaler und anderer Natur, zu den Lexemen eine ver-
gleichbare Menge an Wortsinnen zu sammeln.

Como ist eine Android App, die versucht die Erstellung von solchen Wortsinnen zu
gamifizieren, um so neue Beiträge zu animieren. Die Applikation prüft die Qualität der
produzierten Wortsinne, indem sie die anderen SpielerInnen ein Lexem anhand seines
Wortsinns erraten lässt.

Eine Analyse einer einmonatigen Testperiode zeigt die Einfachheit und Effizienz von
Como als eine Methode, die Wortsinne von Lexemen kollaborativ zu sammeln.

v

vi

Acknowledgments

Thanks to Prof. Bry for his calm guidance, to all the testers of Como for their willingness
to keep using the app, even with the initial beta issues and resets and to the Wikidata
community for their amazing effort to advance free and open structured knowledge.

vii

viii

Contents

1 Introduction 1
1.1 Wikidata as a Hub of Structured Knowledge 1
1.2 Lexemes and Senses . 2
1.3 Improving Wiktionary with Structured Data 2
1.4 Data Model for Lexemes . 2
1.5 Status of Lexemes in Wikidata . 3
1.6 Games with a Purpose . 4

2 Related Work 7
2.1 The Distributed Game . 7
2.2 Macht Sinn . 8

3 Game Concept 11
3.1 Similarity to Crosswords . 11
3.2 Similarity to Taboo and Catch Phrase . 12
3.3 Game Modes . 12

3.3.1 Creation Mode . 13
3.3.2 Guessing Mode . 13

3.4 Point Reward Structure . 13

4 Implementation 17
4.1 Server . 17

4.1.1 Interaction with Wikidata . 17
4.1.1.1 SPARQL . 17
4.1.1.2 Content Generation . 19
4.1.1.3 Result Upload . 19

4.1.2 Database . 20
4.1.3 API . 20
4.1.4 Hosting . 22

4.2 Client . 22
4.2.1 Platform . 22
4.2.2 Software Architecture . 22
4.2.3 Interaction with Server . 23
4.2.4 User Interface . 23

4.2.4.1 Main Activity . 24
4.2.4.2 Settings Activity . 24
4.2.4.3 Guessing Mode Activity . 25

ix

x CONTENTS

4.2.4.4 Creation Mode Activity . 26
4.2.5 Distribution . 26

5 Evaluation 29
5.1 Data Collection Format . 29
5.2 Test Group Selection . 29

5.2.1 User Language . 30
5.2.2 User Activity . 30

5.3 Results . 31
5.3.1 Creation Mode . 31
5.3.2 Guessing Mode . 31

5.3.2.1 Wikidata Senses . 32
5.3.2.2 User-created Senses . 32

5.3.3 Comparison . 33

6 Conclusion and Future Work 37
6.1 Futureproofing Como . 37
6.2 Additional Data Harvesting . 38

Bibliography 39

CHAPTER 1

Introduction

The possibilities of structured data to benefit both research and the public are the reason
for the rising number of projects that target the generation or usage of said data. While in-
stitutions will often just convert their existing data sets into more structured ones, crowd-
sourced and open projects need volunteer help to accomplish this. Many projects have
therefore developed a need for new approaches to volunteer engagement in creating struc-
tured data.

This work will focus specifically on the creation and evaluation of lexicographical struc-
tured data, by developing a “Game with a Purpose” (GWAP) prototype to demonstrate a
possible method to engage a wider volunteer community.

To this end, this chapter will include a short overview of the history of Wikidata and
its development, followed by a short explanation of “lexemes” and “senses” as they were
included in Wikidata in 2017. Afterwards it will explain the problems with the Wiktionary
project, that led to this development, and show details of the implemented lexeme data
model. Then it will explore the noticeable discrepancies between the lexemes with and
without senses in the existing data and how a GWAP could be useful to solve them.

1.1 Wikidata as a Hub of Structured Knowledge

Wikidata, the first new Wikimedia Foundation project since 2006 [36], was originally started
in 2012 and initially deployed the first time in 2013. At the beginning its functionality was
limited to link between different language versions of Wikipedia sites on the same topic,
but it quickly developed into a more flexible, general purpose data modelling tool [17].

After its initial deployment Wikidata quickly became integral to other Wikimedia Foun-
dation projects. As an example, over 70% of Wikipedia articles are using data from Wiki-
data in one form or another (excluding the aforementioned sitelinks) [34]. It also developed
into a topic of interest for researchers, with a growing number of papers published every
year since 2012, excluding the year 2020 [28]. Furthermore in 2014 Google decided to end
its own structured knowledge project “freebase”, and made efforts to migrate its contents
to Wikidata [24].

In an effort to expand its data model, Wikimedia started developing lexicographical
data structures as a new data type in 2017.

1

2 CHAPTER 1. INTRODUCTION

1.2 Lexemes and Senses

As part of the terminology of the following work, the terms “lexeme” and “sense” should
be established, as they relate to their usage in Wikidata entities.

“Lexemes” are described by Wikipedia as “a unit of lexical meaning that underlies a set
of words that are related through inflection.... For example, in English, run, runs, ran and
running are forms of the same lexeme, which can be represented as RUN.”[35]. In the user-
facing parts of the app, the term “lexeme” is often replaced by the less scientific “word”, to
increase the apps ease-of-use.

“Senses” on the other hand are used by Wikidata to mark different meanings of a given
lexeme. As an example, the lexeme “king” has three different senses in Wikidata.[32]

• piece from the board game chess

• class of male monarch

• playing card

In the application and this work “senses” will sometimes be replaced with “descrip-
tions” or “definitions” depending on the context.

1.3 Improving Wiktionary with Structured Data

The English language Wiktionary strives to be “a collaborative project to produce a free-
content multilingual dictionary. It aims to describe all words of all languages using defini-
tions and descriptions in English.” [10].

This goal is similar for the other language Wiktionaries, which already shows the mon-
umental amounts of content each Wiktionary wants to create and maintain. Because of
this most of the volunteers work would be spend on duplication of entries already done in
other Wiktionaries. Additionally, most of the 176 different language Wiktionaries [33] are
struggling to attract or keep active members. [25]

From a user perspective, there are multiple issues with the presentation of data in the
current Wiktionary projects. They all use Mediawiki, the same software used to display
Wikipedia pages, to present their lexeme data. This only allows lexicographical data entry
as unstructured plain text, or loosely structured templates. As a result it is difficult to
extract structural information about a Wiktionary project’s data as it requires complex text
processing to acquire structured information from the standard MediaWiki APIs. [25]

Considering these issues, a centralised multilingual data repository would be a worth-
while addition to all Wiktionary projects. On top of easing the work for Wiktionaryans,
it would also be useful on its own merit, by providing a standardised Syntax (SPARQL)
and Interface (Wikidata Query Service) for linguists and other researchers. These were the
reasons for the aforementioned integration of lexemes in Wikidata.

1.4 Data Model for Lexemes

The realisation of the new data model for lexicographical data is handled by introducing a
new extension to Wikidata’s hosting software, Wikibase. [7]

The model, as shown in Figure 1.1, contains three distinct parts, all linked to the L(exeme)-
id of the lexeme. L-ids start with a “L” in comparison to other items in Wikidata, which are
identified with a “Q” number. A example of the model can be found in this lexeme for a
noun in English: “book” with the L-id L536.

The first part of a lexeme includes:

https://www.wikidata.org/wiki/Lexeme:L536

1.5. STATUS OF LEXEMES IN WIKIDATA 3

• Lemma: the actual lemma, in this case: “book”

• Language: language of the lexeme, as a reference to a Q-numbered Wikidata item,
here: Q1860 (English)

• Lexical category: lexical category of the lexeme, as a reference to a Q-numbered Wiki-
data item, here: Q1084 (Noun)

• Lexeme Statements: statements that relate to information not specific to the forms
and senses, here: a reference to a homograph lexeme, the verb “to book”

This example also contains a number of forms, which are structured in three elements.
When looking at the first form L536-F1, these elements are:

• Representation: the actual written form, here: “book”

• Grammatical features: these describe different attributes of the form, here it is “sin-
gular”

• Statements: state aspects of the form, in this example an IPA transcription of the form

The model also includes senses with two elements. In the example there is only one
sense L536-S1 with these contents:

• Gloss: the actual description as a multilingual string, here the German version is:
“fest gebundenes Druckwerk”

• Statements: these statements often range widely from possible synonyms to images.
The example has many statements, including an Italian translation: “libro”

1.5 Status of Lexemes in Wikidata

Despite the introduction of the Lexeme datamodel in 2017 and the incremental deployment
in 2018 and 2019 there is not yet a sufficient set of lexemes for any language in Wikidata.
The most “complete” language in the dataset is Russian, although this is not because of an
very active Russian Wikidata community effort, but because some of its content has been
imported from the Russian Wiktionary with a bot [23].

Obviously this would be a promising strategy to increase the amount of lexemes, senses
and forms in Wikidata. Wictionaries contain a vast pool of dictionary information, that
could be imported to Wikidata, but this process is hindered by the fact, that they have
differing licencing models.

Wikidata uses CC0 [8], which is mostly equivalent to the public domain while Wik-
tionary uses CC-BY-SA [10], a free culture license, but more restrictive. These licenses do
not allow an automatic import of all Wiktionary content to Wikidata, except for factual
statements, which can’t be copyrighted in most legal systems.

This exception does not extend to all data points of the Wiktionary dataset, especially
the descriptions of many lexemes, because they meet the threshold of a creative work [12].

While some languages, like the aforementioned Russian, are starting to populate Wiki-
data with lexemes, those lexemes often are lacking senses. In the top ten languages with the
most lexemes, only Basque has at least one sense for over 50% of its lexemes. As demon-
strated in Figure 1.2 there is a drastic difference between the amount of bare lexemes and
the ones with one or more senses, which reduces the value of the data set. Every published
dictionary and every major Wiktionary project contains at least one description of a lexeme,
while Wikidata can’t offer one in most cases.

https://www.wikidata.org/wiki/Q1860
https://www.wikidata.org/wiki/Q1084
https://www.wikidata.org/wiki/Lexeme:L536#F1
https://www.wikidata.org/wiki/Lexeme:L536#S1

4 CHAPTER 1. INTRODUCTION

1.6 Games with a Purpose

The goal of “Games with a purpose” (GWAPs) is to motivate human players to solve prob-
lems, while still being enjoyable. Most GWAPs rely on distributing computationally im-
possible or hard to solve tasks to multiple human players. These users should then solve
the tasks in a playful manner. [31]

This technique is mostly applied for tasks, which humans (still) can solve more effi-
ciently than software, like image recognition or comprehension of language. A part of
those games is often dedicated to cross-checking results of other players to prevent errors.

As Wikidatas lexicographical data is incomplete and often lacks senses it would be use-
ful to create a GWAP, that lets players fill in the missing senses while playing. As creating
new sentences and guessing words are highly creative task and sharing new creations with
others is social, this could potentially be the basis of an entertaining and effective GWAP.

Como, the application, which was developed in tandem with this work, is an effort to
meet these characteristics, and has proven some effectiveness in creating new and useful
senses for Wikidata.

1.6. GAMES WITH A PURPOSE 5

Figure 1.1: Wikidata’s data model for Lexemes [16]

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Number of lexemes with and without senses in the ten most populated lan-
guages on Wikidata [20]

CHAPTER 2

Related Work

The volunteer community around the Wikidata project has already created a number of
GWAPs to encourage more contributions. As they are created based on the interests and
skills of the volunteers they vary drastically in both design language and purpose. There is
also some overlap between projects that would be better described as tools, gamified tools
or real GWAPs. In the following, two examples of such Wikimedia related GWAPs will be
presented and evaluated against the properties in the scope of Como.

2.1 The Distributed Game

”The Distributed Game” [18] is a web-platform developed by Magnus Manske [19] that
features GWAPs related to editing Wikidata, as seen in Figure 2.1. It enables the creation
of new games with a simple API, which allows less experienced community members to
participate in the game creation process. The application can be considered highly success-
ful, as the platform as a whole has recorded more than 1.3 million user interactions with its
various games. [3]

The user experience changes with each different game, but some properties apply through-
out the site. All games present the players with computer-generated suggestions that often
aggregate data from multiple sources to create an additional statement for Wikidata. As
can be observed in the example “Alias” (see Figure 2.2) most games require interaction
with up to three buttons:

• Confirm/Yes/True: to confirm a matching suggestion

• Deny/No/False: to mark a suggestion as wrong

• Skip: to skip to the next entry

“Alias” presents the lemma of a Wikipedia page, here “Pat Skerry”, and the first few
lines of the article. Then it poses the question: ’Is “Patrick Joseph Skerry” a valid alias
for the original lemma?’ The user then has to choose between the already described three
options.

Depending on the decision the alias will be added to the related Wikidata object, to
make it searchable under both names. Therefore the task of ”Alias” is to add more cor-
rect aliases to Wikidata objects. It generates suggestions mainly based on the first line of

7

8 CHAPTER 2. RELATED WORK

Figure 2.1: ”The Distributed Game” homepage, listing some playable games

Wikipedia articles or redirect links to the same page. One possible effect of this game is to
increase the searchability of married women, which often (traditionally) have at least two
valid names in some European cultures.

”The Distributed Game” is manly oriented at people familiar with Wikidata’s basics
and is only playable in browsers. Users are offered a very reduced action set to complete
games, that can be executed quickly. There are no classic gamification attributes like re-
wards or different tasks, most of the satisfaction is intrinsic to improving data statements
with greater speed then manual entry.

2.2 Macht Sinn

“Macht Sinn” [22] (English translation: “makes sense”) was created by Michael Schönitzer
and is similar to ”The Distributed Game” as it also suggests a possible edit, that then can
be allowed, denied or skipped by the user (see Figure 2.3).

It diverges from the type of suggested edits, as it provides lexemes and relating senses,
which is currently not possible with the other popular platform. Despite being created
much later, it has already had nearly 30,000 user interactions [21] and is therefore a big
contributor to the growing Wikidata lexicographical project.

The application has overlapping goals with the Como GWAP, as it also tries to add
additional senses to lexemes. The main divergence is in the creation of those senses. ”Macht
Sinn!” pulls sense suggestions from the description of linked, or similar sounding, Wikidata
items, whereby Como aims to let users create senses from scratch. This is of course a more
demanding task than judging a previously generated suggestion, and therefore will slow
down the speed of creation for new senses accordingly.

2.2. MACHT SINN 9

Figure 2.2: ”Alias” is a simple matching tool, to add additional aliases to Wikidata entities

Figure 2.3: The ”Macht Sinn” homepage, asking the user to evaluate if the suggested sense
matches the lexeme

10 CHAPTER 2. RELATED WORK

CHAPTER 3

Game Concept

The basic principle of Como is a word guessing game, similar to a crossword or the popular
party games “Taboo” and “Catch Phrase”. The concept mainly hinges on the assumption
that some of the clues (crosswords) or tips (“Taboo” and “Catch Phrase”) are sufficient as
dictionary entries. This assumption is based on the frequent similarity between these clues
and tips and a dictionary description of a lexeme.

In the following, there will be a presentation of other popular word guessing games and
which aspects of them could fit into the concept of Como. Afterwards the different game
modes will be explored.

3.1 Similarity to Crosswords

In a traditional crossword puzzle players need to guess matching words with the help of
a clue and often some letters from other solutions. They also know the length of their
solution, based on the number of missing fields.

Clues in crosswords can be of various types [27], but “straight” and “cryptic” clues
are most commonly used. “Cryptic” clues include wordplays, anagrams, puns and other
indirect references. “Straight” clues on the other hand can be:

• generic: type of boat = sailboat

• synonymic: synonym for king = monarch

• antonymic: opposite of rich = poor

• definitory: a quantity obtained by multiplication of two or more numbers = product

• descriptive: long, often yellow fruit = banana

There is a lot of overlap between generic, definitory and descriptive clues for the pur-
pose of this work, so the terms will be used interchangeably.

As pertaining to Como, where the purpose of the GWAP is adding additional senses
to Wikidata, only “straight” clues are of value to the app. Every “straight” crossword clue
contains usable information, that could be integrated in Wikidata’s lexeme model. In the
scope of this work, only senses, which are similar to generic, definitory and descriptive

11

12 CHAPTER 3. GAME CONCEPT

clues, will be used. While synonymic and antonymic clues are sometimes used in dictio-
naries, they would fit better in their respective statements as provided by Wikidata.

The problematic aspect of the similarity to crosswords is the possibility of players cre-
ating “cryptic” clues. As an example, during the test phase for Como, a player entered the
following description for the lexeme “Philosophie” (English translation: “Philosophy”):
“Studiengang für Denker und Taxifahrer der Moderne.” (English translation: “Field of
study for thinkers and modern cab drivers.”). While this particular sense got solved two
and skipped six times, which indicates a noticeable level of descriptivnes of the lexeme, it
does however not fit an accurate dictionary definition. The player has in this case created
a “cryptic” clue, which references cultural norms and stereotypes.

3.2 Similarity to Taboo and Catch Phrase

Both Taboo and Catch Phrase are two very similar multiplayer party games. They rely
on team structures to create competition, use time restraints and are owned by the toy
manufacturer Hasbro.

In Taboo a player from one team draws a card containing a word, which the other
players on his or her team have to guess, and additionally some taboo words that the player
cannot say.

An example would be a card with the word “apple” and the taboo words “tree, fruit,
Adam, Jobs”. The goal is to help the other players on your team to guess the word on
your card correctly, while not using it yourself, the taboo words, or any derivation of them.
Gestures and other means of communications are allowed. A acceptable solution would
be to say: “A often red, round, healthy edible”. The words must be guessed under time
pressure and after the timer has run out the teams switch.

Catch Phrase has the same premise, but instead of a card with the word in question on
it, the game uses a small handheld digital display, which can be thrown and catched. This
device doubles as a timer. It also contains only one word at a time, so Catch Phrase has no
taboo words.

Como could contain the same internal team structures with a person that describes a
word and multiple others that try to guess it, represented as distinct modes. While most
of the other mechanisms of those games would be interesting to implement, like giving
players a time limit, or banning the use of certain words, it would be difficult to balance
them with the purpose of creating senses in the first versions of Como.

3.3 Game Modes

There are two game modes, with tasks that emulate the team structures of the aforemen-
tioned party games (see Figure 3.1)

• Creation mode: In the creation mode players are able to create senses for words that
are provided by the game. These senses should be descriptive as they pop up in other
players guessing modes later, and the sense creator is only awarded points if other
players guess correctly.

• Guessing mode: In the guessing mode players are asked to find the correct word,
while only having the description of it. When they guess correct often enough, they
get to create their own senses, in the aforementioned creation mode.

3.4. POINT REWARD STRUCTURE 13

3.3.1 Creation Mode

Players of Como can create new senses for lexemes, by entering them into a text field. The
game suggests a new sense by randomly choosing a downloaded lexeme from its database.

If a lexeme is hard to define or not comprehensible to the player, it is possible to skip to
the next lexeme.

After the new sense for the lexeme is entered, the game uploads it in the background.
This behaviour was implemented to make sure, that all user-created senses arrive in the
server as fast as possible, to prioritize Como user-created senses over Wikidata generated
ones.

This mode can only be used by spending a sense point, which is earned in the guessing
mode.

3.3.2 Guessing Mode

The guessing mode is the most used screen of the app. It presents players a random sense,
in their chosen language. The senses are downloaded beforehand from the server, and the
users have no way of knowing if a given sense is coming directly from Wikidata, or from
other users of the app. The given task for users is now to find the matching lexeme.

If a shown sense is unappealing to a player, or they can’t guess the correct lexeme they
have the option to skip to the next sense. When that happens, they are shown the correct
answer for the last one on screen. This action is recoded for evaluation.

When a player guesses wrong for the first time, they unlock a hint screen with addi-
tional information. This information consists of the lexeme type (noun, verb, adjective or
something else) and a hint for a letter. The first hint is always the first letter, as it helps
players the most. With the unlocking of the hint box, it also displays all the other missing
letters with an empty field, so players can now also see the length of the wanted lexeme.
This is similar to clues in crosswords.

Every additional wrong guess leads to a another random unlocked letter, until half the
letters of the wanted lexeme are displayed. The number of possible guesses is unlimited,
but is recorded and transmitted as part of the player performance. Every entered guess is
also recorded.

The game progresses to the next sense, if the correct answer is given. Guessing correctly
also increases the sense point counter, which is indicated to the user. After four correct
guesses the player receives a sense point. It can be used to create senses in the creation
mode later. This design was chosen to make sure players only create senses, after having
seen a few examples. It is also intended to make the more intellectually difficult process of
creating a sense in the game a goal that can be unlocked, rather than just another task given
to the player.

3.4 Point Reward Structure

There are two types of unlockable points in the game. The first one are sense points, which
were already discussed earlier. The second type are the more important points, which are
simply called points in the UI.

When players guess correctly with the sense of another user, instead of one from Wiki-
data, the creator of the sense is awarded a point in the server. These points are shown
directly and prominently on the home screen of the app. They are intended as being not
easy to attain, as they require playing the guessing mode often enough to attain a sense
point and then creating a sense that helps another player guess the correct lexeme. If a
sense helps multiple people to guess the right lexeme, the creating player earn multiple
points.

14 CHAPTER 3. GAME CONCEPT

As another incentive, the app includes an information display, that shoes how often
users already played the guessing game, and how many times they solved the puzzle.

3.4. POINT REWARD STRUCTURE 15

Figure 3.1: Function of the two interactive modes in Como

16 CHAPTER 3. GAME CONCEPT

CHAPTER 4

Implementation

The GWAP is implemented as an Android application written in Java. It connects via a
standard HTTP-JSON API to a web-service. The server is written in Python 3 and manages
a Postgres Database which stores lexeme and user data. The server queries Wikidata via
the Wikidata SPARQL endpoint.

An overview over the different technologies, that were used for this project, is given in
Figure 4.1 and will be explored further in the following chapter, as well as the implemen-
tation of the UI.

4.1 Server

The server’s main purpose is the creation and distribution of playable elements to clients.
To this end it contains code to download lexemes (with and without pre-existing senses)
from Wikidata.

These are then prepared to be delivered to clients, to be played in the app. The re-
sulting user performance data is then synced back to the server, to be processed into new
playable elements or to enhance data on existing games in the database. In the future high
performing user-created senses will be uploaded to Wikidata.

4.1.1 Interaction with Wikidata

To download information form Wikidata, the SPARQLWrapper Python library [2] is used.
This provides a simple abstraction for creating queries and helps with the parsing of re-
turned information.

4.1.1.1 SPARQL

One of the main ways offered by Wikidata to interact with its data pool is a SPARQL end-
point at https://query.wikidata.org. This mechanism will be used to generate the
initial data sets for the server (see Figure 4.4).

SPARQL is short for “SPARQL Protocol and RDF Query Language”[5] and references a
standard by the World Wide Web Consortium [13], used to retrieve and manipulate RDF-
formatted data from databases.

17

https://query.wikidata.org

18 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Usage of different technologies in Como’s architecture

4.1. SERVER 19

Figure 4.2: A SPARQL Query to download all lexemes and senses in the English language

Figure 4.3: A SPARQL Query to download all lexemes with no senses in the English lan-
guage

The structure of the two queries in the server implementation to download lexemes
with and without senses is shown in Figures 4.2 and 4.3. They each return a set of over
58,000 (Lexemes without senses) an over 16,100 (Lexemes with senses) for the English lan-
guage, 74,100 results total.

These results seem to be at odds with the previous results from Figure 1.2, where the
English language contains around 70,000 lexemes on Wikidata, but only around 11,000
have at least one sense. The explanation for this mismatch is that query 4.2 counts every
sense of a lexeme as a new result, which leads to an overshoot of around 4,000 results.

4.1.1.2 Content Generation

As described before the server has been equipped with functions to initially download two
types of result tables from Wikidata.

First it downloads lexemes (in both supported languages, English and German), that
don’t possess any senses in Wikidata. They are saved in a database table called “sense
creations” (Table A in Figure 4.4), as they will be used to create new senses. These will be
suggested in the creator mode of the game, to animate players to enter an initial sense for
them.

Additionally it can collect lexemes that are connected with senses and save them to the
database as “games” (Table B in Figure 4.4). These are the originally provided playable
lexemes, that users can interact with in the app. This creates a pool of games that the app
can later pull from, while ensuring the existence of a sufficient number of games, even for
very demanding app users.

The server does not need to, at this time, authenticate with Wikidata, as it only queries
and stores data.

4.1.1.3 Result Upload

Game performance data is processed by the server, to track how many players can find
the correct lexeme to a given sense. These results are the sorted and a cut-of-point can be
determined, where certain senses are disregarded due to poor performance. The rest will

20 CHAPTER 4. IMPLEMENTATION

be played, until there is a sufficient sample of players, that have tried the sense in the game.
When a sense is judged as descriptive enough, it is selected for upload to Wikidata.

As one goal of this project is contributing senses back to Wikidata, it would be appro-
priate to use Pywikibot [6]. It is a Python script, that can be used to interact with most of
MediaWikis APIs. In this case it would handle the authentication with Wikidata and the
upload of new lexemes. However this is not possible as of September 2020, because of the
missing implementation of lexeme entities in Pywikibot. [11]

4.1.2 Database

All persistent information is stored in a Postgres database, that is exposed to the server by
a dedicated user account. The database is deployed as a docker container and located on
the same infrastructure as the server software. It consists of six tables:

1. users: A simple table to keep track of users and their points.

2. games: Contains all available riddles, both Wikidata and user-generated ones.

3. games to users: Keeps track of which games are sent to which user and records re-
sults.

4. inputs: Helper table for games to users. Records the different inputs for each game.

5. sense creations: List of all lexemes on Wikidata without senses.

6. sense creations to users: Keeps track of which sense-creations are sent to which
users and records results.

A simplified view of the database can be seen in Figure 4.4, where 2, 3 and 4 are repre-
sented in Table A and points 5 and 6 are represented in Table B.

The actual database itself doesn’t require very much space as all data consists of plain
text. During testing it always stayed well below 100 MB in size.

The server connects to the database with a Python library called psycopg [1], that helps
with preventing SQL injection attacks by sanitizing user inputs. As all inputs are directly
sent to the server and the server doesn’t require authentication it would be trivial to take
control of the database without these measures.

4.1.3 API

The direct communication between the mobile app and the server is HTTP-based. It is
implemented as an OpenAPI v3 interface in Python with uWSGI as the providing app
service. The API specification itself is simple and handles only two request, see Figure 4.4.

The “GET /data/” request requires three parameters. The UUID, a “Universally Unique
Identifier” (128 bit long random string) generated locally by the app and the requested
lemma and sense languages. The UUID is relevant to prevent sending of duplicate game
data, while the language settings are so far only used to set the language for both the dis-
played lexemes and their senses, not independently. This call returns a JSON object with
two lists. One list contains randomly selected games for the guessing mode and the other
a set of new lexemes without senses for sense creation. Additionally it sends the updated
point value to the players.

The ”POST /data/” request is used to upload player data to the server. It is also for-
matted as a JSON object with a list of all played games, their results and all newly created
senses. The results contain information about the players behaviour with each new chal-
lenge, including if the actually found the correct lexeme or skipped it, as well as all failed
guesses. The object concludes with the UUID.

4.1. SERVER 21

Figure 4.4: An Overview over the basic structure of the Como-API and the server data
management

22 CHAPTER 4. IMPLEMENTATION

The API is provided unauthenticated, as it would require a more complete implemen-
tation to integrate it into the existing app. Nevertheless the communication is HTTPS-
encrypted and it is not possible to request any player related data from the server, except
for their points. The server also does not store any personal data and submitting wrong
results for another player requires a hard-to-guess UUID. The API is vulnerable to DOS-
attacks as it is not rate-limited, but could be protected with simple measures should the
need arise.

4.1.4 Hosting

The whole application server is at the time hosted on private infrastructure. It runs as two
docker containers (application and database) on an Ubuntu OS. To continue the project
long-term it would be necessary to move it to Wikimedia infrastructure, which does require
some code adjustments. As the database and application are very lightweight hosting them
in the future should not require many financial and technical resources.

4.2 Client

The client is implemented as an Android application that connects to the server via a HTTP-
JSON API to download new content and upload user input and performance data.

The application’s source code can be found online in Como’s Gitlab repository. It is
licenced under GNU GPL v3.

4.2.1 Platform

The Android platform was chosen for the client implementation, as it is under-represented
in the Wikidata tool collection. So far, most of the successful GWAPs around Wikiprojects
(e.g Section 2.1 or Section 2.2) are build as web applications with sometimes limited mobile
and no offline usability. This praxis is understandable, as most human editors of these
projects use desktop web-browsers, due to habits and lacking or less functional mobile
editing interfaces.

This is however a huge loss of potential users/players, as desktop usage shrinks and
mobile platform usage rises [30]. Furthermore the implementation of Como as a native
Android app enables offline usability. This matters not only in regions with a lack of mobile
internet access, but also allows usage of Como while commuting or flying.

The application requires a minimal Android API-Level of 16 (Android 4.1) which should
make the app compatible with over 99% of sold Android devices [4].

4.2.2 Software Architecture

The code implementation follows a Model-View-ViewModel [29] pattern. This style is the
default, when interacting with a local database in Android. In this architecture pattern the
“views”, called ”activities” in Android, only contain the visible portions of the software.
The “model”-logic is separated from the “view” with the “viewModel”. The “viewModel”
is responsible for converting and exposing all relevant data from the “model” to the “view”
and thereby drives most of the display logic as well. The “view” then only observes the
“viewModel” as can be seen in Figure 4.5

https://gitlab.com/kristbaum/como

4.2. CLIENT 23

Figure 4.5: An Overview of the relations in a MVVM-Pattern [14]

4.2.3 Interaction with Server

The client connects to the Como API with asynchronous executor threads. As there is no
implemented authentication, aside from the transmitted UUID, there are no further steps
to take to establish a communication channel.

The application can be forced to manually connect to the sever, but mostly auto-connects
when a new sense is created or there are fewer than ten lexemes left to play. It always sends
the GET /data/ and POST /data/ requests together, to reduce the frequency of requests
overall. Therefore every time a connection is made the app syncs completely, to improve
offline capabilities. In conclusion, during every sync event these data points are transmit-
ted:

• From the server (GET /data/):

– New lexemes without senses (sense creations)
– New lexemes with senses (games)
– The updated point total

• From the client (POST /data/):

– Player performance data on games
– Newly created senses
– Language and platform information

4.2.4 User Interface

Como’s UI is simplistic and features no styled animations. The color scheme consists of
three distinct colors (red, green and blue), which are toned to equal the Wikidata logo.

The whole application consists of four Android activities (Android’s implementation of
views).

The main activity and the settings activity are used to concisely explain the purpose
and functionality of the app. Additionally they offer access to the players statistics and the
other activities.

The guessing mode activity is the one most used by players and only consists of a text
entry field and two buttons, “check” and “skip”.

The creation mode activity needs to be unlocked by use of the guessing mode and only
features the same set of interactive elements, except the “check” button is now a “save”
button.

24 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Como’s main activity Figure 4.7: Como’s settings activity

4.2.4.1 Main Activity

Como’s main activity, as displayed in Figure 4.6, is the starting point for user interaction
with the application. It tries to distill the essence of the game to “Guess Words” and “Create
Sense”, to negate the need for long tutorials and explanations. If players still want to learn
more about Como, it links to the settings page with information icon.

All in all the activity contains three interactive buttons and two counters. The red “play”
button leads to the guessing mode activity, while the blue one leads to the creation mode
activity. The “I” button, as mentioned, brings up the settings.

The upper counter, labeled “Points”, displays the times that a senses created by the
player helped another player to guess correctly. The lower counter in white on the blue
button shows how many senses a player is allowed to create. A sensepoint is added every
fourth time a player guesses the right lexeme in the guessing mode. The blue creation mode
button is only clickable, if the number of creatable senses is greater than zero.

4.2.4.2 Settings Activity

The settings activity is a combination of a short description of the game, a personal statistics
page and a language setting, as displayed in Figure 4.7.

The page displays short explanation of the name, then continues to provide a quick
tutorial. Below that, players can see a summary of their points and their performance in
the guessing mode.

The game allows to change the language of the used lexemes and senses, which does
not change the UI language of the app. This process triggers a sync request with the server.

4.2. CLIENT 25

Figure 4.8: Como’s guessing mode activity Figure 4.9: App feedback on skipping

For debugging purposes the menu allows to force synchronisation should any errors
have occurred during communication or on the server side.

4.2.4.3 Guessing Mode Activity

Most of the player’s time is spent in the guessing mode activity. Its main purpose is to
direct the players through the game and to provide feedback and hints on the way.

The UI, as presented in Figure 4.8, consists of three interactive and two informative
elements. The informative displays are:

• Sense point progress bar: A red bar at the top indicating the progress of the player
towards a new sense point (which allows the creation of new senses). A sense point
is awarded, when the players guess the right lexeme four-times.

• Sense display: Presents the sense for the current lexeme.

Below these, there are the three interactive elements:

• Input textbox: A simple textbox, with the Android keyboard spellchecker enabled.
Players should enter their guesses here.

• “Check” button: Triggers comparison between the entered text and the actual solu-
tion.

• “Skip” button (represented by “>>”): Allows players to skip to the next entry, with
a short message that displays the right answer to the last riddle, as shown in Figure
4.9.

26 CHAPTER 4. IMPLEMENTATION

Figure 4.10: App feedback on wrong input Figure 4.11: Como’s creation mode activity

After players have entered there first guess and hit check, the UI reacts based on the
correctness of the suggested answer.

When players guess wrong, the game gives feedback in the form of a short message,
as can be observed in Figure 4.10. Additionally it creates a small hint box. The hint box
shows the word type and the length of the lexeme in question with underscores. It also
displays the first letter of the lexeme, as it is often the most helpful. With every consecutive
try, another random letter from the answer is revealed, until half of the complete answer
can be read.

4.2.4.4 Creation Mode Activity

In the creation mode (see Figure 4.11) players are tasked with finding a fitting description
for a displayed lexeme. For this reason the interface presents a random lexeme from the
selected language and offers the user a multiline textbox with the Android spellchecker
enabled.

Furthermore players can press the “skip” or “save” buttons. “Skip” brings up the next
possible lexeme, while “Save” writes the entered description to the database and tries to
sync with the server.

4.2.5 Distribution

The game was made freely available on the Google Playstore during the evaluation phase.
After the client source code was additionally published on Gitlab.com the game was sub-
mitted as a request for packaging to the FOSS repository F-Droid, but wasn’t released to
F-Droid users during the evaluation period.

4.2. CLIENT 27

As a replacement for those users, the app was distributed as an .apk (Android app pack-
ages) file. As the game registered 30 users during the period, and the playstore registered
12 installations, more than half the users were using the distributed apk version.

28 CHAPTER 4. IMPLEMENTATION

CHAPTER 5

Evaluation

The main reason for Comos existence is to determine if it could be possible to encourage
mobile users to contribute to open knowledge projects. Como testers could use the app
for a 30 day period, between 23.09.2020 to 23.10.2020, during which all useful interactions
were recorded by the server. These contributions can be measured in type, quantity and
quality and will be evaluated in the following.

The raw data tabulation from the test period can be found online in the Como Gitlab
repository.

5.1 Data Collection Format

All data was collected through the Android application and saved in the server SQL database.
Users are identified through UUIDs that are generated in the Android app. All data in the
database was fed into a Grafana [15] instance to visualize the information. This was es-
pecially helpful during early development as a way to verify data integrity during the
addition of new SQL statements.

5.2 Test Group Selection

The actual composition of the test group cannot be determined, as the application was
freely available to download during the evaluation period. Of all 30 testers, most were
probably acquired by a post on the Wikidata Weekly Newsletter [26] as well as through
personal contact. Most of the people targeted through the Wikidata newsletter are highly
likely to share an interest in open knowledge projects from the start, while most of the
personal contacts were people without such a background.

As the number of testers is too little to draw any conclusions from other attributes of the
group like age, occupation, gender or location, the single measurable user metric available
was language.

29

https://gitlab.com/kristbaum/como/-/tree/master/collected-data
https://gitlab.com/kristbaum/como/-/tree/master/collected-data

30 CHAPTER 5. EVALUATION

5.2.1 User Language

As the language settings in Como can be changed on the fly, the server can’t really assign
a permanent language value to a user. For the purpose of a rough overview over language
separation it does however save the language flag from the last request in the user table.
When looking at the chart in Figure 5.1, there is often a visible constant slim majority of
German users.

Figure 5.1: Users grouped by language over time

5.2.2 User Activity

In the 30 day test period the server recorded a total of 2596 interactions (not including
downloads only result uploads). These interactions are concentrated at the beginning
(see Figure 5.2), with a noticeable spike after the announcement on the Wikidata weekly
newsletter (28.09.2020) [26].

Figure 5.2: Recorded interactions per day

These interactions can be categorized in the following way:
Guessing mode Creation mode Both

Sum 1559 1037 2596
Daily average ∼52 ∼35 ∼87

5.3. RESULTS 31

5.3 Results

The server initially downloaded over 18,000 lexemes (23% German, the rest English) with
senses for the guessing mode and over 34,000 lexemes (10% German, the rest English)
without senses for the creation mode from Wikidata. The discrepancy between lexemes
with and without senses accurately reflects the lack of senses on Wikidata, as the SPARQL
queries were written to collect all existing lexemes for German and English (see Figure 1.2
for an overview).

After a few initial players uploaded their own senses, they were prioritized as games
so most of the guessing mode feedback would be on them. This was done to increase the
amount of quality evaluations for the possibly soon to-be-uploaded senses to Wikidata. If
user-created senses were not prioritized in the guessing mode they would have had a very
low chance of actually getting played by users, as the amount of Wikidata-generated games
is significantly larger.

5.3.1 Creation Mode

As the access to the creation mode was limited by the performance in the guessing mode
to only allow more experienced players to create senses, there were only relatively few
recorded interactions.

While users actively saw 1037 lexemes in the creation mode, they decided to only create
senses for 59 (6%), see Figure 5.3.

Figure 5.3: The comparison between created senses and skipped entries in the creation
mode

5.3.2 Guessing Mode

As visible in Figure 5.4, during the test period there is a disparity in requested and com-
pleted games in the guessing mode.

32 CHAPTER 5. EVALUATION

This behaviour is a result of the apps design, whereby it tries to download a num-
ber of games for offline use every time a synchronisation happens. As this happens quite
frequently, for example, when players upload a new sense from the creation mode, the
number of requested games vs completed games naturally diverges.

Figure 5.4: Downloads and upload of games to the server

As mentioned in Figure 4.4 there are two types of games for the guessing mode in the
database:

• Games generated from lexemes with senses from Wikidata

• Games created with lexemes from Wikidata and senses from the users of Como

In total the app delivered 4365 games to players, of which only 14% were created by the
apps users directly, see Figure 5.5.

But of those delivered games, the players only interacted/completed 1676 (38%). The
breakdown of those interactions can be found in Figure 5.6.

5.3.2.1 Wikidata Senses

The performance of senses from Wikidata in the guessing mode can be measured in the
amount of solved vs skipped games. As observable in Figure 5.7 most (69%) of the Wikidata
senses were skipped.

This is most likely due to some Wikidata senses being very general. In the available list
of played senses there are six occurrences alone of descriptions being some variation on:
“Heraldic symbol” which were exclusively skipped and never solved by players.

5.3.2.2 User-created Senses

User-created senses are quite more important to analyse, as their creation and evaluation is
the main purpose of Como as a project.

These senses have a remarkable difference in their relationship between skipped and
solved games. As shown in Figure 5.8 around 54% of those senses were enough deduce the
right lexeme.

This demonstrates a measurable increase in the solvability rate and indicates a higher
overall descriptiveness of the user-created senses.

5.3. RESULTS 33

Figure 5.5: Downloaded games during test phase

While already being on average easier to solve, to ensure the quality of the senses up-
loaded to Wikidata, some restrictions should to be applied on the user-created senses. This
process was not implemented in the application, because of the missing features mentioned
in section 4.1.1.3. The following upload restrictions suggestion is only presented and eval-
uated as a possible implementation design for the future.

There are many available selection factors to choose from, but a check on the number of
times a sense was played in the guessing mode is a straightforward and simple indication
of reliability. An adequate cut-off point for the minimum number of interactions would be
the average of all interactions, which is 6.25.

So using this example value the server would only upload user-created senses if they
have been played at least six times. As visible in the frequency distribution in Figure 5.9,
this reduces the number of possible uploads by a third.

Another reasonable assumptions would be that user-created senses need to have at least
more players that solved them than skipped them. When applying this selector only 25
senses to upload remain. But the solved-skipped distribution changes even more in the
favour of solved games, as visible in Figure 5.10.

5.3.3 Comparison

These findings are encouraging for the methods Como uses, as they suggest a higher qual-
ity of the new descriptions coming from Como compared to the already existing ones in
Wikidata. This effect also happens before the selection of higher quality senses from the
user-created pool. There already is a 23% difference in the solved-rate between Figures 5.7
and 5.8.

Even more impressive is the fact, that this difference is visible before the game removes
hardly or unsolvable senses from the suggested Wikidata uploads. When applying some
simple restrictions on the upload, the difference expands by additional 12%.

34 CHAPTER 5. EVALUATION

Figure 5.6: Completed games during test phase

Figure 5.7: Player feedback on Wikidata-generated games

5.3. RESULTS 35

Figure 5.8: Player feedback on user-created games

Figure 5.9: Frequency of interactions with user-created senses

36 CHAPTER 5. EVALUATION

Figure 5.10: Performance of user-created games with restrictions

CHAPTER 6

Conclusion and Future Work

The amount of testers and the duration of the test period are not sufficient to draw any
definitive conclusions.

Additionally there are many caveats to using the solved-skipped rate as an indication
of descriptiveness of a sense. For example users could, when confronted with a descriptive
and accurate sense just decide to skip the lexeme because it came form a unfamiliar subject
field. But since the game, in an effort to be simplistic, only offers these two choices, they
were used to evaluate the performance of the senses. Aside from these caveats, this ap-
proach of comparing sense performance detects clear differences between senses from the
app and Wikidata. Following this, there is evidence that Como and its underlying methods
could be helpful in creating and collecting structured lexicographical data through collab-
orative gameplay.

The amount of created senses per interaction is small in comparison to other similar
tools (see section 2.1). This can be expected, due to Como demanding a great amount of
creative work from its users, while most of the other tools only let players choose between
pre-generated options. Which is also the reason why Como can be used more flexibly, as it
doesn’t have any codependent data sources it needs to provide suggestions to players.

6.1 Futureproofing Como

One major concern with the application is its hosting location, as it was primarily hosted
privately during the test phase. The server part of Como should be moved into a proper
hosting environment, preferable even the Toolforge infrastructure used by other Wikimedia
related tools and games [9].

This move would require the use of a different database binding, as Toolforge only
supports MySQL. Aside from that the project is technologically compatible with the hosting
environment and should be moved there.

Apart from this change the server should include a way to upload created senses to
Wikidata as soon as Pywikibot has included this feature. [11]

Como already measures the performance of lexemes with senses on Wikidata without
acting on that data. It could be possible to replace badly performing Wikidata lexeme
senses with better Como created ones, if such a feature was implemented.

37

38 CHAPTER 6. CONCLUSION AND FUTURE WORK

One of the outstanding features of Como is the ability to play instantly, without the
hassle of account creation or logins. To offer this API without authentication could be a
great asset for the popularity of the game, but should include other measures to prevent
spam or malicious edits. Possibly this could be archived through manual human approval
of Comos sense uploads by one or multiple registered Wikidata editors. This approval
process could also be implemented as a GWAP on the “The Distributed Game” platform.

Additionally the design and offline functionality of the client app could be improved
and the application could be made available to other platforms, like iOS or even Ubuntu
Touch.

6.2 Additional Data Harvesting

Due to time constraints it wasn’t possible to expand Comos functionality to more than
senses. The game could be adapted further to fully use the complete Wikidata lexeme
model (as seen in Figure 1.1), by allowing users to enter more data on certain lexemes, like
synonyms, antonyms, word types, translations etc.

Especially the last point could aid a new set of users, namely people interested in learn-
ing other languages. There are many possible implementations of this, including additional
modes or fields. Those should, however, be integrated with care, to keep the simplistic in-
terface and gameplay intact.

Many players, while personally giving feedback on the app remarked that they wished
to correct their own or other players spelling or grammar, which could be an interesting
feature.

In addition to this, Wikidata also offers support for more exotic data types like IPA sym-
bols or pronunciation audio, which could be used to enhance the variation of the gameplay.

Particularly interesting would be to allow users to create, describe and categorize their
own lexemes. As languages are a creative and dynamic target, the application could offer a
way to see the changing nature of new words as they are created and tested by the players
of Como.

Bibliography

[1] Psycopg, a PostgreSQL driver for Python Website, https://www.psycopg.org, Dec
2020, [Online; accessed 13. Dec. 2020].

[2] SPARQL Endpoint interface to Python, https://rdflib.dev/sparqlwrapper, May
2020, [Online; accessed 22. Sep. 2020].

[3] Wikidata - The Distributed Game, https://wikidata-game.toolforge.org/
distributed/#mode=stats, Jun 2020, [Online; accessed 3. Dec. 2020].

[4] Android Authority, Android version distribution: Are Google’s faster roll-
out initiatives working?, https://www.androidauthority.com/
android-version-distribution-748439, May 2020, [Online; accessed 11.
Dec. 2020].

[5] Dave Beckett, Re: What does SPARQL stand for?, https://lists.w3.org/
Archives/Public/semantic-web/2011Oct/0041.html, Oct 2011, [Online; ac-
cessed 22. Sep. 2020].

[6] MediaWiki Contributors, Pywikibot manual, https://www.mediawiki.org/wiki/
Manual:Pywikibot/Overview, Sep 2020, [Online; accessed 22. Sep. 2020].

[7] , Wikibase Lexeme Data Model, https://www.mediawiki.org/wiki/
Extension:WikibaseLexeme/Data_Model, Aug 2020, [Online; accessed 14. Aug.
2020].

[8] Wikidata Contributors, Wikidata:Introduction, https://www.wikidata.org/
wiki/Wikidata:Introduction, Aug 2020, [Online; accessed 21. Aug. 2020].

[9] Wikitech Contributors, About toolforge, https://wikitech.wikimedia.org/w/
index.php?title=Portal:Toolforge/About_Toolforge&oldid=1872592,
2020, [Online; accessed 15-December-2020].

[10] Wiktionary Contributors, Wiktionary Main Page, https://en.wiktionary.org/
wiki/Wiktionary:Main_Page, Aug 2020, [Online; accessed 21. Aug. 2020].

[11] Wikimedia Foundation, T189321 Support for Lexicographical data/WikibaseLexeme in Py-
wikibot, https://phabricator.wikimedia.org/T189321, Sep 2020, [Online;
accessed 22. Sep. 2020].

[12] , Wikilegal:Lexicographical Data, https://meta.wikimedia.org/wiki/
Wikilegal/Lexicographical_Data, Aug 2020, [Online; accessed 21. Aug. 2020].

39

https://www.psycopg.org
https://rdflib.dev/sparqlwrapper
https://wikidata-game.toolforge.org/distributed/#mode=stats
https://wikidata-game.toolforge.org/distributed/#mode=stats
https://www.androidauthority.com/android-version-distribution-748439
https://www.androidauthority.com/android-version-distribution-748439
https://lists.w3.org/Archives/Public/semantic-web/2011Oct/0041.html
https://lists.w3.org/Archives/Public/semantic-web/2011Oct/0041.html
https://www.mediawiki.org/wiki/Manual:Pywikibot/Overview
https://www.mediawiki.org/wiki/Manual:Pywikibot/Overview
https://www.mediawiki.org/wiki/Extension:WikibaseLexeme/Data_Model
https://www.mediawiki.org/wiki/Extension:WikibaseLexeme/Data_Model
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://wikitech.wikimedia.org/w/index.php?title=Portal:Toolforge/About_Toolforge&oldid=1872592
https://wikitech.wikimedia.org/w/index.php?title=Portal:Toolforge/About_Toolforge&oldid=1872592
https://en.wiktionary.org/wiki/Wiktionary:Main_Page
https://en.wiktionary.org/wiki/Wiktionary:Main_Page
https://phabricator.wikimedia.org/T189321
https://meta.wikimedia.org/wiki/Wikilegal/Lexicographical_Data
https://meta.wikimedia.org/wiki/Wikilegal/Lexicographical_Data

40 BIBLIOGRAPHY

[13] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux, Sparql 1.1 query language, Rec-
ommendation, W3C, Mar 2013, https://www.w3.org/TR/sparql11-query/.

[14] JournalDev, Android MVVM Design Pattern, https://www.journaldev.com/
20292/android-mvvm-design-pattern, Mar 2019, [Online; accessed 10. Dec.
2020].

[15] Grafana Labs, Grafana Product Website, https://grafana.com, Dec 2020, [Online;
accessed 13. Dec. 2020].

[16] Lea Lacroix, Lexeme data model - Wikimedia Commons, https://commons.
wikimedia.org/wiki/File:Lexeme_data_model.svg, Aug 2020, [Online; ac-
cessed 21. Aug. 2020, License CC BY-SA 4.0].

[17] Lydia Pintscher, First steps of Wikidata in the Hungar-
ian Wikipedia, https://blog.wikimedia.de/2013/01/14/
first-steps-of-wikidata-in-the-hungarian-wikipedia, Jan 2013,
[Online; accessed 20. Dec. 2020].

[18] Magnus Manske, The Distributed Game, https://wikidata-game.toolforge.
org/distributed/, Jun 2020, [Online; accessed 6. Nov. 2020].

[19] , Wikidata-game’s source code repository on Bitbucket.org, https://bitbucket.
org/magnusmanske/wikidata-game/src/master, Dec 2020, [Online; accessed
3. Dec. 2020].

[20] Maximilian Kristen, SPARQL Query to determine the amount of lexemes and missing senses
in the top ten languages, https://w.wiki/r74, Dec 2020.

[21] Michael Schönitzer, MachtSinn Statistics, https://machtsinn.toolforge.org/
statistics, Dec 2020, [Online; accessed 4. Dec. 2020].

[22] , MachtSinn Website, https://machtsinn.toolforge.org, Dec 2020, [On-
line; accessed 4. Dec. 2020].

[23] Finn Nielsen, Lexemes in Wikidata: 2020 status, Proceedings of the 7th Workshop on
Linked Data in Linguistics (LDL-2020) (Marseille, France), European Language Re-
sources Association, May 2020, pp. 82–86 (English).

[24] Thomas Pellissier Tanon, Denny Vrandečić, Sebastian Schaffert, Thomas Steiner, and
Lydia Pintscher, From freebase to wikidata: The great migration, Proceedings of the 25th
International Conference on World Wide Web (Republic and Canton of Geneva, CHE),
WWW ’16, International World Wide Web Conferences Steering Committee, 2016,
p. 1419–1428.

[25] Lydia Pintscher, Presentation Wikimania 2017: Bringing Lexicographical Data to
Wikidata - Supporting Wiktionary and Beyond, https://wikimania2017.
wikimedia.org/w/index.php?title=File:Wikimania_2017_-_
Bringing_Lexicographical_Data_to_Wikidata_-_Supporting_
Wiktionary_and_Beyond.pdf, Aug 2020, [Online; accessed 20. Aug. 2020].

[26] Mohammed Sadat, Wikidata Weekly Newsletter #435, https://de.wikipedia.
org/wiki/Wikipedia:Wikidata/Newsletter/Archiv/2020#Wikidata_
weekly_summary_#435, Dec 2020, [Online; accessed 14. Dec. 2020].

[27] Corina Sandiuc and Alina Balagiu, The use of crossword puzzles as a strategy to teach
maritime english vocabulary, Scientific Bulletin” Mircea cel Batran” Naval Academy 23
(2020), no. 1, 236A–242.

https://www.w3.org/TR/sparql11-query/
https://www.journaldev.com/20292/android-mvvm-design-pattern
https://www.journaldev.com/20292/android-mvvm-design-pattern
https://grafana.com
https://commons.wikimedia.org/wiki/File:Lexeme_data_model.svg
https://commons.wikimedia.org/wiki/File:Lexeme_data_model.svg
https://blog.wikimedia.de/2013/01/14/first-steps-of-wikidata-in-the-hungarian-wikipedia
https://blog.wikimedia.de/2013/01/14/first-steps-of-wikidata-in-the-hungarian-wikipedia
https://wikidata-game.toolforge.org/distributed/
https://wikidata-game.toolforge.org/distributed/
https://bitbucket.org/magnusmanske/wikidata-game/src/master
https://bitbucket.org/magnusmanske/wikidata-game/src/master
https://w.wiki/r74
https://machtsinn.toolforge.org/statistics
https://machtsinn.toolforge.org/statistics
https://machtsinn.toolforge.org
https://wikimania2017.wikimedia.org/w/index.php?title=File:Wikimania_2017_-_Bringing_Lexicographical_Data_to_Wikidata_-_Supporting_Wiktionary_and_Beyond.pdf
https://wikimania2017.wikimedia.org/w/index.php?title=File:Wikimania_2017_-_Bringing_Lexicographical_Data_to_Wikidata_-_Supporting_Wiktionary_and_Beyond.pdf
https://wikimania2017.wikimedia.org/w/index.php?title=File:Wikimania_2017_-_Bringing_Lexicographical_Data_to_Wikidata_-_Supporting_Wiktionary_and_Beyond.pdf
https://wikimania2017.wikimedia.org/w/index.php?title=File:Wikimania_2017_-_Bringing_Lexicographical_Data_to_Wikidata_-_Supporting_Wiktionary_and_Beyond.pdf
https://de.wikipedia.org/wiki/Wikipedia:Wikidata/Newsletter/Archiv/2020#Wikidata_weekly_summary_#435
https://de.wikipedia.org/wiki/Wikipedia:Wikidata/Newsletter/Archiv/2020#Wikidata_weekly_summary_#435
https://de.wikipedia.org/wiki/Wikipedia:Wikidata/Newsletter/Archiv/2020#Wikidata_weekly_summary_#435

BIBLIOGRAPHY 41

[28] Scholia, Scholia information on Wikidata, https://scholia.toolforge.org/
topic/Q2013, Dec 2020, [Online; accessed 14. Dec. 2020].

[29] Josh Smith, Patterns - WPF Apps With The Model-View-
ViewModel Design Pattern, https://docs.microsoft.
com/en-us/archive/msdn-magazine/2009/february/
patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern,
Feb 2009.

[30] StatCounter Global Stats, Mobile and tablet internet usage exceeds desk-
top for first time worldwide, https://gs.statcounter.com/press/
mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide,
Nov 2016, [Online; accessed 11. Dec. 2020].

[31] Luis von Ahn, Games with a purpose, IEEE Computer Magazine (2006), 96–98.

[32] Wikidata, Lexeme:L9670 Wikidata, https://www.wikidata.org/w/index.php?
title=Lexeme:L9670&oldid=1054119918, 2019, [Online; accessed 1-October-
2020].

[33] Wikimedia Contributors, Wiktionary statistics, https://meta.wikimedia.org/
wiki/Wiktionary, May 2020.

[34] Wikimedia Foundation Inc., Wikidata Usage and Coverage in WMF Projects, https://
wdcm.wmflabs.org/WD_percentUsageDashboard, Dec 2020, [Online; accessed
20. Dec. 2020].

[35] Wikipedia Contributors, Lexeme, https://en.wikipedia.org/w/index.php?
title=Lexeme&oldid=946515735, 2020, [Online; accessed 1-October-2020].

[36] , List of wikimedia foundation projects, https://en.wikipedia.org/wiki/
Wikimedia_Foundation#Wikimedia_projects, Oct 2020, [Online; accessed 20-
December-2020].

https://scholia.toolforge.org/topic/Q2013
https://scholia.toolforge.org/topic/Q2013
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
https://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
https://www.wikidata.org/w/index.php?title=Lexeme:L9670&oldid=1054119918
https://www.wikidata.org/w/index.php?title=Lexeme:L9670&oldid=1054119918
https://meta.wikimedia.org/wiki/Wiktionary
https://meta.wikimedia.org/wiki/Wiktionary
https://wdcm.wmflabs.org/WD_percentUsageDashboard
https://wdcm.wmflabs.org/WD_percentUsageDashboard
https://en.wikipedia.org/w/index.php?title=Lexeme&oldid=946515735
https://en.wikipedia.org/w/index.php?title=Lexeme&oldid=946515735
https://en.wikipedia.org/wiki/Wikimedia_Foundation#Wikimedia_projects
https://en.wikipedia.org/wiki/Wikimedia_Foundation#Wikimedia_projects

	Introduction
	Wikidata as a Hub of Structured Knowledge
	Lexemes and Senses
	Improving Wiktionary with Structured Data
	Data Model for Lexemes
	Status of Lexemes in Wikidata
	Games with a Purpose

	Related Work
	The Distributed Game
	Macht Sinn

	Game Concept
	Similarity to Crosswords
	Similarity to Taboo and Catch Phrase
	Game Modes
	Creation Mode
	Guessing Mode

	Point Reward Structure

	Implementation
	Server
	Interaction with Wikidata
	SPARQL
	Content Generation
	Result Upload

	Database
	API
	Hosting

	Client
	Platform
	Software Architecture
	Interaction with Server
	User Interface
	Main Activity
	Settings Activity
	Guessing Mode Activity
	Creation Mode Activity

	Distribution

	Evaluation
	Data Collection Format
	Test Group Selection
	User Language
	User Activity

	Results
	Creation Mode
	Guessing Mode
	Wikidata Senses
	User-created Senses

	Comparison

	Conclusion and Future Work
	Futureproofing Como
	Additional Data Harvesting

	Bibliography

