
Conception, Implementation and
Evaluation of Proof Editors for

Learning

Korbinian Staudacher

Bachelorarbeit

Beginn der Arbeit: 20.07.2018
Abgabe der Arbeit: 18.09.2018
Aufgabensteller: Prof. Dr. François Bry
Betreuer: Prof. Dr. François Bry

Sebastian Mader





Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig verfasst ha-
be. Ich habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet.

München, den 18.09.2018 Korbinian Staudacher





Abstract

At the beginning of computer science studies, students often have problems
understanding the abstract way of reasoning of formal methods. To make
it easier for students to learn formal methods, editors for the logical proof
methods Resolution and Natural Deduction have been developed. Both
editors allow users to develop step by step a proof tree for logical reasoning,
where partial aspects of the proof, such as the application of formal rules,
are already executed by the program. The editors are designed to help
students understand the methods of Resolution and Natural Deduction as
well as more generally the forms of reasoning of formal methods. In order
to make the learning process as easy as possible, the editors have been
designed following the material provided in the lecture ’Logic and Discrete
Mathematics’ which introduces students to logical proofs at the beginning
of their studies. In addition, users in the editors receive support through
the didactic methods scaffolding and feedback. The editors are presented
and the usefulness of these are evaluated based on students’ performance.
Finally, an outlook on possible enhancements and improvements is given.

Zusammenfassung

Zu Beginn eines Informatikstudiums haben Studenten oftmals Probleme die
abstrakte Denkweise formaler Methoden zu verstehen. Um Studenten das
Erlernen formaler Methoden zu vereinfachen wurden Editoren für die lo-
gischen Beweistechniken Resolution und Natürliches Schließen entwickelt.
Beide Editoren ermöglichen es Benutzern Schritt für Schritt einen Beweis-
baum für logische Schlüsse zu entwickeln, wobei Teilaspekte des Beweises,
wie zum Beispiel die Anwendung formaler Regeln, bereits durch das Pro-
gramm ausgeführt werden. Studenten soll dadurch sowohl das Verständ-
nis der Beweismethoden Resolution und Natürliches Schließen erleichtert
werden, als auch das allgemeine Verständnis formaler Methoden. Um den
Lernprozess so einfach wie möglich zu gestalten, wurden die Editoren in
Anlehnung an das in der Vorlesung “Logik und diskrete Strukturen” be-
reitgestellte Material konzipiert, da diese Vorlesung Studenten zu Beginn
ihres Studiums in logische Beweise einführt. Zusätzlich erhalten Benutzer
in den Editoren Unterstützung durch die Lehrmethoden Scaffolding und
Feedback. Die Editoren werden präsentiert und die Nützlichkeit dieser wird
anhand studentischer Leistungen evaluiert. Abschließend wird ein Ausblick
auf mögliche Erweiterungen und Verbesserungen gegeben.





Acknowledgement

The author would like to thank Sebastian Mader for supervising this the-
sis, his continuous help and for embedding the editors into Backstage. He
would also like to thank Professor François Bry for his useful suggestions
and motivating discussions.



Contents

1 Introduction 5

2 Related Work 7
2.1 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Proof Editors 13
3.1 Resolution Editor . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Resolution Principle . . . . . . . . . . . . . . . . . . . 13
3.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Natural Deduction Editor . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Natural Deduction Principle . . . . . . . . . . . . . . . 20
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 22

4 Pedagogical support 27
4.1 Scaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Evaluation 31
5.1 Integration in Backstage . . . . . . . . . . . . . . . . . . . . . 31
5.2 Design of the exercises . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion and Future Work 39
6.1 Improvement of the Editor’s Functionalities . . . . . . . . . . 40
6.2 Scaffolding Approaches . . . . . . . . . . . . . . . . . . . . . . 40

2



6.3 Improvement of the Integration in Backstage . . . . . . . . . 41
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



4



Chapter 1

Introduction

At the beginning of a computer science degree course, students often face
major challenges adapting themselves to education at university level. While
computer science and mathematics are mostly task-based in school educa-
tion, the focus in university education lies often on how to solve general
and abstract subjects, such as in computer science formal methods. For-
mal methods are “mathematically based languages, techniques, and tools
for specifying and verifying [. . . ] systems” [CW96, p. 626]. They are ap-
plied for example in the field of specifications when describing a system and
its properties, such as a programming language, and in the field of software
verification where the correctness of a program can be established using
theorem provers [CW96]. As formal methods usually require that general
statements are made about all possible manifestations of a defined subject,
the ability of abstract mathematical thinking is absolutely necessary in or-
der to understand and apply formal methods. Due to the mostly task-based
education received in school, it is difficult for students in their first terms
to adapt this type of abstract thinking. In this work, proof editors for logic
have been implemented in order to assist students in understanding formal
methods and developing abstract thinking. As students have shown to have
significant problems with the proof methods Resolution and Natural De-
duction, the focus of this work lies on the conception, implementation and
evaluation of proof editors for these two methods. With focus on facilitating
the understanding of formal methods, there have been implemented two sep-
arate editors for both Resolution and Natural Deduction allowing students
to prove logical consequences in zeroth and first order logic by building up
a proof tree.
Editors for Resolution and Natural Deduction are not a completely new field
of science as several editors can already be found on the world wide web,
but none of them is designed for supporting beginners. While most editors
for Resolution so far available solve a given statement automatically, which

5



does not serve the learning purpose, most editors for Natural Deduction so
far available require much knowledge and use a linear syntax rather than a
tree syntax, which usually is easier to understand for beginners. The editors
in this work were designed with the purpose to ease learning of Resolution
and Natural Deduction as much as possible. This is accomplished by using
a simple tree syntax and by making use of the didactic methods feedback
and scaffolding. Students should be able to enhance their knowledge of for-
mal methods independently from help by tutors, professors or other persons
by solving exercises with the proof editors. Yet the aim of these editors is
not only the facilitation of learning the principles of Resolution and Natural
Deduction, but also the enhancement of understanding formal methods in
general. For evaluation purpose, the editors were implemented in the class-
room communication system “Backstage”, were the editors were used as part
of the exam preparation for the course “Logic and discrete Mathematics”.
This course usually takes place in the second term of a computer science
student and introduces the methods of Resolution and Natural Deduction
to students. The following chapters first give an overview of the didactic
methods feedback and scaffolding and the research which has already been
made in these areas, then the methods of Resolution and Natural Deduction
are formally introduced and the designed editors are presented. Different
aspects of how feedback and scaffolding that have been taken under consid-
eration are explained and finally the usefulness of the editors is evaluated
using the results of 200 students, who participated using the editors for their
exam preparation in “Backstage”.

6



Chapter 2

Related Work

As the whole design of the proof editors is built upon the didactic meth-
ods feedback and scaffolding, the research already made in these areas is
presented in this chapter.

2.1 Feedback

Feedback, especially in the context of education has been the subject of
much research regarding its effectiveness in various situations. Feedback
can be defined as “actions taken by (an) external agent(s) to provide in-
formation regarding some aspect(s) of one’s task performance” [KD96, p.
255]. Thus, feedback can be seen as a “consequence of performance” [HT07,
p. 81]. In relation to instructions, feedback can either be clearly separated
from a previous instruction or even fulfill the form of a new instruction
[Kul77]. Therefore, feedback and instruction can be considered a contin-
uum, although there must be an initial instruction for feedback to have an
effect [HT07]. If the student is completely unfamiliar with the provided
material, feedback has no effect, but otherwise it can be a powerful help
to students seeking out errors and enhance their learning behavior [HT07].
In a study analyzing more than 100 factors influencing students’ achieve-
ments, feedback was ranked among the top 10 factors improving learning
[HT07]. However, the effects of feedback have led to much discussion, since
it is difficult to measure the exact impact of feedback on student’s learning
behavior. While Kulhavy concludes that a teacher should provide feedback
“as often as possible during the course of a lesson” [Kul77, p. 229], in a later
work he argues that ‘more’ feedback does not always equal more learning
[KWT+85] and more recent studies like Kluger and DeNisi’s meta-analysis
of given feedback instructions showed that it can also have no or even neg-
ative effects on students’ performances [KD96]. Therefore, it is important

7



to specify how and when feedback should best be given and what types of
feedback can improve student performance.
In general, negative feedback has a greater impact than positive feedback
[KD96] and if “goals are specific and challenging but task complexity is
low” [HT07, p. 85f.], that is to say goals that seem difficult to achieve like
learning a programming language are best achieved by approaching the goal
with small tasks like writing snippets of code rather than a whole program.
Hattie provides a model which discriminates between four levels of feedback
[HT07, p. 90]:

• Feedback at task level concentrates on giving information about the
specific task to be solved.

• Feedback at process level focuses on how to solve all tasks similar to
the given task.

• Feedback at the level of self-regulation is aimed to improve one’s abil-
ities regarding self-monitoring, self-evaluation, and directing actions.

• Feedback at self level includes personal evaluation about the student.

Basically, feedback aimed at the task itself or how to solve a problem re-
sults being more useful than feedback aimed at the student as person. Such
feedback, for instance praise or reward, might even have a negative effect on
student performance [HT07]. The reason may be that this type of feedback
draws the attention of students away from the task itself towards self-esteem
[BW98] which is of small use solving an exercise. Feedback at task level may
be powerful when combined with either feedback at process level or at the
level of self-regulation, but mostly this type provides answers such as correct-
ness to a specific task and therefore has only effect on the current question
and not to other questions related to the same topic [HT07]. Feedback at
process level is very powerful as it enhances deep learning and understanding
of the whole topic as well as construction of relationships and transference
to other tasks [HT07].
Feedback at level of self-regulation is most likely the most powerful level. It
can be seen as “an active constructive process whereby learners set goals for
their learning and monitor, regulate, and control their cognition, motivation,
and behaviour, guided and constrained by their goals and the contextual fea-
tures of the environment.” [PZ02, p. 64]. A study of Orsmond has shown
that the capability of self-regulated learning for students in higher education
is almost equivalent to being a “high-achieving” student [OM13]. Orsmond
also concludes, that this capability is also essential to process feedback ef-
fectively in the first place [OM13]. The study revealed that high-achieving
students are able to extract essence and significance out of feedback, while

8



low-achieving students often had a rather atomistic instead of an holistic ap-
proach regarding feedback and tried to memorize the feedback rather than
understanding its objective [OM13]. This capability is also considered to be
necessary for a learner to become less reliant on tutors’ regulation and to
become a lifelong learner [NMD06].
Regarding the importance of feedback improving self-regulation Nicol and
Macfarlane-Dick developed several principles for good feedback practices
[NMD06, p. 205]. According to them feedback needs to:

1. help clarify what good performance is such as expected standards and
goals;

2. facilitate the development of self-assessment in learning;

3. deliver high quality information to students about their learning;

4. encourage dialogues with teachers and peers;

5. encourage motivation and self esteem;

6. provide opportunities to close the gap between current and desired
performance;

7. provide information to teachers that can be used to help shape teach-
ing.

They identify many ways to meet these requirements, which are the most
prominent:

• Exemplary solutions can “define a valid standard against which stu-
dents can compare their work” [NMD06, p. 207] thus are excellent for
clarifying good performance.

• Peer Dialogue such as providing feedback on each other’s work helps
to develop the skills necessary for objective judging against standards.
This can be transferred to judge own work.

• Many “easy-to-solve” tasks are better to motivate students than one
difficult task, as well as providing students with feedback comments
rather than with grades.

• Providing feedback to the teacher as well for example in form of “One-
Minute-Papers” with the intention that the teacher is able to iden-
tify current problems such as lack of understanding and to adjust the
lessons accordingly.

9



While Hattie considers both feedback at process and self-regulation level
to be important, Orsmond concludes, that the form of self-regulated learn-
ing might be the only effective way to provide feedback. A tutor-centered
feedback model can be of limited use for high-achieving students, because
they are able to produce feedback for themselves due to their capability of
self-regulation, and low-achieving students might be encouraged to further
depend on external regulation as the process of self-assessment does not
occur [OM13].

2.2 Scaffolding

Scaffolding is a learning concept based upon the theory of Zone Proximal
Development (ZPD) of Lev Vygotsky [VdPVB10]. Originally used in the
context of child education it is defined as “the distance between the actual
development [...] and the level of potential development [...] under adult
guidance or in collaboration with more capable peers.” [Vyg80, p. 86].
More recent research has transferred the theory of ZPD to general educa-
tion leading to scaffolding as a means to guide and help learners during
their studies [Gib02]. This is achieved through the temporary assistance of
another persons helping the student perform tasks, which are in his Zone of
Proximal Development, which means he cannot solve the problem alone but
with guidance, and gradually remove the support until the student is able
to perform the tasks without help [Gib02, VMKK03]. This process allows a
student to develop task competence in “[...] a pace that would far outstrip
his unassisted efforts” [WBR76, p. 90]. Although there is no exact definition
of scaffolding, according to van de Pol there are some general characteristics
which classify scaffolding [VdPVB10]. As shown in Figure 2.1 scaffolding
consists of:

1. Contingency: The teacher has to determine the current knowledge
level of the student via diagnosing strategies based upon student re-
sponses and provide support adjusted at the current level.

2. Fading: The gradual withdrawal of scaffolding as the student gathers
knowledge.

3. Transfer of Responsibility: In opposition of the gradual withdrawal of
scaffolding, responsibility is transferred to the student.

Furthermore, scaffolding strategies can be divided into means, which are
strategies corresponding to how the scaffolding is done and intentions, aimed
at what is scaffolded. Typical means are for example giving hints, modelling
(demonstrate something), or feedback, while intentions are for example frus-

10



Figure 2.1: Conceptual model of scaffolding [VdPVB10, p. 274]

tration control, aimed at the support of students affect, or cognitive struc-
turing [VdPVB10].
While this model of van de Pol classifies scaffolding itself, Kirschner et al.
have proposed a design model for complex learning based on scaffolding
[VMKK03]. According to Kirschner, learning new demanding tasks can of-
ten be overwhelming to students due to their complexity. As the human
mind is limited in its processing capacity, it needs to have as much “free
space” as possible to focus on the problem. Therefore he proposes reducing
cognitive load during the learning process by using scaffolding [VMKK03].
Regarding scaffolding from the point of reducing cognitive load, given sup-
port can either decrease intrinsic cognitive load, which is students move
gradually from the simplest task towards more complex tasks, or decrease
extraneous cognitive load, such as starting with worked-out examples, filling
out gaps and moving towards conventional tasks [VMKK03]. In both cases,
tasks can be divided into task classes according to their difficulty. The stu-
dent then starts with solving tasks in the simplest task class and gradually
moves to more complex task classes [VMKK03]. It is considered to be more
useful to provide whole tasks than only parts of a task, so that students can
gain an overview of the structure and relations between the parts of a task
[VMKK03]. Useful types of learning tasks according to Kirschner are for
instance worked-out examples as they enable a student to extract general
solutions or schemas as well as completion tasks [VMKK03]. In terms of the
right timing of information Kirschner divides between supportive informa-
tion, such as cognitive strategies or mental models, which is best presented
before the task is processed, and procedural information, such as constant
task components or repetitive aspects, "that are performed as routines by
experts", which is best presented during the task procession [VMKK03].

11



Considering these aspects while designing tasks for learners should yield a
good framework for scaffolding.
Regarding its effectiveness, scaffolding is considered to be very useful in
learning processes, although it is difficult to measure [VdPVB10]. Clearly
scaffolding can best be performed with a teacher who individually guides
the student, but the “scaffolder” does not need to be human and the process
of scaffolding can be provided by technology as well [AH05]. Some studies
based upon computer scaffolds have shown, that these were also effective for
“moving students towards more sophisticated models” as well as increasing
the capability of self-regulation [AH05, p. 371].

12



Chapter 3

Proof Editors

3.1 Resolution Editor

3.1.1 Resolution Principle

Resolution is a proof method using the proof of contradiction to prove the
satisfiability of clauses in first order predicate logic [Rob65]. Predicates in
first order logic are formed with [Bry15a, Bry15c]:

• Predicate symbols such as (p, q, r, ...) with arity ≥ 0. A predicate
symbol with arity 0 is called “propositional variable”;

• Function symbols such as (a, b, c, ...) with arity ≥ 0. A function symbol
with arity 0 is called “constant”;

• Quantifiers such as ∀ and ∃ with variables (x, y, z) bound to them;

• a set of logical symbols, namely ),(, ⊥,>, ¬, ∧, ∨ , ⇒ and ⇐⇒ .

A term in first order logic is recursively defined as being either a variable
or a n-ary function symbol followed by n terms in parentheses and sepa-
rated by commas, e.g. t (t1, t2, ..., tn) [Rob65]. Building on this a literal is
defined as being a (negated) predicate symbol followed by n terms, such
as p (t1, t2, ..., tn) and a clause as being a disjunction of literals [Rob65].
A literal L is called negative, if the predicate symbol is negated, else it is
called positive [Bry15d]. Moreover the complement of a literal L is defined
as the corresponding negative literal if the literal is positive and vice versa
[Bry15d]. For instance the complement of A is ¬A and the complement of
¬A is A. Zeroth order logic can be considered a special case of this defini-
tion as the predicate symbols always have arity 0, and therefore there occur
neither function symbols nor variables [Bry15c]. Each formula in first, and

13



especially zeroth order logic is logically equivalent to a formula in conjunc-
tive normal form, where the formulas are conjunctions of clauses [Bry15d].
In order to transform a formula to conjunctive normal form the following
steps have to be performed:

1. Rectification
A formula is rectificated if the variables bound to a quantifier are
pairwise disjoint and if each of them is different from every free variable
in the formula [Bry15d].

2. Transformation to prenex normal form
A rectificated formula is transformed into prenex normal form by mov-
ing all quantifiers of a formula F to the formula’s beginning. A quan-
tifier Q placed at the beginning remains the same if Q appears in
F with positive polarity, which is if Q appears in an even amount
of negations or left sides of the implication junctor. Otherwise Q
has negative polarity, which is if Q appears in F in an odd amount
of left sides of the implication junctor or negations, and the quan-
tifier Q will be transformed into its opposite [Bry15d]. For exam-
ple the formula (p(a) ⇒ (∀x q(x) ⇒ ∃y r(y))) is transformed into
∃x∃y (p(a) ⇒ (q(x) ⇒ r(y))), because ∀x q(x) has negative polarity
as it appears within an odd number of left sides of the implication
junctor and ∃y r(y) has positive polarity because it it appears neither
within negations, nor within left side of an implication junctor.

3. Skolemization
The formula is stripped of all ∃-quantifications. The following algo-
rithm returns an equivalent satisfiable formula S in skolem form for
any given formula F in prenex normal form [Bry15d]:

• Initialize L′ as L being the language containing the used predi-
cate, function and logical symbols and initialize S with F .
• Repeat the following if S contains an ∃-quantifier:

If S is of the form ∃x G then perform a substitution [a/x] (see
definition below), where a /∈ L′ and add a to L′. Else if S is of the
form ∀y1 . . . yn∃xG, then perform a substitution [f(y1, . . . , yn)/x],
where f is a n-dimensional function symbol and f /∈ L′ and add
f to L′.
• Return S

4. Transformation into conjunctive normal form
A formula in skolem form is brought into conjunctive normal form
by applying transformation rules, such as for instance the law of de
Morgan [Bry15d].

14



Because of its uniform structure, clauses in conjunctive normal form are
usually written by separating literals with a “,” rather than a ∨ [Bry15e].
A typical clause in first order logic is for instance {p(a(y), x),¬q(b(x, z), y)}
with p being a predicate symbol, a, b being function symbols and x, y, z being
variables, where a clause in zeroth order logic would be {p,¬q}.
The Resolution method for zeroth order logic can be defined as followed:
Let C1, C2 be two clauses of a finite set of zeroth order clauses in conjunctive
normal form, such that a literal ` exists in C1 and the complement of this
literal ` exists in C2. The resolvent of C1 and C2 is defined as the clause
C1\{`} ∪C2\{`}[Rob65]. In zeroth order logic this is directly applicable by
eliminating propositional variables, for instance:

{a,¬b, c} {a, b,¬d,¬e, f}
{a, c,¬d,¬e, f}

Figure 3.1: Example for a Resolution step in zeroth order logic [Bry15e, p.
17]

However,the Resolution method for first order logic is more sophisticated.
To equalize the variables in two literals where one predicate symbol is the
complement of the other predicate symbol the principle of substitution is
needed. An elementary substitution is any expression of the form t/v, where
v is any variable and t is any term different from v [Rob65]. A substitution is
a finite set of elementary substitutions σ = {t1/v1, ...tn/vn}. The application
of the substitution σ to a clause C is obtained by simultaneously replacing
every occurrence of vi in C by ti (1 ≤ i ≤ n) [Rob65]. If the application
of the substitution of a set of clauses A results being a singleton then the
substitution is called an “unifier” of A. The Resolution method for first
order logic thus can be generalized as:

{L1} ∪K1 {L2} ∪K2
σ

K1σ ∪K2σ

Figure 3.2: Resolution rule for first order logic [Bry15e, p. 34]

where σ is a most general unifier (the minimal set of substitutions) of L1 and
L2, and K1 and K2 are clauses in conjunctive normal form. [Rob65]. It is
assumed, that {L1}∪K1 and {L2}∪K2 do not share variables. If there are
shared variables, those variable have to be renamed (standardization apart)
to prevent misleading deductions [Bry15e].

15



In addition to the Resolution rule in first order logic the factorization rule
is defined as:

{L1, L2} ∪K
σ

{L1σ} ∪Kσ

Figure 3.3: Factorization rule for first order logic [Bry15e, p. 34]

where σ is a most general unifier of L1 and L2, and K is a clause in con-
junctive normal form. [Bry15e].
Robinson proved, that “If S is any finite set of clauses, then S is unsatisfiable
if and only ifRn(S) contains � , for some n ≥ 0” [Rob65, p. 30], whereR (S)
is the set obtained from S by extending S with the clause resulting from
applying either the Resolution method to two clauses of S or the factoring
method to one clause of S and Rn (S) is defined recursively as R

(
Rn−1 (S)

)
.

Since F � G holds if and only if (F ∧ ¬G) is unsatisfiable, F � G holds if
and only if the empty clause can be finitely derived form a clausal form of
(F ∧ ¬G) [Bry15e].

3.1.2 Implementation

The proof editor for Resolution was designed to assist students performing
a proof in either zeroth or first order logic. Exercises can be designed as
building up a proof tree from the beginning or from an already worked
out part of the proof where users have to continue the proof. Figure 3.4
shows an example of the proof editor at the beginning of an exercise with
no worked out part. On the upper screen, the task description is displayed.
The interactive part of the editor below the task description basically splits
up in two parts, namely the set of clauses, or clause container, at the left side
where all clauses are displayed, and a Resolution tree at the right side. The
Resolution rule is applied as shown on Figure 3.5: First, the user can click
on a clause in the clause container, which subsequently is inserted into the
next free space of the Resolution tree (Step1). Now further clauses can be
inserted into the Resolution tree by clicking on them in the clause container
(Step 2), and the literals in the clauses can be selected. The Resolution
rule can be applied on selected literals via the button “Resolve” at the top
left corner (Step 3). If the application of the rule is correct, a conclusion
line is drawn beneath the selected clauses and the result of the Resolution
is displayed below. Any literal of a clause can be selected as long as there
has been no rule applied to the clause or more informal, if the clause is
positioned on the lowest line of the tree. The proof tree begins at the top
and grows to the bottom with each new conclusion. A complete proof in
zeroth order logic therefore is built up repeating the following steps:

16



Figure 3.4: Resolution editor displayed at the beginning of an exemplary
exercise

Figure 3.5: Exemplary use of the Resolution rule in zeroth order logic

1. Clicking on one (at the beginning two) clauses in the clause set.

2. Selecting in each of the newly added clause and the root of the so far
constructed proof tree two literals that are complements of each other.

3. Clicking on the button “Resolve”.

Each of these steps can be reverted by either clicking on “Undo” or dese-
lecting literals.
If users make a mistake such as selecting more than two literals or applying
the Resolution rule to literals which are no complements of each other, an
error with a description of the failure is displayed at the top of the Resolution
tree (see Figure 3.6). Moreover, it is only possible to apply the Resolution
rule if there are two clauses on the last level of the tree, otherwise the
button “Resolve” is grayed out (see Figure 3.4). Furthermore, users have
the possibility to continue the proof in a new subtree by clicking on “New
Tree”. A new empty tab will be opened with the last clause of the current
Resolution tree added to the formula set. Now the proof can be continued

17



Figure 3.6: Exemplary error message

Figure 3.7: Exemplary Resolution step in first order logic with substitution

with the expanded formula set. This gives users the possibility to “save”
an already derived result and to reuse it at another location for further
Resolution steps (see also Figure 3.9). If the proof is correct, that is, if there
is a � below the last conclusion line, a message will appear at the top of the
Resolution tree, stating that the proof is correct.
The editor of first order logic extends the functionality described above.
First of all it is possible to perform one or more substitutions by writing
them in a text box placed at the side of each conclusion (see Figure 3.7).
The substitutions follow the specifications of Robinson, that is, a substitu-
tion can have as many substitution elements of the form t/v as needed, with
t being any term and v any variable different from t. Substitution elements
have to be separated by a comma and it a variable can not replace a func-
tion symbol [Rob65]. If these conditions are not met, an error message is
displayed. When applying the Resolution or factorization rule, the substi-
tutions specified in the text box are applied automatically. The program
also ensures that before applying the Resolution rule, the two clauses do
not contain equal variables. This is achieved by checking each variable of a
clause before inserting it into the Resolution tree. If a variable is already
in use, then one or more dashes are assigned to the new variable as shown
in Figure 3.8 at the second line. Furthermore, it is possible to apply the
factorization rule by clicking on “Factorize”. Analogously to the Resolution
rule, there have to be selected exactly two literals, but this time only in one

18



clause. Figure 3.8 and Figure 3.9 show a complete proof in first order logic
using substitution as well as factorization.

Figure 3.8: First part of a complete proof in first order logic

Figure 3.9: Second part of a complete proof in first order logic

19



Usually a Resolution proof tree is of the form

{¬A}
{C}

{¬B} {A,B,¬C}
{A,¬C}

{A}
�

causing the whole tree to move to the left as it grows, because every new
inserted clause, is displayed left of the actual tree. As one can see for instance
in Figure 3.8, in this proof editor the third conclusion line is exactly under
the first, as well as the fourth is exactly under the second. Such layout
has been chosen due to the limited space for a proof tree in a web browser.
Considering a large proof, either the clauses have to shrink to an nearly
unreadable size, or the tree grows out of the boundaries of the webpage.
Mathematically however it would be better if each newly added clause was
inserted outside the previous proof tree, because it can be misleading if the
newly added clause is positioned below a previous conclusion line. Apart
from this, the attempt was made to design the whole Resolution tree as
similar as possible to the examples given in the lecture, so that the students
can work in a familiar environment.

3.2 Natural Deduction Editor

3.2.1 Natural Deduction Principle

Natural Deduction was invented by the german mathematician Gerhard
Gentzen in 1933. Based upon former systems of logical deduction, the in-
tention of Gentzen was to build a system of logical inference similar to
intuitive or informal reasoning [Pra06]. Therefore, Gentzen developed the
calculus of Natural Deduction as a system for deducting formulas in zeroth
and first logic order. This work considers only Natural Deduction for ze-
roth order logic. As being closely related to Sequent Calculus, also invented
by Gentzen, which is a fundamental basis of automated theorem proving
besides the Resolution method, and “because of the close correspondence
to practices common in intuitive reasoning, systems of Natural Deduction
have often been used [...] for didactic purposes” [Pra06, p. 103]. Character-
istic for a system of Natural Deduction are “conclusion figures”[Gen35] or
deduction rules. An deduction rule is of the form

A1 . . . An (n ≥ 1)
B

[Gen35, p. 181] where A and B are formulas of the zeroth order logic.
A1...An are called premises and B is called conclusion [Pra06]. A deduction
is formed by a several deduction rules under the limitation that each formula
is the conclusion of at most one deduction rule, each formula is premise of

20



at most one conclusion (except the last conclusion), and the tree formed by
the repeated application of deduction rules is a non-cyclic graph [Gen35].
Restricted by these rules, a proof tree of Natural Deduction usually has a
shape similar to a Resolution proof tree, witch the formula to be derived
as root [Gen35]. A basic example of Natural Deduction is shown in Figure
3.10. There are different schemes for a deduction rule, which split up into
insertion rules and elimination rules. Basically there are insertion and elim-
ination rules for each logical junctor such as ¬,∨,∧,⇒ and ¬¬ as well as
insertion figures for > and ⊥ and an elimination figure for ⊥ [Bry15b]. An
insertion figure always “inserts” a formula or junctor to the premises given,
for instance,

A B ∧E
A ∧B

while an elimination figure “eliminates” parts of the premises, such as:
A ∧B ∧Br
A

Note, that the abbreviations for elimination and insertion rule used by
Gentzen are German, so any rule containing an E is an insertion rule, and
any rule containing a B is an elimination rule. In the given example of the ∧
insertion rule, the logical junctor ∧ is inserted connecting A and B because
if both A and B are valid, it can be followed, that A∧B is valid as well. In
the example of the elimination rule both ∧ and B are eliminated, because
if A ∧B is valid, it can be followed, that A is valid as well.
Many of the conclusion rules depend on assumptions. For instance the
insertion figure of ⇒ is defined as:

A(n)

...
B (n) ⇒E(A⇒ B)

Informal, the reasoning of this rule can be described as if B is proven us-
ing the assumption A, it can be concluded that A implies B. Each formula
between A and the⇒ rule is said to be dependent on A, but further conclu-
sions are no longer dependent on A [Gen35]. It is said, that the application
of the ⇒ insertion rule “discharges” the assumption A [Bry15b, Gen35]. In
a derivation, the assignment between assumption and removing rule has to
be clearly marked, usually by assigning numbers in brackets to both parts
[Gen35, Bry15b]. An already removed assumption can not be removed again,
but more than one assumption can be removed by a rule, if they are syn-
tactically identical [Bry15b]. A proof of a derivation A � B is valid if B
is not dependent on any assumptions but A [Gen35], that is, if all other
assumptions made during the creation of the Natural Deduction tree, have
been removed by corresponding rules. Furthermore B is a tautology, if it
depends on nothing [Bry15b], such as in Figure 3.10.

21



Figure 3.10: Natural Deduction proof of ((¬A⇒ ¬B)⇒ (B ⇒ A))

3.2.2 Implementation

Like for the Resolution editor it is both possible to design the exercise as
building up a proof tree from the beginning or from a worked out part of
the tree. The interface of the deduction editor is split up in four parts, as
shown on Figure 3.11:

• The task description displayed at the top of the screen.

• Buttons for each insertion and elimination rule.

• The assumptions used in the proof.

• The Natural Deduction proof tree.

At the beginning of an exercise the formula to be derived is displayed as
root of an otherwise empty tree. Initial assumptions are already displayed
in the assumption container. A formula in the proof tree can be selected
by clicking on it and subsequently either an insertion or elimination rule
can be applied by clicking on a button in the container at the left. Only
the formulas to which no rule has been applied yet can be selected. The
proof tree will grow from the bottom, that is, from its conclusions to the
premises. Therefore each rule is inverted, for instance given the conclusion
A ∧B, clicking on the ∧ insertion rule will produce:

A B ∧E
A ∧B

If there are any further assumptions made such as by applying the ⇒ in-
sertion rule, the rule will be numbered and the new assumption will be
displayed with the same number in the assumption container (see Figure
3.14). For each further rule application, the program checks whether the
formula just created corresponds to an assumption, and if this is the case,
the formula is provided with the same number as the assumption and the

22



Figure 3.11: Natural Deduction editor displayed at the beginning of a proof

program registers that the assumption was used. If all assumptions made
are used at least once and there are no leaves in the tree that do not match
any assumption, the evidence is considered correct. This is equal to the
definition of correctness by Gentzen (see above). In some cases, further in-
teraction with the student is necessary, for instance when applying the ⇒
elimination rule:

(A⇒ B) A (n) ⇒BB

As the tree grows from its conclusions, it is impossible for the program to
know which formula A is meant. Therefore, a dialogue window is opened, al-
lowing users to type in the formula they want to introduce (see Figure 3.12).
The program then parses the entered string and creates a new formula for
A. Similar to the Resolution editor, each step can be undone. A selected
formula can be deselected and an application of a rule can be reverted by
clicking on “Undo”. Furthermore, if users want to apply a rule which is not
possible on the selected rule, an error message is displayed at the top of
the proof tree. The error message describes in detail which conditions of
the rule were not met. Furthermore, the attempt was made to adjust the
design of this editor as close as possible to the presentation of Natural De-
duction proofs in learning material. Possible improvement still can be made
regarding the conclusion lines. As for the current state, the conclusion lines
will not adapt their width to the width of the formula below the conclusion

23



Figure 3.12: This Figure shows the window prompt, where a student can
type in a formula.

line, but to the width of the whole tree above the conclusion line. As it
can be seen in Figure 3.14 this causes extremely large conclusion lines. For
instance, the lowest conclusion line in this example only needs to be as far as
(p⇒ r). Due to technical limitations regarding the programming language
in which the program was written, it was not possible to easily solve this
problem, because the only solution seems to be manual calculation of the
length of each conclusion line depending on screen size and the width of the
formula below the conclusion line.
However, despite their name, derivations in Natural Deduction can be hard
to understand especially for beginners who had no previous courses of logical
reasoning. When beginning a proof of the form A � B most of the time it is
easier to start from the formula to derive B and not from the assumption A.
Yet, at some point or another, it will become easier to solve the rest of the
proof from its assumptions, that is from the top to the bottom. Therefore
the decision was made to allow derivations in both directions. The user can
decide to solve parts of the proof (or the whole proof) from the top to the
bottom at any time by selecting a formula and click on “Derive”. Below the
current proof a new proof tree will be created containing the insertion and
elimination rule buttons, an empty proof tree window and all assumptions
valid for the formula to be derived. In this new tree users can derive the
formula using assumptions. Contrary to the main proof window, the as-
sumptions in the assumption container are clickable and new assumptions
can be made using the “new assumption” button where the same window
prompt as in Figure 3.12 is opened, allowing the student to type in a new
assumption. Regarding the above described further interaction with the stu-
dent, when building the proof tree from the top to the bottom, it sometimes
is necessary to determine the exact assumption step that the student wants

24



to remove. For instance when applying the insertion rule for ⇒:

A(n)

...
B (n) ⇒E(A⇒ B)

Here the program needs to know which assumption the user wants to have
removed by the rule, for there can be more assumptions between A and B.
This problem is solved by letting users type the number of the assumption
step in a window prompt. Apart from that, this editor works just like the
main editor with each rule inverted. If the user considers the formula to be
derived, they can click on “Insert Derivation”, which causes the program to
check the derivation and if correct, it will be inserted in the main proof tree.
Clicking “Undo” will remove both inserted assumptions and applied rules.
If the student clicks on “Undo” in the main proof window, the whole sub
proof will be erased. An example of this editor can be seen in figure 3.13
and 3.14. Starting with the formula (p⇒ q) as formula to derivate, it is very
clear for a student, that there is only one rule that leads to further progress,
namely the⇒ insertion rule. In general it is easier to work from the bottom
to the top until there is only a single literal left, in this case r. At this point
it is very difficult for a student to continue in the same direction. The next
step, which would be applying the ⇒ elimination rule is very unintuitive
and only a person familiar to Natural Deduction proofs could easily find
this step. Therefore at this point, it is better to continue the derivation r
from the top to the bottom. Using the assumption ((p ⇒ q) ∧ (q ⇒ r)), it
is easy to figure out, that, given the second assumption p, it makes sense
to eliminate the right part of the conjunction and apply the ⇒ elimination
rule on the result (p⇒ q) and p. Given the result q again it is easy to guess
the next steps and r is derived much easier as it would have been from the
bottom to the top.

25



Figure 3.13: Exemplary derivation of r in the derive sub editor using the
assumptions at the right

Figure 3.14: This Figure shows the derivation of Figure 3.13 after clicking
on “Insert Derivation” in the main proof window.

26



Chapter 4

Pedagogical support

Compared to solving tasks using Resolution or Natural Deduction by hand
on a piece of paper there is a lot of pedagogical help provided by the editors,
mainly concerning feedback and scaffolding. However, as feedback and scaf-
folding are closely intertwined concepts (according to van de Pol [VdPVB10],
feedback is a form of scaffolding), it is difficult to fully distinguish the two
concepts. Thus, this chapter first will analyze the help provided in the pro-
gram from the point of scaffolding and later from the point of feedback,
although there are some intersections for help may both have scaffolding
and feedback function.

4.1 Scaffolding

Following the classification of Kirschner, the program provides procedural
information rather than supportive information. The scaffolds are mainly
designed to reduce the cognitive load during task solving and aim to simplify
recurrent task aspects rather than non recurrent aspects, such as building
up mental models, which is already done by the lecture. The main scaffolds
providing procedural information are:

• Error messages
Error messages provide information regarding the correct usage of ei-
ther Resolution or Natural Deduction rules. It can be both very time-
consuming and thought-intensive to search for an error if the program
simply would do nothing when a mistake has been made. With an
adequate error message users can immediately see, where the error
is and correct it. Thus, error messages clearly reduce cognitive load
during the task process.

• Visual scaffolding
The visual displaying of the formulas and the proof tree is an impor-
tant scaffold. Users do not have to write formulas by themselves which

27



may lead to spelling errors and they do not have to take care about cor-
rect parenthesis or the drawing of conclusion lines. Furthermore, the
possibility to revert each step is much more simpler than erasing the
tree on a piece of paper or crossing something out and restart building
a proof tree. Therefore users can concentrate more on building the
proof tree, rather than designing it. As being designed closely to the
visualization introduced in the lecture, the editors may also improve
cognitive structuring as defined by van de Pol [VdPVB10], because the
whole process of proving is reduced to its relevant parts.

• Application of rules
Another important scaffold is the application of both Resolution and
Natural Deduction rules as the correct application of the rules can be
seen as the main component in a proof. It is ensured by the program
that, under the condition that the application is possible, a selected
rule it is applied correctly. Once more this decreases cognitive load
significantly as users do not even need to be familiar with the appli-
cation of a rule in order to try it out. When experimenting with the
rules users might even learn the function of a rule just by receiving a
direct outcome.

• Didactic Reduction
Regarding the automatic management of assumptions, the Natural
Deduction editor provides Didactic Reduction as defined by Grüner
[Grü67]. As it can be seen in Figure 4.1, Didactic Reduction simplifies
certain parts of a task or model so that learners do not have to learn
the omitted parts at the beginning of their learning process [Grü67]. In
the Natural Deduction editor each assumption is numbered automat-
ically and when derivating a formula from the top to the bottom, all
assumptions valid for the formula are automatically displayed in the
new proof editor window. Thus, users never have to take care about
assumptions at all, which means they do not have to learn this task in
order to successfully prove something. This feature extends the origi-
nal meaning of scaffold as it does not help users to perform an action,
but performs the action by itself. A similar concept can be found in
the Resolution editor as well, as dashes are assigned automatically to
variables in order to avoid duplicates.

The editors are designed to allow both decreasing intrinsic and extraneous
cognitive load, as they support the arrangement of tasks in simple to complex
order, as well as the usage of already worked out parts of the proof tree. For
decreasing intrinsic cognitive load, the process of fading can be achieved by
grouping the exercises into task classes with increasing complexity. As for
Resolution, the main task classes could be zeroth order logic as first task
class, and first order logic as second, where these classes could be divided

28



once again into criteria such as the amount of conclusions or the amount
of new trees necessary for the minimal proof tree. For Natural Deduction
possible criteria for task classes could be the height of the minimal proof
tree, or the amount of different deduction rules, because proofs based upon
the repeated usage of a single rule, e.g. the⇒ rules, tend to be simpler than
proofs with many different rules. Nevertheless, a proof tree based upon few
rules and having a small minimal tree height still can be unintuitive and
difficult to understand. Thus, as complexity is hard to measure by objective
criteria, the grouping by task classes is best be done individually by the
task creator. For decreasing extraneous load, the process of fading can be
achieved by having exercises of more or less the same complexity and starting
with a large part of the proof already worked out. In further exercises this
part can be reduced, until there is no worked out part left and users can
solve the task from the beginning of the proof.

4.2 Feedback
Feedback in both editors is given mostly at task or process level. First of
all, users receive a positive feedback if they have solved an exercise. This
feedback is directed at the task level, since it only states the correctness
of a proof. Regarding the principle of Hattie, that feedback works best if
“goals are specific and challenging but task complexity is low” [HT07, p.
85f.], it would be the best if users would receive feedback about correctness
after every application of a rule to reduce task complexity, but since there
are many ways to construct a proof, this is not possible. Nevertheless,
especially in the Natural Deduction editor, this feedback is important as
the correctness of a proof might not be directly visible for a student, and
it also has a positive affect on motivation. Another important feedback is
the visual feedback provided when applying rules. Users immediately receive
feedback directed at task level about whether the visual result matches their
expectations of the result and feedback at process level, as this feedback
also may lead to further knowledge about how to apply the selected rule in
general. The error messages provided when users have made a mistake can
also be seen as feedback directed both at task and at process level. Error
messages provide feedback about what mistake has been made especially
in this task, but also feedback about the general application of rules. As
mentioned in Chapter 2, this combination of task and process level is a very
powerful type of feedback as this knowledge can be applied on all subsequent
tasks and improves the understanding of the whole topic.

29



Figure 4.1: An example of Didactic Reduction for the mechanism of a dial
indicator [Grü67, p. 419]

30



Chapter 5

Evaluation

5.1 Integration in Backstage

For evaluating the proof editors, they were implemented in the classroom
communication system “Backstage”, which was designed to support teaching
and learning in large class lectures [BP17]. Backstage allows students to ask
questions and exchange information during the lecture without interrupting
it [BP17]. As teachers can see and answer these questions as well, they also
get feedback for instance about the understandability of their talk [BP17].
Furthermore, Backstage aims to “abridge the gap between classroom learn-
ing and homework” [BP17, p. 112], therefore Backstage also provides exer-
cises for students to train and repeat the content of the lecture. The logic
editors were implemented as additional exercises for exam preparation of the
course “Logic and Discrete Mathematics”. As the functionalities of Back-
stage already provide different ways for feedback, the feedback users receive
while solving an exercise in a proof editor is extended by the architecture of
Backstage as follows:

• Peer feedback
As users can ask questions related to the exercises, which can be an-
swered by peers and teachers alike, feedback directed at all levels can
be provided. Both task and process related questions can be posed,
and, as mentioned in Section 2.1, answering questions can improve the
capacity of self evaluation.

• Providing information to teachers
The platform can check the correctness of the exercises solved by a
user allowing teachers to determine how many users have solved the
exercise, and how many provided a wrong answer. This information
can be used to adjust the lecture regrading possible problems in
understanding.

31



• Exemplary Solutions
Users are informed about the correctness of their solution by the plat-
form as well and they receive an exemplary solution of the proof. By
comparing their own work to the exemplary solution, users can de-
termine own errors and get an impression of good performance. As
described in Section 2.1, this process not only informs about the cor-
rectness of a task, it also provides feedback at process level and at the
level of self regulation.

Besides, the lecture material can be found on Backstage as well, allowing
users to look up definitions, strategies, or instructions for Resolution or
Natural Deduction methods. Regarding the process of scaffolding, this can
be seen as supportive information. A short sample videos about how to solve
an exemplary Resolution and Natural Deduction exercise was provided to
the students as well.

5.2 Design of the exercises

For Resolution there were five exercises, beginning with three simple zeroth
order logic tasks followed by two first order logic tasks. The first task did
not require the usage of the option “New Tree”, as opposed to the other ones
which required the usage of sub trees. Furthermore, all tasks were solvable
within the range of four to six conclusion steps. For Natural Deduction,
there were eight exercises beginning with four proofs, which heavily depend
on the usage of both implication rules. Proofs of this kind were considered
easy to solve, as the implication rules are intuitively understandable. These
exercises were followed by two still easy to solve tasks, namely proving the
commutative law, where the proof tree only has a height of three conclusions,
and another simple exercise with small tree height that was discussed in
lecture. The last two exercises were the proof in Figure 3.10 and the proof of
the distributive law, both of which are more difficult and not always intuitive
as they require more complex deduction rules such as the ∨ elimination rule.

5.3 Results

As being a course of approximately 600 students, at least a third of the
students used the proof editors for their exam preparation. The number of
individual responses per exercise ranges from 100 to 180. However, students
often submitted more than one answer. For instance, if the first answer
was not correct, many students tried solving it once again. Therefore, there
were sometimes up to 500 answers submitted for a single exercise. The edi-
tor for Resolution was used slightly more often than the editor for Natural
Deduction, which could be due to the fact that Resolution proofs are usually

32



easier to solve. As Figure 5.2 shows, the percentage of correct answers is
almost equal for all exercises of zeroth order Resolution. Compared to the
percentages of exercise 4 and 5, which were exercises of first order logic, it
clearly can be seen that Resolution in first order logic is more challenging
for students. Moreover, in Figure 5.4 it can bee seen, that in both task
classes the exercise with the lowest number of average attempts are at the
last task of the task class (exercise 3 and 5). This may be indicating that
there has been a learning process for some students during the solving of
the previous exercises. Figure 5.3 underlines this hypothesis as exercise 3
and 5 have the highest percentage of correct first try responses in their task
classes. The low percentage in Figure 5.3 for the second exercise might be
explainable by the unfamiliar usage of the “New Tree” option, which was
not necessary in the first exercise. However, another possibility for these
results could be, that students who were not able to successfully solve an
exercise stopped doing the following exercises. As shown in Figure 5.1 the
number of participants decreases at the end of each task class. If only the
students, who successfully solved the exercise continued with the further
ones, the hypothesis of the learning process is questionable.
As for Natural Deduction Figure 5.6 shows that the task class of the impli-
cation rule exercises (1-4) was solved almost as good as the task class with
the two exercises with small tree height. It is hardly surprising that stu-
dents had the most problems with the last task class containing two rather
difficult exercises. When comparing the average number of attempts for the
Resolution exercises 5.4 with those for the Natural Deduction exercises 5.8
it can be seen that, apart from the last two difficult exercises, the solving of
Natural Deduction exercises required less attempts than the solving of Res-
olution exercises. This is an interesting result because, as mentioned before,
Natural Deduction proofs usually are more challenging for students. Just as
for Resolution the progress students made while working on the tasks cannot
be determined with certainty. In Figure 5.7 and Figure 5.8 it can be seen
that from exercise one to exercise four the average attempts decreases and
the percentage of correct answers at the first try increases. As these tasks
were almost the same in their complexity and in the approach of proving,
this could be indicating that students made efforts in understanding the
principle of Natural Deduction. Still it is possible that only the students
who successfully solved an exercise continued with the following exercises,
as the number of participants for an exercise decreases if the average num-
ber of attempts decreases (see Figure 5.5 and 5.8). To determine the exact
learning progress, further research has to be made with a constant number
of participants.

33



0

50

100

150

200

1 2 3 4 5

177
171

147
158

103

Numbers of Participants for Resolution exercises

Exercise

Pa
rti

ci
pa

nt
s

Figure 5.1: Numbers of participants for the Resolution exercises in zeroth
order (blue) and first order logic (green)

0

20

40

60

80

1 2 3 4 5

66%

60%
64%

33%

43%

Total percentages of correct answers for Resolution exercises

Exercise

To
ta

l
pe

rc
en

ta
ge

s
of

co
rre

ct
an

sw
er

s

Figure 5.2: Total percentages of correct answers for the Resolution exercises
in zeroth order (blue) and first order logic (green)

34



0

10

20

30

40

50

1 2 3 4 5

32%

21%

44%

11%

23%

Percentages of correct answers at first try for Resolution exercises

Exercise

Pe
rc

en
ta

ge
s

of
co

rre
ct

an
sw

er
s

at
th

e
fir

st
try

Figure 5.3: Percentages of correct answers at the first try for the Resolution
exercises in zeroth order (blue) and first order logic (green)

0

1

2

3

4

1 2 3 4 5

2.49

2.77

1.48

3.22

1.68

Average numbers of attempts for Resolution exercises

Exercise

Av
er

ag
e

nu
m

be
rs

of
at

te
m

pt
s

Figure 5.4: Average numbers of attempts for solving the Resolution exercises
in zeroth order (blue) and first order logic (green)

35



0

50

100

150

1 2 3 4 5 6 7 8

148

133

119
112

105

117

131

120

Numbers of participants for Natural Deduction exercises

Exercise

Pa
rti

ci
pa

nt
s

Figure 5.5: Numbers of participants per exercise for Natural Deduction
grouped by task classes

0

20

40

60

80

1 2 3 4 5 6 7 8

60%

53%

63% 62%
67% 66%

38%

20%

Total percentages of correct answers for Natural Deduction exercises

Exercise

To
ta

l
pe

rc
en

ta
ge

s
of

co
rre

ct
an

sw
er

s

Figure 5.6: Total percentages of correct answers for the Natural Deduction
exercises grouped by task classes

36



0

20

40

60

80

1 2 3 4 5 6 7 8

37%
34%

54% 54%

61% 62%

21%

6%

Percentages of correct answers at first try for Natural Deduction
exercises

Exercise

Pe
rc

en
ta

ge
s

of
co

rre
ct

an
sw

er
s

at
fir

st
try

Figure 5.7: Percentage of correct answers at the first try for the Natural
Deduction exercises grouped by task classes

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

1.63 1.6

1.17 1.15 1.09
1.23

1.92

2.32

Average numbers of attempts for Natural Deduction exercises

Exercise

Av
er

ag
e

nu
m

be
rs

of
at

te
m

pt
s

Figure 5.8: Average numbers of attempts for solving the Natural Deduction
exercises grouped by task classes

37



38



Chapter 6

Conclusion and Future Work

This thesis reports on the design of two proof editors for learning, one for
the Resolution method and one for the Natural Deduction method, allowing
students to prove logic formulas. Both editors were not only designed to
assist students in understanding these two methods, but also to enhance
the understanding of formal methods in general. The Resolution editor al-
lows users to prove the validity of a conclusion F � G, where F and G
are formulas in conjunctive normal form, by deriving the empty clause from
(F ∧ ¬G). Resolution in both zeroth and first order logic is possible, as the
editor for the latter extends the functionality by allowing users the appli-
cation of substitutions and factorizations. The Natural Deduction Editor
allows users to prove the validity of any statement F � G, by building up
a proof tree as defined by Gentzen. Currently only proofs in zeroth order
logic are supported. In order to make logical reasoning easier, proof trees
in Natural Deduction can be built up both from the top and from the bot-
tom. To make the learning process as easy as possible, the editors were
designed close to the material provided in lecture and users are additionally
supported by the didactic methods scaffolding and feedback. Scaffolding, as
a means of reducing cognitive load during task solving, is mainly provided
by error messages, the automatic application of deduction rules, the fact
that users do not have to write the proof tree on their own, and didactic
reduction. The process of fading can be achieved by grouping exercises by
their difficulty, starting with already filled out parts or reducing some of
the scaffolding mentioned. Feedback, mainly directed at the task and pro-
cess level, is provided by error messages, visual feedback about the correct
application and the statement of correctness users receive when solved an
exercise successfully. The editors were evaluated in the environment of the
classroom communication system Backstage, whose architecture extends the
feedback provided. An evaluation of 200 students results solving exercises
with the editors showed that the editors were well received by the students
and although further investigations have to be made about the impact on

39



learning, an enhancement of student skills regarding Resolution and Natural
Deduction is visible. Compared to the editors already existing, these editors
are definitely more apt to assist students in understanding formal methods.

6.1 Improvement of the Editor’s Functionalities

Due to limited time and capacities when working on the implementation,
there is still much possibility to further improve the editors. The functional-
ity of the Resolution editor covers almost everything of the lecture content,
except that it is not possible to perform a substitution for function symbols
with arities higher than 1 in first order logic. For example the substitution
p(f(x), y)[a/x] � p(f(a), y), is currently not possible, as x is not recognized
as a variable by the program. This limitation could be overcome by using
a simple linear strategy extending the substitution process. The string of
arguments has to be searched for occurrences of the expression to be re-
placed (here x) and the occurrences can be replaced by the given term (here
a). The Natural Deduction editor can be improved in two ways. First, it
is only possible to negate atoms, and not complete formulas or literals. For
instance, it is neither possible to display a formula like ¬¬(A ⇒ B), nor
come to a conclusion result with such a formula. Therefore, the inner ar-
chitecture of the formula representation in the program has to be changed
that way, that each formula can be negated as well and the rules have to
be changed dealing with negated formulas. Second, the solving of exercises
in first order logic would be desirable because the lecture covers this topic
as well. This extension could be rather difficult to implement as formulas
in first order logic are far more complex than in zeroth order logic. Apart
from adding two more rules dealing with ∃ and ∀ quantifiers, the internal
representation of formulas would have to be changed significantly and the
rules would have to be adjusted to first order logic.

6.2 Scaffolding Approaches

More scaffolds could be used to further improve the support users get when
solving an exercise. It is already possible to facilitate exercises by having
the begin of an proof tree already filled out so that users only need to solve
the last part of a proof. Still, these exercises could be facilitated even more
by having users fill out gaps instead of applying rules. This can be done by
letting users write a formula in a text field which subsequently is inserted
into the proof tree or display various buttons with possible formulas and
letting users decide which formula has to be inserted into the gap by clicking
on the correct button. This functionality would enhance the possibilities of
fading, because it allows a better adaption to student abilities as the different
degrees of difficulty are extended. Users can start by filling out gaps, then

40



working with partly worked out examples and finally solve a complete proof.
Another simple but useful scaffold would be to provide more procedural
information regarding the conclusion rules in both Resolution and Natural
Deduction. Currently, users can apply rules, but they have to look up the
formal definition and mechanism of that rule in lecture material. Especially
for Natural Deduction there are many conclusion rules, so that it would be
useful to have that information placed right in the editor in order to facilitate
looking up the definition of a rule. This can be achieved for instance by
generating tooltips for the rule buttons containing the formal definition.
When hovering over a button such as (n) ⇒B, the formal definition

(A⇒ B) A (n) ⇒BB

would be displayed as tooltip. In the process of fading this feature can be
removed as well, allowing to further differentiate the levels of difficulty.

6.3 Improvement of the Integration in Backstage
The integration in Backstage gives further room for improvement. While
feedback is already covered very well by Backstage, further improvement
can be made to maintain student motivation through scaffolding. In order
to better adapt the exercises to student capabilities, the sequence of exercises
could be dynamic instead of static. If a student fails to solve an exercise, the
next exercise should be an easier one in the same task class or even below
the current task class. Otherwise, if a student solves an exercise easily, the
next exercise should be more difficult. Additionally this can be combined
with a progress bar informing students about their learning progress and the
current level of difficulty. In doing so students with small knowledge of the
methods will be less frustrated, because at some point they will always get
an exercise which they can solve, and students who know the methods well
wont be bothered with useless exercises regarding their learning process.
While for this work the editors were implemented as exam preparation in
Backstage, it is also possible to extend the use of these editors by using them
during lecture. As the course “Logic and Discrete Mathematics” is already
interactive allowing students to work on smaller tasks in form of quizzes
during lecture, the editors could be used as part of these quizzes as well.
This would give students the opportunity to immediately try out what they
have learned enhancing both student understanding and teacher feedback
about understandability.

41



42



Bibliography

[AH05] Roger Azevedo and Allyson F. Hadwin. Scaffolding self-
regulated learning and metacognition: Implications for the de-
sign of computer-based scaffolds. Instructional Science, 33:575–
577, 2005.

[BP17] François Bry and Alexander Yong-Su Pohl. Large class teaching
with Backstage. Journal of Applied Research in Higher Educa-
tion, 9(1):105–128, 2017.

[Bry15a] François Bry. Vorlesung “Logik und Diskrete Strukturen”,
Kapitel Aussagenlogik - Teil 1. Vorlesung Logik und
diskrete Strukturen, Lehrstuhl für Programmier- und Model-
lierungssprachen, Institut für Informatik, Ludwig-Maximilians-
Universität München, 2015.

[Bry15b] François Bry. Vorlesung “Logik und Diskrete Struk-
turen”, Kapitel Natürliches Schließen. Vorlesung Logik und
diskrete Strukturen, Lehrstuhl für Programmier- und Model-
lierungssprachen, Institut für Informatik, Ludwig-Maximilians-
Universität München, 2015.

[Bry15c] François Bry. Vorlesung “Logik und Diskrete Strukturen”,
Kapitel Prädikatenlogik erster Stufe - Teil 1. Vorlesung
Logik und diskrete Strukturen, Lehrstuhl für Programmier-
und Modellierungssprachen, Institut für Informatik, Ludwig-
Maximilians-Universität München, 2015.

[Bry15d] François Bry. Vorlesung “Logik und Diskrete Strukturen”,
Kapitel Prädikatenlogik erster Stufe - Teil 2. Vorlesung
Logik und diskrete Strukturen, Lehrstuhl für Programmier-
und Modellierungssprachen, Institut für Informatik, Ludwig-
Maximilians-Universität München, 2015.

[Bry15e] François Bry. Vorlesung “Logik und Diskrete Strukturen”,
Kapitel Resolution. Vorlesung Logik und diskrete Strukturen,

43



Lehrstuhl für Programmier- und Modellierungssprachen, Insti-
tut für Informatik, Ludwig-Maximilians-Universität München,
2015.

[BW98] Paul Black and Dylan Wiliam. Assessment and classroom learn-
ing. Assessment in Education: Principles, Policy & Practice,
5(1):7–74, 1998.

[CW96] Edmund M Clarke and Jeannette M Wing. Formal methods:
State of the art and future directions. ACM Computing Surveys
(CSUR), 28(4):626–643, 1996.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen
I. Mathematische Zeitschrift, 39(1):176–210, 1935.

[Gib02] Pauline Gibbons. Scaffolding language, scaffolding learning:
Teaching second language learners in the mainstream classroom,
volume 428. Heinemann Portsmouth, NH, 2002.

[Grü67] Gustav Grüner. Die didaktische Reduktion als Kernstück der
Didaktik. Die Deutsche Schule, 59(7/8):414–430, 1967.

[HT07] John Hattie and Helen Timperley. The power of feedback. Re-
view of Educational Research, 77(1):81–112, 2007.

[KD96] Avraham N. Kluger and Angelo DeNisi. The effects of feed-
back interventions on performance: A historical review, a meta-
analysis, and a preliminary feedback intervention theory. Psy-
chological bulletin, 119(2):254, 1996.

[Kul77] Raymond W. Kulhavy. Feedback in written instruction. Review
of Educational Research, 47(2):211–232, 1977.

[KWT+85] Raymond W. Kulhavy, Mary T. White, Bruce W. Topp, Ann L.
Chan, and James Adams. Feedback complexity and corrective
efficiency. Contemporary Educational Psychology, 1985.

[NMD06] David J. Nicol and Debra Macfarlane-Dick. Formative assess-
ment and self-regulated learning: A model and seven princi-
ples of good feedback practice. Studies in Higher Education,
31(2):199–218, 2006.

[OM13] Paul Orsmond and Stephen Merry. The importance of self-
assessment in students’ use of tutors’ feedback: A qualitative
study of high and non-high achieving biology undergraduates.
Assessment & Evaluation in Higher Education, 38(6):737–753,
2013.

44



[Pra06] Dag Prawitz. Natural deduction: A proof-theoretical study.
Courier Dover Publications, 2006.

[PZ02] Paul R. Pintrich and Akane Zusho. The development of aca-
demic self-regulation: The role of cognitive and motivational
factors. Development of Achievement Motivation, 2002.

[Rob65] John Alan Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM (JACM), 12(1):23–
41, 1965.

[VdPVB10] Janneke Van de Pol, Monique Volman, and Jos Beishuizen.
Scaffolding in teacher–student interaction: A decade of re-
search. Educational Psychology Review, 22(3):271–296, 2010.

[VMKK03] Jeroen JG. Van Merriënboer, Paul A. Kirschner, and Liesbeth
Kester. Taking the load off a learner’s mind: Instructional de-
sign for complex learning. Educational Psychologist, 38(1):5–13,
2003.

[Vyg80] Lev Semenovich Vygotsky. Mind in society: The development of
higher psychological processes. Harvard university press, 1980.

[WBR76] David Wood, Jerome S. Bruner, and Gail Ross. The role of
tutoring in problem solving. Journal of Child Psychology and
Psychiatry, 17(2):89–100, 1976.

45


