
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

A COLLABORATIVE TEXT
EDITOR FOR THE LEARNING

MANAGEMENT SYSTEM
BACKSTAGE 2

Konrad Fischer

Bachelorarbeit
Aufgabensteller Prof. Dr. François Bry
Betreuer Prof. Dr. François Bry,

Sebastian Mader

Abgabe am 30.10.2018

2

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und
keine anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 30.10.2018 Konrad Fischer

i

ii

Abstract

Verbal communication is often used for the transmission of solutions to tasks between stu-
dents and from student to lecturer in group work in the university context. As verbal
communication has several disadvantages, this thesis aims to provide a secondary mean
of communication in the form of a collaborative editor. The proposed concept consists in
the students working in groups using the collaborative editor and then digitally submit-
ting their work to the lecturer. First, studies about the use of similar collaboration tools,
focused on the tool GoogleDocs, are examined with the conclusion that the use of collabora-
tive editors in education can have a positive effect on the learning experience and academic
performance of the students. After that the concept is explained in more detail, is examined
from a psychological point of view, and is found to contain elements of collaborative learn-
ing, social constructivism, the flipped classroom, and team-based learning. Furthermore
the challenge of keeping several copies of the same text document in sync is presented,
followed by different solutions to this challenge in the form of algorithms. From these
algorithms the Logoot algorithm combined with an h-LSEQ allocation function is chosen
for the exemplary implementation of the aforementioned concept in the form of a collab-
orative text editor embedded in the learning management system Backstage 2. Finally, the
implementation is described in more detail and potential future additions to the concept
are discussed.

iii

iv

Zusammenfassung

Verbale Kommunikation wird oft zur Übertragung von Lösungen für Aufgaben zwischen
Studenten und von Student zu Dozent bei Gruppenarbeit im Universitäts-Kontext genutzt.
Da verbale Kommunikation einige Nachteile hat, ist das Ziel dieser Arbeit ein sekundäres
Kommunikationsmittel, in Form eines kollaborativen Editors, bereitzustellen. Das vorge-
stellte Konzept besteht darin, dass die Studenten in Gruppen unter Nutzung des kollabo-
rativen Editors arbeiten und dann ihre Arbeit digital dem Dozenten zusenden. Zu Beginn
werden Studien über die Nutzung von ähnlichen Kollaborations-Werkzeugen, fokussiert
auf das Tool Google Docs, untersucht mit dem Ergebnis, dass die Nutzung von kollabo-
rativen Editoren im Bildungs-Umfeld einen positiven Effekt auf die Lernerfahrung und
akademischen Leistungen der Studenten haben kann. Anschließend wird das Konzept
genauer erklärt, aus einem psychologischen Blickwinkel untersucht, und es wird festge-
stellt, dass es Elemente von Collaborative Learning, Social Constructivism, Flipped Class-
room und Team-Based Learning enthält. Des Weiteren wird die Herausforderung des Syn-
chronhaltens von mehreren Kopien des selben Dokuments vorgestellt, gefolgt von ver-
schiedenen Lösungen für dieses Problem in der Form von Algorithmen. Aus diesen Al-
gorithmen wird der Logoot-Algorithmus kombiniert mit der h-LSEQ Allokationsfunktion
ausgewählt für eine beispielhafte Implementierung des erwähnten Konzeptes in Form ei-
nes kollaborativen Texteditors für das Learning Management System Backstage 2. Schluss-
endlich wird die Implementierung detaillierter beschrieben und mögliche Erweiterungen
für das Konzept werden diskutiert.

v

vi

Acknowledgements

Thanks to Prof. Dr. François Bry for the opportunity for this thesis and the helpful feedback
during its making. Thanks to Sebastian Mader for the supervision and support of my work,
the help when problems arose, and allowing me to work with the Learning Management
System Backstage 2 that he is the main developer of.

vii

viii

Contents

1 Introduction 1

2 Related Work 3

3 Concept 7
3.1 Basic Concept . 7
3.2 Exemplary Application of the Concept to Backstage 2 8
3.3 Psychological Foundations of the Concept . 8

4 Collaborative Editing 11
4.1 Simultaneous Editing of a Common Document 11
4.2 Synchronization Algorithms Using Optimistic Replication 12

4.2.1 Operational Transformation . 13
4.2.2 Differential Synchronization . 16
4.2.3 Commutative Replicated Data Types . 18
4.2.4 Logoot . 20
4.2.5 LSEQ . 23
4.2.6 h-LSEQ . 25
4.2.7 Selected Algorithm . 26

5 Implementation 29
5.1 General Procedure . 29
5.2 Components Shared between Client and Server 30

5.2.1 h-LSEQ Data Structure . 30
5.2.2 SimpleSync Data Structure . 31

5.3 Client . 31
5.3.1 CollabStore . 31
5.3.2 Collaborations . 32

5.3.2.1 The Superclass Collaboration 32
5.3.2.2 The Interface ConcreteCollaboration 33
5.3.2.3 A Concrete Collaboration . 33

5.3.3 Editor . 33
5.3.3.1 CollabClime . 33
5.3.3.2 CollabClimeSimple . 34

5.4 Server . 34
5.4.1 Collaboration Socket . 34
5.4.2 Worker . 34

ix

x CONTENTS

5.4.3 Worker Queue . 34
5.4.4 Synchronization Request Queue . 35
5.4.5 Optimization of the Worker . 35

5.5 Extensibility of the System . 36

6 Conclusion and Outlook 37

Bibliography 39

CHAPTER 1

Introduction

Group work in the context of tutorials, courses, or lectures at universities in many cases
involves the production of an artifact, like for example a short essay. The collaborative
editing of such an artifact can be challenging in the situation of most university lecture halls
considering the room layout, as their classic layout consists of rows where the students sit
next to each other making it hard for all group members to see the artifact that is being
produced. This can lead to students trying to orally communicate their input to the solution
to their group members, which, apart from being loud, has several other disadvantages. It
can also lead to every group member producing an artifact on their own followed by a
complex and time consuming merging process of the different solutions. Apart from that,
oral communication is also used for the submission of the results of group work to the
lecturer in the context of university courses.

One of the disadvantages of oral communication of solutions to sophisticated assign-
ments is that the oral transmission of the produced artifact often takes very long, as the
sender has to read or describe his whole solution and the receiver has to reproduce the ar-
tifact, for example by writing down a text, to have a visual representation of it that then
can be processed further. This time needed for the conversion of the artifact into speech
followed often by the reverse conversion back to the original artifact cannot be used to
further refine the solution or to listen to instructions by the lecturer in the case of commu-
nication between group members. In the case of communication between a student and the
lecturer, the time spent communicating solutions to tasks to the lecturer is time that could
not only benefit the members of the group if used for other activities, like in the previous
case, but all students taking part in the course.

Apart from that, the oral transmission of solutions is also error-prone, especially when
small details are sent. An example of such details is the indentation of the lines of code of
a program that could be the solution to a task in a computer science course. If the receiver
of the information notices errors introduced into the artifact, they have to ask for a part or
even the whole artifact to be transmitted again, which takes time that could be used for
educationally more valuable activities. If the receiver does not notice the errors, they will
further process the received information, which can lead to the correction of mistakes that
the student did not make, if the receiver is the lecturer, or the further group work being
based on a flawed artifact, if the receiver is another group member.

As a solution to this problem in the learning process a concept around a collaborative
text editor is presented in this thesis to complement the oral communication in the groups

1

2 CHAPTER 1. INTRODUCTION

and between the students and the lecturer. Students use this editor on their laptops to solve
assignments in group work. The process of collaboration is much easier and more efficient
this way as all team members can always see the current state of the artifact being produced
and edit it as the collaborative editor works in real time. Therefore, less oral transmission
of information is necessary inside the group. When a group work phase of a tutorial is over
or when a group has finished working on a task, the solution is sent to the lecturer, which
eliminates the need for oral communication of solutions to the lecturer and therefore the
presented disadvantages of this process.

The concept of collaborative group work presented in this thesis is not limited to texts as
artifacts being produced in the process. The developed system can also be used for collabo-
rating on different kinds of content that can be linearised (meaning that a total order exists
on the content’s data structure) like tables, for example in economics, or diagrams. Despite
the different requirements concerning the management and synchronization of these types
of content, they could be integrated into the system built in the frame of this thesis. An
example of a special requirement of a content type would be the rule that all fields of a
column of a table have to be filled before the column is sent to the other team members.

In this thesis related work with a focus on publications about the use of collaborative
text editors in education will be examined first, then the proposed concept will be described
in more detail and the psychological foundation of the concept will be explained. After
that the challenge of managing multiple copies of a shared text document on clients will be
described and solutions in the form of multiple classes of algorithms will be presented and
evaluated. Finally the implementation of the presented concept will be outlined.

CHAPTER 2

Related Work

Collaborative writing tools have been the subject of many research papers by scientists
from different fields. The best known collaborative word processing software is the suite
Google Docs, Google Sheets, and Google Slides, a word processor, a spreadsheet and a presen-
tation tool, respectively. The applications are part of a free, web-based software office suite
offered since March 9, 2006 within the Google Drive service [1]. Google Docs1 supports real-
time editing by multiple users, simple sharing of documents via hyperlinks and includes,
in its current version, a chat function that eliminates the need for a separate communication
channel during collaboration [16].

Kessler, Bikowski and Boggs studied in [20] the effects of collaborative writing using
Google Docs on second language learners at a university and found the collaboration in the
student groups successful. The survey indicates the appreciation of the students for the
collaborative writing using the online tool and a feeling of successful collaboration among
team members [20].

Jeong evaluated in [18] the impact of using Google Docs on the collaboration of college
students learning English as a foreign language. She found that most of the students en-
joyed submitting their work via Google Docs, had in general positive attitudes about their
use of Google Docs and saw in Google Docs a platform that could be useful in organizing
their studies. 90% of the participating students enjoyed the experience of getting online
feedback on their work. The concerns voiced in the survey included “reluctance in shar-
ing their writing due to shyness or accidental missing data derived from periodic unstable
situation of the online writing system” [18, p. 5].

Blau and Caspi examined in [8] the differences between sharing and collaborating on
a written assignment using Google Docs. They found that students think that collaborative
editing has a positive effect on the quality of their works. Students seemed to favor shar-
ing of their document over editing and thought that their edits improved the quality of
the documents of their peers while edits of other students of a student’s own document
reduced its quality. The authors also found that edits of a document resulted in lower lev-
els of psychological ownership whereas publishing resulted in higher levels of ownership.
These findings led to the authors’ suggestion that a student’s learning is better fostered by
receiving feedback from other students than by them editing the student’s document.

Zhou, Simpson and Domizi report in [52] on measuring the effectiveness of the use

1https://www.google.de/intl/en/docs/about/

3

4 CHAPTER 2. RELATED WORK

of Google Docs for an out-of-class collaborative writing task by examining the influence of
using Google Docs on the learning experience of the students. Their findings included that
95% of the students saw in Google Docs a useful tool for teamwork. While using the tool
had no significant influence on the students’ grades in the course, most students reported
that Google Docs had positively influenced their group’s collaborative experience.

Suwantarathip and Wichadee analysed in [43] the impact of Google Docs on the collabo-
ration of students outside the classroom, in particular on their writing abilities. They found
a significant difference between the scores of the students using Google Docs and those re-
lying on traditional face-to-face collaboration, indicating a better performance of the users
of Google Docs. Students reported positive attitudes toward collaborative writing and high
collaboration in the groups using Google Docs. Most of the students found the applica-
tion easy to use. The participants did not think that they learned much better but they
nonetheless achieved better test results on the examination. In contradiction to the study
conducted by Blau and Caspi the students did not seem to care for private ownership and
were comfortable with their texts being deleted or edited by others.

Cardoso and Coutinho evaluated in [11] Google Docs in a different setting, a statistics
module in vocational education. 95% of the students reported that they found using Google
Docs pleasant. The participants did not experience major difficulties in using the tool. Fur-
thermore all students found Google Docs to have a positive effect on the learning of mathe-
matics and would use it again. Most experienced the work with the application as motivat-
ing and stimulating and considered it a useful tool for future work. Another finding was
that Google Docs improved the students’ opinion about both statistics and mathematics in
general.

The results of the aforementioned studies have in common that the usage of Google Docs
for learning has a positive influence on the students like a perception of an improved team
work, a better quality of the results of group work and an increased collaboration. In some
cases, using the tool even seemed to have a positive influence on students’ grades. Further-
more, the aforementioned studies report a positive usage experience and more positive
attitudes towards the collaboration process and towards the subject after using the web
application. This leads to the conclusion that GoogleDocs has a positive influence on the
learning process. Issues that the aforementioned studies have revealed include fear of data
loss, shyness to share work, and a lower sense of psychological ownership but there are
contradictory results on this last issue.

Google Docs is not the only real-time collaborative text editing application. Another
well-known tool is Etherpad [44]2, which also allows for live editing of documents in the
browser. Brodahl, Hansen and Hadjerrouit compared Google Docs to Etherpad in a study
among education students [9, 10]. They were not able to verify that Etherpad users have a
more positive attitude to the tool than to Google Docs. Only a minority of the students was
motivated to use the collaborative editing tools and found that the use of the tools increased
the quality of collaboration in the groups but 47% of the students enjoyed commenting
on and editing other students work in their groups. Furthermore a majority of students
reported that the tools did not work as they expected. Qualitative analysis revealed too
large groups as a negative aspect and the ability to work from different places at different
times as a general positive aspect. Most of the reports on editing other students work were
positive, highlighting the advantage of students being able to correct mistakes of other
students. The study concluded that Google Docs and Etherpad open up new possibilities for
communication in collaborative writing.

Chu and Kennedy compared Google Docs to the wiki software Mediawiki which is, among
others, used at Wikipedia. Students used both softwares for group projects and reported a
positive experience with the tools in general. Furthermore, students found Google Docs

2http://etherpad.org/

5

easy to use with a user-friendly layout and while the majority of the participants rated
both Google Docs and MediaWiki as useful knowledge management tools, MediaWiki was
seen as more effective. [19]

Studies comparing Google Docs, Etherpad, and MediaWiki to one another confirmed the
general positive influence of the usage of the tools in collaborative work that has been
found for Google Docs for the other tools. Google’s web application was described as easy
to use. There seemed to be no difference in usage experience between Google Docs and
Etherpad but a slightly more positive feedback on using MediaWiki. Concerns voiced include
too large teams and unfulfilled expectations.

In summary, it can be said that the evaluation of Google Docs and similar tools for learn-
ing is very positive. The use of such tools seems to have a positive impact on students’
working and learning experience. As the goal of this thesis is to develop a collaborative
text editor for usage in an academic setting with, on a basic level, the same functional-
ities as Google Docs and Etherpad, that is, collaboratively adding and removing pieces of
text from a document in real time, I hope to design a tool that will have a similar positive
influence on the students’ work experience.

6 CHAPTER 2. RELATED WORK

CHAPTER 3

Concept

To achieve the goal of solving the problems presented in the introduction by complement-
ing oral communication in group work scenarios, a concept around a collaborative text
editor is introduced in this chapter. Furthermore an exemplary application of the concept
to Backstage 2 is described and the psychological foundations of the concept are examined.

3.1 Basic Concept

The first step in the proposed concept for enhancing teamwork is to divide the participants
of a session, which could for example be a lecture or a tutorial, into teams. The lecturer
specifies the size and number of the teams and the participants are free to join teams that
are not yet full. Once the team creation is completed, the participants work on tasks with
their teams using a collaborative text editor that allows them to edit a document together
in real time, seeing a synchronized text. This tool enables collaboration in teams as all
team members can always see the current state of the team’s work and can contribute to
it, even if the students are sitting side by side in a row in the typical fashion of university
lecture halls. When a team has completed the task it was assigned or the time for working
on the task is over, the teams submit their work, that is the document produced using the
collaborative editor, to the lecturer. This digital submission process eliminates the need to
orally communicate complicated artifacts like long logical formulas or long code. Now the
teacher can compare the submitted solutions and pick individual ones to present so as to
highlight common mistakes or ideal ways to solve the task. The elimination of the time
consuming oral dictation of solutions improves the efficiency of the submission process,
making the lecturer able to present more solutions than possible with the standard oral
submission process. The group work efficiency is improved since students do not have
to use a single piece of paper or laptop for drafting a solution or shout solutions to team
members too far away to see their writing what is likely to lead to submissions of improved
quality. Furthermore, organisational overhead is eliminated giving students more time to
solve the tasks and the lecturer more time to provide assistance or feedback to students.

7

8 CHAPTER 3. CONCEPT

3.2 Exemplary Application of the Concept to Backstage 2

Backstage 21 is a learning management system that provides means to augment lectures,
seminars, and courses with interactive elements to create an optimal learning experience
for the students. The system includes, among other modules, a slide view that is syn-
chronized with the presentation of the lecturer, so that the students can ask and answer
questions about specific slides in real time, and quizzes that can be conducted during the
lectures and evaluated by the lecturer in real time.

At the beginning of the tutorial, the students log into Backstage 2 and join the tutorial
there. The lecturer logs into the system as well, joins the tutorial, and creates multiple teams
for the students. The students can see the list of teams and choose a team to join, ideally
inviting the students sitting next to them into their team. Now the lecturer presents a task
exemplary of a group of tasks and the solution to that exemplary task. This conveys the
students a basic understanding of how to solve tasks of this kind. After that, the students
work on the remaining tasks within their team using the collaborative text editor. Mean-
while the lecturer is available to answer questions on the tasks. The teams submit their
solutions in Backstage 2 when they are ready or when the work period is over. The lecturer
can now see all the submitted solutions in the system and choose which ones to present
using the projector.

3.3 Psychological Foundations of the Concept

The concept of students working together in small groups to solve a problem has a num-
ber of advantages. First, the proposed concept qualifies as an instance of collaborative
learning, which “refers to an instruction method in which students at various performance
levels work together in small groups toward a common goal. The students are responsible
for one another’s learning as well as their own. Thus, the success of one student helps other
students to be successful” [15, p. 22]. Most works that examine collaborative learning are
based on Lev Semyonovich Vygotsky’s research, in which he emphasizes that collaborative
learning is important in helping students to progress through their zone of proximal devel-
opment, that is the space between what the student can achieve on his own and working
together with more skilled partners [46].

There are claims that discussion of thoughts and ideas that takes place in small groups
during group work, like in the proposed concept, leads to improved critical thinking and
more interest in the lessons. There is evidence for these groups engaging in more sophis-
ticated thought processes and being able to remember information longer than students
working alone. There is also evidence for discussions in small teams contributing to make
students more critical. Gokhale conducted a study [15] where he examined whether there
is a significant difference in test scores beween students learning on their own and students
working in groups. He found no significant difference on ‘drill-and-practice’ questions but
significantly higher scores of the students that learned collaboratively on ‘critical-thinking’
questions. Students from the collaborative groups also indicated that the process helped
to bring down their worries about problem-solving, was helpful in improving their under-
standing of the studied subjects and aided their cognitive process. [15]

On a team level, collaborative learning can lead to students questioning their own
points of view as they are confronted with those of others which facilitates learning because
students evaluate and change or stabilize their mental concepts of the topic. Furthermore,
cooperation and the group that the students work in can provide encouragement and so-
cial support for individual members. The study in [5] suggests that collaborative learning

1https://backstage2.pms.ifi.lmu.de:8080/

3.3. PSYCHOLOGICAL FOUNDATIONS OF THE CONCEPT 9

can be even more effective with the help of computer technologies, which validates the
proposed approach that uses a collaborative text editor. [5]

Apart from the classification as collaborative learning approach, the concept proposed
in this thesis also contains elements of social constructivism. The term refers to the position
that the creation of knowledge that takes place in a student “is the product of social inter-
action, interpretation and understanding” [3, p. 245]. An essential element of the social
constructivist approach is therefore the emphasis on the learner instead of the information
that is being transmitted and the view that no knowledge can exist without the mean-
ing the learner gives to it from their experience within a group of peers. Based on this
framework of social constructivism, a number of pedagogical theories have been proposed
that share some principles, one of which being “View learners as active co-constructors of
meaning and knowledge” [3, p. 247]. The roots of this recommendation are that learning is
a social process and the interaction with others plays an essential role in the formation of
knowledge. Interacting not only with a teacher but also with other students gives learners
the opportunity to construct their own understanding of a topic and to self-reflect. These
conversations are based on the theories and knowledge that the students have already ac-
quired, for example in a preceding lecture or in former learning. One of the elements of
the process of knowledge construction that these interactions are particularly useful for is
the assessment of the state of knowledge of the other participants. The assessment makes
it possible to identify topics that need further explanation. As the concept proposed in this
thesis heavily relies on group work, the aforementioned processes, that are desirable for
learning, can take place. [3]

Furthermore the concept proposed in this thesis is also connected to the teaching for-
mat of the flipped classroom. One definition of this format is “interactive group learning
activities inside the classroom, and direct computer-based individual instruction outside
the classroom” [7, p. 5]. Therefore, the proposed approach contains the group learning
component of the flipped classroom concept. Research on the usage of the idea in practice
generally concluded that students’ opinions were positive but there were always some stu-
dents that did not like the pedagogical change [7]. More specifically studies evaluating the
flipped classroom concept in university environments found that students experienced the
new course design as more effective [51], became “more open to cooperative learning and
innovative teaching methods” [40, p. 171], prefered the interactive learning phases over
traditional lectures by a teacher [45]. Apart from that students that took part in flipped
lessons were found to score higher in exams in [36].

The problem the flipped classroom approach tries to tackle according to [2] is the pas-
sive role of students in lectures, which is one of the issues the concept proposed in this
thesis is also focused on. The flipped classroom identifies the solution as active learning
which is defined as the students solving problems to help them understand a concept in-
stead of listening to a traditional lecture. One way of providing a theoretical background
for the flipped classroom concept is Self-Determination theory, which defines three basic
cognitive needs namely competence, autonomy and relatedness, whose satisfaction should
improve students’ motivation. For increasing the intrinsic motivation of a student, a feeling
of relatedness and security is needed in addtion to competence and autonomy. The former
two needs are fulfilled when students actively work on assignments in groups as they feel
more connected to the teacher and their peers this way leading to an increase in intrinsic
motivation. The flipped classroom approach also aims to improve the extrinsic motiva-
tion of learners. Research found that students, who actively participate in the construction
and spreading of knowledge, perceive themselves as more competent than students listen-
ing to conventional lectures. By satisfying the students’ need for competence, the flipped
classroom is likely to generate extrinsic motivation in students. Furthermore, through facil-
itating students’ active involvements in lessons, the flipped classroom creates a space that
makes the formation of learning groups more likely, thereby improving the relatedness the

10 CHAPTER 3. CONCEPT

students feel which again leads to an increase in external motivation. As the concept pro-
posed in this thesis utilizes active learning, it should improve the intrinsic and extrinsic
motivation of learners. [2]

Another educational technique that the concept proposed in this thesis contains ele-
ments of is team-based learning. It is made up of four elements, namely “[s]trategically
formed, permanent teams (...) [r]eadiness assurance (...) [a]pplication activities that pro-
mote both critical thinking and team development (...) [, and] [p]eer evaluation” [25, p. 41]
and aims to change traditional lessons into a space where students assist each other in
learning how to apply learned concepts in practice. The concept proposed in this paper
implements the activities component of team-based learning. The authors of [25, 24] claim
that team-based learning has several advantages for students, one of which is that because
the approach utilizes real teams and not just temporary working groups or individual stu-
dents, the teacher can assign more difficult tasks to the teams, leading to students learning
more by working on harder problems that they could not solve on their own. Although the
concept involving the collaborative text editor does not utilize permanent teams it could
be extended to do so. Temporary working groups are still able to tackle more difficult
problems than individual students are on their own and therefore more efficient learning
occurs than in traditional lectures. Furthermore, a peer evaluation component is not cur-
rently included in the proposed concept but could be easily added in the future as a step in
the process. It could take place before the teacher presents several submitted solutions and
therefore give students the opportunity to compare their perceptions about the quality of
other solutions with the evaluation of these by the teacher. Another way of implementing
peer evaluation would be to add it to the end of the process after the teacher presented
the submitted solutions to provide every student with an evaluation of their solution, even
if it was not reviewed by the teacher in front of the whole course. Another advantage of
team-based learning that the authors of [24] claim is that all students learn to appreciate
the value of working in teams in order to find solutions for difficult problems. Also team-
based learning is a remedy for the low participation levels in traditional lectures because
it encourages students to be a part of the course in a more active way, what has a positive
effect on both the learner and the instructor [24]. Team-based learning has been proven to
have a positive influence on learning in a number of studies. Effects include improved test
scores [22], more participation [38], students being more pleased with their learning expe-
rience [6, 50], and groups as a whole performing better than their best members on their
own [47].

CHAPTER 4

Collaborative Editing

In this chapter problems arising in collaborative text editing are discussed followed by the
presentation of an evaluation of a number of algorithms that represent solutions to those
problems. This evaluation motivates the choice of the synchronization algorithm used to
implement the proposed concept of groupwork using a collaborative text editor.

4.1 Simultaneous Editing of a Common Document

Editing a text document can be broken down to two basic operations, Insert(c, i) and
Delete(i) where c is a character and i is an index in the string that represents the docu-
ment. As the goal of collaborative editing is to enable multiple users to work on the same
document at the same time, these operations need to be scaled to multiple clients. A naive
way to do this is just sending every operation that is executed on a copy of the document
to all other clients, which then re-execute the operation. This works well when the latency
in the network is low, for example in a fast local area network (LAN) as depicted in Fig-
ure 4.1 where the horizontal arrows represent a nearly instant delivery of the messages in
the network. Problems arise in networks with significant latencies as they can lead to the
operations being executed in different orders on different clients. This different execution
order can then result in different states of the document on different clients, although all
operations were executed on all clients. [21, 17]

Figure 4.1: The naive approach to scaling text editing (based on [21])

An example of such a synchronization problem is presented in Figure 4.2. Both copies

11

12 CHAPTER 4. COLLABORATIVE EDITING

start with the same string cat. Then Alice executes the operation delete(0) to delete the
first character of the text on her copy of the document and this operation is sent to Bob.
Concurrently, Bob performs insert(b,0) to insert the character b at the beginning of the
string and his operation is sent to Alice. When Bob’s insert operation is received by Alice
it is executed and produces the expected result bat. Bob receives Alice’s delete opera-
tion and applies it but here the operation does not have the intended effect (to delete the
character c) as Bob’s insert operation has been executed before. The operation produces
the result cat and now the system is in an inconsistent state as all operations have been
executed on all clients but the clients are in different states, or in other words there is a
divergence between the clients. If a serialization protocol is used to ensure that all clients
execute all operations in the same order, for example Bob’s insert operation and then Al-
ice’s delete operation, the same result cat would be obtained on both clients in that case
but that result would not include the intended effect of Alice’s operation as the character c
is still present in the result. [17]

Figure 4.2: An example of synchronization issues in a network with latency (based on [17])

4.2 Synchronization Algorithms Using Optimistic Replica-
tion

Before examining different approaches to synchronization, a few terms have to be defined.
“Any replicated system has a concept of the minimal unit of replication. We call such unit
an object. A replica is a copy of an object stored in a site, or a computer. A site may store
replicas of multiple objects, but we often use terms replica and site interchangeably, since
[many] algorithms manage each object independently” [37, p. 2].

There are two general approaches to the replication of data. The established family of
replication strategies is called pessimistic replication. It tries to create the impression of
editing a single document for the user. There are different ways to achieve this effect but
most of them share a common concept consisting in the prevention of access to replicas of
the data that are not guaranteed to be up to date. Replicas are managed synchronously
during actions and users are not allowed to edit a document during an ongoing update
by another user, as this is the trivial case of a replica not being up to date. Pessimistic
replication delivers good results when there is very little latency and errors only occur
rarely but in environments like the Internet algorithms based on pessimistic replication
perform poorly and have limited availability. [37]

Optimistic replication is a more recent approach but is already used in many services,
for example in the Domain Name System (DNS) on the Internet. It has a fundamentally dif-
ferent approach to concurrent editing as users are allowed to read or write data without the

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 13

guarantee that their replica is up to date. The name of this family of algorithms originates
from the optimistic character of its basic assumption that synchronization issues will only
occur rarely. In algorithms using optimistic replication conflicts are not prevented a priori
but fixed when they occur and operations executed on one replica are immediately sent to
the others in the background. Optimistic replication has a number of advantages over the
pessimistic approach. The most important advantage is that a document synchronized by
means of optimistic replication can be asynchronously edited by the participants meaning
that multiple users can edit the document simultaneously without having to wait for other
users to finish their actions first. Furthermore, documents can be updated instantaneously
with the effect of local actions as those updates are applied preliminarily. This also leads to
documents still being editable, although without receiving updates from the other replicas,
during network outages. Moreover, applications using optimistic replication potentially
scale to a larger number of clients as less synchronization over the network is necessary
because some synchronization mechanisms, like the one that ensures that only one replica
is edited at a time and would be needed for pessimistic replication, can be dropped. [37]

Improving availability in a distributed system often comes at the cost of consistency. Al-
gorithms using a optimistic replication approach have to deal with diverging copies of the
document when a user edits locally and the changes have not been transmitted to the other
replicas and executed there yet, whereas documents that are synchronized in a pessimistic
way are always in sync. Moreover, in optimistic systems conflicts between concurrent ac-
tions can arise which are prevented a priori in their pessimistic counterparts. Because of
these drawbacks, optimistic replication algorithms can only be used in scenarios where
conflicts occuring and copies of the document having different states for limited amounts
of time are acceptable. [37]

An optimistic replication algorithm applies updates the user makes to the document
instantaneously locally and then sends them to the other replicas while always executing
operations received from them in the background. Due to this procedure, optimistic repli-
cation can only guarantee that the different copies of the document will converge even-
tually as they can diverge temporarily. This guarantee is called eventual consistency as
contrasted with the ‘normal’ consistency that pessimistic approaches guarantee. [37]

In the form of synchronization algorithms an array of different concrete solutions for
the problem of keeping multiple copies of a document in sync exists. The best known
approaches are Operational Transformation (OT), Differential Synchronization, and com-
mutative replicated data types (CRDTs) [39].

4.2.1 Operational Transformation

As discussed before, the transmission of the operations on a collaborative document via the
network can result in them arriving at different sites in different orders, possibly leading
to a divergence in the document states. The Operational Transformation approach uses the
concept of optimistic replication with its basic functioning being that operations that have
been executed on a state of the document on one site are transformed so that they can be
applied on the state of a different site resulting in the convergence of the replicas. [13, 34]

Figure 4.3 shows an example of an operation being transformed. Both participants start
with the same string cat being the content of their document. Alice decides to delete the
first character by executing the operation delete(0) and Bob concurrently inserts a b at
the beginning of the string by executing insert(b,0). Alice’s and Bob’s operations are
both applied to their local replicas and then sent to the other site. Bob’s operation arrives
at Alice’s replica and is transformed. The transformed operation is the same as the original
operation Bob sent as his intention to insert the character b at the beginning of the string
is preserved when the operation is left unchanged. When Alice’s operation is received by
Bob’s replica, the system detects that the operation has to be transformed as its intention,

14 CHAPTER 4. COLLABORATIVE EDITING

Figure 4.3: An example of an operation being transformed (based on [12])

deleting the character c, would be lost if it would be applied unchanged. The character
c is at the position 1 in Bob’s copy of the document so the operation is transformed to
delete(1) and the transformed operation is applied.

The process of sending and receiving an operation using Operational Transformation
starts with the generation of the operation at the sender site where it is executed and then,
supplemented by metadata, sent to the other sites. When a site receives the operation, the
metadata is examined to determine whether the sending site has executed operations the
receiving site has not executed yet. If this is the case, the operation is queued. If not, the
receiving site checks if it has executed operations that the sending site has not executed yet.
If so, the operation is transformed using the attached metadata before being applied. [13]

A module of a collaborative editor tasked with Operational Transformation usually con-
sists of two parts: a transformation control algorithm, which is responsible for choosing the
operations that should be transformed against other operations based on their concurrency
relationships, and transformation functions that execute the transformations of operations
based on various parameters. [42]

An evaluation of the speeds of algorithms for real-time collaboration found that the
most representative OT algorithms that do not rely on a central server, GOTO and SOCT2,
perform significantly worse than representative CRDT algorithms. The algorithms using
CRDTs were between 25 and 1000 times faster on average in experiments. These results
are consistent with the average time-complexities of the two OT algorithms [4]. Apart
from their performance, another concern about OT-based algorithms is that most of them
use vector clocks to determine a causal ordering between operations [48, 49, 31]. A vector
clock in a system of n processes is an n-dimensional vector v of non-negative integers that
each process pi holds. The value v[j] represents the logical time at process p j, therefore the
whole vector is pi’s view of the logical global time. Logical time progresses as each process
p j increments v[j] by d (where d > 0) before executing an action. Each message transmitted
in the system is appended with the vector clock v of the sender [33]. The usage of vector
clocks in an algorithm for collaborative editing leads to scaling issues as the size of the
vector v is proportional to the number of participants, leading to more data having to be
sent over the network [48, 49, 31]. Another difficulty arising in peer-to-peer networks is
that a client might not know all other clients and therefore be unable to produce a valid
vector clock [31]. MOT2 is an OT algorithm that does not require vector clocks but assumes
that the transformation functions used in the OT process satisfy Transformation Property 1

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 15

(TP1) and Transformation Property 2 (TP2) as the fulfillment of these properties guarantees
eventual consistency for certain OT algorithms [48, 35]. According to [35, p. 364] and [34,
p. 290, 292] the two properties consist in:

• The transformation function tf yields a transformed version O3 of an operation O2
against an operation O1: tf (O2,O1) = O3

• TP1: For two operations O1 and O2 that have been executed concurrently on the same
document state, tf satisfies TP1 if and only if first executing O1 and then the trans-
formed operation tf (O2,O1) has the same effect as first executing O2 and then the
transformed operation tf (O1,O2). TP1 represents a commutativity-like property of
the transformation function.

• TP2: For three operations O1, O2, and O3, where the pairs O1 and O2, O2 and O3, and
O1 and O3 have each been executed concurrently on the same document state, tf satis-
fies TP2 if and only if “tf (tf (O3,O1), tf (O2,O1)) = tf (tf (O3,O2), tf (O1,O2))” [35, p. 364].
T2 ensures that the transformation of operations along different but equivalent paths
leads to the same operation as a result. Figure 4.4 shows an example of two paths
tf 1(tf 1(r,r2),r

′
1) and tf 1(tf 1(r,r1),r

′
2) that lead to the same operation with tf 1 being the

transformation function.

Figure 4.4: Consistent transformations of an operation r showing TP2 [34, p. 291]

According to [48] the only transformation functions that are both usable for text docu-
ments and satisfy these properties are Tombstone Transformation Functions. These functions
are based on tombstones, meaning that deleted artifacts, like characters, are not removed
from the data structure representing the document but replaced by tombstones [48]. Tomb-
stones represent a significant overhead that degrades performance over time and their re-
moval requires acquiring consensus between the clients in a network, which is an expen-
sive operation [4, 28]. One approach requires a vector clock to track the state of other clients
for save tombstone removal and another tries to make obtaining a consensus easier but in
doing so limits the structure of the network and utilizes an expensive additional algorithm
[28]. Another general issue with the OT family of algorithms is that the approach seems
to be complex and error-prone, as established by Oster, Urso, Molli, and Imine that found
fundamental errors in a number of popular OT algorithms in [30].

In conclusion, the Operational Transformation class of algorithms is not an ideal choice
for an algorithm for a collaborative editing system as it has performance issues related to

16 CHAPTER 4. COLLABORATIVE EDITING

the usage of vector clocks or tombstones and algorithms of this class seem to be overly
complex.

4.2.2 Differential Synchronization

Differential Synchronization (DS) by Neil Fraser is an optimistic replication algorithm that
uses deltas to send as little data over the network as possible and is convergent, mean-
ing that errors, e.g. in applying the changes of one client at another client, do not cause
different copies of the document to diverge. It is also well-suited for unreliable networks
and asynchronous, meaning that the editor the user works in does not have to be locked
because of the algorithm’s operations at any time. The algorithm is suitable for any type
of content, given diff and patch algorithms are defined for that type of data. Changes are
detected by computing the difference between the current and the previous content of the
client resulting in a diff describing them. This diff is then sent to all other clients. [14]

Figure 4.5: An iteration of the basic DS algorithm [14, p. 2]

DS uses a never ending loop of background diff and patch operations. In its most basic
form, as depicted in Figure 4.5, that takes place on one computer between the two docu-
ments Client Text and Server Text, it starts with Client Text, Common Shadow and Server Text
all being equal [14]. One iteration of the loop consists of the following steps [14, p. 3]:

1. The difference between Client Text and Common Shadow is computed.

2. The first step yields a list of changes that have been made to the Client Text.

3. Common Shadow is replaced by Client Text.

4. The modifications are adopted on a best-effort basis, resulting in a patch, a ‘manual’
describing how to apply the changes.

5. The patch is applied to Server Text.

The rest of the iteration consists in the same process being executed in a mirrored way
with the difference that Common Shadow is now equal to the value that Client Text had in
the first half of the iteration. This leads to the diff containing changes to Server Text. An
important feature of DS is that the patch procedure is fuzzy. This means that patches are
applied even if the data has changed between the time the patch was calculated and its

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 17

application time. If a subset of the patch can’t be calculated in step 4, it will show up
negatively in the next iteration’s diff and will be removed from Client Text. [14]

The simple variant of the DS algorithm shown in Figure 4.5 is not suited for networks
with multiple systems and is only intended for showing the functioning of the algorithm,
despite the misleading naming of the components that Fraser admits to in [14]. In order
to adapt it to a client-server scenario the shadow has to be split into two shadows that are
updated independently: Server Shadow and Client Shadow. The concept of the algorithm
remains the same as depicted in Figure 4.6. [14]

Figure 4.6: An iteration of the DS algorithm on two systems [14, p. 3]

Apart from the algorithm itself, Fraser also lists extensions of it addressing issues that
can arise in networks. One of these extensions is the guaranteed delivery method, that queues
edits when packages are lost and resends them until receiving an acknowledgement. It
adresses data corruption, duplicate packages, lost outbound packages, lost return pack-
ages, and out of order packages. [14]

Figure 4.7: The layout of a multi-client network using DS [14, p. 5]

The layout used for communication between two parties in Figure 4.6 can be scaled to
an arbitrary number of clients using a single server as depicted in Figure 4.7. Every oval

18 CHAPTER 4. COLLABORATIVE EDITING

represents an instance of the topology in Figure 4.6. The Server Text is shared between all
instances but each client requires its own Server Shadow. [14]

One issue of DS that Fraser mentions in his paper himself is that diff and patch are com-
putationally expensive operations. Although this problem can be mitigated using heuris-
tics to simplify diff operations and utilizing efficient patch algorithms, DS still puts a signif-
icant amount of stress on the server [14]. Apart from the computational workload, memory
on the server could also be an issue when handling large documents with a large number
of clients as the server needs a separate Server Shadow for each client. Another problem
consists in the continuous execution of the algorithm, even if no changes are made to the
document. Fraser mentions a method to adapt the synchronization frequency to the user’s
editing behavior but the fundamental problem persists [14]. Apart from these performance
issues, there is also the problem of patch errors, meaning cases where the patch algorithm
is not able to incorporate the changes of another party into a user’s document [14]. Fraser
recommends either dropping the problematic patches or asking the user to manually re-
solve the conflict. Neither of these alternatives are satisfying from a usability point of view.
Dropping the patch is the way Fraser’s implementation of DS chooses, as this describes the
mentioned behavior of changes that cannot be applied showing up negatively in the next
diff and being removed from the other party’s document. Furthermore, the guaranteed deliv-
ery method represents an additional safety measure but should not be necessary in networks
using TCP as this package transmission protocol resolves the issues Fraser’s extension of
the algorithm is supposed to fix.

In conclusion, the DS algorithm is not an ideal choice for collaborative editing as it has
performance and usability issues.

4.2.3 Commutative Replicated Data Types

CRDTs are a general approach to collaborative editing. A document exists in the form of
several copies on different clients (replicas) that can be modified independently. After a
user modifies the document, the state of the replicas diverges. Local modifications made
by users are then re-executed at the other replicas, and ultimately every modification is
executed at every replica. Certain properties of the operations in a CRDT ensure that af-
ter executing all actions all replicas are in the same state [39]. To formally define these
properties a few crucial concepts have to be defined first:

• We say that an operation α happened before an operation β if a client executes β after
the same client has executed α [39].

• “Operations are concurrent if neither happens before the other” [39, p. 5, emphasis
added].

• “Two operations α,β commute if, for any state T , execution sequences 〈T ·α ·β 〉 and
〈T ·β ·α〉 are correct states and are equivalent” [39, p. 5, emphasis added].

A CRDT is defined as a data type with the property that all concurrent operations de-
fined for it commute with each other. If operations are replayed in an order respecting
the happened before relation at all sites, the state of all replicas is identical after executing
all operations. Therefore, CRDTs ensure eventual consistency, as proven by Shapiro and
Preguiça in [39]. No additional concurrency control measures, like the transformation of
operations with OT, are necessary [32]. A history of operations or concurrency detection is
not needed either because CRDTs are designed to be commutative [4].

Each CRDT document consists in a linear sequence of atoms. An atom can be a line
of text, a character, or any other immutable value [39]. Users can modify a replica of the
document by executing one of the following operations [39, p. 6]:

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 19

• insert(newPos, newAtom) inserts the atom newAtom at the position newPos.
Atoms with positions smaller than newPos lie left of newAtom and atoms with po-
sitions greater than newPos lie right of newAtom. The ordering of the positions is
determined by the ordering of the position identifiers.

• delete(oldPos) deletes the atom at position oldPos.

The position identifiers have the following properties [39, p. 7]:

• Each position has a unique position identifier.

• A total order < is defined on the position identifiers.

• It is always possible to insert an atom between two existing atoms, as given two
identifiers X ,Z a new unique identifier Y can be generated so that X < Y < Z.

Figure 4.8 shows Alice and Bob editing a document using a generic CRDT. The bold
numbers in the top row of the tables represent unique identifiers for the position of the
characters beneath them. There is a total order on the position identifiers, in this example
represented by the < relation. The exclusive use of even numbers as identifiers in the
example represents the possibility to always generate a position identifier between two
existing position identifiers in a CRDT. Alice and Bob start the editing session with the
same document state. Alice then deletes the character c at the unique position 2 with the
operation delete(2). Bob concurrently decides to add the character b to the beginning
of the text. The CRDT generates a position at the start of the document, left of the character
c with the position 2, which is 0 in this case. The operation to execute Bob’s desired action
then is insert(b,0). Both participants locally apply their operations and then send them
to the other users in the editing session, according to the principle of optimistic replication.
When Bob’s operation arrives at Alice’s replica, the b is positioned in the document string
according to the total ordering of the position identifiers. As 0 < 4 < 6 the new character is
added to the beginning of the string. Upon arrival at Bob’s replica Alice’s delete operation
causes the deletion of the character c, as intended by Alice, although a different character is
at the beginning of the string now. This is possible because Alice’s operation addressed the
character at the unique position 2 and not a position that a new character could have taken
by the time the operation arrives at Bob’s replica, like a conventional index of a character
in a string.

Figure 4.8: Collaborative text editing using a CRDT (based on [12])

20 CHAPTER 4. COLLABORATIVE EDITING

4.2.4 Logoot

Logoot is a CRDT algorithm for collaborative editing systems with good scalability regard-
ing the number of users and edits. It works without tombstones, has a logarithmic com-
plexity relative to the document size, and meets convergence, causality-perservation and
intention-preservation (CCI) criteria. The absence of tombstones leads to the space over-
head being linear relative to the size of the document and no requirement for a garbage
collector. [48]

CCI criteria have been found to be necessary for a working collaborative editing system
[48, p. 3][41, p. 62]:

• Convergence: All replicas are in the same state when all operations have been exe-
cuted at all sites. This includes eventual consistency.

• Causality-preservation: Operations are executed in order according to the happened
before relation at all sites.

• Intention-preservation: The effect of executing an operation is the same at all sites
and its effect does not interfere with the effect of other operations.

The authors of the Logoot algorithm also claim in [48] that it meets the criterion of
numerical scalability meaning that it is able to handle new users or elements without sig-
nificant performance degradation.

As Logoot is a CRDT implementing optimistic replication, its basic functionality con-
sists in the delivery of the modifications a user has made on their replica to all other replicas
where they are re-played leading to a potential temporarily difference between the copies.
The available operations are insert and delete. Like in other CRDTs, Logoot operations
commute which, together with a causal ordering, guarantees convergence. In Logoot’s pro-
posal for a total order between the position identifiers of elements, as required by the CRDT
framework, each is based on a list of integers. [48]

A Logoot document is composed of elements, which are called lines in the original pa-
per but could also be characters or whole paragraphs depending on the desired granularity.
Two empty virtual elements are always present at the beginning and the end of the docu-
ment to ensure that every insert operation consists in inserting a new element between two
existing elements, even if the document is empty or the new element should be positioned
at the beginning or the end of the document [48]. The definitions needed are the following
[48, p. 4]:

• An element is a couple 〈id,data〉 where id is a unique position identifier and data is
the content of the element, for example a character.

• A position identifier is a tuple 〈pos,cs〉where pos= [id1, id2, ...,〈posn,sidn〉] is a position
and cs is the value of the logical clock of the site s. Each position identifier is unique
because the site identifier sidn is unique. The existence of a logical clock at each site
that is incremented when an element is created is assumed by the algorithm.

• “An identifier is a couple 〈pos,site〉 where pos is an integer and site a site identifier”
[48, p. 4].

• “A position is a list of identifiers” [48, p. 4].

A document can also be understood as a tree where each position represents a path
from the root to a leaf [28]. The document axbe is for example represented by the tree in
Figure 4.9.

The total order between position identifiers required by the CRDT framework is de-
fined on Logoot’s equivalent positions, as Logoot’s position identifiers are ordered by their
positions [48, p. 4]:

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 21

Begin a

x

b e End

0 5

7

6 10 MAXINT

Figure 4.9: One possible tree representation of the Logoot document axbe (based on [28])

• Let p = [p1, p2, ..., pn] and q = [q1,q2, ...,qm] be two positions. “p ≺ q if and only if
∃ j ≤m : (∀i < j : pi = qi)∧ (j = n+1∨ p j <id q j)” [48, p. 4]. This equals a lexicographic
comparison of p and q.

• “Let id1 = 〈pos1,site1〉 and id2 = 〈pos2,site2〉 be two identifiers, we get [id1 <id id2] if
and only if pos1 < pos2 or if pos1 = pos2 and site1 < site2” [48, p. 4]. Therefore id1 <id id2
if and only if id1’s integer is smaller than id2’s integer or their integers are equal and
id1’s site identifier is smaller than id2’s.

Deleting an element from a Logoot document is relatively simple: A replica generates a
deletion operation for the desired position and sends it to the other replicas that then delete
the element. Inserting an element into a document is more complicated as it implies the
generation of a new position identifier. Because of the mentioned empty virtual elements or
lines that always exist at the beginning and the end of the document, the case of inserting an
element between two existing elements is the only case to cover. If the element 〈idx,datax〉
is inserted between p = 〈idp,datap〉 and q = 〈idq,dataq〉, the new position identifier idx has to
satisfy idp < idx < idq and therefore the position of idx has to satisfy an equivalent condition
relative to the positions of idp and idq. The authors of Logoot define an algorithm that
generates positions for a number of adjacent lines, as they argue that edits on a document
often insert a series of lines. The algorithm can be found in Figure 4.10, where N is the
number of inserted lines, p and q the positions between which the lines are inserted, and
MAXINT the base of the integers used in the generated positions [48]. The functions used
in the algorithm are [48, p. 4]:

• prefix(p,i) returns an integer where each digit is the integer of the j’th identifier
in the position p for j≤ i. If the position p has less than i identifiers (|p|< i), the result
is filled with zeroes. The returned integer is in base MAXINT .

• constructPosition(r,p,q,s) returns a position [〈int1,sid1〉,〈int2,sid2〉, ...,〈intn,
sidn〉] where inti is the i’th digit of the number r. The effect of this function is that
it generates a new position where each identifier’s integer comes from the identifier
at the same position in r. Each site identifier comes from the identifier at the same
position in either p or q or is set to the value s. The source of the site identifier sidi is
determined according to a set of rules:

1. if i = n then sidi = s

2. if inti = pi.int then sidi = pi.sid

3. if inti = qi.pos then sidi = qi.sid

4. else sidi = s

In order to obtain the shortest possible positions the algorithm in Figure 4.10 first finds
the length of the shortest prefixes of p and q that have the same length and have space for at

22 CHAPTER 4. COLLABORATIVE EDITING

1 funct ion g e n e r a t e L i n e P o s i t i o n s (p , q , N, s) {
2 l i s t := {} ;
3 index := 0 ;
4 i n t e r v a l := 0 ;
5

6 while (i n t e r v a l < N) {
7 index ++;
8 i n t e r v a l := p r e f i x (q , index) − p r e f i x (p , index) ;
9 }

10 s tep := i n t e r v a l /N;
11 r := p r e f i x (p , index) ;
12 f o r (j := 1 to N) {
13 l i s t . add (c o n s t r u c t P o s i t i o n (r + Random(1 , s tep) , p , q , s) ;
14 r := r + step ;
15 }
16 r e turn l i s t ;
17 }

Figure 4.10: Logoot’s algorithm for generating new positions between two existing ones
[48, p. 4]

least N positions between them in lines 6-9, filling p or q with zeroes if one of them or both
are too short. The length of the prefixes is saved in index. Then the maximum distance
between two of the N positions is calculated in line 11. After that in lines 12-16 N identifiers
are generated randomly with a random distance d ∈ [1,step] between each identifier and
the next. The desired positions are generated by adding each identifier to the common
prefix identified in the previous step which yields the list of new positions. The identifiers
are allocated from left to right between p and q. The three steps of generating the new
identifier, constructing the new position, and adding it to the result all happen in line 13 of
Figure 4.10. In the tree representation of the positions in Figure 4.9 the two steps of finding
the shortest common prefix and generating the new positions correspond to finding the
highest possible level in the tree between p and q where at least N nodes can fit in between.
Then that level and the previous higher levels are filled with nodes that lie between p and q.
The distance d between two newly generated nodes is random but limited by d ∈ [1,step].
[48]

As an example on a site with site identifier sidnew a number of N new positions between
the positions p = 〈1,sid1〉 and q = 〈6,sid2〉〈17,sid3〉would be generated in the Set 4.1 if N < 5
or in the Set 4.2 if N ≥ 5 [48, p. 4-5].

{〈i,sidnew〉 | i ∈]1,6[} (4.1)

{〈1,sid1〉〈i,sidnew〉 | i ∈ [0,MAXINT]}∪
{〈 j,sidnew〉〈i,sidnew〉 | i ∈ [0,MAXINT], j ∈]1,6[}∪
{〈6,sid2〉〈i,sidnew〉 | i ∈ [0,17[}

(4.2)

A random allocation function is used for the identifier generation to prevent different
replicas from concurrently generating the same integers for the newly generated identifier
that will be added to the end of the common prefix and form a new position in line 13 of
Figure 4.10. This is not a problem itself as there is still an ordering between the two con-
currently generated positions as the newly generated identifiers can be ordered by their
unique site identifiers and therefore the positions can be ordered. The problem arises when

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 23

one of the two sites that concurrently generated the same integer wants to insert a new
element between the previously generated positions as a longer position, or a correspond-
ing new level in the tree representation of the document, has to be created. This could be
necessary because there are no free integers between the previously generated ones and an
ordering by site identifier is no option either as both are already in use for that integer. The
longer positions increase the overhead of the algorithm and therefore it aims to prevent the
concurrent generation of the same integers. [48]

Line deletion or insertion operations from other replicas can be applied in logarithmic
time relative to the number of lines as the approach uses binary search to find the position
where the line should be inserted or removed. The removal of lines from a document is safe
as the total order between the remaining lines is not altered. Positions of removed lines can
be reused. [48]

The authors of the Logoot algorithm conducted a series of experiments on modifications
of Wikipedia pages and found that despite the theoretically infinite length of the positions
for each element the algorithm can work effectively in practice. Logoot’s overhead was
lower than those of tombstone based approaches in most tests. [48]

In a later paper [49], the authors of Logoot proposed an improved version of the algo-
rithm. One of the changes they made was a new algorithm for the allocation of the integers
in the elements’ identifiers, which replaces randomIntBetween in line 14 in Figure 4.10.
This new strategy chooses the integers randomly within a boundary and thereby limits the
distance between two consecutive integers and therefore the corresponding identifiers. In
doing so the Boundary Strategy groups the integers at the beginning of the available inter-
val, near the preceding identifier, and leaves space for future insertions at the end which
leads to shorter positions as this remaining space can be used for inserting new elements
without extending the length of their positions. [49, 28]

4.2.5 LSEQ

Logoot belongs to the class of CRDTs that use variable-size identifiers1. Logoot’s positions
can grow indefinitely, as a result of which the algorithm’s worst case space complexity
is linear relative to the number of insert operations. This worst case can appear in the
improved version of Logoot proposed in [49] if a user inserts characters at the beginning
of the document and the calculated identifiers in the positions are always assigned the
smallest available integers. Speaking in terms of the tree representation of the document,
this means that for every new element a new level in the tree has to be created and therefore
the space complexity is linear to the number of insert operations [28, 4]. A representation
of such a tree can be seen in Figure 4.11 which shows the worst case Logoot structure after
adding the characters c, b and a each at the start of the document resulting in the text abc
and an unbalanced tree. If the performance deteriorates too much, the CRDT might have to
employ a garbage collection algorithm that re-balances the positions, which can be directly
translated to re-balancing the tree. Such algorithms use consensus protocols, requiring an
unanimous decision in the network, with these protocols being costly. As this worst case
scenario related to the insertion of characters at the beginning of the document suggests,
Logoot’s Boundary Strategy works best when users generally insert text at the end of the
document as explained below. [28]

Making an assumption about the user’s editing behavior is common for a CRDT. It
makes allocating space for elements more efficient but leads to performance issues if the
user does not behave as predicted. The authors of [28] therefore demand that an allocation

1A position in the Logoot algorithm can be classified as an identifier according to LSEQ’s and h-LSEQ’s defi-
nition of the term. As the application of LSEQ and h-LSEQ to Logoot will be evaluated in the following, Logoot’s
terms will be used apart from the term ‘variable-size identifier’ that describes a class of algorithms.

24 CHAPTER 4. COLLABORATIVE EDITING

Begin

a

b

c End

0

0

1

1

1 MAXINT

Figure 4.11: Tree representation of the worst case growth of positions in a Logoot document
abc (based on [28, 26])

function embedded in a CRDT should be independent of the way the user edits the docu-
ment. They see a fundamental problem in a CRDT trying to predict the user’s actions as it
only has knowledge about past and current operations and deducing future actions from
this information is very complex. Another requirement for the allocation function in [28] is
that it should have a sub-linear upper bound regarding its space complexity. This would
limit the size of the positions to an acceptable length and make costly re-balancing proto-
cols unnecessary. The polylogarithmic sequence (LSEQ) allocation function aims to meet
the enumerated requirements [26]. LSEQ has two components, base doubling and strategy
choice. [28]

Regarding the tree representation of the document in Figure 4.9, the base of a level in
the tree refers to the arity of the nodes on that level. This means that a node on the level
can have a maximum of base children. Regarding Logoot’s identifiers, the base defines
the range [0,base] an identifier’s integer is chosen from using the allocation strategy if the
existence of other identifiers does not limit that range in any way. The goal is to adjust
the base to the number of insert operations in that part of the document for an effective
allocation of identifiers. [28]

A high base value results in a bigger range to choose integers for Logoot’s identifiers
from, which can be cost-effective if many insertions are performed in that part of the doc-
ument as the spatial overhead of adding a new identifier to the positions, respectively
adding a new level to the tree, is bigger than the overhead caused by longer integers in
the identifiers. Vice versa, a small base value can also be profitable if only few insertions
are performed. A constant base value, as the original and refined versions of Logoot use it,
prevents the allocation function from taking full advantage of one of the boundary strate-
gies described below as the available range to choose the integers from is limited. This
results in longer spatially expensive positions and new levels in the tree representation of
the document having to be created respectively. The goal resulting from these observations
is to adjust the base according to the number of insertions. As the CRDT cannot calculate
this number beforehand a good strategy is to begin with a small value for the base when
the sequence is empty and then double it when a significant number of insertions occurs
at a position, that is when a new level is created in the document tree. This leads to an
exponential growth of the number of available identifiers on a certain level and makes up
LSEQ’s base doubling component. [28]

LSEQ stores the base for each depth and reuses it when a new level on that depth is
created. Regarding the tree representation, the arity of a node is determined by its depth
and is always twice the arity of the parent node, with the root node’s arity being base. In

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 25

the original Logoot model the base is MAXINT on all levels. The base doubling compo-
nent of LSEQ operates under the assumption that the creation of a new level in the tree
representation of the document was caused by all integers on the previous level being in
use. If the allocation strategy does not saturate the space before triggering the creation of
a new level, the size of the positions grows rapidly as LSEQ doubles the base with each
new depth leading to the identifiers on the newly created levels taking up more and more
space. LSEQ’s strategy choice component mitigates the effects of this worst case. [28]

The strategy choice component of LSEQ consists in randomly choosing a strategy among
boundary+ and boundary- for each level and saving that choice. If a new position be-
tween two other positions p and q is created using boundary+, which is Logoot’s refined
allocation strategy, the allocation function positions it between the preceding position p
and p+boundary. Vice versa, if the boundary- strategy is used, the new position is placed
between q− boundary and the succeeding position q. Therefore, boundary+ leaves space
at the end of the position space and hence is better suited for users inserting text at the
end of the document as the remaining space can be used to create new positions for these
insertions without having to create a new level in the tree representation of the document
respectively creating longer positions with more identifiers. Inversely, boundary- is bet-
ter suited for users inserting text at the beginning of the document. Both keep the space
complexity low if the user behaves as predicted by the strategy. The algorithms have op-
posing weaknesses and neither of them is an adequate choice for an allocation function on
their own. [28]

The reasoning behind LSEQ’s two components is that, as it is too complex to predict the
user’s editing behavior, the wrong strategy will be chosen for some levels of the document
tree, but in the end the rewards will compensate the losses. Eventually, LSEQ will choose
the right strategy, and as the base is doubled at each new level the gains of using the right
strategy on some of the levels will more than outweigh the previous losses. [28]

The authors of LSEQ conducted a series of experiments on a single machine to evaluate
the contribution of each part of the algorithm to its behavior in extreme cases and average
setups. They concluded that the base doubling or random strategy choice components
were not able to accomplish the desired sub-linear space complexity on their own, neither
in the extreme nor the average case, but the combination of LSEQ’s components was able
to achieve the goal in both setups. The experiments were conducted using Logoot as a
base with LSEQ as allocation function, as Logoot has the best performance of variable-size
identifier CRDTs for sequences according to [4]. [28]

In conclusion, it can be said that LSEQ is a suitable allocation function for collaborative
editing as it is adaptive, can handle various editing behaviors, and accomplishes sub-linear
space complexity. It does not require a garbage collection protocol or any other way to
re-balance the document tree. LSEQ achieves this performance using base doubling on
each level of the tree in conjunction with random strategy choice between boundary+ and
boundary−. [28]

4.2.6 h-LSEQ

LSEQ lowers the space-complexity of variable-size identifiers to a sub-linear level in local
experiments, but it fails to achieve this goal in networks of multiple users with delivery of
operations with latency. In those setups, LSEQ cannot guarantee an efficient allocation of
the positions as without any agreement between the clients it is possible that they use op-
posing allocation strategies on a level of the document tree, which can lead to a quadratic
growth of the positions. The authors of [27] observed the desired complexity in experi-
ments using LSEQ when only a single user edited the document but the worst case when
the document was edited by a group of 10 users. An agreement between all clients about
which allocation strategy to use on each level is needed to restore LSEQ’s original perfor-

26 CHAPTER 4. COLLABORATIVE EDITING

mance by preventing them from using antagonist allocation strategies. As LSEQ’s goal
was to forgo protocols for establishing consensus in the network, a solution without addi-
tional exchange of information between the clients has to be found. The modification to
LSEQ called h-LSEQ consists in replacing LSEQ’s random strategy choice component by a
strategy choice based on a hash function. The benefits of this approach are that it provides
consensus between the clients without the overhead of an additional costly protocol or ad-
ditional calculation and that it can take the place of the random strategy choice without
changes to the rest of the LSEQ algorithm being necessary. [27]

On a single client choosing a strategy for the insertion of a new element into the CRDT’s
sequence takes three steps using h-LSEQ: The first step is to calculate the depth the new
element will be added at. After that, the strategy choice function h is called with the depth
as parameter. It returns the identifier of either the boundary+ or the boundary− allocation
strategy. This strategy identifier is then used to call the respective allocation function and
retrieve a position for the new element. The strategy identifiers returned by the strategy
choice function h follow a uniform distribution and therefore h does not favor any of the
two allocation strategies. To achieve the desired consensus about the strategy choice be-
tween the clients, h-LSEQ requires an additional step compared to LSEQ before users can
collaborate: The hash function h has to be initialized with a secret that all clients in an edit-
ing session share in order to get a unique hash function for the session. This results in each
client’s hash function returning the same allocation strategy identifier for a specified depth.
[27]

On the network level, all users in one editing session use the same function h initial-
ized with the same secret and the same mapping of the return value of h to an allocation
strategy. This results in all instances of h-LSEQ choosing the same allocation strategy for
the same depth. Therefore, a consensus has been established between the members of an
editing session about which strategy to use at a specified depth. With the existence of this
consensus the issue of clients utilizing opposing allocation strategies and hence not using
the position space efficiently and increasing the space-complexity has been solved. [27]

The authors of [27] tested the efficiency of h-LSEQ in a series of experiments and con-
firmed that the addition of a hash function to the LSEQ framework suffices to achieve
a sub-linear upper bound on the space complexity of a variable-size identifier sequence
CRDT that was not reachable without the implicit a priori consensus about which alloca-
tion strategy to use at a depth. An evaluation of the impact of latency on the space com-
plexity revealed that it had a positive influence on the length of positions and therefore is
no concern in systems based on h-LSEQ. [27]

In a separate paper [26] the authors proved that LSEQ achieves a sublinear upper bound
regarding the messages sent over the network with acceptable time and space complexity.
They also developed a collaborative decentralized text editor that runs in the browser and
used it to validate the described characteristics of h-LSEQ and their scalability using an
experimental set-up with 600 connected browsers. [26]

In summary, h-LSEQ is an improved allocation strategy that scales LSEQ’s sub-linear
upper bound on space-complexity from a single user to a multiple user setting. It is not
negatively affected by latency and does not require additional protocols compared to LSEQ.
h-LSEQ can be used safely in collaborative editors to achieve competitive performance and
scalability. [27]

4.2.7 Selected Algorithm

For the implementation of the collaborative text editor a CRDT was used as Operational
Transformation algorithms have performance issues related to their use of vector clocks
or tombstones and seem overly complex and Differential Synchronization also has perfor-
mance issues and usability problems. Logoot was chosen as it is a fast CRDT according

4.2. SYNCHRONIZATION ALGORITHMS USING OPTIMISTIC REPLICATION 27

to benchmarks in [4] and it was combined with h-LSEQ as allocation function as it limits
Logoot’s memory consumption.

28 CHAPTER 4. COLLABORATIVE EDITING

CHAPTER 5

Implementation

This chapter gives an overview over the implementation of the collaborative text editor and
challenges that arose during the implementation process. As the collaboration functionality
is embedded into Backstage 2, the project’s development stack was used, which is based
on JavaScript as programming language with Node.js1 as server-side runtime environment,
RethinkDB2 as database, and React3 as front-end library.

5.1 General Procedure

The collaboration process starts with the lecturer logging into Backstage 2, creating teams
which the students in the tutorial can join and then unlocking the collaborative editor for
certain tasks that users can switch between. After the teams have been created, students
can join a team as long as the maximum capacity of the team has not yet been reached. A
user can only be a member of one team at a time, which they have to leave to join a new
one and that they are taking part in during all tasks. Upon joining a team, the user can now
participate in collaboration with their team members on tasks the lecturer has unlocked the
collaborative editor for.

When the user Alice in Figure 5.1 edits the content of the editor, her actions are sent to
a collaboration, which is an object that contains or is connected with all logic necessary for
collaborative editing of one task. The collaboration passes the user’s action on to the data
structure used for that task. In most cases the data structure will send a message to the
server via the collaboration and the CollabStore after processing the operation, as shown
in Figure 5.1. The class CollabStore acts as a central sender and receiver of messages to
or from the server. On the server the operation is received, forwarded to the clients of users
that are members of the same team as the sender, and permanently saved in the database.

When the operation is received by the CollabStore on another user’s client, as shown
in Figure 5.2, it is passed on to the collaboration for the task the operation was executed on.
Now the collaboration sends the operation to the data structure which will then initiate an
update of the collaborative editor via the collaboration. This will lead to Alice’s operation
appearing in Bob’s editor.

1https://nodejs.org/
2https://www.rethinkdb.com/
3https://reactjs.org/

29

30 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Simplified procedure for sending an edit to other users on a client

Figure 5.2: Simplified procedure for receiving an edit from another user on a client

5.2 Components Shared between Client and Server

Despite the collaborative editor being partly run on clients and the server, there is a portion
of code that both client and server use of which the data structures are the most important
part. The client needs access to the data structures to be able to save operations executed
by the user and send data to the other users so that their clients can integrate the operations
executed remotely. The server needs access to the data structures to save all operations in
the database that it receives from a client and forwards to the sender’s teammates’ clients.

5.2.1 h-LSEQ Data Structure

As a new implementation of the chosen data structure, Logoot with h-LSEQ as an alloca-
tion function, would have been out of the scope of this thesis, an existing implementation4

of Logoot combined with LSEQ was adapted. This implementation uses an adapted ver-
sion of Logoot’s algorithm for generating new positions between two existing ones (see
Listing 4.10), which works analogous to the presented algorithm but only generates one
position at a time. This algorithm was then combined with an h-LSEQ allocation func-
tion. Furthermore, the chosen implementation uses a two-dimensional array to store the
positions instead of a linear array as proposed for the original Logoot algorithm. The pur-
pose of this changed storage data structure is to resemble the structure a text document
traditionally has in text editors divided into lines and columns, and therefore making the
interaction of the editor and the data structure easier and less computationally expensive.
An example of such an interaction is the insertion of a character by the user. The Ace editor

4https://github.com/conclave-team/conclave

5.3. CLIENT 31

used in the collaborative text editor fires a callback when the user inserts a character with
the row and column the character is inserted at as parameters. Using the two-dimensional
array as positions storage, the positions of the characters before and after the inserted one
can be found much easier than using a linear array [12]. After these positions have been
found, a position for the new character between them can be calculated and the character
can be saved in the data structure.

5.2.2 SimpleSync Data Structure

The SimpleSync data structure which, like the CRDT data structure, is designed for text
documents, serves as an example of how new synchronization algorithms can be added
to the system. Instead of working with insert and delete operations like the CRDT based
data structure, it stores and sends the complete document to the other users when a change
is made. It works using a simple ‘last edit wins’ rule by sending the whole text of the
document to the other users when the local user changes it, where it overwrites the text of
the recipient.

5.3 Client

The client’s main task is to show the collaborative editor to the user, to record interactions
of the user with the editor and to process those by saving them in the local data structure
and sending messages to the server containing those actions. Vice versa, the client is also
responsible for receiving other users’ actions, integrating them into the local data structure
and updating the collaborative editor. Apart from the collaboration with others itself, the
client also provides ways for the user to attend to other tasks like joining or leaving teams
and submitting the solution of a task to the server.

5.3.1 CollabStore

The class CollabStore is a central part of the client. Its main responsibilities are:

• Management of teams (creation, deletion, adding/removing a user from a team).

• Sending messages to the server in order for it to execute actions like sending an oper-
ation to the other clients or sending synchronization data.

• Receiving messages from the server, potentially processing the result and then pass-
ing the received data to the class responsible for handling this kind of message. Most
of the messages are passed to a collaboration.

• Managing a list of collaborations, one for each task.

To be able to manage the teams a user can join to collaborate with other users in that
team, the CollabStore has a list with the data of the available teams and provides meth-
ods that other classes can call to execute actions related to these teams. This functionality is
not included in the collaborations as it operates on a higher level in the sense that the teams
are not specific to a single collaboration. The CollabStore receives updates for the team
list from the server that it applies. Other classes and components can subscribe to updates
of the team list and for example update the user interface when they happen.

The CollabStore also acts as the central access point for communication with the
server for all components related to collaborative editing. While the task of sending mes-
sages to the server mostly consists in adding extra information to the payload, like the ID of
the team the user is a member of, the receiving and distribution of messages to the classes

32 CHAPTER 5. IMPLEMENTATION

that are responsible for processing them is more complex. The server maintains a map of
collaborations for this purpose.

5.3.2 Collaborations

A collaboration acts as an access point to all logic necessary for a successful real-time collab-
oration of the client on a task, either positioned in the collaboration itself or in other classes
it delegates tasks to. An editor gets the collaboration for the task it is in after a request
to the CollabStore. From then on the editor only interacts with the collaboration which
executes or delegates all operations related to the client’s side of the collaboration on the
task. The responsibilities of the collaboration include:

• Synchronization management.

• The voting to submit the solution to a task to the server and therefore to the lecturer.

• Receiving messages related to the synchronization of a task from the CollabStore,
processing those messages and calling methods of the editor to update its content
based on the received data.

• The editor calls the collaboration’s methods when the user executes an action in the
editor and the collaboration then saves these operations in the data structure it has a
reference to and generates a message that is sent to the other clients via the server so
that they can ‘replay’ the operation.

A concrete collaboration extends the superclass Collaboration and implements the
interface ConcreteCollaboration.

Figure 5.3: Class diagram for the collaboration classes/interface without methods or at-
tributes

5.3.2.1 The Superclass Collaboration

The superclass Collaboration, as depicted in Figure 5.3, contains common features that
are identical for all collaborations. These features include:

• Management of the collaboration’s synchronization status and therefore preventing
synchronization issues.

• Management of the user’s vote in submitting the collaboration’s content to the server.
This includes storing and changing the user’s vote status (for/against submitting the
solution to the task to the server) and determining whether a majority for submitting
a solution exists.

5.3. CLIENT 33

• Attributes all collaborations need like a reference to the editor the user uses. These
include the information needed to authenticate with the CollabStore.

• Communication with the server. Messages for the other clients are passed to the
CollabStore.

5.3.2.2 The Interface ConcreteCollaboration

All collaborations, like CRDTCollaboration in Figure 5.3, have to implement the interface
ConcreteCollaboration. The interface ConcreteCollaboration contains, in addi-
tion to the methods a concrete collaboration should inherit from the class Collaboration,
methods every collaboration is required to have but whose implementation can differ be-
tween the collaborations. The responsibilities of some of these methods include processing
synchronization data from the server, processing operations from another client, sending
operations to the server via the CollabStore, and resetting the collaboration to a specified
state.

5.3.2.3 A Concrete Collaboration

A concrete collaboration implements or inherits all methods specified by the interface
ConcreteCollaboration. Apart from that it also has unique methods for the combi-
nation of data structure and editor it manages. Examples of such methods are ones that
the editor calls to pass actions of the user to the collaboration. In the case of the class
CRDTCollaboration those methods are processLocalInsert and processLocal-
Delete as that collaboration is designed to transmit insert and delete operations. The class
SimpleSyncCollaboration however, which also implements the interface Concrete-
Collaboration, only has a method processLocalContentChange as it is designed
to always operate on the whole text in the editor instead of insert and delete operations of
characters.

5.3.3 Editor

As mentioned in the description of the collaboration, an editor is specifically designed for
one concrete collaboration and therefore for one type of collaborative activity. In this im-
plementation editors for collaboration on text were implemented but other applications
like collaborative editing of tables, diagrams, or slides are also possible. Two editors were
implemented for two different synchronization concepts.

5.3.3.1 CollabClime

CollabClime is the editor used with the CRDT-based synchronization strategy explained
earlier. It extends the existing editor Clime that is used by Backstage 2. Clime is based on
the Ace5 editor which the added collaboration functionality mostly directly interacts with.
The CollabClime editor captures insertions and deletions of characters by the user and
then calls matching methods on its collaboration which uses the Logoot data structure with
h-LSEQ as the allocation function. If a remote user inserts or deletes a character, the collabo-
ration will eventually call a method of the local user’s ClimeEditor to insert or delete the
character locally.

5https://ace.c9.io/

34 CHAPTER 5. IMPLEMENTATION

5.3.3.2 CollabClimeSimple

CollabClimeSimple is the editor used with the SimpleSync data structure and is also
based on the Clime editor and therefore also on the Ace editor. Unlike the CollabClime
editor the CollabClimeSimple editor only generally captures when the user changes
the text in the editor and sends the whole updated text to its collaboration via a method call.
The collaboration that uses the described SimpleSync data structure then proceeds to send
the updated content to the server. Apart from the different editor, collaboration and data
structure, all other components of the system are used by this editor the same way as by
the CollabClime editor which shows the adaptability of the system.

5.4 Server

The main task of the server component is to forward messages it receives from a user to
that user’s teammates. Apart from that, it also saves every operation it forwards in the
database which allows it to send the current state of a data structure to a user, for example
when they reload the web page. Furthermore, this permanent storage of operations allows
the system to retain the state of data structures even if all users leave a team, and the data
structure therefore is no longer present on any client, or the server is rebooted and the data
structure is erased from the server’s RAM.

5.4.1 Collaboration Socket

The object collaborationSocket is the main server component of the collaborative ed-
itor. It is responsible for receiving messages from the client, sending messages back to the
sending client or to other clients, and processing the received messages. The purposes of
the messages include the creation of teams, joining or leaving a team, requesting synchro-
nization with the server, voting to submit a solution to a task, and sending an operation
executed in a collaborative editor to other clients.

5.4.2 Worker

The worker is responsible for storing every operation a client executes safely in the database
on the server. This functionality was outsourced from the main thread to prevent block-
ing the receiving and sending of messages from/to the clients with the long procedure of
restoring a data structure’s state from the database, replaying an operation using that data
structure, and saving the state back to the database. The worker is implemented using a
Worker Thread using Node.js’ worker module, which “provides a way to create multiple envi-
ronments running on independent threads, and to create message channels between them”
[29].

5.4.3 Worker Queue

The class WorkerQueue is responsible for ensuring that the worker only executes one op-
eration at a time in the order the messages containing the operations arrived on the server.

If a message arrives and the queue contains more than one operation, the new operation
is added to the end of the queue. If there is no operation in the queue, the new operation
is added to the queue and then sent to the worker. The intuitive way of handling the
queue would be to directly send the operation to the worker if the queue is empty without
adding it. This approach results in the possibility of more operations being sent to the
worker while it is already processing an operation, because there is no indicator for the
worker being busy that prevents more operations to be sent to it. After the worker receives

5.4. SERVER 35

an operation, it proceeds as described above: It gets the data structure’s state from the
database, initializes a data structure with it, executes the received operation on the data
structure and saves the updated state of the data structure back to the database. After that,
the worker sends a message to the main thread, which then tells the WorkerQueue to send
the next operation to the worker. The WorkerQueue removes the first operation from the
queue and sends the next operation in the queue to the worker.

The class WorkerQueue was introduced because the initial implementation of the wor-
ker had significant consistency issues. Operations were sent to the worker when the main
thread received them. The worker then proceeded to get the state for the data structure the
operation should be applied on from the database. Problems arose when a large number
of operations were sent to the worker consecutively. It received the operations from the
main thread in the correct order but then started to process them in a non-deterministic
order. Together with some of the database queries returning stale states of the database
this led to problems like characters being inserted at the same position a previous character
was inserted at and therefore operations being lost. The result was that an invalid data
structure was saved in the database, which was sent to the clients for example when they
reloaded the page.

5.4.4 Synchronization Request Queue

The class SyncRequestQueue maintains a queue of synchronization requests. The queue
is saved in the form of a map which stores for every combination of team ID and task ID a
queue of synchronization requests for the task and a counter that represents the number of
operations on the task that are currently in the WorkerQueue.

When a synchronization request arrives, the main thread sends it to the SyncRequest-
Queue which checks whether an entry for the combination of team ID and task ID exists in
the map. If there is no such entry, the synchronization request is answered immediately but
if an entry exists, meaning that there are currently operations for the requested task in the
WorkerQueue, the synchronization request is added to that entry’s queue. When an opera-
tion arrives at the server from a client, the WorkerQueue notifies the SyncRequestQueue
and the counter of the matching entry in the map is increased or a new entry is created.
When an operation is removed from the WorkerQueue, the SyncRequestQueue is also
notified and the counter of the entry of the task the operation was executed on is either
decreased or if it is 1, which indicates that the executed operation was the last one in the
queue for that task, all synchronization requests in the queue of the entry are executed and
the entry is deleted from the map.

The class SyncRequestQueue was introduced as a fix for an issue that arose when
a user sent a large number of operations to the server, for example by inserting a long
text into the editor from their computer’s clipboard. The large number of requests the
worker thread had to process kept it busy for a significant amount of time. If another
user’s client sent a synchronization request to the server for the same task, the worker was
still busy processing operations for, for example because that user just joined the team, it
could happen that the request was answered with outdated synchronization data. This
happened if the main thread processing the synchronization request accessed the database
but the worker was not done storing operations in the database yet for the requested task
and therefore the main thread retrieved an outdated state from the database that would
later be overwritten.

5.4.5 Optimization of the Worker

Another issue that arose in connection with the worker was that the worker was slow in
processing and saving the operations in the database compared to the speed the main

36 CHAPTER 5. IMPLEMENTATION

thread forwarded the operations to the clients with. In combination with the SyncRe-
questQueue this could lead to users having to wait a long time before their clients could
synchronize with the server. To solve this problem the worker keeps references to all data
structures it has already executed operations on in a map. After executing operations on
one of them it saves the data structure’s new state in the database to permanently store it.
This significantly decreased the waiting time for the processing of synchronization requests
as in many cases the worker can reuse a data structure from the map and therefore from
RAM instead of retrieving it from the database which is slower.

5.5 Extensibility of the System

As the addition of the SimpleSync data structure with the matching editor shows, adding
a new data structure or a new type of collaboration is easy. To add a new type of content
to collaborate on, like for example tables instead of text, a data structure would have to
be provided and it would have to support a few basic features needed for it to work with
the worker on the server. Then a new collaboration would have to be added that extends
the Collaboration class, implements the ConcreteCollaboration interface and can
interact with the new editor by receiving operations from it and applying remote opera-
tions to its content. Furthermore, a new editor would have to be added that shows the new
type of content and can communicate with the new collaboration it will get a reference to.
Apart from that, the existing structures for communication, storage in the database, team
management, voting to submit a solution and synchronization could be used. As adding a
new type of content to collaborate on is the most sophisticated change that can be made to
the system, replacing or adding other parts of it is also easy.

CHAPTER 6

Conclusion and Outlook

In this thesis a concept to complement oral communication during group work in univer-
sity courses with a collaborative text editor was introduced after examination of reports
about the usage of such editors in teaching. Results of the examination of these usages
included perception of better teamwork among the students [20, 52], better quality of re-
sults [43], and a positive attitude towards the editor [18] and the taught subject [11]. An
exemplary application of the concept to the learning management system Backstage 2 was
described and the psychological foundations of the concept examined. Furthermore, the
challenges connected to the simultaneous editing of a common document were demon-
strated and two general solutions to these challenges, optimistic replication and pessimistic
replication, were compared. Optimistic replication was chosen because it allows for better
availability of the shared document and the weaker consistency guarantees it offers are
sufficient for the application in group work at a university. After that, a number of al-
gorithms from the optimistic replication category were compared leading to the choice of
Logoot combined with h-LSEQ as an allocation function as the algorithm for an exemplary
implementation of the proposed concept to enable collaboration on texts. Lastly, the way
the proposed concept was implemented and embedded in Backstage 2 was described.

The implementation, as provided as part of this thesis, does not contain all elements of
the proposed concept, as the component that allows the lecturer to view and present the
solutions submitted by the students has not been implemented. An extension of the exist-
ing implementation with such a component would complete the system and allow for its
usage in practice. Furthermore, modifications to the system to make it suitable for work
on homework assignments without the students sitting next to each other in the classroom
could be made. These modifications could include adding some mean of communication
for students working on the same task from home, like a live chat, and changing the way
users join teams to only allow invited users to join a team. This would prevent students
from only joining another team to copy its solution to a task and then leave the team again.
Another possible change to the system would be making the teams permanent. This would
make deeper connections between the members of a team possible and could lead to them
helping each other with learning and the tasks they are presented with. Based on these,
permanent team gamification elements, like a competition between teams throughout the
semester where they are awarded points for excellent solutions to tasks, could be inte-
grated. In [23] a similar gamification element focusing on quizzes was built to improve
the students’ participation in lectures and an evaluation revealed that it accomplished that

37

38 CHAPTER 6. CONCLUSION AND OUTLOOK

goal. Apart from that, anonymised collaboration protocols could be created with the con-
sent of the users. These protocols could be made available to developers of synchroniza-
tion algorithms to be used in benchmarks. As they represent real time communication, this
could lead to the tests being closer to the usage of the algorithms in practice than tests us-
ing the edit history of Wikipedia articles [48, 28] or synthetic operations [27] that are used in
some benchmarks. Additionally, a user study could be conducted to examine the reception
of the current or an extended version of the system by the students. It could be used to
verify that the usage of the collaborative editor during group work has a positive impact
on the students’ work and to gather information about how to further improve the system.

Bibliography

[1] Google Docs, Sheets, and Slides, https://en.wikipedia.org/wiki/Google_
Docs,_Sheets,_and_Slides, downloaded on 03.09.2018.

[2] Lakmal Abeysekera and Phillip Dawson, Motivation and cognitive load in the flipped
classroom: definition, rationale and a call for research, Higher Education Research & De-
velopment 34 (2014), no. 1, 1–14.

[3] Paul Adams, Exploring social constructivism: theories and practicalities, Education 3-13 34
(2006), no. 3, 243–257.

[4] Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and Pascal
Urso, Evaluating CRDTs for Real-time Document Editing, 11th ACM Symposium on Doc-
ument Engineering (Mountain View, California, United States) (ACM, ed.), September
2011, pp. 103–112.

[5] Maryam Alavi, Computer-Mediated Collaborative Learning: An Empirical Evaluation, MIS
Quarterly 18 (1994), no. 2, 159–174.

[6] Stuart J. Beatty, Katherine A. Kelley, Anne H. Metzger, Katherine L. Bellebaum, and
James W. McAuley, Team-based Learning in Therapeutics Workshop Sessions, American
Journal of Pharmaceutical Education 73 (2009), no. 6, 100.

[7] Jacob Lowell Bishop and Matthew A. Verleger, The flipped classroom: A survey of the
research, ASEE National Conference Proceedings, Atlanta, GA, vol. 30, 2013, pp. 1–18.

[8] Ina Blau and Avner Caspi, What type of collaboration helps? Psychological ownership,
perceived learning and outcome quality of collaboration using Google Docs, Proceedings of
the Chais conference on instructional technologies research, vol. 12, 2009, pp. 48–55.

[9] Cornelia Brodahl, Said Hadjerrouit, and Nils Kristian Hansen, Collaborative writing
with Web 2.0 technologies: education students’ perceptions, Journal of Information Tech-
nology Education: Innovations in Practice 10 (2011), 73–103.

[10] Cornelia Brodahl and Nils Kristian Hansen, Education students’ use of collaborative writ-
ing tools in collectively reflective essay papers, Journal of Information Technology Educa-
tion: Research 13 (2014), 91–120.

[11] Lurdes Cardoso and Clara Pereira Coutinho, Web 2.0 learning environments in vocational
education: a study on the use of collaborative online tools in the Statistics module, Proceed-
ings of Society for Information Technology & Teacher Education International Con-
ference 2011 (Nashville, Tennessee, USA) (Matthew Koehler and Punya Mishra, eds.),

39

40 BIBLIOGRAPHY

Association for the Advancement of Computing in Education (AACE), March 2011,
pp. 3155–3164.

[12] conclave team, Conclave - A private and secure real-time collaborative text editor, https:
//conclave-team.github.io/conclave-site/, downloaded on 28.04.2018.

[13] Clarence A. Ellis and Simon J. Gibbs, Concurrency control in groupware systems, Acm
Sigmod Record, vol. 18, ACM, 1989, pp. 399–407.

[14] Neil Fraser, Differential synchronization, Proceedings of the 9th ACM symposium on
Document engineering, ACM, 2009, pp. 13–20.

[15] Anuradha A. Gokhale, Collaborative Learning Enhances Critical Thinking, Journal of
Technology Education 7 (1995), no. 1.

[16] Google, Google Docs - create and edit documents online, for free., https://www.google.
com/intl/en_us/docs/about/, downloaded on 14.05.2018.

[17] Abdessamad Imine, Michaël Rusinowitch, Gérald Oster, and Pascal Molli, Formal de-
sign and verification of operational transformation algorithms for copies convergence, Theo-
retical Computer Science 351 (2006), no. 2, 167–183.

[18] Kyeong-Ouk Jeong, A Study on the Integration of Google Docs as a Web-based Collaborative
Learning Platform in EFL Writing Instruction, Indian Journal of Science and Technology
9 (2016), 39.

[19] Samuel Kai-Wai Chu and David M. Kennedy, Using online collaborative tools for groups
to co-construct knowledge, Online Information Review 35 (2011), no. 4, 581–597.

[20] Greg Kessler, Dawn Bikowski, and Jordan Boggs, Collaborative writing among second
language learners in academic web-based projects, Language Learning & Technology 16
(2012), no. 1, 91–109.

[21] Ravern Koh, Collaborative text editing with Logoot, https://medium.com/
@ravernkoh/collaborative-text-editing-with-logoot-a632735f731f,
downloaded on 17.06.2018.

[22] Paul G. Koles, Adrienne Stolfi, Nicole J. Borges, Stuart Nelson, and Dean X. Parmelee,
The Impact of Team-Based Learning on Medical Students’ Academic Performance, Academic
Medicine 85 (2010), no. 11, 1739–1745.

[23] Sebastian Mader and François Bry, Gaming the Lecture Hall: Using Social Gamification to
Enhance Student Motivation and Participation.

[24] Larry K. Michaelsen and Michael Sweet, The essential elements of team-based learning,
New Directions for Teaching and Learning 2008 (2008), no. 116, 7–27.

[25] , Team-based learning, New Directions for Teaching and Learning 2011 (2011),
no. 128, 41–51.

[26] Brice Nédelec, Pascal Molli, and Achour Mostéfaoui, A scalable sequence encoding for
collaborative editing, Concurrency and Computation: Practice and Experience (2017).

[27] Brice Nédelec, Pascal Molli, Achour Mostéfaoui, and Emmanuel Desmontils, Concur-
rency Effects Over Variable-size Identifiers in Distributed Collaborative Editing, Document
Changes: Modeling, Detection, Storage and Visualization (Florence, Italy), CEUR
Workshop Proceedings, vol. 1008, September 2013, pp. 0–7.

BIBLIOGRAPHY 41

[28] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils, LSEQ:
An Adaptive Structure for Sequences in Distributed Collaborative Editing, 13th ACM Sym-
posium on Document Engineering (DocEng) (New York, NY, USA), DocEng ’13, ACM,
September 2013, pp. 37–46.

[29] Node.js Foundation, Node.js v10.8.0 documentation, https://nodejs.org/dist/
latest-v10.x/docs/api/worker_threads.html, downloaded on 13.08.2018.

[30] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine, Proving correctness
of transformation functions in collaborative editing systems, Research Report RR-5795, IN-
RIA, 2005.

[31] , Data Consistency for P2P Collaborative Editing, ACM Conference on Computer-
Supported Cooperative Work - CSCW 2006 (Banff, Alberta, Canada), Proceedings of
the 2006 20th anniversary conference on Computer supported cooperative work, ACM
Press, 2006, pp. 259–268.

[32] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Let, ia, A commutative
replicated data type for cooperative editing, 29th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2009) (Montreal, Québec, Canada), IEEE Com-
puter Society, June 2009, pp. 395–403.

[33] Michel Raynal and Mukesh Singhal, Logical Time: A Way to Capture Causality in Dis-
tributed Systems, Research Report RR-2472, INRIA, 1995.

[34] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser, An Integrating,
Transformation-oriented Approach to Concurrency Control and Undo in Group Editors, Pro-
ceedings of the 1996 ACM Conference on Computer Supported Cooperative Work
(New York, NY, USA), CSCW ’96, ACM, 1996, pp. 288–297.

[35] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee, Replicated abstract
data types: Building blocks for collaborative applications, Journal of Parallel and Dis-
tributed Computing 71 (2011), no. 3, 354 – 368.

[36] Kristie W. Ruddick, Improving chemical education from high school to college using a more
hands-on approach, Ph.D. thesis, 2012, p. 111.

[37] Yasushi Saito and Marc Shapiro, Optimistic Replication, Technical report, Microsoft Re-
search, 2003.

[38] Nachiket Shankar and R. Roopa, Evaluation of a modified team based learning method for
teaching general embryology to 1styear medical graduate students, Indian Journal of Medi-
cal Sciences 63 (2009), no. 1, 4–12.

[39] Marc Shapiro and Nuno Preguiça, Designing a commutative replicated data type, Research
Report RR-6320, INRIA, 2007.

[40] Jeremy F. Strayer, How learning in an inverted classroom influences cooperation, innovation
and task orientation, Learning Environments Research 15 (2012), no. 2, 171–193.

[41] Chengzheng Sun and Clarence Ellis, Operational Transformation in Real-time Group Ed-
itors: Issues, Algorithms, and Achievements, Proceedings of the 1998 ACM Conference
on Computer Supported Cooperative Work (New York, NY, USA), CSCW ’98, ACM,
1998, pp. 59–68.

42 BIBLIOGRAPHY

[42] David Sun, Steven Xia, Chengzheng Sun, and David Chen, Operational Transformation
for Collaborative Word Processing, Proceedings of the 2004 ACM Conference on Com-
puter Supported Cooperative Work (New York, NY, USA), CSCW ’04, ACM, 2004,
pp. 437–446.

[43] Ornprapat Suwantarathip and Saovapa Wichadee, The Effects of Collaborative Writing
Activity Using Google Docs on Students’ Writing Abilities, Turkish Online Journal of Ed-
ucational Technology-TOJET 13 (2014), no. 2, 148–156.

[44] The Etherpad Foundation, Etherpad, http://etherpad.org, downloaded on
14.05.2018.

[45] Roxanne Toto and Hien Nguyen, Flipping the Work Design in an industrial engineering
course, 2009 39th IEEE Frontiers in Education Conference, IEEE, oct 2009.

[46] Mark Warschauer, Computer-Mediated Collaborative Learning: Theory and Practice, The
Modern Language Journal 81 (1997), no. 4, 470–481.

[47] Warren E. Watson, Larry K. Michaelsen, and Walt Sharp, Member competence, group in-
teraction, and group decision making: A longitudinal study, Journal of Applied Psychology
76 (1991), no. 6, 803–809.

[48] Stéphane Weiss, Pascal Urso, and Pascal Molli, Logoot: A Scalable Optimistic Replication
Algorithm for Collaborative Editing on P2P Networks, 29th IEEE International Confer-
ence on Distributed Computing Systems - ICDCS 2009 (Montreal, Canada), 2009 29th
IEEE International Conference on Distributed Computing Systems, IEEE, June 2009,
pp. 404–412.

[49] , Logoot-Undo: Distributed Collaborative Editing System on P2P Networks, IEEE
Transactions on Parallel and Distributed Systems 21 (2010), no. 8, 1162–1174.

[50] Wayne Roy Wilson, The use of permanent learning groups in teaching introductory account-
ing, Ph.D. thesis, Michael F. Price College of Business, 1982.

[51] Sarah Zappe, Robert Leicht, John Messner, Thomas Litzginer, and Hyeon Woo Lee,
”Flipping” the classroom to explore active learning in a large undergraduate course, ASEE
Annual Conference and Exposition, Conference Proceedings, June 2009.

[52] Wenyi Zhou, Elizabeth Simpson, and Denise Pinette Domizi, Google Docs in an Out-of-
Class Collaborative Writing Activity, International Journal of Teaching and Learning in
Higher Education 24 (2012), no. 3, 359–375.

