

Bachelor of Science Thesis

Institut für Informatik

Ludwig-Maximilians-Universität München

State of the Church-Turing Thesis

Kilian Parigger

matriculation number: 10409103

date: 11.11.2019

supervised by: Professor Dr. Francois Bry

Contents

1 Introduction ... 1

2 History of the Church-Turing Thesis .. 2

2.1 The Concept of the Algorithm and Computation .. 2

2.2 The Entscheidungsproblem ... 4

2.3 Different Approaches to Formalise the Concept of the Algorithm .. 7
2.3.1 Recursive Functions .. 7
2.3.2 The Turing Machine .. 10

2.4 The Development of the Church-Turing Thesis .. 11

3 Epistemological State of the Church-Turing Thesis ... 12

4 Quantum Computing and the Church-Turing Thesis .. 14

4.1 Brief History of Quantum Computing .. 14

4.2 Basic Notions of Quantum Computing ... 16

4.3 Quantum Computation ... 18
4.3.1 The Qubit .. 19
4.3.2 Manipulating Qubits ... 20
4.3.3 Quantum Register ... 21
4.3.4 Measurement of Quantum registers .. 25

4.4 A Model of Quantum Computing ... 26

4.5 Deutsch’s Algorithm .. 28

4.6 Quantum Computing and the Church-Turing Thesis ... 30

4.7 Future Prospects ... 30

5 DNA Computing ... 32

5.1 History of DNA Computing .. 33

5.2 Foundations of DNA Computing .. 34

5.3 The Adleman Experiment .. 36

5.4 DNA Computing Models and the Church-Turing Thesis .. 40

5.5 Future Prospects ... 40

6 Summary and Conclusion ... 41

7 References ... 43

8 Statement of Originality .. 45

1

1 Introduction
In 1936, the mathematician Alan Turing published a landmark paper called On Computable

Numbers, With an Application to the Entscheidungsproblem.1 In his paper, Turing was aiming

to solve a very significant mathematical problem, called Entscheidungsproblem. While doing

so, he developed a quite simple mathematical formalism which is now known as Turing

machine. Though very simply constructed, the Turing machine proved to be very powerful.

In fact, Turing argued very convincingly that almost every mathematical function can be

successfully computed by a Turing machine. What was even more remarkable is the fact that

Turing brought up his idea at a time where almost no one knew what 20 years later

computers would be.

Nowadays, many years later, computers are ubiquitous and have been continuing their

triumph for decades. But although researchers and engineers all over the world keep

developing and constructing computers that are still more elaborate and faster than the

ones they developed and constructed before, none of these new machines is, in principle,

more powerful than the Turing machine which was proposed in 1936.

This remarkable and astonishing result is captured by the Church-Turing Thesis. The thesis

states what is principally computable. There are various formulations of the Thesis, for

example Every function that can be computed by the idealized human computer, which is to

say, can be effectively computed, is Turing-computable2 or Every Algorithm can be expressed

by means of a program in some (not necessarily currently existing) Turing-equivalent

programming language3 or every effective computation can be carried out by a Turing

machine4.

This bachelor thesis aims to investigate the state of the Church-Turing Thesis. In doing so,

the object of study will be what one could call the original Church-Turing Thesis, as it was

mentioned above in various versions. There are, however, many other so-called Church-

Turing Theses that are referring to other phenomena. Consider, for example, the so-called

1 Petzold, 2008, p. 64.
2 Copeland, Shagrir, 2019, p. 67.
3 Copeland, Shagrir, 2019, p. 68.
4 Copeland, 2017.

2

physical Church-Turing Thesis: Every function computed by any physical system is Turing-

computable5 which is, again, out of the scope of this bachelor thesis.

To investigate the state of the Church-Turing Thesis, first the historical development of the

thesis is described. In doing so, the intuitive concept of algorithm is explained and different

approaches to formalize that concept are presented. Second, the epistemological state of

the thesis is discussed. In doing so, it is asked what reasons do exist that justify the thesis.

Third, new computing models are presented: quantum computing and DNA computing. It is

analysed whether these new technologies are challenging the Church-Turing Thesis. In doing

so, these new computing models are quite extensively presented. Fourth, this thesis is

concluded by a summary of its investigation and outcomes.

2 History of the Church-Turing Thesis
The purpose of this chapter is to describe the history of the Church-Turing Thesis. First, the

intuitive concept of the algorithm and computation is described. Second, it is briefly

analysed how David Hilbert’s Program, a promising formalistic attempt that would use

formal axiomatic systems to eliminate all the paradoxes from mathematics6 gave rise to

various attempts to formalize the concept of the algorithm. Third, two of these attempts are

presented. Fourth, it is explained how those attempts led to the formulation of the Church-

Turing Thesis.

2.1 The Concept of the Algorithm and Computation
Today, it’s well known that computers are somehow using algorithms to somehow compute

things. But what exactly is an algorithm? What does it mean to compute something? An

informal description of these two concepts is provided now, the formal description will be

given later.

Even in ancient times, people were confronted with a certain class of problems. For

example, they had to solve problems like this: Calculate the greatest common divisor of 8

5 Copeland, Shagrir, 2019, p. 74.
6 Robič, 2015, p. viii.

3

and 12 or find every prime number less than 100. Such problems can be represented by two

sets 𝐴 and 𝐵 and a function 𝑓: 𝐴 → 𝐵, where 𝐴 contains all the possible input data to the

problem, 𝐵 contains all the possible solutions to the problem and 𝑓 maps the input data to

the corresponding solution of the problem.7 How does one solve these types of problems,

or, more specifically, how does one calculate the value 𝑓(𝑥) for a certain 𝑥?

As time went on, people developed a certain type of procedures, that governed the process

of solving those problems. Such procedures consist of a finite set of unambiguously

formulated instructions. To solve a certain problem, one had to just mechanically follow

these instructions. No such thing as intuition or ingenuity is needed to obtain the requested

result.

The Euclidean algorithm is a telling example for that sort of procedure. If you take a closer

look at it, you can derive certain characteristics, that describe that sort of procedure more

closely:

- it is specified by a finite set of instructions

- the calculation proceeds in a finite sequence of steps, eventually halting with the

answer

- it proceeds in a deterministic, completely fashion without any recourse to human

intelligence or random devices.8

So, we can come up with a first, informal definition of the algorithm:

Definition (Algorithm Intuitively): An algorithm for solving a problem is a finite set of

instructions, that lead the processor, in a finite number of steps, from the input data of the

problem to the corresponding solution.9

Here, some further explanations are required. The processor, that carries out the algorithm

is either a human, or a mechanical or electronically or any other device capable of

mechanically following, interpreting and executing instructions, while using no self-reflection

7 Robič, 2015, p. 3.
8 Soare, 2016, p. 3.
9 Robič, 2015, p. 4.

4

or external help.10 The instructions have to be simple and well-defined, so that the processor

can follow them without referring to additional help. Each time the algorithm is carried out,

a computation is done, so you can say, a computation is a single execution of the algorithm.

The input data must be reasonable11 in a way, that it can mapped to a corresponding

solution of the problem.12

So far, the intuitive concept of the algorithm and computation has been explained. What is

most important to remember is that even the intuitive concept of the algorithm concerns an

instruction to calculate the value of a function. That’s way later on, when one tries to

formalize the intuitive concept, it is always about a certain class of functions that is

concerned by the formalization.

2.2 The Entscheidungsproblem
The intuitive, informal understanding of the concept of the algorithm remained

unchallenged for a very long time. But then, suddenly, during the 20th century scientists

started to reconsider what they were thinking about the concept of the algorithm so far.

They were doing so to solve a certain problem, part of the so-called Entscheidungsproblem,

which is now briefly explained.

At the beginning of the 20th century, the mathematician Georg Cantor laid, by developing his

set theory, the foundations of modern mathematics.13 Unfortunately, after a while,

mathematicians discovered that the set theory contained some serious logical paradoxes. A

common example for such a paradox is the Russel’s Paradox, discovered by the British

mathematician and logician Bertrand Russel. Russel detected that in Cantor’s set theory it

was possible to construct a set that at the same time contains itself and doesn’t contain

itself. Thus, Russel found a paradox, embedded in Cantor’s set theory. In general, a theory

contains a paradox, if there’s a logical statement where both, the statement and its negation

can be deduced. This is a serious problem because then, any statement can be deduced in

that theory, so the theory becomes useless.14

10 Robič, 2015, p. 4.
11 Ibid., p. 4.
12 Ibid., p. 4.
13 Ibid., p. 9.
14 Ibid., p. 18.

5

In order to preserve the set theory as the basic foundation of mathematics, many

mathematicians tried to revise the set theory in such a way that there won’t be any

paradoxes anymore. The most sophisticated and systematic attempt to do that was made by

the famous German mathematician David Hilbert. During the 1920s Hilbert proposed a

promising formalistic attempt that would use formal axiomatic systems to eliminate all the

paradoxes from mathematics15. This attempt, the so-called Hilbert Program, consisted of the

following goals:

(i) find an f.a.s. [formal axiomatic system] 𝑀 capable of deriving all the theorems of

mathematics;

(ii) prove that the theory 𝑀 is semantically complete;

(iii) prove that the theory 𝑀 is consistent;

(iv) construct an algorithm that is a decision procedure for the theory 𝑀.16

It would go far beyond the scope of this bachelor thesis to describe Hilbert’s Program in

detail. Instead, we will focus on the fourth goal of it, since this particular part of the program

initiated the quest for a formalisation of the algorithm and eventually led to the foundation

of Computability Theory.

The fourth goal of Hilbert’s Program is also known as Entscheidungsproblem. It is now briefly

described.

Let ℱ be a syntactically complete and consistent theory, based on first order logic. Let 𝐹 be a

formula in ℱ. Proving either 𝐹 or ¬	𝐹 could be very complicated and, thus, would require

lots of creativity or ingenuity. However, since ℱ is syntactically complete, there definitely

exists a proof for either 𝐹 or ¬	𝐹. What if there was some effective procedure, that could for

each 𝐹 in ℱ automatically and during a finite amount of time decide, whether 𝐹 or ¬	𝐹 is

true. The procedure would be called effective, since it could decide for any formula 𝐹 in ℱ

whether 𝐹 or ¬	𝐹 is true. If ℱ is a theory where such a procedure exists, then ℱ is called

decidable. A decidable theory allows you, at least in principle, to derive every theorem of

15 Ibid., p. viii.
16 Ibid., p. 53.

6

that theory without referring on creativity or ingenuity. The propositional calculus, for

example, is a decidable theory.17

After the mathematician and logician Kurt Gödel had published the results of his famous two

incompleteness theorems18, Hilbert’s Program was shattered. Although relying on formal

axiomatic systems could avoid logical paradoxes, Gödel proved that this comes at a very high

price: The mathematics developed in this way suffers from semantic incompleteness and the

lack of a possibility of proving its own consistency.19 20

Even though the second and third goal of Hilbert’s Program turned out to be unachievable,

the first and the last goal remained achievable. Especially the last goal, constructing an

algorithm that is a decision procedure for the theory 𝑀, kept scientists interested. Spurred

on the results of Gödel’s incompleteness theorems, they tried to prove that there is no such

algorithm.21

In order to do so, they first had to face another problem: When Hilbert was formulating the

fourth goal of his program, construct an algorithm that is a decision procedure for the theory

𝑀, he had the intuitive concept of the algorithm in mind: An algorithm for solving a given

problem is a recipe consisting of a finite number of instructions which, if strictly followed,

leads to the solution of the problem.22 So if one wanted to prove that there exists such an

algorithm, it would be sufficient to first construct that algorithm, then check whether it

meets the requested conditions (consisting of a finite number of instructions etc.) and finally

show that it solves the problem. But proving that a certain algorithm doesn’t exist would be

much more intricate, since this would force one to show that each of the infinite possible

recipes doesn’t meet the wanted conditions. In order to achieve that one would have to find

some characteristics that are only meet by algorithms in general. After having found such

characteristics, one would finally be able to mathematically prove that none of the possible

17 Robič, 2015, p. 51.
18 Gödel. 1931, p. 173 ff.
19 Robič, 2015, p. 63.
20 Ibid., p. 63.
21 Ibid., p. 71.
22 Ibid., p. 70.

7

recipes would meet the conditions required. Such a definition would be called a model of

computation.23

So, the scientists started thinking about what such a model of computation could possibly

look like. They were guided by looking for some appropriate, well known examples. As a

result, three different approaches were pursued: modelling the computation after functions,

after humans and after languages.24 These approaches included such diverse ideas like

Turing Machines, the Lambda Calculus, Recursive Functions, Post Machines etc. Two of these

ideas will now be described.

2.3 Different Approaches to Formalise the Concept of the Algorithm
Now, two different approaches to formalise the concept of the algorithm are presented:

Recursive functions and Turing machines. Each concept is first briefly described on a rather

informal level, then, the formal definition will be presented.

2.3.1 Recursive Functions
While describing the intuitive concept of the Algorithm, we discovered that there is a certain

kind of problems that can be represented by two sets 𝐴 and 𝐵 and a function 𝑓: 𝐴 → 𝐵,

where 𝐴 contains all the possible input data to the problem, 𝐵 contains all the possible

solutions to the problem and 𝑓 maps the input data to the corresponding solution of the

problem. So, solving this kind of problems would mean that you would have to calculate, for

some 𝑥 ∈ 𝐴, the value 𝑓(𝑥). But what does it mean to calculate the value of a function

𝑓: 𝐴 → 𝐵? Or what does it mean, if a function is computable?

In order to get an answer to these questions, it’s quite convenient to focus on the simplest

functions you could possibly think of. These functions are called total numerical functions

𝑓:	ℕ0 → ℕ, where 𝑘 ≥ 1. A total numerical function 𝑓 associates to every k-tuple

(𝑥4, … , 𝑥0) ∈ ℕ0 exactly one natural number called the value of 𝑓 at (𝑥4, … , 𝑥0) and

denoted by 𝑓(𝑥4, … , 𝑥0).

23 Robič, 2015, p. 71 f.
24 Ibid., p. 72.

8

If you look for a definition of the total numerical functions, you have to keep in mind two

requirements:

(i) Completeness Requirement: the definition should include all the “computable”

total numerical functions, and nothing else.

(ii) Effectiveness Requirement: the definition should make evident, for each such

function 𝑓, an effective procedure for computing the value 𝑓(𝑥4, … , 𝑥0). Here an

effective procedure is defined to be any finite set of instructions written in any

language that

a. completes in a finite number of steps;

b. returns some answer, that is, some natural number;

c. returns the right answer, that is, the value 𝑓(𝑥4, … , 𝑥0); and

d. it does so for all instances of the problem, that is, for any (𝑥4, … , 𝑥0) ∈ ℕ0.25

One approach to meet these two requirements was pursued via the theory of recursive

functions. The idea that led to the definition of the recursive functions was originated from

Gödel. In his second incompleteness theorem, Gödel introduced three initial functions

𝜁: ℕ → ℕ, 𝜎:ℕ → ℕ and 𝜋:0: ℕ0 → ℕ (called zero, successor and projection function) and two

rules of construction, called composition and primitive recursion which allow to construct

new functions from the initial ones and previously constructed ones. These functions are

called primitive recursive functions.26

Now the question was, whether the primitive recursive functions would meet the

completeness and the effectiveness requirement. Let’s start with the later one. For

computing the value of a primitive recursive function, would there be an effective procedure

to do that?

Definition: The class of the primitive recursive functions is the smallest class 𝒞 of functions

such that the following hold:

25 Robič, 2015, p. 70.
26 Ibid., p. 70.

9

(i) The successor function 𝑆(𝑥) = 𝑥 + 1 is in 𝒞

(ii) All constant functions 𝑀?
@ (𝑥4, 𝑥A, … , 𝑥@) = 𝑚 for 𝑛,𝑚 ∈ ℕ are in 𝒞

(iii) All projections (or identity) functions 𝑃:@(𝑥4, 𝑥A, … , 𝑥@) = 𝑥: for 𝑛 ≤ 1, 1 ≤ 𝑖 ≤ 𝑛

are in 𝒞

(iv) (Composition or substitution.) If 𝑔4, 𝑔A, … , 𝑔?, ℎ are in 𝒞 then 𝑓(𝑥4, 𝑥A, … , 𝑥@) =

ℎI𝑔4(𝑥4, 𝑥A, … , 𝑥@), … , 𝑔?(𝑥4, … , 𝑥@)J is in 𝒞 where the 𝑔: are functions of

𝑛	variables and ℎ is a function of 𝑚 variables

(v) (Primitive recursion or just recursion.) If 𝑔, ℎ ∈ 𝒞 and 𝑛 ≥ 0 then the function 𝑓

defined below is in 𝒞: 𝑓(𝑥4, … , 𝑥@, 0) = 𝑔(𝑥4, … , 𝑥@)	𝑓(𝑥4, … , 𝑥@, 𝑦 + 1) =

ℎI𝑥4, … , 𝑥@, 𝑓(𝑥4, … , 𝑥@, 𝑦)J where 𝑔 is a function of 𝑛 variables and ℎ a function

of 𝑛 + 2 variables.27

It took, however, not very long, until some researchers discovered functions that couldn’t be

computed by any primitive recursive function. The most famous of such functions was

suggested by Ackermann and is called Ackermann function.28 This problem was solved by

Kleene in 1936. He added another construction rule to the ones proposed by Gödel. The new

construction rule was called 𝜇-operator and is defined below:

If 𝑥O = 𝑥4, … , 𝑥@, Θ(𝑥O, 𝑦) is a partial recursive function of 𝑛 + 1 variables and we define

Ψ(𝑥O) to be the least 𝑦 such that Θ(𝑥O, 𝑦) = 0 and Θ(𝑥′, 𝑧) is defined for all 𝑧 < 𝑦, then Ψ is

a partial recursive function of 𝑛 variables.29

Together with the new construction rule, the class of functions is called recursive. These

class of function seemed to contain any constructible total numerical function, such that it

seemed reasonable to claim the following:

Model of Computation (Gödel-Kleene Characterization)

- An algorithm is a construction of a recursive function.

- A computation is a calculation of a value of a recursive function that proceeds

according to the construction of the function.

27 Weber, 2012, p. 51.
28 Ibid., p. 52 f.
29 Ibid., p. 54.

10

- A computable function is a recursive function.30

2.3.2 The Turing Machine
In 1936, 24 years old mathematician Alan Turing presented a model of computation. In his

ground-breaking paper On computable numbers, with an application to the

Entscheidungsproblem, he first introduced a rather simple mathematical formalism, now

called Turing Machine, and then argued why this formalism fully comprises the intuitive

concept of computability.31

While he was developing the concept of the Turing Machine, Turing was first guided by the

way humans carry out calculations on paper and then abstracted from it. He concluded that

such human calculators usually read and write symbols, look at different positions on the

paper and hold some information in their mind. They apply a certain number of rules to that

information, which is based on what they have seen and done before and what they are

currently seeing. According to these simple elements of a human calculation process, he

came up with the Turing Machine, a mathematical formalism, representing these

elements.32

A Turing Machine is some kind of an idealized computer. It basically consists of two

elements:

- A (potentially) infinite tape, which is divided into sequentially arranged squares.

Each square can contain exactly one symbol of a predefined alphabet.

- A head, which reads from the tape and writes on the tape (possibly replacing text

already present on the tape), moves back and forth on the tape and is controlled by a

certain program.

Additionally, there exist a finite alphabet of symbols, a finite amount of internal states and a

finite number of rules of calculation that are applied based on the current internal state and

the symbol being read.33

30 Robič, 2015, p. 74.
31 Weber, 2012, p. 43 f.
32 Ibid., p. 43 f.
33 Ibid., p. 44.

11

A Turing machine can be formally described as follows:

A	deterministic	Turing	machine	is	given	by	a	7 − Tupel	M = (Z, Σ, Γ, δ, zq,�, E).	

Whereas

• Z	expresses	the	finite	set	of	states,

• Σ	expresses	the	set	of	input	symbols,

• Γ	 ⊃ 	Σ	expresses	the	set	of	tape	alphabet	symbols	

• δ ∶ Z	 × 	Γ	 → Z × 	Γ	 ×	{L, R, N}	expresses	the	transition	function,

• zq 	∈ Z	expresses	the	initial	state,

• �	 ∈ 	Γ	expresses	the	blank	symbol	and

• E	 ⊆ Z	expresses	the	finite	set	of	final	states34

Due to Turing’s very intuitive approach many scientists were convinced that the Turing

Machine correctly represents what was known as the intuitive concept of computability. Up

to the present day, the Turing Machine plays, especially due to its simplicity, a major role in

computability theory. This leads to the following:

Model of Computation (Turing’s Characterization):

- An algorithm is a Turing program.

- A computation is an execution of a Turing program on a Turing machine.

- A computable function is a Turing-computable function.35

2.4 The Development of the Church-Turing Thesis
After developing the lambda Calculus, now considered as another form of formal description

of the algorithm, mathematician Alonzo Church was convinced that every computable

function was computable using the lambda Calculus. This was called Church-Thesis. Church

tried to convince Gödel, at that time considered as major scientific figure in formal logic, of

34 Schöning, 2008, p. 73.
35 Robič, 2015, p. 82.

12

his idea, but Gödel wasn’t convinced. Later on, Church could prove that the lambda calculus

is equivalent to the concept of general recursiveness, a formal description of the algorithm

similar to the recursive functions, which were presented above. But again, Gödel was not

convinced. Then Turing published his Thesis, claiming that every computable function was

computable by a Turing machine. Now, especially due to the very intuitive approach Turing

had pursued, Gödel was convinced. After a while, the two theses, the one of Church and the

one of Turing, were put together to the Church-Turing Thesis.36

3 Epistemological State of the Church-Turing Thesis
Since Kleene had written about the Church-Turing Thesis in his influential book Introduction

to Metamathematics37, it has been widely discussed what the epistemological state of the

Church-Turing Thesis actually could be. Epistemological state here simply means, what

qualifies the Thesis to get broadly accepted as to be “true”. Now, the different forms of

epistemological state that have been proposed are briefly described.

Some scientists argue, that the Church-Turing Thesis is some form of (mathematical)

definition. One of the first who did this was Church himself38. Today, one of the most

distinguished proponents of regarding the thesis as a definition is mathematician Robert I.

Soare, who claims that the Church-Turing Thesis should be regarded as a definition of a

computable function39. Soare argues that there have been many theses in the past, which

later became definitions. He refers, among others, to the mathematical definition of

continuity. There, he argues that it took quite a while until everyone regarded the initial

thesis, brought up by the mathematician Weierstraß, that the epsilon-delta criterion in fact

fully captures the intuitive concept of continuity, as a definition of continuity. He claims that

it simply might take some time until everyone accepts something as obvious as the Church-

Turing Thesis as a definition for an intuitive notion.40

36 Robič, 2015, p. 87 f.
37 Soare, 2016, p. 236.
38 Copeland, Shagrir, 2019, p. 67.
39 Soare, 2016, p. 12.
40 Ibid., p. 12.

13

Other scientists, such as Kleene argued that the Church-Turing Thesis is valid for practical

reasons. First, so far and despite of various attempts, there has never been found a counter

example that disproves the Church-Turing Thesis. Second, every characterization of

computability, though different in its details proved to capture exactly the same class of

functions.41

There are also scientists who asked for a mathematical proof of the Thesis. While some of

them argue that the Thesis could be viewed as subject ultimately to either mathematical

proof or mathematical refutation like open mathematical conjectures, as in the Riemann

hypothesis42 others argue that it is impossible to pair an informal with a precise concept43.

And then there are still others, who tried to prove it mathematically. One of the most recent

attempts to prove the Thesis was done by the philosopher and logician Paul Kripke. He

argues that every computation is some kind of mathematical deduction. Since according to a

thesis brought up by Hilbert, every mathematical deduction can be expressed as a valid

deduction in the language of first-order predicate logic with identity, thus, the same is true

for every computation. According to Gödel’s completeness theorem44, Kripke proceeds,

every computation can be formalized by a provable formula of first order logic. And since

Turing proved that every provable formula of first order logic can be proved by the universal

Turing machine, every computation can be carried out by a universal Turing machine.45

To sum it up, it remains unclear what the actual epistemological state of the Church-Turing

Thesis is. According to the author’s opinion, the most convincing idea would be to regard the

Church-Turing Thesis as a definition for a computable function.

41 Copeland, Shagrir, 2019, p. 69 f.
42 Ibid., p. 67.
43 Ibid., p. 70.
44 Gödel, 1929.
45 Ibid., p. 70.

14

4 Quantum Computing and the Church-Turing Thesis
On September 20, 2019, the Financial Times reported on a paper by Google’s researchers,

where they claimed to have reached quantum supremacy.46 The term quantum supremacy

[…] refers to a computational task that can be efficiently performed on a quantum computer

beyond the capabilities of state-of-the-art classical supercomputer can efficiently

implement.47 According to the Financial Times, this was a landmark moment that has been

hotly anticipated by researchers,48 even though the problem that was used to prove

quantum supremacy was a highly theoretical one, specially designed to show that quantum

computers are in fact more powerful than classical ones.49

If the claims in the Google’s researchers’ paper are true, then Google wins a competition

among many other tech companies and proves to be a first mover in what is seen by many

computer scientists as one of the most powerful technologies of the 21th century: Quantum

Computing.

The purpose of this chapter is to provide a brief introduction to quantum computing and to

detect whether quantum computing and quantum computation might have effects on the

Church-Turing Thesis. First, we will quickly present the history of quantum computing.

Second, some basic notions of quantum computing are presented. Third, it is explained how

quantum computation works. Fourth, a model quantum computing is presented. Fifth, a

quantum algorithm is presented. Sixth, the possible effects of quantum computing on the

Church-Turing Thesis are discussed. Seventh, some future prospects of quantum computing

are presented.

4.1 Brief History of Quantum Computing
Using quantum mechanical phenomena such as entanglement and superposition as a very

powerful way of doing computation has been discussed since the beginnings of quantum

46 Murgia, Waters, 2019.
47 Hidary, 2019, p. 190 f.
48 Murgia, Waters, 2019.
49 Calarco, 2019.

15

physics. The biggest challenge, however, has always been how one could construct a stable

system that allows such form of computation.50

Paul Benioff was one of the first scientists who did serious research on quantum computing.

In 1979, he published a paper called The computer as a physical system: A microscopic

quantum mechanical Hamiltonian model of computers as represented by Turing machines.

There, Benioff first provided the theoretical basis of quantum computing and then raised

hope that a quantum computer could actually be build.51

In 1981, the famous physicist Richard Feynman held a lecture called Simulating Physics with

Computers where he argued that in order to properly simulate quantum physics, the

computer itself has to take advantage of quantum mechanical phenomena.52

Once Feynman, a world-famous scientist, turned the spotlight on quantum computing, a lot

of researchers started tackling the problems of the new field of research. One of the major

contributors at that time was David Deutsch, who in 1985 presented one of the first

algorithms that would run faster on a quantum computer.53 Following Deutsch, many other

scientists developed quantum algorithms. The ones presented by Daniel Simon and Peter

Shor are of particular interest.54

Especially the algorithm developed by Shor will most certainly yield enormous practical

consequences. Shor’s algorithm is able to factor large numbers into two prime factors. Since

factoring large numbers is regarded as a hard problem for classical computers, it is at the

core of the RSA algorithm, which is widely used in encrypting highly sensitive internet

communications such as online banking, online payment and so on. Shor, however, showed

that factoring large numbers could easily be done on a quantum computer and, thus,

quantum computers will most certainly pose a major threat to common internet

cryptography.55

50 Hidary, 2019, p. 11.
51 Hidary, 2019, p. 11.
52Ibid., p. 12.
53 Ibid., p. 12.
54 Ibid., p. 14.
55 Ibid., p. 14.

16

While some researchers have been very successful in finding powerful quantum algorithms,

others made significant progress in overcoming the technical barriers of building a quantum

computer. In 2001, for example, Yasunobu Nakamura constructed a functioning, controllable

superconducting qubit (the most basic computing unit of quantum computing).56

Over the years, lots of other remarkable results were made, culminating in the most recent

triumph, where Google claimed it has finally achieved Quantum Supremacy.57

4.2 Basic Notions of Quantum Computing
The purpose of this chapter is to briefly describe some basic notions of quantum computing,

that distinguishes quantum computers from classical computers. Contrary to a classical

computer, a quantum computer is a device that leverages specific properties described by

quantum mechanics to perform computation.58 Every computer is based on quantum

mechanics, since it is the fundamental theory of the physical world. What makes a quantum

computer special, however, is that it is making use of some specific quantum mechanical

properties to carry out computations. These phenomena are called superposition,

entanglement and reversibility and will now be described.

One of the basic assumptions of quantum mechanics is that a system, such as an electron,

for example, naturally is in an indeterminate state. Only if one measures the system, it will

be set to a deterministic state. If one can define a set of discrete states a system can be in,

for example the spin of an electron (which can be either horizontal or vertical, for example),

then one can describe the indeterministic state of that system before measurement as a

linear combination of these discrete states. For example, if there are to discrete states a

system can be in, we can denote these states |0⟩59 and |1⟩, respectively, and 4
A
∗ |0⟩ + 4

A
∗

|1⟩ would be a linear combination of these two states. This linear combination, which

describes the indeterministic state of a system before measurement, is called superposition

56 Ibid., p. 15.
57 Rincon, 2019.
58 Hidary, 2019, p. 3.
59 This notation is called Dirac notation and will be explained later.

17

of states.60 If one has a linear combination of two states, such as 𝛼 ∗ |0⟩ + 𝛽 ∗ |1⟩, for

example, 𝛼 and 𝛽 are complex numbers and are called amplitudes. These are very

important, since it was demonstrated that the modulus squared of the amplitude of a state is

the probability of that state after measurement.61

Another basic quantum mechanical principle of quantum computing is called entanglement.

It was once considered to be one of the most counterintuitive and bizarre phenomena of

quantum mechanics but is now regarded as one of the cornerstones of quantum mechanics.

In quantum computing, entanglement allows novel types of computation. But what is

entanglement anyway?62

The phenomenon of entanglement was first discovered by Einstein et al. in 1935. They were

able to show that, under certain circumstances, if you have two disjunct particles, measuring

the state of one of the particles will affect the state of the other one. This is also a way of

storing information: The information is not stored in each of the two particles but instead in

a correlation of these two. One can explain this while using a book metaphor. Imagine that

there are two kinds of books, one is not entangled, the other one is entangled. The one

which is not entangled can be read as usual, the information is stored on each page. The

other one, however, is different: Each page contains gibberish, the information can only be

extracted by analysing the correlation of the pages. This leads to the following definition:

Two systems are in a special case of quantum mechanical superposition called entanglement,

if the measurement of one system is correlated with the state of the other system that is

stronger than correlations in the classical world. In other words, the states of the two

systems are not separable.63

The last principle to discuss is called reversibility. Reversibility concerns a certain

characteristic most operators used in quantum computation share: All operators other than

for measurement have to be reversible.64

60 Hidary, 2019, p. 3 f.
61 Ibid., p. 4.
62 Ibid., p. 6 f.
63 Ibid., p. 6 f.
64 Ibid., p. 9.

18

This is because the mathematical operations that formalize quantum computation also are

reversible, or, more specifically, invertible. What does it mean for an operator to be

reversible? Being reversible means that one is able to infer the input of an operator from

observing the output. For example, consider the function 𝑓: {0,1} → {0,1}, 𝑓(𝑥) = 1. Here, 𝑓

is not reversible, since it is not possible to state, whether the output 1 was produced by the

input 1 or 0.

Luckily, the requirement for reversible operators does not mean a restriction for quantum

computing: For other purposes, physicist Rolf Landauer carried out research on reversible

classical computing processes in the 1980s and was able to define universal logical gates that

are nevertheless reversible. These can also be adapted to quantum computers.65

4.3 Quantum Computation
In this section, the basics of a quantum computation are explained.66 A quantum

computation usually involves three steps: First, a quantum bit, or a quantum register, for

that matter, is set to an initial state. Then, an operation, called unitary transformation, is

applied to the qubit and the quantum register, respectively. Finally, the resulting state of it is

measured.

To better explain the different components of such forms of computation, first, the basic

unit of quantum computing, the qubit, is presented. It is shown, how a qubit differs from a

classical bit and how it can be manipulated. Second, quantum registers are explained. Again,

it is explained, how a quantum register differs from a classical register and how one can

perform computations on it. Finally, it is explained, what measuring a qubit and a quantum

register, respectively, means.

65 Hidary, 2019, p. 7 f.
66 The presentation of the theory is based on Homeister, 2015.

19

4.3.1 The Qubit
In classical computing, the basic unit of computation is the bit, which has either a value of 0

or 1. The basic unit of computation in quantum computing is the quantum bit, which is be

defined below:

Definition (Quantum Bit): A quantum bit or qubit represents states of the following form:

𝛼 ∗ |0⟩ + 𝛽 ∗ |1⟩. 𝛼 and 𝛽 are called amplitudes and are complex numbers such that the

following holds: |𝛼|A + |𝛽|A = 1.

Here, some further explanation is needed. In quantum mechanics, it is common to use the

so-called Dirac Notation, or ket notation for denoting quantum states. Thus, the state of a

classical bit is denoted |0⟩ and |1⟩, respectively. In contrast to a classical bit, which has a

single binary value, either |0⟩ or |1⟩, a qubit can exist in a so-called superposition of states

and is described by 𝛼 ∗ |0⟩ + 𝛽 ∗ |1⟩, where 𝛼 and 𝛽 are satisfying |𝛼|A + |𝛽|A = 1. If we

want to know what state a qubit is actually in, we will have to measure it. After

measurement, the qubit falls to one of the basis states, thus, the superposition is

destroyed.67 What state the qubit falls to depends on the amplitudes, 𝛼 and 𝛽. More

specifically, after measurement, the probability of outcome |0⟩ is |𝛼|Aand the probability of

outcome |1⟩ is |𝛽|A.68

Example: Let’s assume that the superposition of a certain qubit is given by 4
√A
∗ |0⟩ +

4
√A
∗ |1⟩. Then, after measurement, the probability of outcome |0⟩ is 4

A
 and the probability of

outcome |1⟩ is 4
A
.

The most important mathematical tool in quantum mechanics and, thus, in quantum

computing, is linear algebra69 and we will now start to use it.

The states of a qubit can be represented as vectors in a two-dimensional complex vector

space. More specifically, the superposition 𝛼 ∗ |0⟩ + 𝛽 ∗ |1⟩ of any qubit can be written as

67 Homeister, 2015, p. 20.
68 Ibid., p. 20.
69 Hidary, 2019, p. xii.

20

𝛼 ∗ �10� + 𝛽 ∗ �
0
1� = �

𝛼
𝛽�. Thus, �

𝛼
𝛽� is a linear combination of the two-dimensional unit

vectors and, hence, the standard basis of the above-mentioned vector space consists of

{|0⟩, |1⟩}. This means, the superposition of any qubit can be written as a linear combination

of these two basis vectors.70

4.3.2 Manipulating Qubits
How do we manipulate a qubit, or, more specifically, how do we change the state of a qubit?

In quantum computing, one uses unitary transformations to change the state of a qubit.71

Performing a unitary transformation means that one multiplies the state vector of a qubit by

a unitary matrix.72

Definition: Be 𝐴 a complex 𝑛 × 𝑛 matrix. 𝐴 is called 𝑢𝑛𝑖𝑡𝑎𝑟𝑦, if the following holds: 𝐴� =

𝐴�4.

Example: The identity matrix of size 2, 𝐼A is unitary: 𝐼A
� = 𝐼A = 𝐼A�4.

In quantum computing, the unitary Matrix 𝐻 = �
4
√A

4
√A

4
√A

− 4
√A

� = 4
√A
∗ �1 1
1 −1�, called

Hadamard matrix, is of significant importance.

Example: Let’s assume that the superposition of a certain qubit is given by |0⟩ +	 |1⟩. If we

want to change its state, we have to perform a unitary transformation. Here, we chose the

Hadamard matrix. Now, we have to multiply the qubit’s state vector by the matrix. This leads

to �
4
√A

4
√A

4
√A

− 4
√A

� ∗ �11� = �
4
√A

− 4
√A

� = 4
√A
∗ �10� −

4
√A
∗ �01� =

4
√A
∗ (|0⟩ − |1⟩). Now, the state of

the qubit has changed. After measuring, the probability of both, outcome |0⟩ and outcome

|1⟩ is � 4
√A
�
A
= 4

A
.

70 Homeister, 2015, p. 22.
71 Homeister, 2015, p. 22.
72 Ibid., p. 23.

21

To demonstrate, what practical effects dealing with just a single qubit could have, now a

simple algorithm is presented.73 The algorithm produces random numbers. There are, of

course, also algorithms, running on classical computers, that produce random numbers. But

these numbers are just pseudorandom numbers. In contrary to these algorithms, the

algorithm, which is described here, produces truly random numbers.

1. |𝑥⟩ ← |0⟩

2. |𝑥⟩ ← 𝐻|𝑥⟩

3. Measuring |𝑥⟩

First, the quantum bit is initialized with the classical state |0⟩. Then, a unitary transformation

was performed, using the Hadamard matrix. Finally, the qubit is measured. Since the result

of the measurement is truly random, the algorithm in fact produces truly random numbers.

To sum it up, in quantum computing a step of calculation is made when a quantum bit

changes its state. To change its state, a unitary transformation is performed, which means

that the state vector, which represents the superposition of the qubit is multiplied by a

corresponding unitary matrix. To get the result of the computation, one has to measure the

state of the qubit afterwards.

4.3.3 Quantum Register
So far, it was explained what a qubit is and how to change its state. Now, sequences of

qubits are considered. A sequence of qubits is called quantum register. There are two

questions of peculiar interest: What is the state of a quantum register? And how can one

change the state of a quantum register?

To answer the first question, we start with a definition:

73 The algorithm is described in Homeister, Matthias, Quantum Computing verstehen, p. 26 f.

22

Definition: Be 𝑅 an 𝑛 size quantum register. The state of R is represented by 𝑅 =

∑ 𝛼:|𝑖⟩A@�4
:�q such that the following holds: ∑ |𝛼:|AA@�4

:�q = 1. If one measures R, the probability

of the outcome |𝑖⟩ will be |𝛼:|A.

Example: Let’s assume, |𝑥⟩|𝑦⟩ would be two-dimensional quantum register. Let’s further

assume that the state of |𝑥⟩ is given by 𝛾4 ∗ |0⟩ +	𝛾A ∗ |1⟩ and the state of |𝑦⟩ is given by

𝛽4 ∗ |0⟩ +	𝛽A ∗ |1⟩. Then, the following holds:

 |𝑥⟩|𝑦⟩ = (𝛾4 ∗ |0⟩ +	𝛾A ∗ |1⟩) ∗ (𝛽4 ∗ |0⟩ +	𝛽A ∗ |1⟩) =

𝛾4𝛽4 ∗ |0⟩|0⟩ + 𝛾4𝛽A ∗ |0⟩|1⟩ + 𝛾A𝛽4 ∗ |1⟩|0⟩ + 𝛾A𝛽A ∗ |1⟩|0⟩ =

𝛼qq ∗ |00⟩ + 𝛼q4 ∗ |01⟩ + 𝛼4q ∗ |10⟩ + 𝛼4q ∗ |11⟩ =

𝛼q ∗ |0⟩ + 𝛼4 ∗ |1⟩ + 𝛼A ∗ |2⟩ + 𝛼� ∗ |3⟩.

So, in order to answer the first question: To examine the state of a quantum register, one

has to multiply the states of its single qubits.

Now, the second question is answered. Just as the state of a single qubit, one can also

represent the state of a quantum register by vectors. Here, the states of an 𝑛 size quantum

register can be regarded as vectors of a 2@-dimensional vector space. The basis of that

vector space is given by {|0…0⟩, |0…1⟩, … , |1…1⟩} which can be written more compactly

as {|0⟩, |1⟩, … , |2@ − 1⟩}.74

Example: Be 𝑛 = 2. Then the basis of the vector space is given by {|00⟩, |01⟩, |10⟩, |11⟩} and

can be represented as |00⟩ = �

1
0
0
0

 , |01⟩ = �

0
1
0
0

 , |10⟩ = �

0
0
1
0

 , |11⟩ = �

0
0
0
1

 .

Now, changing the state of a quantum register is quite similar to changing the state of a

single qubit. Again, one has to perform a unitary transformation. In this case, however, to

change the state of a quantum register of size 𝑛, the matrix, that represents the unitary

transformation is a 2@×@-dimensional matrix.75

74 Homeister, 2015, p. 29.
75 Ibid., p. 30.

23

Example: Let’s assume that the superposition of a quantum register of size 2 is given by 𝛼q ∗

|0⟩ + 𝛼4 ∗ |1⟩ + 𝛼A ∗ |2⟩ +	𝛼� ∗ |3⟩. Let’s further assume that a unitary transformation is

given by the matrix 𝐴 = �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . The register’s superposition can be represented by

the vector 𝑣 = �

𝛼q
𝛼4
𝛼A
𝛼�

 . Then, the following holds: 𝐴 ∗ 𝑣 = �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∗ �

𝛼q
𝛼4
𝛼A
𝛼�

 = �

𝛼q
𝛼4
𝛼�
𝛼A

 .

So, to basically answer the second question: One changes the state of a quantum register by

simply multiplying its state vector by a unitary matrix. For practical reasons, however, it

could be very complex to perform a unitary transformation that is represented by a 2@×@

matrix. Instead, it would be much simpler, changing the state of a quantum register bitwise.

For that reason, one considers a special form of unitary transitions, called local unitary

transformations.76

Definition: A unitary transformation is called local, if it affects not more than three single

qubits.

The fact, that three qubits is an upper bound for calling a unitary transformation local, is due

to practical reasons.77 Actually, it has been proven, that it would have been enough to affect

not more than two single qubits.78

Since it is, due to practical reasons, very important to decompose a unitary transformation

into smaller, e.g. local transformations, the question arises how such a decomposition can

be formalized. In order to do so, one has to use a mathematical structure, called tensor

product. In the following section, the tensor product is briefly presented. The introduction,

however, will be rather informal, since the tensor product is quite a complicated

mathematical structure.

76 Homeister, 2015, p. 31.
77 There’s a very useful quantum gate, called the Toffoli gate, which processes three qubits.
78 Homeister, 2015, p. 31.

24

There are two reasons why the tensor product is useful: First, one can show how the state of

a quantum register depends on the state of its qubits. Second, one can describe the single

computation steps of a unitary transformation.

Let 𝑉 and 𝑊 be vector spaces. Let 𝑒q, … , 𝑒?�4 be a basis of 𝑉 and 𝑓q, … , 𝑓@�4 be a basis of

W. The tensor product of 𝑉 and 𝑊 is denoted by 𝑉 ⊗𝑊 and is itself an 𝑚 × 𝑛-dimensional

vector space. The basic vectors of that vector space are denoted by

¦
𝑒q⨂𝑓q ⋯ 𝑒q⨂𝑓@�4
⋮ ⋱ ⋮

𝑒?�4⨂𝑓q ⋯ 𝑒?�4⨂𝑓@�4
«.

𝑒:⨂𝑓¬ can be interpreted as follows: Let 𝑣 be a vector in 𝑉 and 𝑤 be a vector in 𝑊. Then,

𝑣 = ∑ 𝛼:𝑒:?�4
:�q and 𝑤 = ∑ 𝛽¬𝑓¬@�4

¬�q and 𝑣⨂𝑤 = (∑ 𝛼:𝑒:)?�4
:�q ⨂(∑ 𝛽¬𝑓¬)@�4

¬�q

=∑ ∑ 𝛼:@�4
¬

?�4
: 𝛽¬(𝑒q⨂𝑓q).

So, for example, for 𝑛 = 2, the following holds: �
𝛼q
𝛼4�⨂®𝛽q𝛽4

¯ = �

𝛼q𝛽q
𝛼q𝛽4
𝛼4𝛽q
𝛼4𝛽4

 .

To show how the state of a quantum register depends on the state, one can consider the

following example:

Let the superposition of two qubits |𝜑⟩ and |𝜙⟩ be given by |𝜑⟩ = 𝛼4 ∗ |0⟩ + 𝛼A ∗ |1⟩ and

|𝜙⟩ = 𝛽4 ∗ |0⟩ + 𝛽A ∗ |1⟩, respectively. Then, the state of the quantum register |𝜑⟩|𝜙⟩ can

be expressed using the tensor product of |𝜑⟩ and |𝜙⟩: |𝜑⟩⨂|𝜙⟩ = 𝛼4𝛽4 ∗ |00⟩ + 𝛼4𝛽A ∗

|01⟩ + 𝛼A𝛽4 ∗ |10⟩ + 𝛼A𝛽4 ∗ |11⟩.

An additional reason to use the tensor product is that it allows to decompose a unitary

transformation. This will now be further explained.

The tensor product can also be defined for matrices:

25

Let 𝐴 = ¦
𝑎44 ⋯ 𝑎4@
⋮ ⋱ ⋮

𝑎?4 ⋯ 𝑎?@
« and 𝐵 = ¦

𝑏44 ⋯ 𝑏4@
⋮ ⋱ ⋮
𝑏?4 ⋯ 𝑏?@

« be Matrices. The tensor product of 𝐴

and 𝐵 is given by 𝐴⨂𝐵 = ¦
𝑎44 ∗ 𝐵 ⋯ 𝑎4@ ∗ 𝐵

⋮ ⋱ ⋮
𝑎?4 ∗ 𝐵 ⋯ 𝑎?@ ∗ 𝐵

«.

Example: Let 𝐼A be the identity matrix of size 𝑛. Then 𝐼A⨂𝐼A = �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The following definition expresses the relation between the tensor product and unitary

transformations:

Definition: Let |𝑥4⟩, … , |𝑥@⟩ be single quantum bits. Let |𝑥4 …	𝑥4⟩ be a quantum register of

size 𝑛. The following two operations are equivalent:

1) Applying unitary transformations, represented by matrices 𝐴4,… , 𝐴@ to the single

qubits (𝐴: to |𝑥:⟩).

2) Applying the unitary transformation 𝐴4⨂	…	⨂𝐴@	to the quantum register.

Example: Let |𝑥⟩|𝑦⟩ be a quantum register of size 2. After applying the Hadamard

transformation 𝐻 to the first bit, one gets: 4
√A
∗ (|0⟩+|1⟩)|1⟩ = 4

√A
∗ |01⟩ + 4

√A
∗ |11³. After

applying the Hadamard transformation 𝐻 to the second bit, one gets:

 4
√A
∗ |0⟩ ® 4

√A
∗ (|0⟩−|1⟩)¯ + 4

√A
∗ |1⟩ ® 4

√A
∗ (|0⟩−|1⟩)¯ = 4

√A
∗ (|00⟩ − |01⟩ + |10⟩ − |11⟩) =

𝐻⨂𝐻.

4.3.4 Measurement of Quantum registers
The last step of a quantum computation is measuring the state of the qubit and the

quantum register, respectively, which was manipulated.

26

It has already been explained that if one wants to know what state a qubit is in, we will have

to measure it. So, for example, if the superposition of a certain qubit is given by 𝛼 ∗ |0⟩ +

𝛽 ∗ |1⟩ then, after measurement, the probability of outcome |0⟩ is |𝛼|Aand the probability of

outcome |1⟩ is |𝛽|A. The fact that there are the classical states involved, is, however, just a

special case. One can also measure it in respect of other states. This requires choosing a

different basis, though, and this basis is required to be orthogonal.79

Example: Let’s first define the quantum states |+⟩ = 4
√A
∗ (|0⟩ + |1⟩) and |−⟩ = 4

√A
∗ (|0⟩ −

|1⟩). Let’s further assume that the set {|+⟩, |−⟩} defines a basis of a two-dimensional

complex vector space. This basis obviously is orthogonal. So, assuming that the

superposition of a qubit is given by 𝛾 ∗ |+⟩ + 𝛿 ∗ |−⟩, the probability of outcome |+⟩ is |𝑦|A

and the probability of outcome |−⟩ is |𝛿|A.

Of course, one can not only measure the state of a single qubit, but also the state of a

quantum register. The following definition shows how this is done:

Definition: Let 𝑅 be an 𝑛 size quantum register. Let its state be |𝜙⟩ = ∑ 𝛼:|𝑖⟩Aµ�4
:�q . Then, a

measurement is done, with respect to the orthonormal basis |0′⟩, |1′⟩… , |(2@ − 1)′⟩. If |𝜙⟩,

with respect to the that basis, can be represented as ∑ 𝛼:′|𝑖′⟩Aµ�4
:�q , the probability that 𝑅 has

the state |𝑖′⟩ after measurement, is |𝛼:′|A.

4.4 A Model of Quantum Computing
There are a lot of different quantum computing models ranging from practically applicable

ones such as quantum circuits to rather theoretical ones such as a quantum Turing machine

introduced by Deutsch.80 81 However, each of these models have been proven to be

equivalent to each other.

79 Homeister, 2015, p. 44 f.
80 Copeland, 2017.
81 Homeister, Matthias, Quantum Computing verstehen, p. 123.

27

A very common and widely used model of quantum computing is based on quantum circuits.

Quantum circuits are very similar to classical circuits, although the differ in a very important

way. A classical circuit consists of wires and gates. Each wire represents a bit, whereas gates

represent bit-manipulating operators. There is a set of very commonly used gates like the

AND-, OR, and NOT-gate. A classical computer that is based on these gates is called Turing-

complete or universal. In fact, it has been proven that there are some gates, for example the

NAND-gate, a combination of the NOT- and the AND-gate that can simulate every other

gate.82

Like classical circuits, quantum circuits consist of quantum wires and quantum gates. Each

quantum wire represents a qubit and each quantum gate is performing a unitary

transformation. A set of quantum gates builds a quantum circuit; thus, a quantum register is

represented by a quantum circuit. Just as there is a set of classical gates that ensures Turing-

completeness, there is also a set of quantum gates that is universal, although, unlike in

classical computing, there doesn’t exist a single gate such as the NAND-gate, for example,

that provides Turing-completeness.83

Compared to classical circuits, quantum circuits are restricted in one way: They have to be

reversible. A computation is reversible, if one can infer the input of the computation from

simply regarding its output. This is because quantum gates perform unitary transformations.

Since unitary transformations are represented by unitary matrices, which are invertible by

definition, quantum gates have to be reversible.84 Classical gates aren’t restricted to

reversibility. Consider the OR gate, for example. Both 0 ∨ 1 and 1 ∨ 0	result in 1. It’s not

possible to deduce the input from simply regarding the output.

A quantum’s gate requirement for being reversible isn’t a serious restriction, though: First, it

can be shown that each reversible classical gate can be considered as a quantum gate.

Second, it can also be shown that each classical gate can efficiently be rearranged to a

reversible one.85

82 Hidary, 2019, p. 30 f.
83 Ibid., p. 31.
84 Homeister, 2015, p. 85.
85 Ibid., p. 87 ff.

28

4.5 Deutsch’s Algorithm
To give an example, how quantum computing would practically work, we will discuss an

algorithm developed by physicist David Deutsch. In 1985, Deutsch published a very

influential paper on quantum computation. In his paper, Deutsch not only outlined

theoretically ideas of quantum computation, such as a quantum Turing machine, but also

presented a quantum algorithm, the first to show that a quantum computer could outclass a

classical computer.86

First, the problem that the algorithm should solve will be stated. After that, the algorithm

will be presented. Finally, each step of the algorithm will be explained.

Let’s consider a function 𝑓:: {0,1} → {0,1}, for 𝑖 ∈ {0, … ,3}. Let’s further assume that the

following holds:

• 𝑓q(0) = 0, 𝑓q(0) = 0

• 𝑓4(0) = 1, 𝑓4(1) = 1

• 𝑓A(0) = 0, 𝑓A(1) = 1

• 𝑓�(0) = 1, 𝑓�(1) = 0

𝑓q and 𝑓4 are called 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓A and 𝑓� are called 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑.

Here’s the problem: If one wants to know whether 𝑓: is constant or balanced, a classical

computer will have to check the outcome of both, 𝑓:(0) and 𝑓:(1). This is because, for

example, if 𝑓:(0) = 1, 𝑖	could either be equal to 1 or 3. A quantum computer, however, can

solve the problem by checking 𝑓: just once.

Before one can start, however, one has to adjust the function 𝑓, such that it is applicable to

quantum computation. More specifically, since quantum computing uses unitary

transformations, 𝑓 has to be reversible. In order to a reversible version of 𝑓, one defines 𝑈½:

|𝑥, 𝑦⟩ → |𝑥, 𝑦⨁𝑓(𝑥)⟩.

86 Bernhardt, 2019, p. 145.

29

To solve the problem, the algorithm has to be carried out as follow:

1. A 2-bit-wide quantum register is initialized: |𝑥⟩|𝑦⟩ ← |0⟩|1⟩

2. The Hadamard transformation is applied to each qubit: |𝑥⟩|𝑦⟩ ← 𝐻|𝑥⟩𝐻|𝑦⟩

3. 𝑓 is carried out: |𝑥⟩|𝑦⟩ ← 𝑈½|0⟩|1⟩

4. Again, the Hadamard transformation is applied to each qubit: |𝑥⟩|𝑦⟩ ← 𝐻|𝑥⟩𝐻|𝑦⟩

5. The register is measured: If the value of |𝑥⟩|𝑦⟩ is equal to |0⟩|1⟩, 𝑓 is 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Otherwise, 𝑓 is 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑.

Now, each step of the algorithm will be explained.

1. The quantum register is initialized with the basic states, |0⟩ and |1⟩, respectively.

2. Application of the bitwise Hadamard transformation: 𝐻|𝑥⟩𝐻|𝑦⟩ = 4
√A
∗ (|0⟩ + |1⟩) ∗

4
√A
∗ (|0⟩ − |1⟩) = 4

A
∗ |0⟩|0⟩ − 4

A
∗ |0⟩|1⟩ + 4

A
∗ |1⟩|0⟩ − 4

A
∗ |1⟩|1⟩.	As a result, one

gets a superposition of the quantum register, which will be denoted by |𝜙A⟩.

3. 𝑈½ is applied to 𝜙A. This results in 4
A
∗ (|0⟩|0⨁𝑓(0)⟩ − |0⟩|1⨁𝑓(0)⟩ +

|1⟩|0⨁𝑓(1)⟩ − |1⟩|1⨁𝑓(1)⟩) = 4
A
∗ I(|0⟩ ∗ (|𝑓(0⟩ − |1⨁𝑓(0)⟩) + |1⟩ ∗ |𝑓(1)⟩ −

(|1⨁𝑓(1)⟩J). As a result, one gets a superposition of the function values of 𝑈½,

which will be denoted by|𝜙�⟩. Additionally, one has to consider that the following

equation holds: |𝑓(𝑥)⟩ − |1⨁𝑓(𝑥) = (−1)½(¿)(|0⟩ − |1⟩). Then, one can also write:

|𝜙�⟩ 	=
4
A
∗ ((−1)½(q)|0⟩ ∗ (|0⟩ − |1⟩) + ((−1)½(4)|1⟩ ∗ (|0⟩ − |1⟩)) = 4

A
∗

((−1)½(q)|0⟩ + (−1)½(4)|1⟩) ∗ (|0⟩ − |1⟩).

4. Now, two options are possible:

a. Let’s assume that 𝑓 is constant. Then, the following holds: (−1)½(q) =

(−1)½(4) and, thus, the state of |𝑥⟩ is either 4
√A
∗ (|0⟩ + |1⟩) or − 4

√A
∗

(|0⟩ + |1⟩). Applying the Hadamard transformation to 4
√A
∗ (|0⟩ + |1⟩) and

− 4
√A
∗ (|0⟩ + |1⟩), respectively, results in |0⟩ and −|0⟩, respectively. The state

of |𝑦⟩, on the other hand, is 4
√A
∗ (|0⟩ − |1⟩). Applying the Hadamard

transformation to |𝑦⟩ results in |1⟩. Overall, the entire register now is in the

following state: |𝜙À
ÁÂ@ÃÄÅ@ÄÆ = ±|0⟩|1⟩.

30

b. Let’s now assume that f is balanced. Then, the state of |𝑥⟩ is either 4
√A
∗

(|0⟩ − |1⟩) or − 4
√A
∗ (|0⟩ − |1⟩). Applying the Hadamard transformation to

|𝑥⟩ results in |1⟩. Applying the Hadamard transformation to |𝑦⟩ again results

in |1⟩. Overall, the entire register now is in the following state: |𝜙À
ÈÅÉÅ@ÁÊËÆ =

±|0⟩|1⟩.

5. Finally, after measurement, one gets the output |1⟩|1⟩ if 𝑓 is balanced and |0⟩|1⟩ if 𝑓

is constant. So, as a result, one had to measure only once, and the algorithm solved

the problem.

4.6 Quantum Computing and the Church-Turing Thesis
One of the purposes of this chapter is to analyse if quantum computing poses a threat for

the Church-Turing Thesis. More specifically, the question is whether there is a quantum

computing model that is more powerful than a Turing machine. The answer is that there

isn’t one. As was explained, there are different models of quantum computing and they have

been proven to be equivalent to each other. Since each of these models is universal, that is,

Turing-complete, quantum computing doesn’t challenge the Church-Turing Thesis. There

are, however, many advantages, that quantum computers have compared to classical

computer. Some of these advantages will be explained now.

4.7 Future Prospects
On the one hand, many scientists argue that quantum computing will only have very slight

impacts on society in general. On the other hand, some scientists believe that quantum

computing will similarly develop than classical computing did in the 20th century: At the

beginning of the development of classical computers, people believed that, apart from some

very special application, there won’t ever be a broad usage of computers. And they have

been proven seriously wrong by billions of smartphones being extensively used every day.

So, the question whether quantum computing will have a serious impact on society remains

unclear.87

87 Bernhard, 2019, p. 171 f.

31

However, there are some important fields, where quantum computing will most certainly

have a great impact on. For two of them, encryption and chemistry, this will be briefly

explained.

RSA (Rivest-Shamir-Adleman) encryption is an algorithm-based encryption method that is

widely used to encrypt data that is sent from one computer to the other. Two major

applications of the RSA encryption method are Internet banking and electronic purchases

using credit cards. The algorithm is, roughly speaking, based on prime factor decomposition.

Factoring a number that is a product of two large prime numbers is seen as a hard problem

for classical computers, since, nobody has discovered a classical algorithm that can factor a

product of two large primes in polynomial time.88 So, decrypting data which was secured by

using the RSA encryption method would take an criminal eavesdropper much too long, if he

used a classical computer. In 1994, however, Peter Shor presented the now so-called Shor’s

algorithm, which uses a quantum computer to factor a number that is a product of two large

prime numbers much faster than a classical computer ever could. This could lead to a

massive threat to the RSA based data encryption in general and, thus, to a very frequent way

sensitive private data is secured at the moment.89

Chemistry could be another highly promising application of quantum computing. All of

chemistry is based on quantum mechanical laws which can be mathematically described.

The resulting mathematical equations, however, are far too complex to get exactly solved.

So, in practice, chemists use approximations and, thus, sometimes ignore some very fine

details. This has been working reasonably well, especially in computational chemistry, but

there are circumstances, where these fine details do matter. Quantum computers could be

used to exactly simulate the quantum mechanical basis of chemistry and, thus, lead to new

insights. A practical example of how this could be useful was demonstrated by the University

of Chicago. There, scientists are detecting the process of photosynthesize, a quantum

mechanically based process. As soon as this process is properly analysed, the effects of

photosynthesize could be used in photovoltaic cells, for example.90

88 Bernhardt, 2019, p. 173 f.
89 Ibid., p. 171 ff.
90 Ibid., p. 181 f.

32

5 DNA Computing
On March 21, 2019, the scientific journal Nature published an article on Demonstration of

End-to-End automation of DNA Data Storage91. There, a team led by scientists from the

University of Washington and from Microsoft Research presented the first fully automated

end to end DNA data storage device92. Using this device, the scientists were able to first

store and then read the word HELLO while using DNA strands.93 According to them, this

would be a major step towards using DNA Data Storage across a broad front.94

Compared to the Google researchers’ claim having achieved quantum supremacy (see

chapter 4), this result may seem less landmarking. It is, however, strong evidence for the

existence of another very vivid research approach concerning alternative computational

models: DNA computing. The reason, why DNA-Computing appears so promising is because

of some certain characteristics of DNA strands:

• DNA strands are very small and compact (It’s possible to store 1 bit of

information per cubic nanometre)

• DNA strands are, under certain conditions, very long-lasting, which means they

are a very persistent storage media

• They can be easily duplicated a million times, which allows a redundant,

decentralized and thus, very reliable form of data storage

• They are vectored, which allows modelling it through strings

• They can be, at least up to a certain point, repaired

• They can be manipulated by a broad spectrum of molecular biological processes

• They are easily recyclable and re-usable95

The purpose of this chapter is to provide a very brief introduction to DNA computing and to

detect whether DNA computing could somehow affect the Church Turing Thesis. First, the

91 Takashi, Bichlien, Strauss, Ceze, 2019.
92 Ibid.
93 Ibid.
94 Ibid.
95 Hinze, Sturm, 2004, p. 107.

33

history of DNA computing is quickly presented. Second, the foundations of DNA computing

are briefly explained. Third, while discussing the Adleman experiment, a DNA computing

algorithm is presented. Fourth, while briefly presenting DNA computing models, it is

discussed whether DNA computing can affect the Church Turing Thesis. Fifth, some future

prospects of DNA computing are provided.

5.1 History of DNA Computing
How nature encodes, stores and shares (genetic) information has puzzled philosophers and

scientists for many thousand years. It was not until the twentieth century that researchers

succeed in finding an answer: The introduction of the double-helix model by James D.

Watson and Francis H. Crick in 195396 revealed the spatial structure of DNA. This model has

initiated and still ongoing progress in molecular biology. Around the time when Watson and

Crick were investigating the spatial structure of DNA, other scientists began to reflect on

using DNA to carry out computations. In 1959 Richard Feynman, the famous Nobel Prize-

winning physicist, held an influential talk suggesting to process data through of biological

molecules.97

The beginning of the development of DNA-Computing was firstly initiated in 1985 by a rather

theoretical paper by Bennet and Landauer on fundamental physical limits of computation98,

and later in 1994 practically through an experiment conducted by Leonhard Adleman and

now called the Adleman Experiment. Especially the latter made great stir, since the Adleman

Experiment solved, for the first time ever, a NP-complete problem in polynomial time.

However, the Adleman Experiement merely shifts the complexity from time to space since it

requires exponential space). The Adleman Experiment was the first evidence that DNA

computing is actually feasible.99

Since Adleman has published his results, DNA computing has remained an active and fruitful

area of research. Many scientists are now trying to build DNA computers that, in principle,

should be Turing complete.100

96 Hinze, Sturm, 2004, p. 15.
97 Ibid., p.
98 Hidary, 2019, p. 8.
99 Ibid., p. 8 f.
100 Ibid., p. 13.

34

5.2 Foundations of DNA Computing
DNA (deoxyribonucleic acid)101 provides the genetic information that is needed for the

development and proper functioning of every living organism. The 3-dimensional structure

of DNA consists of two helical strands that are coiled around an axis building a double helix

which is crucial for the process of heredity, that is, passing genetic information from one

generation to the next.102

First and foremost, DNA serves as an information storage device. From a chemical

perspective, DNA is made of two large polymers. Each polymer consists of several basic

units, called nucleotides. Each nucleotide consists of a sugar, called deoxyribose, a

phosphate and one of four different bases: Adenine (A), Thymine (T), Guanine (G) and

Cytosine (C). A sequence of these four bases encodes information based on an alphabet,

called genetic code. The information stored in a DNA strand is decrypted by reading this

particular code.103

A nucleotide’s base can be attached to another nucleotide’s base. Such pairs of bases,

however, cannot be built arbitrarily. Instead, only the following pairs are possible: Adenine

can only be attached to Thymine and vice versa; Guanine can only be attached to Cytosine

and vice versa. This means, one can only connect two different DNA strands with each other,

if they are complementary.104

Example: If one DNA strand consist of the following bases: AACTGCA, its complementary

strand would be TTGACGT.

Two complementary single-stranded DNA can form a double-stranded DNA, eventually

building a double helix structure.105

101 El-Seoud, Ghoniemy, 2017, p. 75.
102 Ibid., p. 75.
103 Ibid., p. 75.
104 Ibid., p. 76.
105 Ibid., p. 76.

35

One can now use a DNA strand’s sequence of bases to encode information. Similar to

common silicon-based computing devices, where information is encoded by using an

alphabet which consist of 0 and 1, one can now use an alphabet which consists of A, C, G and

T, representing the four different DNA bases.106

Additionally, to perform actual computations, one needs ways to manipulate the strings of

DNA bases. Fortunately, there exist a lot of molecular biological processes that allow

manipulating these strings. These processes and their effects, respectively, are now briefly

described.

• Synthesizing: One can synthesize a single- or double stranded-DNA of polynomial

length.

• Mixing: Two test tubes, each containing DNA strands, can be combined into a third

one.

• Annealing: Two single-stranded DNA sequences can be linked to each other.

• Melting: A double-stranded DNA sequence can be separated into two single-stranded

DNA sequences.

• Amplifying: By using a biomolecular process called polymerase chain reaction, one

can make copies of DNA strands.

• Separating: By using a technique, called gel electrophoresis, a single-stranded DNA

sequence can be divided into smaller pieces, each containing a subset of the total

amount of nucleotides of the sequence.

• Extracting: After separating, a certain subsequence of nucleotides can be extracted.

• Cutting: By using a certain class of enzymes, called restrictions endonucleases, one is

able to detect a certain short sequence of DNA. Any double-stranded DNA containing

this sequence will be cut at that location.

• Ligating: One can paste DNA strands with compatible sticky ends.

• Substituting: One can substitute, insert or delete DNA sequences.

• Marking: Allows to combine two complementary single-stranded DNA sequences to

one double-stranded DNA sequence.

106 Ibid., p. 76.

36

• Destroying: Allows to destroy the combination of two single-stranded DNA

sequences.

• Detecting and Reading: Allows to first detect the contents of a tube and then read

the actual solution.107

These operations allow to actually manipulate the sequences of DNA bases. At the beginning

of such a DNA computing process, the DNA sequences are kept in a test tube. A test tube

can contain any finite amount of DNA strands. An DNA computing operation, that is, a

certain biomolecular process, is then applied to each of the DNA strands simultaneously.

After the application, the content of the test tube is modified. DNA computing operations

are applied by changing certain parameters, such as pH number or temperature.108

5.3 The Adleman Experiment
To explain how computing with DNA could actually work, the Adleman Experiment is briefly

described. In 1994, computer scientist Leonard Adleman published a landmarking paper

where he described how to solve an instance of an NP-complete problem in polynomial time

while using DNA computing.109 More specifically, Adleman was aiming to solve the Directed

Hamiltonian Path problem (HP), a variant of the ’travelling salesman problem’ (TSP).110 The

TSP asks the following question: Given n cities, find a path visiting each and every city only

once starting and ending at given point.111 For 𝑁 cities, there are (𝑁 − 1)!/2 possible

paths.112 For ordinary computers, this problem is hard to solve, that is, it is an example of an

NP problem.113 Adleman was trying to solve a certain instance of HP (𝑁 = 7).

The DNA computing algorithm Adleman used carries out four steps: First, all possible routes

are generated. Second, the paths that start with the proper city and end with the final city,

are selected. Third, the paths with the correct number of cities are selected. Fourth, the

107 Abbaszadeh Sori, 2014, p. 229 f.
108 Hinze, Sturm, 2004, p. 108.
109 Hinze, Sturm, 2004, p. 8.
110 El-Seoud, Ghoniemy, 2017, p. 77.
111 Ibid., p. 77.
112 Ibid., p. 77.
113 More specifically, TSP is even an NP-complete problem.

37

paths that contain each city only once, are selected.114 These four steps are now described.

The description follows the one in El-Seoud, Ghoniemy, 2017.

1. Generate all possible routes: Encode city names in short DNA sequences, and then

encode the paths by connecting the city sequences for which routes exist. DNA can

simply be treated as a string of data. For example, for the case when number of cities

𝑁 = 	5, each city can be represented by a string of six bases as follows: 𝐿 −

𝐺𝐶𝑇𝐴𝐶𝐺	𝐶 − 𝐶𝑇𝐴𝐺𝑇𝐴	𝐷 − 𝑇𝐶𝐺𝑇𝐴𝐶	𝑀 − 𝐶𝑇𝐴𝐶𝐺𝐺	𝑁 − 𝐴𝑇𝐺𝐶𝐶𝐺	

The entire path can be encoded by simply stringing together these DNA sequences

that represent specific cities. For example, the route 𝐿	 − 	𝐶	– 	𝐷	 − 	𝑀	 − 	𝑁	would

simply be 𝐺𝐶𝑇𝐴𝐶𝐺𝐶𝑇𝐴𝐺𝑇𝐴𝑇𝐶𝐺𝑇𝐴𝐶𝐶𝑇𝐴𝐶𝐺𝐺𝐴𝑇𝐺𝐶𝐶𝐺, or equivalently it could be

represented in double stranded form with its complement sequence. Synthesizing

short single stranded DNA is now a routine process, so encoding the city names is

straightforward. The molecules can be made by a machine called a DNA synthesizer.

Paths can then be produced from the city encodings by linking them together in

proper order. To accomplish this, we can take advantage of the fact that DNA

hybridizes with its complimentary sequence. For example, you can encode the routes

between cities by encoding the compliments of the second half (last three letters) of

the departure city and the first half (first three letters) of the arrival city. For example

the route between 𝑀	(𝐶𝑇𝐴𝐶𝐺𝐺) and	𝑁	(𝐴𝑇𝐺𝐶𝐶𝐺) can be made by taking the

second half of the coding for 𝑀	(𝐶𝐺𝐺) and the first half of the coding for 𝑁	(𝐴𝑇𝐺).

This gives 𝐶𝐺𝐺𝐴𝑇𝐺. By taking the complement of this you get, 𝐺𝐶𝐶𝑇𝐴𝐶, which not

only uniquely represents the route from 𝑀 to 𝑁, but will connect the DNA

representing 𝑀 and 𝑁 by hybridizing itself to the second half of the code representing

𝑀	(. . . 𝐶𝐺𝐺) and the first half of the code representing 𝑁	(𝐴𝑇𝐺. . .).

Random paths can be made by mixing city encodings with the route encodings.

Finally, the DNA strands can be connected together by an enzyme called ligase. What

114 El-Seoud, Ghoniemy, 2017, p. 79.

38

we are left with are strands of DNA representing paths with a random number of

cities and random set of routes.

Using an excess of DNA encodings, we can be confident that we have all possible

combinations routes between cities including the correct one.

2. Select paths that start with the proper city and end with the final city: Selectively

copy and amplify only the section of the DNA that starts with 𝐿 and ends with 𝑁 by

using the Polymerase Chain Reaction. To accomplish this, we can use technique called

Polymerase Chain Reaction (PCR), which allows us to produce many copies of a

specific sequence of DNA. PCR is an iterative process that cycles through a series of

copying events using an enzyme called polymerase. Polymerase will copy a section of

single stranded DNA starting at the position of a primer. A primer is a short piece of

DNA complimentary to one end of a section of the DNA that we are interested in. By

selecting primers at the start and end of the section of DNA we want to amplify, the

polymerase using this as a template for replication, amplifies the DNA between these

primers, doubling the amount of DNA containing this sequence. After many paths of

PCR, the DNA we are working on is amplified exponentially. So, to amplify the paths

that start and stop with our cities of interest, 𝐿 and 𝑁, we use primers that are

complimentary to 𝐿 and 𝑁. We then end up with a test tube full of double stranded

DNA of various lengths (i.e. with various number of cities), encoding only paths that

start with 𝐿 and end with 𝑁.

3. Select the paths with the correct number of cities: Sort the DNA by length and select

the DNA whose length corresponds to 5 cities. To accomplish this Adleman used a

technique called Gel Electrophoresis(GE), which is a common procedure used to

resolve the size of DNA. The basic principle behind Gel Electrophoresis is to force DNA

through a gel matrix by using an electric field. DNA is a negatively charged molecule

under most conditions, so if placed in an electric field it will be attracted to the

positive potential. Since the charge density of DNA is constant (charge per length)

long pieces of DNA move as fast as short pieces when suspended in a fluid. The gel is

made up of a polymer that forms a meshwork of linked strands. As the DNA is forced

to thread its way through the tiny spaces between these strands, it slows down at

different rates depending on its size i.e. length. This means that after running a gel

39

we end up with a series of DNA bands, with each band corresponding to a certain

length. The band of interest can then simply cut out to isolate DNA of a specific

length. In this case the DNA that was 30 base pairs long (5 cities with each city

encoded with 6 base pairs of DNA) would be isolated. In the end the test tube will

contain all paths that each starts at L and ends at N, and which have a total of exactly

5 cities encoded.

4. Select the paths that contain each city only once: Successively filter the DNA

molecules by city, one city at a time. Since the DNA we start with contains five cities,

we will be left with strands that encode each city once.

DNA containing a specific sequence can be purified from a sample of mixed DNA by a

technique called affinity purification. This is accomplished by attaching the

compliment of the sequence in question to a substance like a magnetic bead. The

beads are then mixed with the DNA. DNA, which contains the sequence we are after

then hybridizes with the complement sequence on the beads. These beads can then

be retrieved and the DNA isolated.

So, we now affinity purify five times, using a different city complement for each run.

For example, for the first run we use L'-beads (the complement of L) to filter out DNA

sequences which contain the encoding for L. (which should be all the DNA because of

step 3). The next run we use D'-beads, and then C'-beads, M'-beads, and finally N'-

beads. The order isn’t important. If a path is missing a city, then it will not be filtered

out during one of the runs and will be removed from the candidate pool. What we are

left with are the paths that start in L, visit each city once, and end in N. This is exactly

what we are looking for. If the answer exists, it would be retrieved at this step.115

To sum it up, Adleman, while referring only to an instance of HP, hasn’t solved the problem

in general. Moreover, the complexity of the problem hasn’t simply disappeared while using

DNA computing techniques instead of ordinary computing. With Adlemans method, the

reduced time complexity comes at a price: Now, the amount of DNA that would be needed

to solve the problem, increases exponentially. One guesses, that, for 𝑁 = 200, the amount

115 El-Seoud, Ghoniemy, 2017, p. 79 ff.

40

of DNA strands required would be overwhelming.116 But despite of these restrictions,

Adleman nevertheless achieved a remarkable result: For the first time, he showed that DNA

computing was possible, while making it obvious what huge potential in terms of data

storage and computational speed could be achieved by using DNA as a data structure.117

5.4 DNA Computing Models and the Church-Turing Thesis
There are many different DNA computing models, such as filtering models, insertion-

deletion systems, splicing systems and even a programming language, called DNA Pascal.

Each of these models were designed to be a model of a universal DNA computer, that can be

used to efficiently solve computational problems for scientific or economic purposes. In

doing so, the model should be as consistent as possible with the commonly used

biomolecular processes to manipulate DNA sequences. However, until now, the different

models failed to do so, mostly due to their level of abstractness, which can’t be

implemented by dealing with commonly used biomolecular processes.118

Describing these models in detail would go beyond the scope of this bachelor thesis. Instead,

it is sufficient to notice that each of the different models was designed to be

computationally universal, thus Turing complete. This leads to the following result: Since

every model claiming to properly represent the entire amount of DNA computing processes

is itself Turing complete, DNA computing does not affect the Church-Turing Thesis.

5.5 Future Prospects
When it comes to the possible future outcomes of DNA computing, one of the most

important questions is, whether one can eventually overcome the enormous technical

obstacles of the practical realization of DNA computing. Such obstacles concern, for

example, being able to effectively control the effects of the great amount of side effects that

usually appear while using biochemical operations.119 It could either be that a precise

enough characterization of DNA chemistry and physics is not possible for building a DNA

116 Ibid., p. 82.
117 Ibid., p. 77 f.
118 Hinze, Sturm, 2004, p. 210.
119 Ibid., p. 9.

41

computer120 or that continued exploration of current […] techniques may eventually result in

a new body of methods that are specifically adapted to computing with DNA121.

Another problem prohibiting the research field of DNA computing from making progress

similar to the field of quantum computing is the lack of promising applications of DNA

computing. Although it is guessed that DNA computing could by successfully applied to

problems in molecular biology, a so-called ‘killer app‘ 122 hasn’t been found yet.

One possible application of DNA computing could result in a form of hybrid machines123.

That is, one could connect common silicon-based computers with a DNA computer. The

silicon ones would be used to carry out ordinary computations while the DNA processor

would be applied to particular problems where its specific advantages could be deployed.124

6 Summary and Conclusion
This report has first recalled the history of the Church-Turing Thesis. The main result here is

that the thesis was, in some sense, a side-effect of various attempts to solve the

Entscheidungsproblem: In order to solve this problem, different formal models were

developed to formalise the intuitive concept of the algorithm, or, more specifically, the

concept of an effectively calculable function. Among other reasons, the equivalence of these

different models resulted in the Church-Turing Thesis.

Second, the epistemological state of the Church-Turing Thesis was investigated. The main

result here is that there exist different opinions whether the thesis is mathematically

provable or not, whether it is considered true for practical reasons or whether it follows

from the definition of the concept of the algorithm.

120 Abbaszadeh Sori, 2014, p. 231.
121 Ibid., p. 231.
122 Abbaszadeh Sori, 2014, p. 231.
123 Ibid., p. 231.
124 Ibid., p. 231.

42

Third, new technologies, that is, quantum computing and DNA computing, were presented.

The main result here is that neither quantum computing nor DNA computing are posing a

threat to the Church-Turing Thesis. This is because of the models of computation that are

currently used to describe the functional principles of quantum computing and DNA

computing, respectively. Each of these models can be successfully simulated by a Turing

machine, thus, the class of functions computable by quantum computers and DNA

computers, respectively, is Turing-complete.

To sum it up, the current state of the Church-Turing Thesis is as follows: Even though it

remains divisive, why the Church-Turing Thesis is true, there are no doubts that it is actually

true. More particularly, even newest computing technologies do not affect this.

One could, however, ask whether there might be some future technologies, not yet

developed or even not yet thought about, that could challenge the Church-Turing Thesis.

There is, for example, the purely theoretical idea of hypercomputing: Hypercomputers

compute (in a broad sense of ’compute’) functions or numbers – or, more generally, solve

problems or carry out information processing tasks – that lie beyond the reach of the

universal Turing machine.125 But this would not affect the original Church-Turing Thesis. The

thesis claims that every effective computation can be carried out by a Turing machine. The

sticking point here concerns the notion of effective computation. A computation is called

effective, if some very specific conditions hold (for example the computation requires no

insight or intuition or ingenuity of the human who is performing the computation). The

Church-Turing Thesis simply states that the class of functions, that fulfil the effectiveness-

requirement, is Turing-complete, that is, each of these functions can be carried out by a

Turing machine. It does not, however, consider something that is called Maximality thesis126:

All functions that can be generated by machines (working in accordance with a finite

program of instructions) are computable by effective methods.127 Whether or not this thesis

is valid, is an open empirical question128, but it is a different thesis compared to the initial

Church-Turing Thesis that was concerned in this bachelor thesis. So, if only the “original”

125 Copeland, 2017.
126 Ibid.
127 Ibid.
128 Ibid.

43

thesis is taken into account, even future technologies will not harm the Church-Turing

Thesis.

7 References

1. Bernhardt, Chris. (2019). Quantum Computing for Everyone. Cambridge. United
States of America.

2. Copeland, Jack, Shagrir, Oron. (2019). The Church Churing Thesis: Logical Limit or

Breachable Barrier?. Last downloaded 2019-11-11.
http://delivery.acm.org/10.1145/3200000/3198448/p66-
copeland.pdf?ip=79.219.253.206&id=3198448&acc=OA&key=4D4702B0C3E38B35%2
E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E8BE65BB018D793D0&__acm__=1
573473041_9e86fe7808a32bfa96ad03ae7d160cba

3. Copeland, Jack. (2017). The Church Turing Thesis. Last downloaded 2019-11-11.

https://plato.stanford.edu/entries/church-turing/

4. El-Seour, Samir A., Ghoniemy, Samy. (2017). DNA Computing: Challenges and
Application. International Journal of interactive Mobile Technologies. April 2017. Also
available via https://online-journals.org/index.php/i-jim/article/view/6564 Last
downloaded 2019-11-11.

5. Gödel, Kurt. Über formal unentscheidbare Sätze der "Principia Mathematica" und

verwandter Systeme I. Monatsheft für Mathematik und Physik, volume 38, pages
173-198, 1931. In German, reprinted an English translation.

6. Gödel, Kurt. Kurt Gödel - Collected Works, volume I - Publications 1929-1936. Oxford

University Press, Oxford, UK, and New York, USA, 1986.

7. Gödel, Kurt. (1929). Über die Vollständigkeit des Logikkalküls. Doctoral dissertation.
University of Vienna.

8. Gödel, Kurt. (1986) - Collected Works. I: Publications 1929–1936. S. Feferman, S.

Kleene, G. Moore, R. Solovay, and J. van Heijenoort (editors), Oxford: Oxford
University Press.

9. Hidary, Jack D. (2019). Quantum Computing: An Applied Approach. Cham.

Switzerland.

10. Homeister, Matthias. (2015). Quantum Computing verstehen. Wiesbaden. Germany.

44

11. Petzold, Charles. (2008). The Annotated Turing. Indianapolis. United States of

America.

12. Hinze, Thomas, Sturm, Monika. (2004). Rechnen mit DNA: Eine Einführung in Theorie
und Praxis. München. Deutschland.

13. Murgia, Madhumita, Waters, Richard. (2019, 20th of September). Google claims to

have reached quantum supremacy. Last downloaded 2019-11-11.
https://www.ft.com/content/b9bb4e54-dbc1-11e9-8f9b-77216ebe1f17

14. Rincon, Paul. (2019). Google claims ’quantum supremacy’ for computer. Last

downloaded 2019-11-11. https://www.bbc.com/news/science-environment-
50154993

15. Robič, Borut. (2015). The Foundations of Computability Theory. Heidelberg. Germany.

16. Schöning, Uwe. (2014). Theoretische Informatik – kurz gefasst. Heidelberg. Germany.

17. Soare, Robert I. (2016). Turing Computability. Heidelberg. Germany.

18. Sorir, Amir Abbaszadeh. (2014). DNA Computer; Present and Future. International

Journal of Engineering Research and Applications, 6(2). Also available via
https://core.ac.uk/download/pdf/26663028.pdf Last downloaded 2019-11-11.

19. Takashi, Christopher N., Nguyen, Bichlien H., Strauss Karin, Ceze Louis. (2019).

Demonstration of End-to-End Automation of DNA Data Storage. Last downloaded
2019-11-11.

20. https://www.nature.com/articles/s41598-019-41228-8

21. Weber, Rebecca. (2012). Computability Theory. United States of America.

45

8 Statement of Originality

I hereby confirm that I have written the accompanying thesis by myself, without

contributions from any sources other than those cited in the text and acknowledgements.

This applies also to all graphics, drawings, maps and images included in the thesis.

_______________________ _______________________

Place and date Signature

