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Abstract

Argumentation is based on distinguishing relevant arguments from insignificant argu-
ments and examining conclusions for a given problem. It can also entail identifying con-
flicts, causing to seperate pros and cons for certain conclusions. In the 1990s, innovations
and shifts in the field of artificial intelligence led to a more formal and computational argu-
mentation theory, which yielded the field known as Argumentation Logic.

Argumentation Logic is likely to be a very influential field of research for the future of ar-
tificial intelligence more specifically logic, law, optimization, security administration and
even philosophy.

This thesis is an overview of the achievements in Argumentation Logic and of the history
of Argumentation Logic research. It also mentions the most significant scientists in the field
among others Dung, Pollock, Loui, Prakken. Furthermore the general semantics of the ab-
stract argumentation framework, applications are displayed and finally an extension of the
framework to structured arguments is introduced.
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Zusammenfassung

Argumentierung basiert auf der Trennung von relevanten Argumenten von unbedeuten-
den und der Untersuchung von Schlussfolgerungen fiir ein gegebenes Problem. Es kann
auch die Identifizierung von Konflikten beinhalten, was zu einer Separierung von pro und
contra fiihrt fiir eine bestimmte Schlussfolgerung. In den 1990ern haben Innovationen und
Verdnderungen im Forschungsgebiet der kiinstlichen Intelligenz zu einer mehr formalen
und rechnerischen Argumentationstheorie gefiihrt.

Das Thema Argumentationslogik war und wird ein sehr einflussreiches Forschungsgebiet
fir die Zukunft der kiinstlichen Intelligenz sein, im speziellen fiir die Logik, Recht, Op-
timierung, Argumentationsprobleme, Sicherheitsiiberwachung oder auch philosophische
Probleme.

Diese Arbeit schafft einen Uberblick iiber das Thema und gibt einen Einblick in die For-
schungsgeschichte und ihre bedeutsamsten Wissenschaftler, wie Dung, Pollock, Loui, Prakken,
die generelle Semantik des abstrakten Argumentationssystems, Anwendungen und ab-
schlieflend mit einer Erweiterung des System fiir strukturierte Argumente.
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CHAPTER 1

Argumentation Logic: Introduction

1.1 History

The history of argumentation dates back to the days of Platon and his method “Plato’s Di-
alectic” [51]. This argumentative method encapsulates a discourse between two or more
people with different opinions about a subject, with the wish to determine the truth of the
matter through reasoned arguments. A second example would be “Leibniz’s Dream” [41]:
“The only way to rectify our reasonings is to make them as tangible as those of the Math-
ematicians, so that we can find our error at a glance, and when there are disputes among
persons, we can simply say: Let us calculate [calculemus], without further ado, to see who
is right.”.

"You take the words in the sense which is most damaging to the argument” ~Plato[51]

In the past decade argumentation gained in importance: John Pollock (1940-2009) made
valuable contributions to artificial intelligence (Al): first to the study of defeasible reason-
ing and then to the study of decision-theoretic planning and practical cognition. Many
vital topics in the Al field were first or further studied by Pollock, for instance argument
structure, argument strength, argument labellings, the nature of defeasible reasons, the in-
teraction between deductive and defeasible reasons, rebutting versus undercutting, defeat,
self-defeat and resource-bounded argumentation [56], [57], [52], [53], [54]. While investigat-
ing defeasible reasoning, Pollock created one of the first formal systems for argumentation-
based inference.

Pollock’s work on argumentation was also impacted by Ross’s defeasible reasons [68]. ”De-
feasibility” derives from legal philosophy, in particular Hart [38]. Hart encountered, that
"legal concepts are defeasible in that the conditions for when a fact situation classifies as
an instance of a legal concept (such as ’contract’), are only ordinarily, or presumptively,
sufficient.”. If one party successfully proves these conditions in a law suit, it does not affect
the outcome that the case is settled.

Alongside Pollock, there were multiple groups of researchers, continuing his work. Through
the use of the notions support and attack, Birnbaum, Flowers and McGuire [17] applied ar-
gumentation inspired methods in an Al setting. A major historical influence emerged from
Al and Law work on the computational modelling of legal argument. One of the earliest

1



2 CHAPTER 1. ARGUMENTATION LOGIC: INTRODUCTION

works in that field was the TAXMAN II project [44], [45]. It was supposed to help lawyers
and judges in “hard cases”, where they have to “construct a theory of the disputed rules
that produces the desired legal result, and then to persuade the relevant audience that this
theory is preferable to any theories offered by an opponent.”. There were a number of sci-
entist stemming from Al and Law that contributed to the overall topic of argumentation,
including Trevor Bench-Capon [10], [8], [9], [7], [14], [27], Tom Gordon [31], [32], [34], Gio-
vanni Sartor [63], [65], [11], Bart Verheij [73], [30], [16], [74], [72], and Henry Prakken [60],
[66], [61], [33], [67], [62].

Taking a look at the first Al systems for argumentation-based inference, we can see that
they were not influenced by the aforementioned philosophical advancement. They were
rather introduced as new ways to execute nonmonotonic logic. The topic of nonmonotonic
logic became popular around 1980 and many approaches were being pursued. Towards
the end of the 1980’s, the discipline of nonmonotonic logic had been seen as a big part of
artificial intelligence. The field was driven due to the fact that commonsense reasoning of-
ten includes incomplete or inconsistent information, where cases logical deduction is not a
useful reasoning model. If information is incomplete, then there cannot be a useful deduc-
tion. If it is inconsistent, then anything deductively is implied. Nonmonotonic logic accepts
‘jumping to conclusions’, if there is no information proving the contrary. A very prominent
example is 'birds can typically fly, Tweety is a bird, therefore (presumably) Tweety can fly’.
This inference holds until there is information available that Tweety is not a typical bird
with respect to flying, for example a penguin. Nonmonotonic logic can also simulate the
deduction of useful conclusions from inconsistent information, in particular, by concentrat-
ing on consistent subsets of the inconsistent information. A few years after the first paper
in the now popular special issue on nonmonotonic logic of the Artificial Intelligence journal
[18], the theory emerged that nonmonotonic inference can be displayed as the competition
between arguments.

The first nonmonotonic reasoning systems with an argumentation spirit includes the work
of Touretzky [70], [71] on inheritance systems. That thought was later on continued by
several researchers Horty et al. [39]. Inheritance systems show in what way objects inherit
properties from the classes to which they belong. They are nonmonotonic because of inher-
iting properties of classes by subclasses can be blocked by exceptions. For instance, pen-
guins do not inherit the property of being able to fly from birds. Inspite of the fact that the
work on inheritance systems did not make use of argumentation terms, those systems still
have all the attributes of argumentation systems. Firstly inheritance paths practically are
arguments. Especially the conclusion of Tweety the penguin being able to fly can be drawn
using the path "Penguins are birds and birds can fly” while the conclusion that Tweety the
penguin in fact cannot fly can be drawn via the inheritance path 'Penguins cannot fly’.
Inheritance systems also contain various notions of conflict between inheritance, includ-
ing definitions of whether a path is ‘permitted’ considering its conflict relations with other
paths. Since there are old-fashioned technical solutions, the work on inheritance paths has
clearly influenced the growth of the first Al argumentation systems. Because of that, these
publications are a great source of examples.

Another influencial person in the beginnings was Ron Loui. His work [42] was important
in promoting the concept of formulating nonmonotonic logic as argumentation. He and
Guillermo Simari developed a technically mature version of his ideas [69]. Numerous of
his papers supported the idea of computational dialectics and were consequently relevant
for dialogue models of argumentation. The entirety of these thoughts is in [43], which
spread amongst researchers for various of years until the publication in 1998.

Other notable early work came from Nute [48], which later turned into Defeasible Logic
[49]. This approach is similar to the one of argumentation, but despite from conflict and
defeat occuring between arguments, in Defeasible Logic they happen between rules. Be-
cause of that, the work on Defeasible Logic has deviated from the field of computational
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argument. In spite of that, scientists have taken a closer look at the formal relation with
argumentation approaches. Specifically, [36] studied to what degree defeasible logics can
be reformulated in the sense of Dung’s theory of abstract argumentation frameworks.

In the following section, the developments after Dung’s paper is shown and further exten-
sions of his work with a few examples.

1.2 Current state of research and motivation

Up until 1995, certain publications on structured argumentation had specific and at times
offhand definitions of argument evaluation. On the contrary most of the work since 1995
on structured argumentation follows Dung’s approach or at the minimum explains the re-
lation with it. Various work that is using Dung’s view gives definitions for the structure of
arguments and the nature of attack. Because of that, abstract argumentation frameworks
are generated in a special way. Arguments can be evaluated based on one of the abstract
argumentation semantics and the framework’s acceptability status can be used to define
nonmonotonic consequence notions for their statements.

Nevertheless, there are various other advances that digresse from Dung’s approach. The
first one is Argumentation models of plausible reasoning, which can be divided into as-
sumption-based argumentation and classical argumentation. Parallel to the proposition
of argumentation as a way of dealing with inconsistency in classical logic, assumption-
based argumentation (ABA) arose through attempts to deliver an argumentation-theoretic
semantics towards the negation of logic-programming as failure [20], [19]. Similar to the
views of classical logic, ABA also presumes a unique ‘base logic’, which is called "deduc-
tive system’ in ABA, composed of a set of inference rules defined over a logical language.
If there is a set of ‘assumptions’ formulated in the logical language, arguments are then
deductions of claims, that are using rules and maintained by sets of assumptions.

Even though ABA and Dung’s approach clearly have the commonalities, ABA, which was
first developed by [19], does not generate abstract argumentation frameworks. Rather, sets
of assumptions are its extension, caused by turning attack relations among arguments to
attack relations among sets of assumptions. Merely ten years later, Dung gave ABA an
explicit Dungean formulation [25]. At present, there is a debate on whether the correspon-
dence holds for all current abstract argumentation semantics or not [29], [22]. At first, ABA
was used theoretically as a framework for nonmonotonic logic. Over time though the focus
has deviated into developing algorithms and implementations and the application of them
to a broad spectrum of reasoning and decision problems.

The second kind of argumentation model of plausible reasoning is ‘classical’ or "deductive’
argumentation. Elvang-Goransson et al. [26] and [12] were the originators of this work.
The ’classical’ part refers to examples with classical propositional or first order logic. 'De-
ductive argumentation’ whereas is intended for approaches that draw off from particular
base logics, if they are ‘deductive’. The term ‘deductive’ is often used in an informal way,
for example in [13]. A deductive inference is being described as ‘infallible in the sense that
it does not introduce uncertainty’. This in fact though goes hand in hand with Pollock’s
notion of a deductive reason. Not to long ago Amgoud and Besnard [1], [2] delivered an
explicit interpretation, using the assumption that the base logic satisfies the properties of
a 'Tarskian abstract logic’. It is based on Tarski’s notion of an abstract logic that only as-
sumes some unspecified logical language L, and an outcome or consequence operator over
this language, that assigns a subset of L to every subset of L (its logical result or conse-
quence).

A couple of years after Dung’s paper, there have also been several graph-based approaches.
Not arguments but statements and their relations are the focal point. Here one can also see
the effect of Pollock’s work [55], considering his system is rather formalised in terms of "in-
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ference graphs’ than in terms of arguments, where nodes are connected by inference links
or defeat links.

Gordon et al. [35] considered the Carneades framework ‘of argument and burden of proof’.
Its main form is that of an argument graph, that is similar to Pollock’s inference graphs.
Here statement nodes are linked to each other through argument nodes, that register the
inferences from one or multiple nodes to another. Opposite to Pollock, Carneades does not
mark conflicts as a unique type of link between statement nodes. The inferences can rather
be pro or con a statement.

Contrary to most of the early work being on epistemic reasoning, there has now been more
attention for practical reasoning. In the midst of the early papers was Fox and Parsons
[28], which was motivated by medical decision making. Pieces of work like Grasso et al.
[37] plan for a nutrition advice system and Bench-Capon’s [8] formal work on value-based
argumentation frameworks. Each work was affected by Perelman and Olbrecht-Tyteca’s
[50] idea, that if an argument in a normal discourse is good does not depend on its logical
form, but if it is able to convince the actual audience. Value-based argumentation was then
continued by Atkinson [6] and Bench-Capon [7]. They characterized value-based argu-
mentation frameworks with an argumentation scheme approach taken from Walton’s [79]
schemes for practical reasoning.

Finally, a recent trend was combining argumentation-based inference with probability the-
ory. Since argumentation has been used as a model for reasoning under uncertainty, this
is no surprise. This combination was needed, because of some work, where probabilis-
tic models are the object of argumentative discourse, e.g. Nielsen and Parsons [47], who
showed a way of jointly constructing Bayesian networks in argumentation process. There
are two manners, where the uncertainty is in or about the arguments: if it is in them, prob-
abilities are intrinsic to an argument. They can be used for weakening an argument, if there
is an uncertainty towards the truth of its conjectures or its reliability of its inferences. For
instance Most Belgians speak French, Mathieu is Belgian, therefore (presumeably) Mathieu speaks
French. So, if all conjectures of an argument are definite and it only makes deductive infer-
ences, the argument should attain maximum probabilistic strength. This use of probability
is called the epistemic approach [40].

1.3 QOutline

Taking a look at the following chapters, this thesis gives an in-depth overview of the fa-
mous abstract argumentation framework, where we will see the two main approaches and
their specific semantics. Thereafter a display certain applications follows, in particular the
famous P-game and a variation of it. It will also include an extension to the semantics de-
scribed in chapter 2. In chapter 4, the introduction of structured arguments follows and a
demonstration of how to apply this framework on them. Last but not least, a conclusion
will be drawn and an open discussion about the future relevance and the possibilities of
this topic will be extended.



CHAPTER 2

Argumentation Logic: A framework for abstract argumentation

In this chapter a totally abstract framework for the argumentation semantics is presented.
Such a framework allows the inner structure of arguments and the class of defeat relation
to remain undefined. As an input, the framework expects a set (of arguments), which is
ordered by a binary relation (of defeat). It then defines multiple 'semantics’, namely prop-
erties, which all subsets of the set of arguments should fulfill: justifiability or defensibility.
Contrary to standard first-order logic, argumentation semantics are not based around the
notion of truth: Argumentation systems schematize reasoning which is defeasible. They
are not focused on the truth of propositions, but rather with justification of accepting a
proposition as the truth. One is justified in taking a proposition as the truth, if there exists
an argument in favour of the proposition, which one is reasonable to accept. Argument-
based semantics identify the terms for this situation.

Dung [24] introduced the abstract framework in 1995. Theoretically, his publication was
built upon various more detailed argumentation systems. To be exact, Pollock [52]-[57]
and Vreeswijk [75], the contributions to Argumentation Logic of both of whom will be dis-
cussed further on in Chapter 4. Dung’s framework was groundbreaking in various ways:
Firstly, it entails a broad account of argumentation semantics, which can be applied to all
systems that illustrates his framework. Secondly he drew an exact correlation between sev-
eral systems, through converting them into his abstract format. It also made a broad study
of formal properties of systems possible. It was inherited by all systems that embedded his
framework. Lastly, all of this applies to argumentation systems but also to several other
nonmonotonic logics, given that Dung [24] displayed for various non-monotonic logics
how they can be converted into his abstract framework.

2.1 Motivation

As an introduction, this thesis illustrates the concept of argumentation-based inference
with a discussion between two people, namely A and B. They want to clarify, if it is morally
acceptable for a newspaper to release information regarding a politician’s secluded life. Let
us now understand the following information:

(1) The information I refers to the health of person P.

(2) P disagrees with the release of I which is part of her/his privacy.

5



6 CHAPTER 2. A FRAMEWORK FOR ABSTRACT ARGUMENTATION

(3) Information refering to the health of a person is part of that person’s privacy.
A now proclaims the ethical principle that

(4) Information which is part of a person’s privacy should not be published if that
person does not agree with the release of it.

and concludes "With that, the newspaper may not publish I”.

3) 1)

I refers to the health

of P which is part (2)
of his/her privacy.

P disagrees with
release of I which 4)
is part of his/her privacy.

I should not be
released.

B as a matter of fact approves of (4) and is thereby now committed to (1)-(4). However B
does not agree with A’s conclusion. The following 3 propositions are B’s reply:

(5) P is a cabinet minister.
(6) I concerns a disease that could affect P’s political work.

(7) Information that could affect a cabinet minister’s political work is of publical
significance.

B also claims that there is a legal norm that
(8) Information that is of public significance may be published by the newspaper.
B closes by claiming that consequently the newspapers can talk about P’s disease.
®) (6)
I concerns a disease that

could affect the political (7)
work of the politician P.

I'is of public
significance.

®)

The newspapers
may publish I.

A now on the other hand approves of (5)-(7) and also accepts (8) as a legal norm, but does
not agree with the conclusion drawn by B. As an alternative, A tries to defend his argument
by claiming that he has a more persuasive argument, through the following points:

(9) The possibility of the in I mentioned disease affecting P’s work is small.

(10) If the possibility of the disease affecting P’s work is small, then rule (4) has
supremacy over rule (8).
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Therefore it can be concluded, that the legal norm used in A’s first argument has priority
over the legal norm in B. Through that, A’s first argument is stronger than B’s and with that
all the newspaper should not report on P’s disease.

©) (10)
Rule (4) is supreme
over rule (8)

Going into more detail, one can disect this dispute into different stages. Naturally, it seems
that through the statement of (4) from A and the acceptance from B, viz. (1,2,3,4), guaran-
tees the conclusion that I may not be released. After the counterargument of B (5)-(8) and
the approval of A, it does not seem as clear. Now the common ground of this discussion
entails (1)-(8), which brings up a conflict between two arguments. In fact (1)-(8) does not
have a preference between A and B, which means A’s conclusion isn’t safe. A’s second ar-
gument, which proclaims a supremacy between the two legal norms, makes its conclusion
more preferable. After the extension from (1)-(10), A’s claim must be accepted as warranted.

Formalizing this kind of reasoning in logical frameworks or systems is called "argumenta-
tion logic’. Through this example, one can see that these frameworks miss the monotonic
property of ‘standard’, deductive logic (for instance, first-order predicate logic, FOL). Based
on FOL, A’s argument is stated through (1)-(4), it is also stated by (1)-(8).

Nevertheless, argumentation logics have a wider range than just reasoning with such em-
pirical abstractions. It can be applied to any sort of reasoning with opposing information.
It is also important, that various argumentation frameworks allow the construction and
attack of certain arguments. They are called "ampliative’, for instance inductive, analogical
and abductive arguments.

One domain, which is a popular application of argumentation systems, is legal reason-
ing. This is hardly surprising, since legal rules and norms often have objections or have a
conflict amongst themselves. Furthermore legal reasoning happens in an hostile environ-
ment. This means, that notions like argument, counterargument, rebuttal and defeat are
very common.

2.2 The status of arguments

I will now introduce the abstract argument-based semantics. Their task is defining the
terms under which an acceptance of an argument is justified. These terms require an ‘input’
set of arguments, which a binary relation of ‘defeat’ has structured. In multiple publication,
for instance [24], instead of "defeat’ the expression is ‘attack’. The framework is upmost ab-
stract, which leaves the structure of arguments and the evidence for defeat unspecified.
This input is defined as ‘argumentation theory’, in [24] argumentation framework:

Definition 2.2.1 (Abstract argumentation theories)

(1) Anabstract argumentation theory (AAT) is a 2-tuple (Args,defeat). Args is a set of
arguments and defeat a binary defeat relation.

(2) A setS of arguments defeats an argument 4, if one argument in S defeats A. S
defeats a set S” of arguments, if it defeats a member of S’.
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In a more applied view, Args can be seen as all arguments that can be built in a particular
logic with a provided set of premises. Later on, we will see an exception regarding "partial
computation” where this is not the case. If not otherwise specified, a random but absolute
argumentation theory is implied from here on. If we remind ourselves of the definition "A
defeats B’, it can be that A defeats B and B defeats A. A may here be conflicting with B but
A is stronger than B. When A defeats B and B does not defeat A, it can be said that A strictly
defeats B, or else A weakly defeats B.

We will now focus on defining the notion of a justified argument:

Definition 2.2.2 (Justified or not justified arguments)

(1) An argument is justified, if it is defeated (or not) by not justified arguments.

(2) An argument is not justified, if it is defeated by a justified argument.
This outlining is good for simple examples, where no argument is clearly winning:
Example 2.2.3

A,B,C are arguments; B defeats A, C defeats B

A< B < C

An example for this image would be:

(1) A ='Tweety flies because it is a bird’
(2) B ="Tweety cannot fly because it is a penguin’
(3) C ='The remark that Tweety is a penguin is uncertain’

C is a justified argument, because it is not defeated by another argument. With that, B is
not justified and A is justified: Even though A is defeated by B, it is restored by C, since C
makes B not justified.
There are instances, where definition 2.2.2 is either circular or ambiguous. Namely, when
arguments have equal strength and interfere with eachother, it is uncertain which argu-
ment should remain.

Example 2.2.4 (Even cycle)

A,B are arguments. A defeats B, B defeats A.

RN

A B

\_/

An example for this figure would be:

(1) A =’'Nixon was a pacifist since he was a qaker’

(2) B =’Nixon was not a pacifist since he was a republican’
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Can A be justified ? Yes, if B is not justified. Can B be not justified ? Yes if A is justified.
With that being said, definition 2.2.2 can be fully satisfied if A is and B is not justified.On
the other hand, we could say A is not and B is justified, which would result in two possi-
ble ‘status assignments’: one where A is justified with the sacrifice of B and the other way
around. In the end it is not reasonable to choose one over the other.

There are two ways of avoiding this kind of problem: one is changing definition 2.2.2,
where there is only one precise way to designate a status to an argument. If there are "un-
decided conflicts’ both arguments have the status ‘not justified’. The other method accepts
multiple status assignments as a characteristic: it defines an argument as ’genuinely justi-
fied’, if it has this status in all available assignments.

There is however a problem with definition 2.2.2, considering self-defeating arguments.

Example 2.2.5 (Self-defeat)

There is an L, such that L defeats L. L is not justified, so all arguments defeating L are not
justified. Because of section 1 of definition 2.2.2, L is justified. This leads to a contradiction.
Lets us assume, L is justified. L is now defeated by a justified argument and with section 2
of definition 2.2.2, L is not justified. This also leads to a contradiction.

C

Hence, definiton 2.2.2 indicates that self-defeating arguments do not exist. On the contrary
they can be found in regular disputes:

Example 2.2.6 (The Liar)
Self defeating arguments can be constructed similar to the Liar paradox.

The German population can be separated into two types: people telling the truth and peo-
ple lying. Simon is a German priest. German priests are telling the truth. Hence we can say
that Simon is a truth-teller. If Simon now claims he is a liar, what is he then: a truth-teller or
a liar ?

The Liar paradox has either way no conclusion and always ends in a contradiction.

(1) Simon is telling the truth. Therefore what he says must be true. So, Simon is a
liar. This is a contradiction.

(2) Simon is telling a lie. What he is saying is therefore false. So, Simon is not a
liar. Due to the German population constantly lying or telling the truth, Simon
always tells the truth. This is a contradiction.

Because of this paradox, a self-defeating argument L can be madde out of (1):

German priests are Simon is a
reliable truth-tellers German priest
Simon says: Simon is a
"I am lying’ reliable truthteller
Simon is
lying

Simon is not a
reliable truth-teller
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If the argument 'Simon is not a reliable truth-teller’ is equally as strong as its subargument
’Simon is a reliable truth-teller’, then L defeats his own subargument. This leads to it being
a self-defeating argument.

Finally, definition 2.2.2 seems to need another correction, so that there is a margin for the
self-defeating arguments. In the following there will be a discussion about how each se-
mantics handles self-defeat.

2.3 The two assignment approaches

We will now introduce a way of assigning exactly one available status to an argument.
This method of "unique-status-assignment” can be shown through its validation on 'rein-
statement’. Let there be three arguments A,B,C, where B defeats A but B is defeated by C.
Here C 'reinstates” A.

A < B < C

An argument defeated by a different argument can be justified, if that other argument is
defeated by another justified argument. This can now be formalised by this "unique-status-
assignment’ with the notion of acceptability with a fixed-point operator.

Definition 2.3.1 (Acceptability)

An argument A is acceptable towards a set S of arguments, if every argument defeating A is
defeated by S. When A is acceptable towards S, one can say ’S defends A’.

Those arguments from S could be seen as arguments being able to reinstate A, if A should
be defeated.

This notion is not quite sufficient. In Example 2.2.4 there is a set S = A. It is trivial, that
A is acceptable regarding S, given that all arguments defeating A are being defeated by
another argument in S. We obviously do not want an argument reinstating itself. We shall
now examine the following operator, which returns for every set of arguments the set of all
arguments, that are all acceptable to it.

Definition 2.3.2 (Grounded semantics)

Let there be an abstract argumentation theory AAT and S € Argsaar. Then the operator
FA4T is defined as:

FAAT(S) = { A € Argsaar | A is acceptable regarding S }

The grounded extension of AAT is the least fixed point of FAAT.

It is possible to show that F has a least fixed, that the notion of a grounded extension is
well-defined. The general idea is if an argument is acceptable regarding S, it is acceptable
regarding any superset of S, in order for F being monotonic. Self-reinstating can be pre-
vented by specifying the set of justified arguments as the least fixed point. In Example 2.2.4
we would have F(F) = J, because the sets A and B are fixed points of F but not its least
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fixed. Through these remarks we can now define a justified argument in grounded seman-
tics:

Definition 2.3.3 (Justified arguments in grounded semantics)

An argument is defined as justified regarding grounded semantics, if it is part of the grounded
extension.

When using these definitions, it is beneficial knowing that the least fixed point of F can be
estimated:

Proposition 2.3.4

(Dung (1995) [24]) Let us examine the following points:

o FO = @
o Fi*l = [A € Args | A is acceptable regarding F'}.

Let F® = | J7, (F'). Then the following applies:

(1) Every argument in F? is justified.

(2) If every argument is being defeated by maximally a limited amount of argu-
ments, then the argument is justified if it is in F® .

Proof. (1) can be derived from the fact that F® is included in the least fixed point of F and,
if an argument is acceptable regarding S, it also is acceptable regarding any superset of S.
With (2), let every argument have a limited amount of defeaters. If Soc ... € S, € ... isa
rising sequence of sets of arguments, and S =Sy U ... Sy U ... . Let A € F(S). Given that there
is a limited amount of arguments which defeat A, there is a number m so that
A€ F'(S). Thus, F(S) = F(Sg) U ... F(Sn) U ...

O

It should be mentioned, that if (2) does not hold, F® c F(F®).

Example 2.3.5 Let Aj,...,An,... be an infinite chain of arguments and 1 < i < 0. Let A; be
defeated by A;,;.

Al < Ay < Ajz <

Because there is no undefeated argument, there is not least fixed point. Thus F(J) = &. As
a side note it can be said, that here are two other fixed points fulfilling definition 2.2.2: the
set A; in which i is odd and A; in which i is even.

Defensible arguments

The definition of justified arguments in the grounded semantics enables a distinction be-
tween two kinds of arguments that are not justified. If we look at example 2.2.3, we can see
that even though that B defeats A, A is justified through the reinstatement through C. The
next example is an addition to example 2.2.4:
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Example 2.3.6 (Zombie arguments)

Let A, B, C be arguments and A defeats B, B defeats A and B defeats C.

A specific example would be

A ="Nixon was not a pacifist since he was a republican’
B =’Nixon was a pacifist since he was a qaker, and he had no gun since he was a pacifist’
C ="Nixon had a gun since he lived in Chicago’

Based on definition 2.3.3, non of the three arguments are justified. A and B are still the
same as in example 2.2.4. C lastly is defeated by B. Contrary to example 2.2.3, B is not de-
feated by any justified argument, even though it is not justified. Thus B can still prohibit
C from being justified: There is no justified argument reinstating C through defeating B.
Arguments like B can be called 'zombie arguments”: B is not justified (therefore not alive,
but is not entirely dead either). B has a mediate state, where it is still able to influence other
arguments.

We will now define that state of zombie arguments as 'defensible”:

Definition 2.3.7 (Overruled and defensible arguments in grounded semantics)

In the scope of grounded semantics, an argument is:

¢ overruled if it is not justified and a justified argument defeats it.

e defensible if it is not justified and not overruled.

Self-defeating arguments
Let us now take a look on how definition 2.3.2 handles self-defeating arguments:

Example 2.3.8 Let A,B be two arguments, where A defeats A and A defeats B.

Q—»B

Here we again have F(J) = §. Both A and B are defensible, because neither of them is
defeated by a justified argument. One might think that this is unnecessary, because self-
defeating arguments ought to be overruled. In Chapter 4 one will see that a correct analysis
of self-defeating arguments is only given through an explicit inner structure of arguments.

Unique status assignments: problems

The unique-assignment system can be executed in a mathematical way, so that it delivers
intuitive results in various cases. With that come a few problems:

Example 2.3.9 (Floating arguments)
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Let A, B, C, D be arguments, where A defeats B, B defeats A, A defeats C, B defeats C and C
defeats D.

A

Because all of the arguments are defeated, all of them are defensible (through definition
2.3.3). One could on the other hand argue, that since C is defeated by A & B, C ought to be
overruled. The cause for that is regarding C’s status, the conflict between A and B needs no
solving. C’s status is "floating’ on that of A and B. If C might be overruled, then D would be
justified, due to C being its only defeater.

A version of this is the following instance of default reasoning. Before we start we need to
presume that the structure of arguments has a conclusion and they have subarguments.

Example 2.3.10 (Floating conclusions)

Let A", A, B", B be arguments, where A” and B" are defeating one another and A and B have
the same conclusion.

A possible configuration would be

A" = Simon is German because he was born in Munich
B™ = Simon is Italian because he has an Italian surname
A = Simon likes playing soccer because he is Italian

B = Simon likes playing soccer because he is German

The main issue no matter of A”’s and B™’s conflict, the conclusion will always be Simon likes
playing soccer. With that it appears like it is justified to assume this conclusion as true,
despite it not being supported by a justified argument. It sort of floats on the status of A
and B".

Regardless of whether the unique assignment approach is able to conquer floating argu-
ments and conclusions, one can do so by having multiple status assignments.
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2.4 Relation between different semantics

Another approach for dealing with conflicting arguments of equal strength, is them pro-
ducing two different status assignments: In that case one has to be justified to the harm of
the other one. Now an argument is justified if it has this status in every status assignment.
For this way there are two approaches called ‘stable” and "preferred semantics’.

Stable semantics
This first way takes definition 2.2.2 and uses the extension of multiple assignments:
Definition 2.4.1 (stable status assignments)

Let AF = (Args,defeat) be an AAF, where In and Out are two subsets of Args. Therefore
(In,Out) is a stable status assignment regarding AF, if In n Out = ¢J and In U Out = Args and
for all A € Args it maintains that:

(1) Aisin (meaning A € In), if every defeater of A, if there is one, is out.

(2) Aisout (meaning A € Out), if there is a defeater of A, which is in.

These two terms (1) and (2) are taken from definition 2.2.2. With this definition 2.4.1, we
can connect a stable status assignment to a stable argument extension, which holds every ar-
gument that is in the status assignment.

Definition 2.4.2 (Stable argument extension)

A set of arguments is called stable arqument extension, if for a stable status assignment this
is a set, where every argument has the status in.

Stable argument extensions correspond with Dung’s stable extensions [24]. He in fact has a
different but comparable notion of a conflict-free set of arguments:

Definition 2.4.3 (Conflict-free sets)

A set of arguments S is conflict-free, if there is no argument in S defeating another argument
in S.

Definition 2.4.4 (Stable extensions)

A set of arguments S is a stable extension, if S is conflict-free and all arguments that are not
in S, are defeated by S.

Proposition 2.4.5 The stable argument extensions generated by definition 2.4.1 are exactly
the stable extensions specified in definition 2.4.4.

Proof. = :Let (In,Out) be a stable status assignment. To be verified:

1. In is conflict free. Through contradiction, we say that In holds arguments A,B,
where A defeats B. By section (2) of definition 2.4.1, B is in Out. But given that In n
Out = ¢, Bis not in In. This is a contradiction. Therefore there is no A,B, where In is
conflict-free.
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2. In defeats every argument outside In. Due to stable status assignments allocating
a status to every argument in Args and In n Out = F, all arguments that are not in
In are in Out. Subsequently by section (2) of definition 2.4.1 all those arguments are
defeated by an argument in In.

< : Let S be a stable extention. To be verified: (S,Args/S) is a stable status assignment. It
should be mentioned, that this is a separation of Args, so In n Out = & and

In U Out = Args. Hence we need to prove that (1) and (2) from definition 2.3.1 are
fulfilled.

1. (1) from definition 2.3.1 is fulfilled like this: If A € S (S is conflict free), thenno Be S
defeats A, and with that every defeater of A is in Args/S. And if every defeater of A is
in Args/S, then A is not able to be in Args/S, given that no defeater of A € S. Therefore
AisinS.

2. (2) from definition 2.3.1 is fulfilled like this: Let A € Args/S. Thus given that S
defeats every argument around it, A has a defeater in S. And if A has a defeater in S
(and S is conflict free), A € Args/S.

O

From now on we ought to apply the term stable extension for stable argument extensions
and Dung’s stable extension.

Taking a look at two past examples, 2.2.3 only has one stable extension, namely {A,C}, but
2.2.4 has two, because of these two status assignments:

O o

If we correctly remember, an argumentation system defines, if it is justified to accept an ar-
gument. How does that relate to A and B in example 2.2.4 ? Since these two are in a stable
status assignment and not out in the other, it must be concluded that regarding the stable
semantics none of the two are justified. This is because of the following definition:

Definition 2.4.6 (Justified arguments in stable semantics)

In reference to stable semantics, an argument is justified, if it is in every stable status assign-
ment.

On the contrary, it is not enough: similar to the unique-status-assignment method, there
can be a distinction between two diverse categories of not justified arguments. Various
arguments are in no stable status assignment, however some are in extensions. The two
categories are overruled and defensible arguments.

Definition 2.4.7 (Overruled and defensible arguments in stable semantics)

Regarding to stable semantics, an argument is:

 overruled, if it is out in every stable status assignment.

* defensible, if it is in in a few but not every stable status assignment.
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That being said, the approach of unique- and multiple-assignments are not equivalent. In
example 2.3.9 A and B make a defeat loop, which means (based on multiple assignment
approach) A or B is assigned in but not both. The mentioned defeat relation produces two

stable status assignments:

x\\&ﬂ \r\ﬁ
P\ e

@

Although every argument in the unique-assignment approach is defensible, now, whilst
A,B are defensible, D is justified and C overruled.

These multiple status assignments also allow capturing floating conclusions. This can be
achieved through the definition of a justified formula ¢, where every extension holds an
argument for ¢. The structure of arguments and other resulting notions for formulas will
be further discussed in Chapter 4.

Preferred semantics

Another version of the multiple-status-assignments system is unnecessary, given that a sta-
ble extension is conflict-free, it displays a clear perspective. At the same time it is the best
perspective, considering that an argument can only be either accepted or rejected. Stable
semantics are in general the most ‘offensive’ type of semantics, seeing that a stable exten-
sion defeats all arguments outside of it. Here it does not matter if these arguments are or
are not aggressive towards the extension.

Because of that, not every argumentation framework has stable extensions. The example
below displays that and also has an "odd loop” of defeat relations.

Example 2.4.8 (Odd loop)

Let A,B,C be arguments, where A defeats C, C defeats B, B defeats A.
/ C \
A B
>~

Right here, definition 2.4.1 has a few problems, since this graphic has no stable status as-
signments.

1. If A is in, then C is out (A defeats C). If C is out, B is in but A is out (B defeats A). This
is a contradiction.

2. If Ais out, then Cis in (A only defeater of C). Therefore B is out (C defeats B). However
A is then in (B defeats A). This is a contradiction.
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It should be mentioned that self-defeating arguments are a special case. Therefore argu-
mentation frameworks with a self-defeating argument might not hold a stable status as-
signment.

For these examples to have a multiple-assignment semantics, we need to define partial sta-
tus assignments.

Definition 2.4.9 ((Preferred) status assignments)

Let AF = (Args,defeaty be an AAF and In,Out two subsets of Args. The tuple (In,Out) then is
a status assignment according to AF, if In n Out = F and V A € Args:

1. Ais in (A € Args), if every defeater of A (if there is one) is out.
2. Ais out (A € Args), if A has a defeater that has the status in.

A preferred status assignment (In1,0ut) is a maximised set of arguments that is labelled in (if
there is no status assignment (In’,Out’) where In < In’).

That being said, in example 2.4.8 the preferred semantics assigns it a unique preferred sta-
tus assignment ((,)). The definitions 2.4.6 and 2.4.7 can as well be specified for preferred
semantics, through the substitution of ‘stable” by "preferred’. In these preferred semantics
there are other options for the definition of defensible and overruled argument, due to ev-
ery status assignment of an argument status being able to be either in, out or undefined.
Contrary to stable semantics, we can now have an argument being in in a few assignments
but not out in any assignment.

Coming back to preferred extensions, it rather is defined with the notion of an admissable
set (Dung [24]).

Definition 2.4.10 (conflict-free and admissable set)

(1) Let a set of arguments S be conflict-free, if no argument in S defeats an argument in S.

(2) Let a set of arguments S be admissable, if S is conflict-free and every argument in S is
acceptable regarding S.

Taking a look at example 2.1.3, we can see that the set &, {C}, {A,C} are admissable but
every other subset of {A,B,C} is not admissable.

Definition 2.4.11 (Preferred extension)

Let a conflict-free set of arguments S be a preferred extension, if S is the largest (regarding set
inclusion) admissable set.

Preferred status assignments correlate exactly with these preferred extensions (Caminada
(2006) [21]).

Proposition 2.4.12

1. If (In,Out) is a status assignment, then In is an admissable set.
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2. Let Out(E) be a set of arguments, with every argument defeating E. If E now is a
preferred extension, (E,Out(E)) is a status assignment.

3. (In,Out) is a preferred status assignment, if In is a preferred extension.
It can be derived from definition 2.4.11 that:
Proposition 2.4.13 (Dung (1995) [24])
Any AAF has a minimum of one preferred extension.
Grounded status assignments

Grounded semantics can be written as status assignments, where the assignments are min-
imal towards the following.

Definition 2.4.14 (Minimal status assignments)

Let S be a status assignment (In,Out) that is minimal, if there exists no status assignment S’
= (In’,Out’), where In" U Out’ c In u Out.

Proposition 2.4.15 (Caminada (2006) [21])

Let S be the grounded extension of AF, if (S,0Out) is a grounded status assignment of AF.
Self-defeat in preferred semantics

Finally in what way do preferred semantics process self-defeating arguments ? They (same
as in grounded semantics) actually hinder other arguments from being justified. For a more
illustrative perspective, one can take a look at example 2.1.8. B is not admissable and with
that ¢F is the only preferred extension. As already mentioned an entire analysis of self-
defeat with the need of a clear internal structure of arguments is made in Chapter 4.

Relationship between grounded, stable and preferred semantics

In the following a presentation of various results on the relation between these semantics
proven by Dung (1995) [24] is given.

Proposition 2.4.16

Every stable extension is preferred, but some preferred extensions are not stable.

Proof. First of all, every stable extension is a preferred extension plus example 2.3.8 proves
that conversely it does not work. An empty set is a preferred extension of that AF, but it is

not stable.
O

These next results are being listed without a proof.

(1) The grounded extension is included in the junction of every preferred extension.
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(2) If an AAF does not generate infinite paths Ajy,...,Ay,... due to the defeat graph, so
that A;,; defeats A ; then it holds only one stable extension, that is also grounded and
preferred.

(3) Lastly Dung determined certain conditions, where preferred and stable semantics
correspond. One vital condition would be that an AAF does not hold odd defeat
loops.

To close out this chapter a comparison will be drawn between the unique- and multiple-
assignment approach. One could say that the difference between these two approaches il-
lustrates the contrast between the ‘skeptical” and 'credulous’ view. If there is an unsolvable
conflict, a “skeptic’ avoids coming to a conclusion where a ‘credulous’ thinker would draw
an arbitrary conclusion and dive into their impacts. The comparison "skeptical’-’credulous’
and unique- and multiple-status-assignment are independent from eachother: If there is
a decision on accepting a justified belief, it is important how the certain arguments are
assessed in the end, given these assignments. This assessment entails the notions of ‘justi-
fied” and "defensible’, which encaptures the contrast towards ‘skeptical’-’credulous’. There-
fore the contrast of justified-defensible arguments can be applied in both the unique- and
multiple-assignment approach, which makes these approaches unrelated to the "skeptical’-
‘credulous’ contrast.

Using skeptical reasoning is advocated by saying there are two arguments of equal strength,
whereas using the credulous reasoning could be advocated by saying one person has to
act, no matter if s/he has clear reason to evaluate on what to act on. Taking a look at their
result, both approaches basically vary in their handling of floating arguments and con-
clusions. Regarding these instances, one does not know which approach is the right one.
Contrary to 'right’ and "wrong’, it is often spoken of "senses’, where there can be a justified
argument/conclusion. In example 2.3.10 where Simon likes soccer is justified in a different
sense than example 2.2.3, where the result is Tweety flies.

2.5 Argument-based reconstruction of nonmonotonic logics

Dung’s AAF is not limited towards argumentation systems, but can also reformulate other
nonmonotonic logics in argument-based circumstances. Thereby one can match these log-
ics regarding general theory: one can study the differences between them and what these
differences lead to. With that one can also derive other versions for these logics.

Let us take the default logic, which will be similarly rebuilt according to Dung [24]. One
could do that by the definition of an argument being a bounded process as defined in
Antoniou [5]. It is said that processes are sequences of defaults without multiple occur-
rences, where the precondition of every default is logically implied through the union of the
knowledge W and the resultants of every prior default in that sequence. A process closed,
if there can be no default attached to the sequence and it is successful, if every premise is
compatible with the result. Since arguments are generally constructed for a proof of a con-
clusion, processes now being arguments have no need of being closed. There is no need for
being successful, since unsuccessful correlates to being a self-defeated argument.

Definition 2.5.1
Let A = (W, D) be a default theory and let the AAF AF(A) = (Argsy, defeats) be defined by:

e Argsp = { II|ITis a bounded process of A }
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o Il defeatsy IT, if ¢ € In(IT) for a ¢ € Out(IT').
A formula ¢ is a result of an argument I, if ¢ € In(IT).

With that a defeat of an argument can be achieved through acquiring the negation of those
assumptions.

With this translation, an analogy can be shown between default logic and stable semantics.
Let A be a default theory, where

E is a given set of formulas, let Args(E) be the set of every I1 € Argsa, where
for every k € Out(Il): =k u E is constant.
S C Argsy is a given set, let Concs(S) be the union of every set In(I;), where IT; € S.

Proposition 2.5.2
For a given default theory A:

(1) Let S be a stable extension of AF(A), let then Concs(S) be a Reiter-extension of
A.

(2) Let E be a Reiter-extension of A, let then Args(E) be a stable extension of AF(A).
I will not display this proposition’s proof, since it is not stated in the literature. In the fol-
lowing Lemma following holds: let d be a default, then Pre(d), Jus(d) and Res(d) indicate d’s
precondition, justification and resultant.

Lemma 2.5.3

Let S be a stable extension of AF(A) and IT € S, then:

(1) every subsequence IT of IT that is an argument is in S

(2) every argument in S is a process.

Proof. (1): Every defeater of IT' is also a defeater of IT. Therefore (IT')’s defeater is not in S.
Then (by definition of stable extension) IT' € S.

(2): LetIT € S and IT is no process. Then, for a subsequence I1[i] of IT and d; € II, the
negation of a certain j € Jus(d;) is in In(I1[i]). Therefore I1[i] is the defeater of I1. On the other

hand, IT[7] € S (1). But S is not conflict-free. This is a contradiction.
O

Example 2.5.4

Let A; = (W, D) where W = {p} and

D={d1:p:2Ar, dz:ﬁ, d3:p:u/\ﬁt }

Let AF(A1) consist of:
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A=g
B=d;
C=dy, dy
D=ds
E=d,ds
F=ds, dq
G=dy,d3, dy
H=ds,dy, dq

The following figure shows the defeat releation and implies that G, H defeat every other
argument except A.

D
E

A /
C—F

B \

In the end, Dung’s work was a significant creation in the field of defeasible argumenta-
tion. It included a clear general framework for investigating the different argumentation
systems. A great benefit is that it can be used on diverse nonmonotonic logics, since he
showed how to transpose them. His proof theories for different argument-based seman-
tics can be utilized towards the systems that are instances of these semantics. The abstract
essence of Dung’s framework gives room for the particular developer, where they can de-
fine the internal structure of an argument, how the arguments conflict and the source of the
defeat relation.

In the third chapter a particular framework will be displayed, where these elements have
been specified.
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CHAPTER 3

Argumentation Logic: Applications

Up til now, the focus was on how to define the basic properties of sefs of arguments, where
we excluded methods of identifying if an argument is included in a certain set. In the fol-
lowing chapter a more formal way of argumentation is displayed. Here we will study the
status of individual arguments.

3.1 General ideas

Let there be an argument in an AAF, how can its status be studied ? This question has been
taken on by various argumentation systems, where the basic concept can be explained
as follows: Let there be an argument game amongst two parties or players, a pro- and an
opponent of an argument. In a dispute the two players have alternating moves. The propo-
nent begins with an argument, that needs to be tested, and every succeeding move entails
an argument defeating a certain move from the opposing player. The starting argument
holds a specific dialectical status, if the proponent wins after any given move from the op-
ponent (winning strategy).

The explicit rules of the game rely on the game semantics. A general winning measure is if
one player has no moves, the other one wins. On the other hand, there are many more:

* Do there have to be only strictly defeating or also weakly defeating moves ?
¢ Can one repeat a move ?
¢ Can a player backtrack ?

¢ Can a player defeat or be defeated by a preceding move of his ?

These are individual question that need to be resolved independently for each side.

A basic concept of dialectical proof theories is dialectical asymmetry. Each player of an ar-
gument game has a different goal: the proponent tries to build a dialectical proof, whereas
the opponent tries to impede that. Generally speaking the proponent is constructive and
the oppponent destructive, which results in certain rules for both sides. With that comes a
liability that affects one player more than the other. Which one can be figured out through

23
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the reasoning: if there is a skeptical reasoning the proponent has more of a liability, whereas
in a credulous reasoning the opponent has more of a liability.

To be more concrete, a dialectical proof theory has the structure of an argument game con-
trolling a dispute between two players/partys, the proponent P and the opponent O of an
argument. Let p be a player and p the other player. The players act in alternating moves,
moving one argument every turn. There is a protocol function included for specifying the
legality of moves. It does so, by specifying at every point in a dispute which arguments can
be moved. In the end, a winning criterion is a partial function that identifies the winner of a
dispute, if there is one. This argument game is a zero-sum game, where if there is a winner,
the other player has to lose.

All of these notions are now being defined in this manner:

Definition 3.1.1 (Moves, dispute and protocol)

Let AF = (Args, defeat) be an argumentation framework, then the following holds:

e Let M be a set of moves consisting of all pairs (p, A), where p € {P, O} and A € Args;
(p, A) is a move M and we can represent p through pl(m) and A through s(m).

e Let M =™ be a set of disputes and a set of every sequence of M and M =* the set of
finite disputes and the set of every finite sequence from M.

* A function, which identifies every legal move at every stage of a dispute, is called a
protocol. Mathematically, a function Pr with a domain that is a nonempty subset D of
M =% and that takes subsets of M as values, is called a protocol.

Pr: D —s Pow(M)

where D € M =*. D’s elements are so-called legal finite disputes. The elements in-
cluded in Pr(d) are the so-called moves allowed after d. If d is a legal dispute and
Pr(d) = &, then d is a terminated dispute. For every finite dispute 4 and move m, Pr
needs to fulfill the following conditions:

(1) Ifd,me D, thend € D and m € Pr(d);
(2) If m € Pr(d), then if d is of even length pl(m) = P. Otherwise pl(m) = O.

e A partial function of type W: D — {P, O}.

The essential parts of this definition are the protocol and the winning criterion, because the
dialectical proof theories deviate in these two elements. In the following,we shall define
an abstract game-theoretic notion of defeasible provability, which is done so through the
notion of a strategy. A strategy for a certain player is displayed in a game through a tree of
disputes, where for every available move from the opposing player an individual answer
is given.

Definition 3.1.2 (Strategy)

(1) Let p be a player, where his strategy is a tree of disputes only after p’s moves, and
containing all of p’s legal replies.

(2) Letp have a winning strategy, if p wins every dispute in that strategy.
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When defining a winning criterion, that the other player has no legal moves, one can see
that a winning strategy is where a player has every last move of every branch in that tree.
Defined by a protocol X, defeasible provability is being defined here:

Definition 3.1.3 (Provability)

Let A be a defeasibly provable argument (regarding X-game), if the proponent has win-
ning strategy in a dispute, where A is the root and fulfills the protocol of X.

3.2 Dialectics for grounded and preferred semantics

In the following section the proof theory, that assesses if a specific argument is in the
grounded extension of a given AF, is being discussed. The dialectical asymmetry benefits
the opponent, since only justified arguments are in the grounded extension. Furthermore
the proponent cannot repeat his arguments and backtracking is prohibited for both players.

Definition 3.2.1 (Proof theory for grounded semantics)

Let a dispute fulfill the G-game protocol, if these conditions are fulfilled:
(1) Moves m are legal if besides definition 3.1.1 they fulfill these conditions:

(a) The proponent does not repeat one of his moves; plus

(b) The moves from the proponent (not his first) strictly defeat the last move from
the opponent; and

(c¢) The move from the opponent defeats the last move from the proponent.
(2) A player has won a dispute, if the opposing player has no legal moves.

A dispute that fulfills the G-game protocol is a so-called G-dispute.

Example 3.2.2 Let A, B, C, D be arguments, where B, D defeat A and C defeats B. Then a
G-dispute may run on A like:

P:A O:PP:C

P in this dispute is trying to show that A is justified. B, D both defeat A, which leads to O
having two choices to respond towards A. O decides to respond with B, and then C is the
only argument defeating B (P cannot use C in third move). Now there are no arguments
against C, where O cannot move and lose as a consequence.

On the other hand, this is not a certain result for O; that loss was due to her inefficient play.
An optimal strategy for O would be

P: A, O: D
With that P has no answer and O wins. In the end P has no winning strategy. P can only

win the first dispute if O chooses the wrong argument (B) as a response towards A. O is
actually able to win every game, given the right moves are made. O has a winning strategy.
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Example 3.2.3

Let there be the two strategies for P (shown below), where the left tree based upon an AF;
with Args = {A, B, C, D, E, F, G} and defeat illustrated through the arrows. Since O in the
end has no move in every dispute, P has a winning strategy. An argument A is provable
regarding AF;. The tree on the right hand side is built according to an extension of AF;
into AF;, because of the addition of H, I, | to Args and the corresponding defeat relations
(extension is in the dotted box). Since O can win a dispute, this is not a winning strategy
for P, so A in this context is not provable regarding AF,. Let us take a look at an example
from Prakken [59]:

P1: A Pl: A
OL:'B O1:C O1: B O1:C: O1™:H '
] o]
P2 E P2:E . P21
/ N / N AN
02: C 0%": C
I I ‘[ I o2:C  027:]
A
P3: G P3": E P3: G P3": E
P3”: E

The left hand figure display ”A is provable” and the right hand figure ”A is not provable”.
There is an important point about the non-repitition (definition 3.2.1 (section 1a))): This
condition does not influence the provability of an argument (O can reply with its own move
a second time), but it prohibits infinite disputes given a finite set of Args, which is useful
for computational purposes. This point also applies to the condition, where P’s arguments
need to be strictly defeating. If an argument is simply defeating, it does not change the
provability but might cause infinite disputes.

The following proposition is made for the relation between grounded semantics and its
proof theory:

Proposition 3.2.4 (Wholeness and completeness of G-game)

Let an argument be in the grounded extension of an AF, if it is defeasibly provable based
on AF in the G-game.

As a side note, completeness does not insinuate semi-decidability (that there is an algo-
rithm that can genereate a provable formula). If constructing certain arguments is logically
not decidable, then searching for counterarguments is generally not semi-decidable, due to
the search being a check.

Now that the discourse about dialectical proof theory for grounded semantics is completed,
we now take a look at a dialectical proof theory for credulous reasoning, especially for pre-
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ferred semantics.
Dialectics for preferred semantics
In the following, I will display a so-called P-game (the P has no relation to the proponent
P). This P-game was introduced by Vreeswijk and Prakken (2000) [78], and is a credulous
proof theory for preferred semantics. As a small notational correction, we will now indicate
a defeat relation with «+. The following graph aswell as the following notions of straight
failure, straight success, even loop success, odd loop failure and backtracking are taken from their
scripts:
Example 3.2.5
Let A = (X, <) be a pair with arguments

X={ab,cdefghijkl,mnpq}

and «as shown in the figure below an example of an AAF. It illustrates various cases, and
will consequently be used as a running example throughout this chapter.

/ : a
/;Qf

o

A

Figure 3.1: Defeat relations in the running examples
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Let us now take a closer look at a and check if it is preferred, in other words if it is included
in a preferred extension. We know that it is enough to prove that the argument is admiss-
able. We start S = {a} and, if 2 has defeaters, finding additional arguments to form S into
an admissible set.

Example 3.2.6 (Straight failure)

Let us take the argument system from figure 3.1 and P’s duty is to prove that a is preferred.

Firstly P puts forward a:
-

If there is no defeater of 4, S = a is admissable, and P wins. On the contrary, because of
a+h, O sends h:

h

<l

P now has to defend a through searching for an argument against /. Since there is no such
argument, P cannot build a admissable for 2 and with that a is not preferred.

Example 3.2.7 (Straight success)

Let P prove that b is admissable. Firstly, P puts forward b:
e

d

G

d

i

With the fail of O’s attack on b, O attacks this time with e:

O can defeat b through d:

P can defend this with g:
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d
b 8
e

P can defend b again, through h. Because O has no other legal argument against b, P can

now close S:
d
e

Let P try to prove that f is admissable:

Example 3.2.8 (Even loop success)

Firstly P puts forward f:

ﬁ

O then defeats f with n:

Q.

There after P defends this attack through i:

Next O defeats i with j:

~ -~
= =
. -
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Here P defends i with i (i is then self-defending). This is bad for O, since there are no further
legal arguments defeating f or i

Example 3.2.8 displays a need for P to be able to repeat his arguments, while O should not
be able to repeat his arguments (at the minimum in that “line of dispute”).

Example 3.2.9 (Odd loop failure)
Let P try to prove that m is admissable:

Firstly P puts forward m:

(n
O then defeats m with I
l
<

There after P defends this attack through p:

l
G
Next O defeats p with h:
l
m p
h

Here P backtracks and withdraws p from S. Instead he defends I with k:
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I

Now O can defeat k with m (this displays an inconsistency in S):

P here has no argument against / and m, and with that cannot close S to an admissable set.
m is not contained in an admissable set. P in this situation cannot reply with [ towards m,
because then the constructed set around m is not conflict free (and then not admissable).
Concluding P cannot be allowed to repeat O’s moves. It is also shows that O should be able
to repeat P’s moves (forces conflict in P’s position).

Example 3.2.10 (Backtracking)

In this figure we can see that O needs to be able to backtrack. Let P start with 4, O defeats
that with d and P defends a with e. Should O defeat e with b, P can defend that attack by
replying with e itself. On the other hand O can backtrack to 4, and defeat it with ¢, where
P can defend a only through b and thus repeats O. We did come to the conclusion in Exam-
ple 3.2.9 that P should not be able to backtrack, so if O backtracks, it can show P’s line of
argumentation is not conflict-free.

Here is a summary on who should be able to repeat moves:
Proposition 3.2.11

(1) Pshould be able to repeat itself (if available), since O might not find a defeater
for P’s repeated argument. In that case P’s repitition completes a circle with
even length, where P has admissable arguments.

(2) O should be able to repeat P (if available), since that would display that P’s
arguments are not conflict free.

(3) P should not be able to repeat O since that would create a conflict in P’s argu-
ments.

(4) O should not be able to itself, since P has already defeated this particular ar-
gument.
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3.3 Simplification of the P-game

In this section, the argument game will be defined for the preferred semantics:

* A dispute line is a dispute without backtracked moves

* Aneo ipso is a previous argument from the other player

Definition 3.3.1 (Proof theory for preferred semantics)

Let there be a dispute, that fulfills the P-game protocol if the following holds:

(1) In addition to definition 3.1.1, moves are considered illegal, if

(a) amove from P responds to a previous move from O

(b) a move from O responds to a past move from P

(c) a move defeats an argument that it replies to

(d) P does not reiterate O’s moves

(e) O does not repeat one of its moves from that dispute line

(f) there a two moves to a particular move that have the same content

(2) O wins the dispute, if he does an eo ipso or P has no legal moves. Other than that P
wins.

If a dispute fulfills these rules and conditions of the the P-game it is called a P-dispute.
Another point is that if there is an infinite dispute, P has won automatically.

Because the P-game gives O the opportunity to backtrack, whilst a P-dispute, a tree of pos-
sible dispute lines is being built. In general, we have two ways of displaying a P-dispute:
through a linear structure, where the arguments are listed according to when they were
moved, and through a tree structure, where every edge shows which argument replies to
which. There should not be a misconception between a dispute in tree form and a strategy
in tree form: in the definition 3.1.2, a so-called latter tree has edges, that are between two
arguments and displays that the child argument is the reply to the parent argument.

Proposition 3.3.2 (Wholeness and completeness of the P-game)

Let an argument be in a preferred extension of an AF, if it is defeasibly provable regarding
AF in the P-game.

Proof. In the following, an argument a is defended in a dispute, if that dispute starts with a
and P wins it. Through the definition of preferred extensions it is enough to display that
an argument is admissable, if it is able to defend in every dispute.

So firstly let a be defended in all disputes, even in those where O has contradicted ide-
ally. E.g. let A be the defending argument of a that is being used by P. Should A not be
conflict-free then for a certain a;, a; € A, a; «aj, and O might have done an eo ipso, which
is not true. Should A not be admissable, then a; <b for certain a; € A whilst b -» A. Here
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O would have utilized b as a winning argument,which does not happen. Therefore A is
admissable.

In contrast, let a € A and A admissable. P is now able to win every dispute when starting
with a and using only arguments from A as replies. Given that P uses only A’s arguments,
O is not able to win through eo ipso, since A is conflict-free. a can with that be defended in
that dispute.

O

Lastly a disadvantage of the P-game is that proofs are able to be infinite. In particular if an
argument has an infinite number of defeaters, but also other proofs as shown in example
2.3.5. In any case one can prove that with a finite set of arguments every proof is finite.
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CHAPTER 4

Argumentation Logic: Argumentation with structured
arguments

As already mentioned, Dung’s abstract framework was a major development in the field
of argumentation. Despite that, its fully abstract nature leads to the framework not being
suitable for displaying certain argumentation problems. It is rather suited for analysing
argumentation formalisms and developing a metatheory of those systems. If existing ap-
plications of argumentation-based inference have to be formed, Dung’s approach needs
to be improved, specifically the argument’s structure and the defeat relation. The follow-
ing chapter will display Dung’s method through taking an undefined logical language and
establish arguments in view of inference trees. These trees are made through using two
different inference rules: deductive/strict and defeasible rules. As already mentioned in
Section 1.3, the notion of an argument through an inference tree gives three possible ways
to attack an argument: attacking an inference, a premise or a conclusion. For a resolve for
these conflicts, we need priorities, that lead to three kinds of defeat: undermining, rebutting
and undercutting defeat. Before we start describing them, we need to make presumptions
on that logical language, specifically that well-formed formulas are opposite of other well-
formed formulas. Aside from being abstract, the framework can be used for any set of
inference rules, if it is separated into strict and defeasible, and for every logical language
with an opposite relation.

A very prominent example here is the European ASPIC project [3],[4]. It is predicated
on Pollock’s [57],[55] and Vreeswijk’s [75],[76],[77] structure of arguments, Pollock’s defeat
relation and work from various scientist in the field of argumentation with prioritised rules.
Certain proofs from the following can be found in [62].

4.1 Argumentation systems with structured arguments

In the upcoming section we will redefine the arguments from Dung’s argumentation frame-
work and its defeat relation in a structural context (the defeat relation will also have exter-
nal priority /preference information). The succeeding framework combines two possibil-
ities on how to conquer the defeasibility of reasoning. Others like Bondarenko [19] de-
veloped the defeasibility of arguments in the incertitude of their premises, through which

35
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attacks are only on the argument’s premises. On the other hand, Pollock [55] and Vreeswijk
[77] developed the defeasibility of arguments with the uncertainty of their inference rules:
the inference rules in these certain logics are either deductive or defeasible, and arguments
attacks can only be on the argument’s applications of defeasible inference rules. Vreeswijk
[76] names these two views plausible and defeasible reasoning. In more detail he portrays
plausible reasoning as sound (e.g. deductive) reasoning on a precarious basis, and de-
feasible reasoning as unsound (and yet rational) reasoning on a stable basis. The current
framework again unites both forms of reasoning, however inside the abstract setting of
Dung [24].

The fundamental notion of the current framework is an argumentation system, that contin-
ues the notion of a proof system with a separation between strict and defeasible inference
rules and a priority ordering on the defeasible inference rules.

Definition 4.1.1 (Argumentation system)

Let there be an arqumentation system AS = (L, —, R, <) where
(1) Lisalogical language,
(2) ~ is a contraposition function from £ to 2*

(3) R =Rs u Rqisa set of strict (Rs) and defeasible (R4) inference rules, where
Rs " Rq =,

(4) <is a partial preorder on Rg.

The syntax of 2¢ describes the powerset (set of all its subsets) of £. Amgoud [3] and Cami-
nada & Amgoud [4] suspect that an argument is given through a certain logical unspecified
language (except for being closed under classical negation). In the following, this will be
universalized in two ways: firstly, asymmetric conflict relations amongst formulas are pos-
sible (e.g. contraposition relation from Bondarenko [19]); Secondly, on top of the classical
negation, other symmetric conflict relations are possible (e.g. the formulas “mouse” and
”cat” can be declared contradictory without an axiom —(mouse N cat).

Definition 4.1.2 (Logical language)

Let £ (a set) be a logical language and ~ a contraposition function from £ to 2. Ifpey
and then if y € ¢, ¢ is a contrary to y, else ¢ and y are contradictory. The last case is written

as ¢ =-y.

If there is no alternative specification, the contraposition function matches for simpleness
with the classical negation. So if ¢ does not begin with a negation then —¢ € ¢ whilst if ¢ is
in the nature of —y then y € ¢. Since the notion of negation has been introduced, the same
will be done with the notion of consistency:

Definition 4.1.3 (Consistent set)
Let P C L be a consistent set, if fy, ¢ € P where y € ¢, if not it is inconsistent.
It should be mentioned, that this is a short form of consistency, dependent on a set in-

cluding contrary or contradictory formulas. Amgoud and Caminada [4] named this direct
consistency, and indirect consistency the consistency of a closed set under strict inference.
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Definition 4.1.4 (Strict and defeasible rules)

Let £ be the set of ¢1,..., ¢, .
o If ¢1,..., o hold then with no exception ¢ holds (¢1,..., ¢n — ¢ strict rule).
o If ¢1,..., 9 hold then probably ¢ holds (¢1,..., on = @defeasible rule).

Antecedents of the rule are ¢1,..., ¢ and ¢ its consequent.

As it is common in logic, the inference rules are often specified through schemes, where
a rule’s antecedents and consequent are metavariables covering L. If an AS has standard
propositional and/or first-order logic, the strict rules could have every valid propositional
or first-order inferences. For example:

o, — ¢ Ay (Yo,y propositional formulas)
VxPx — Pa (V predicate P, constant a)

Potential defeasible inference rules can be found in Section 4.2: it is stated there, that the
core choice is if these rules are domain-specific or expressing general patterns of reasoning.
Arguments are made from a knowledge base, that is expected to have three formulas:

Definition 4.1.5 (Knowledge base)

Let (IC, <) be a knowledge base of an argumentation system (£, , R, <), where X € £ and <’
is a partial preorder on K \Ky,. Now K = K U K, U K o where each subset is disjoint and

* Knis a set of axioms; So, an argument cannot be attacked on its axiom’s premises.

* Kp is a set of premises; So, an attack on an argument’s ordinary premises is possi-
ble, and a defeat is dependent on the comparison of the attacker’s and the attacked
premise.

* IC, is a set of assumptions; So, an attack on an argument’s assumption is possible, and
these attacks are guaranteed to succeed.

In the following the arguments of such a knowledge base are being defined. These
arguments can be built through gradually concatenating inference rules into trees. With
that arguments have subarguments, that promote halfway conclusions. For a certain argu-
ment, there is a function Prem, Conc, Sub, DefRules and TopRule. Prem is a function
returning every formula from /C (premises) that constructed the argument, Conc returns
the result \conclusion, Sub returns each subargument, DefRules returns every defeasible
rule of that argument and TopRule returns the most recent inference rule exercised in that
argument.

Definition 4.1.6 (Argument)

Let an argument A regarding a knowledge base (IC, <’) in an argumentation system (£,” , R, <)
be:

(1) ¢ if ¢ € K with:
prem(A) = {9},
Conc(A) =9,
Sub(A) = ¢,
DefRules(A) =g,
TopRule(A) = undefined.
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(2) A1,..,An —yif Ay,..,An are arguments, where there is a strict rule
Conc(Aj),.,Conc(An) 2y in Rs.
Prem(A) =Prem(A1) U ... U Prem(Ay),
Conc(A) =y,
Sub(A) = Sub(A1) U ... U Sub(Ayn) U {A},
DefRules(A) =DefRules(Aj) U ... u DefRules(Ay),
TopRule(A) = Conc(Ay),...,Conc(An) = V.

(3) Ai1,..,An = yif Ay,..,An are arguments, where there is a strict rule
Conc(Ay),..,.Conc(Ap) = win Ry,.
Prem(A) = Prem(A1) U ... U Prem(Ay),
Conc(A) =y,
Sub(A) = Sub(A1) U ... U Sub(An) U {A},
DefRules(A)=DefRules(Aj) u..u DefRules(An)u{Conc(Ay),....Conc(An) = v },
TopRule(A) = Conc(Ay),...,.Conc(An) = .

Example 4.1.7
Let there be a knowledge base from an argumentation system where

Rs 2 {p,q = uv -w}
Ri2{p=tsrt=v}
Kq.2{q}

Ky 2 {pu}

Kq 2 {r}

Ali p A52 A1 =1t

Az: q A6: Al, A2 —S

A3: r A7: A5,A3,A6 =0

A4Z u Agi A7, A4 —w
With that we have the following

Prem(Ag) = {p.qru}

Conc(Ag) =w

SUb(AS) = {Al/ AZ/ A3/ A4/ A5/ A6/ A7r AS}
DefRules(Ag) = {p = t; st = v}
TopRules(A4g) =v, u —w

Separating two inference rules and three different premises leads to a separation of four
kinds of arguments:

Definition 4.1.8 (Argument properties)
Let an argument A be

e strictif DefRules(A) = &;

e defeasible if DefRules(A) # ;

e firmif Prem(A) € Ky;

e plausible if Prem(A) & K.
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If there is a strict argument for ¢ with every premise extracted from S, we write S - ¢. On
the other hand if there is a defeasible argument for ¢ with every premise extracted from S,
we write S | ~ ¢.

For the next part we will now take on the ordering of those arguments. < will be a partial
preorder, where A < B represents ‘B is at least as good as A". A < B therefore displays
A <BandB £ A.

Definition 4.1.10 (Admissable argument orderings)

Let A be a set of arguments and a partial preorder <, where < on A is a admissable argument
preordering (aap),

(1) if A is both firm and strict, and B is either defeasible or plausible, then B < A;
(2) f A=A;,.. An »ythenforeveryl <i<n, A<Ajandforafewl<i<n A; <A.

Definition 4.1.11 (Argumentation theories)

Let AT = (AS, KB, <) be an argumentation theory where AS is an argumentation system, KB
is a knowledge base in AS and < is an admissable ordering.

Definition 4.1.12 (Last defeasible rules)

Let there be an argument A.

e LastDefRules(A) = ¢, if DefRules(A) =

o IfA=A;,.. An= ¢, then LastDefRules(A) = {Conc(A1),..., Conc(An) = ¢},
otherwise LastDefRules(A)=LastDefRules(Aj) U ... u LastDefRules(Ay).

This definition can now be used for comparing two arguments:
Definition 4.1.13 (Last link principle)

Let A,B be arguments, where A < B, if either
(1) section 1 of 4.1.10 holds or
(2) LastDefRules(A) <s LastDefRules(B)
(38) LastDefRules(A)and LastDefRules(B)are empty and Prem(A) <s Prem(B).

Example 4.1.14 (from Prakken et. al [15])

Let KCpp = {Snores; Professor}, Rq = {Snores =1 Misbehaves;
Misbehaves =, AccessDenied;
Professor =3 — AccessDenied}.

Let us presume that Snores < Professor and r; < ry, r1 < r3, ¥3 < ry and let us take the
following arguments:
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Aq: Snores By: Professor
Ay: A1 = Misbehaves By: By = —AccessDenied
Ajz: Ay = AccessDenied

We now use the ordering on A3z and B,. The sets for that are LastDefRules(A3) = {r}
and LastDefRules(By) = {r3}. Since r3 < rp, we have By < As.

Not the last but every uncertain element in an argument is captured by the weakest-link
principle. A here is preferred over B, if A is preferred to B on both of their premises and
their defeasible rules.

Definition 4.1.15 (Weakest link principle)

Let A,B be two arguments. Then A < B, if either the first condition of Definition 4.1.10 holds
or

(1) Prem(A) <s Prem(B); and
(2) If DefRules(B) # ¢ then DefRules(A) <s DefRules(B).

Attack and defeat

In this section, the thesis discusses the notion of defeat, in the context of two more
components: non-evaluative syntactic notions of attack and the preference relation on ar-
guments. To put it simple, defeat is defined through an attack with preference. Looking
back at chapter 1, arguments were in inference trees and with that three syntactic forms of
attack were available (attack on premise, on conclusion and on inference). These notions
will be now combined with the preference order.

First we define how arguments can be attacked. Attacks can be categorised in syntactic
categories and do not consider preferences. One attack matches with a case where an argu-
ment uses a defeasible rule, that is refuted by a different argument.

Defintion 4.1.17 (Undercutting attack)

Let A,B be two arguments where A undercuts B (on B’), if Conc(A) € B’ for a B’ € sub(B)
being B”y,..., B'n = .

Example 4.1.18
In example 4.1.7, Ag can be undercut in two various ways: by an argument with As, that
undercuts Ag on Ay, and by an argument with As as a conclusion, that undercuts Ag on As.
Let us now take p = t with dy and s, r, t = w with d, and x extends K}, and p, x ——d;
extends R, and g, x = —d; extends Rq4. Therefore As is undercut through

Ag: A1 X —)—'d1
whereas A7 is undercut through

Alot Az,x = —'dz

Attackers that undercut say that there is a specific situation where a defeasible inference
rule is not able to be applied, without drawing the opposite conclusion. On the other hand
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attacks that are rebutting have a contrary/contradictory conclusion towards a defeasible
(sub-)conclusion of the attacked argument.

Definition 4.1.19 (Rebutting attack)

Let A, B be two arguments , where A rebuts B, if Conc(A) € ¢ for a B’ € sub(B) being B"1,...,
B”, = ¢. Here A contrary-rebuts B if Conc(A) is a contrary of ¢.

Example 4.1.20
Taking example 4.1.7, Ag can be rebutted regarding As with an argument for f and regard-

ing A7 with an argument for 7. Now if f = - and the rebutting argument has a defeasible
top rule, then As alternately rebuts the argument for t. Nonetheless Ag does not rebut this

argument, besides when w € t. This displays three reasons, why rebutting is not symmet-
ric: the rebutted argument may have a top rule, rebutting can be contradictory-rebutting
and rebutting might be launched on a subargument. On the other hand this displays if
the rebutting attack is not contrary-rebutting and the rebutter has a defeasible top rule, the
immediately rebutted subargument alternately rebuts its attacker. Let us extend K, with x
and R4 with p, x = —t. With that, the argument
A112 A1 , X = —t
rebuts and As rebuts it.

Definition 4.1.21 (Undermining attack)

Let A, B be two arguments, where A undermines B, if Conc(A) € ¢ for a ¢ € Prem(B) Kp.
Here A contrary-undermines B, if Conc(A) is a contradictory of ¢ or if ¢ € IC,.

Example 4.1.22 (Example 4.1 from [46])
Let Rq = {r1, r2} where
r1 = WearsRing = Married
ry = PartyAnimal = Bachelor
Let Rs = {r3, r4} where
r3 = Married = —Bachelor
r4 = Bachelor = —Married
and let IC;, = { WearsRing, PartyAnimal}. Examine the following arguments:
Aq: WearsRing By: PartyAnimal
Ay: A1 = Married By: B1 = Bachelor
Ajz: Ay ——Bachelor Bs: By ——Married

Now Ajz rebuts B3 because of its subargument B, whereas B3 rebuts A3 regarding its subar-
gument Aj.
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Defeat

Knowing now how attacks on arguments work, we can use the ordering function to de-
termine which arguments will be resulting in defeat. There are no preferences for under-
cutting attacks, since a weaker undercutter and its stronger victim could be in the identical
extension. The same applies to the other two possibilities to attack regarding contraries.
The remainder of attacks will be implemented by the argument ordering, to see if a certain
attack leads to defeat.

Definition 4.1.23 (Successful rebuttal)

Let A, B be two arguments, where A successfully rebuts B, if A rebuts B on B’ and if either A
contrary-rebuts B’ or A € B'.

Definition 4.1.24

Let us take example 4.1.22: The conflict between A3 and B3 is cleared up through the com-
parison of Az and B, and of B3 and A;. When applying the last-link ordering, if r; < rp then
By < Az (A3 successfully rebuts By and Bs, but A3 does not do so with A, and A3). On the
other hand, if r; 4« 7, and r, 4 r; then Ay € Bz and By « A3 (both A3 and B3 successfully
rebut the other).

Defintion 4.1.25 (Successful undermining)

Let A, B be two arguments, where A successfully undermines B, if A undermines B and if
either A contrary-undermines B or A « B.

This definition uses the definition of an argument’s premise also being a subargument.
These three defeat relations can now be formed into on global defintion of “defeat”:

Defintion 4.1.26 (Defeat)

Let A, B be two arguments, where A defeats B, if A successfully rebuts/undermines or un-
dercuts B. A strictly defeats B, if A defeats B and B does not defeat A.

Example 4.1.27

Taking another look at example 4.1.14, A3 and B, rebut one another. Through the last-
link argument ordering, B, <s A3 holds, so A3 successfully rebuts B,, but B, does not suc-
cessfully rebut As. Therefore As strictly defeats B,. On the other hand, arguing with the
weakest-link ordering we have A3 <s B and thus B, strictly defeats As.

Join abstract and structured argumentation

After the past section, we can now connect the structured argumentation with Dung’s ab-
stract argumentation theory.

Defintion 4.1.28 (AAF coinciding to AT)

Let AAT a7 be an abstract arqumentation theory coinciding with an argumentation theory AT,
that is a tuple (Args, Defeat) where



4.2. DOMAIN-SPECIFIC VS GENERAL INFERENCE RULES 43

* Args is an argument set based on AT regarding definition 4.1.6,

* Defeat is a relation regarding Args based on definition 4.1.26.

The upcoming definition utilizes the notions of justified, defensible and overruled argu-
ments: We will write S-justified, if an argument is justified based on the semantics S (same
for defensible and overruled).

Definition 4.1.29 (Status of conclusions)

Given a semantic S, an argumentation theory AT and a formula ¢ € L7

(1) ¢ is S-justified regarding AT, if there is one S-justified argument based on AT
with the conclusion ¢

(2) ¢ is S-defensible regarding AT, if there is one S-defensible argument based on
AT with the conclusion ¢ and ¢ is not S-justified in AT

(3) ¢ is S-overruled regarding AT, if there is one S-overruled argument based on
AT with the conclusion ¢ and ¢ is neither S-justified nor S-defensible

In addition, the following definition apprehends floating conclusions.
Definition 4.1.30 (Justified conclusions)

¢ is S-f-justified regarding AT if every S-extension of AT includes an argument with ¢ as
its conclusion.

4.2 Domain-specific vs general inference rules

Depending on the inference rules being domain-specific or general, there are two possible
uses for that framework. A common method is to state global patterns of reasoning as in-
ference rules. An example for that would be universal instantiation. On the other hand,
domain-specific inference rules are common in nonmonotonic logic and default logic. The
disparities between these two views will be explained with the following example:

Let us accept that every Bavarian is German, that Germans tend to like beer and that Hans
is German. Through the domain-specific inference rule we can display this information in
a propositional language as follows:

Rs = {Bavarian —German}
Rq = {German => tends to like Beer}
Kp = {Bavarian}

On the other hand we need to characterize the two general inference rules in an object lan-
guage L. The first one can be characterized through the material implication. The second
one is a bit more difficult: here we need to add a connection regarding defeasible condi-
tionals to £ plus a defeasible modus-ponens inference rule for that connection.

Rs={9,0 >y -y (forevery ¢,y € £),...}
Ra={¢,¢ ~ yv= vy (forevery ¢,y € L),...}
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Ko = {Bavarian > German, Germans ~ tend to like beer, Bavarian}

The inference rules defined by Vreeswijk [76], [77] and Pollock [57], [55]were meant to de-
scribe general patterns of reasoning. This correlates very well with inference rules in the
standard logic. Pollock in fact devoted a lot of his time towards the field of general patterns
of defeasible reasoning, and named it prima facie reasons. Prima facie reasons entail cer-
tain reasoning patterns concerning perception, induction, temporal persistence, memory
and statistical syllogism. These reasons can be utilized in the current framework as defea-
sible inference schemes.

Let us take the principle of perception and the principle of memory:

dp(x, 9): Sees(x, §) = ¢
dm(x, ): Recalls(x, ¢) = ¢

Subsequently every undercutter for dj, declares conditions, where perceptions are uncer-
tain, whereas every undercutter for dy, declares conditions, where memories might be
faulty. A common reason for false memories of events is a recollection that is fabricated
partially or as a whole through seeing or hearing about that certain event. One could build
a global undercutter for distorted memories like

Um(x, @): DistortedMemory(x, §) = —dm(x, 9)
and extend it with information in this way
Vx,¢(ReadsAbout(x,0) ~» DistortedMemory(x,¢))

The Prima facie reasons are considered family of argument schemes. Walton et al. [80]
defined the notion of an argument scheme for the field of philosophy but it is of great im-
portance for the computational study of argumentation. These schemes are non-deductive
patterns of reasoning, that entail a set of premises and a, from this set drawn, conclusion.
Let us take the following example from Walton himself [80]:

E is an expert in domain D
E asserts that P is true
P is within D

P is true

From this scheme, these six questions arise:

(1) How credible is E as an expert source ?

(2) Is E an expert in domain D ?

(3) What did E assert that implies P ?

(4) Is E personally reliable as a source ?

(5) Is P consistent with what other experts assert ?

(6) Is E’s assertion of P based on evidence ?
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One can now validate this reasoning with argument schemes by considering to see them
as defeasible inference rules and to see these questions as indicators for counterarguments.
Here we can see a direct connection between the three different attacks on arguments and
three different types of critical questions of argument schemes. Certain question doubt
the premise of a certain argument and with that indicate an undermining attack, whereas
others indicate an undercutting attack or a rebutting attack. In our example, the second
and third question indicate underminers regarding the first and second premise. The first,
fourth and sixth question indicate undercutters, through the case where E is biased or in-
credible for various reasons and for his scientific unfounded statements. Lastly the fifth
question indicates a rebutting attack of this scheme.

4.3 Caminada’s and Amgoud’s Rationality postulates

One can say that Dung’s semantics is equivalent to rationality confinements on argument
assessment in abstract argumentation frameworks. Through extension of his approach
with structured arguments, the question arises if this addition leads to more rationality
confinements. This question was answered through Caminada’s and Amgoud’s [4] "ratio-
nality postulates” for their so-called “rule-based argumentation”. These specific postulates
define confinements on every extension of an argumentation framework similar to an ar-
gumentation theory:

* Closure under subarguments: given any argument in an extension, all of its subar-
guments are aswell in that extension

* Closure under strict rules: given a set of conclusions of every argument in an exten-
tion, this set is closed under the strict-rule application

* Direct consistency: given a set of every argument in an extension, this set is consis-
tent

* Indirect consistency: given a set of conclusions of every argument in an extension,
the closure of this set under the strict-rule application is consistent

Prior to the study of how far the current framework fullfills these postulates, various spec-
ifications towards the strict inference rules need to be discussed. We will start with the
notion of transposition of strict rules and the closure of sets of strict rules regarding trans-
position.

Defintion 4.3.1 (Transposition)

Let there be a strict rule s, where s is a transposition of
01y, =W, i S = 1,0, i1, -V, D111, ..., P —-0; foragiven 1 <i < n.

Defintion 4.3.2 (Transposition operator)

Let there be a set of strict rules Rs. Then Cli,(Rs) is the smallest set where:

* Rs S Clp(Rs), and

¢ if s € Clyp(Rs) and let there be a transposition ¢ of s, where t € Cli, (Rs).
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With that, we can now define the subclass of argumentation systems that are closed regard-
ing transposition.

Definition 4.3.3 (Closure under transposition)

Let (£, ,R, <) be an argumentation system that is closed under transposition, if
Rs = Clyy(Rs). In general, an argumentation theory is closed regarding transposition, if its
argumentation system is.

Furthermore, Caminada’s and Amgoud’s work deliver a definition of the closure of a set
of formulas under the application of strict rules.

Definition 4.3.4 (Closure from a set including formulas)

Let P € L. Then the closure of P regarding the set R of strict rules (which is Clz (P)) is the
smallest set where:

* PCClg,(P)
o ifd1,...,0n 2 Y eRsand ¢, ..., on € Clg, (P) then y € Clr (P).

If P = Clg (P), then P is called closed.

In the following it is important, if - envoked by an argumentation system satisfies the con-
traposition.

Definition 4.3.5 (Closure regarding contraposition)

Let a certain argumentation system be closed regarding contraposition if for every S C L, every
s € S and every ¢, holds that when S - ¢ thus S \{s} u{—¢} - -s. Let a certain argumenta-
tion theory be closed regarding contraposition, if its argumentation system is.

With that being said, the first and second postulate are supported unconditionally for the
current framework.

Proposition 4.3.6

Let the tuple (A, defeat) be an AAT according to definition 4.1.28 and E either its grounded,
preferred or stable extension. In that case for every A € E: if A" € Sub(A) then A" € E.

Proposition 4.3.7

Let the tuple (A, defeaty be an AAT correlating to an argumentation theory, and E either its
grounded, preferred or stable extension. In this case {Conc(A) | A € E} = Clg, ({Conc(A) |
A€E).

Globally thinking, one needs to be careful with the validity of the two consistency pos-
tulates. One can say though, if the last-link argument ordering is applied, it is then valid
for the systems closed regarding transposition or contraposition. Here the strict closure of
the K, is stable and “well-formed”, which means they accept the deliberate application of
assumptions and contraries:
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Defintion 4.3.8

Let an argumentation theory be well-formed if:

(1) there is not a resultant of a defeasible rule, that is a contrary of the resultant of
a strict rule;

(2) ¢ € Ka and ¢ is a contrary of y, then y ¢ K, UK, and R has no rule, that has
y as a conclusion or result.

The second condition essentially shows, that an assumption is only a contrary/contradictory
from another assumption. Let

Rs={p—q}, Ra={r=st=u}
’Cp:{Pﬂ’}/’Ca:{v}

be a not well-formed AT, where s is a contrary towards g and v a contrary towards u. With
that, the first condition is violated, because of A: p —gand B: r = s.

Theorem 4.3.9

Let the tuple (A, defeat) be an AAT based on a well-formed AT that is closed regarding
contraposition or transposition. It also has a last-link argument ordering and a consistent
Clr (Kp). Let also E be either its grounded, preferred or stable extension. Subsequently the
set {Conc(A) — A € E} is consistent.

Theorem 4.3.10

Let the tuple (A, defeat) be an AAT based on a well-formed AT that is closed regarding
contraposition or transposition. It also has a last-link argument ordering and a consistent
Clr (KCh). Let also E be either its grounded, preferred or stable extension. Subsequently the
set Clg ({Conc(A) — A € E}) is consistent.

Corollary 4.3.11

If both conditions of theorem 4.3.10 are fulfilled, then given E a grounded, preferred or
stable extension, the set {¢ | ¢ is a premise of a certain argument in E} is consistent.

4.4 Serial and parallel self-defeat

As we already mentioned in section 2.2., a good analysis of self-defeating arguments needs
to specify the arguments’s structure precisely. Having completed that, this thesis follows
that up with the explantion why it is necessary. In the current framework we can have
either serial self-defeat, where an argument defeats one of its previous steps, or parallel self-
defeat, where minimum two arguments each have a contradictory conclusion and those
arguments are used as the premises of L. If argumentation systems are not defined cor-
rectly, parallel self-defeat can provoke issues and problems.



Example 4.4.1

Let there be an argument scheme based on a witness testimonial with an undercutter and
the witness is not trustworthy:

du(x, 9): Says(x, §) = ¢
Uy(x, 0): Not Trustworthy(x) ——dy(x, ¢)
In this case, let IC;, be says(Jeff, "Not Trustworthy(Jeff)”). With that we have:
A1: Says(Jeff, "Incredible(Jeff)”)
Ap: A1 = Incredible(John)
As: Ay »—dy(Jeff, "Incredible(feff)”)

We now have the self-defeating argument A3, because it undercuts itself in A;. The grounded
and preferred semantic have a certain extension E = {A;}. This is the best-case outcome,
because, let Jeff talk about a separate topic, e.g. “the accused stabbed the victim with a
pair of scissors” if Az was overruled, the specific argument that could be created for “the
accused stabbed the victim with a pair of scissors” will be justified (all of its preceding de-
featers are overruled), but it is from a witness that is regarded as not trustworthy.

Let us now look at an example, where parallel self-defeat causes issues.
Example 4.4.2

Let therebe Rq = {p = q;r = —q; t = s} and K = {p, r, t}, where R, entails every proposi-
tionally valid legitimate inference.

Aptp Ay A1 =9
By:r By: B1 = —q
C1: Ay, By — L Cr: Cqy ——s
Diq: t Dy: Dy =s

In this construction there is a problem: s can be a random formula, where a given defeasi-
ble argument separate to A, and By, like D;, might be rebutted from C, (dependent on the
argument ordering). This problem actually only plays a role for the grounded semantics of
Dung’s semantics. Because the other two semantics have either A, or By, C; is not included
in these extensions and with that D; is included in them. If A; and B; are not strictly de-
feating the opposing argument, then neither one of them is in the grounded extension, in
order that the extension is not defending D, regarding C, and so does not include D;.

Ultimately one can see that the two types of self-defeat should be treated separately:
parallel self-defeating arguments should be overruled in every instance, whereas serial
self-defeating arguments should maintain the avoidance of other arguments being justified
or defensible.
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CHAPTER B

Argumentation Logic: Conclusion and discussion

5.1 Relevance for present and outlook on future

In the end, this thesis gave an indepth view of the logic-based argumentation framework,
which is known as Argumentation Logic. With the application of logic-based argumen-
tation on given problems (from default or legal or commonsense reasoning to logic pro-
gramming, decision and negotiation), a so-called preference or priority amidst the logical
sentences (which in the bigger picture are the premise of an argument) is useful and creates
argumentation with structured arguments (preference based argumentation). The field of
abstract rule-based argumentation with strict and defeasible rules has a rich history: from
the early research of Pollock [57], the transitional stages of Simari and Loui [69], Pollock
[58], Vreeswijk [77], Prakken and Sartor [64], to the present collective work on ASPIC*.

In recent times there has been a use for AL in the field of formalizing psychological the-
ories of story comprehension [23] for the incorporation of contrapositive reasoning with
default rules. An overall examination of the extension of AL considering an argumentation
framework with structured arguments, with the goal of attaining a more global union of
defeasible and strict classical reasoning, is a big part of the forthcoming research. The are
already system, that visualize the argumentative reasoning of Argumentation Logic [81]
with the goal to assist a dialectical process for the resolution of conflicts.

With these new applications and implementations, there are also more questions being
posed:

A present research movement in formal argumentation is the union of argumentation-
based inference and probability theory. This is clear, given that argumentation was consid-
ered as a model for reasoning under uncertainty. A question here would be, how represen-
tations of the strength or relative preference of arguments are connected with probability
theory. There is work on probabilistic argumentation, which assigns probabilities to argu-
ments in AAFs, but it is problematic in a way: theses assignments are critical, given that
probability theory assigns probabilities to the truth of statements or outcomes of events,
and arguments are not either one.

As a contrast to abstract argumentation, computational aspects of rule-based argumen-
tation and its ways of instantiation is very primitive. There is available work on algorithms
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and complexity solutions for rule-based argumentation regarding defeasible rules and pref-
erences.

Another underdeveloped field is argument preference relations and their properties.
Namely argument orderings applied on decision theory or probability theory.

The new approach of dialectics has helped knowledge representation and formalisms of
reasoning for legal applications and delivered good examples. Namely it has led to the
discovery of common foundations for logic programming and procedural argumentative
frameworks [63][64]. The general topic of argumentation is a natural device for the char-
acterization of supportive reasoning. With that it is a great method for the goal of Al: to
model commonsense reasoning. With a lot of foundational work and great results already
achieved, the future looks promising.



Bibliography

[1] L. Amgoud and P. Besnard. A formal analysis of logic-based argumentation systems.
Proceedings of the fourth International Conference on Scalable Uncertainty Management,
pages 42-55, 2010.

[2] L. Amgoud and Ph. Besnard. Logical limits of abstract argumentation frameworks.
Journal of Applied Non-Classical Logics, 23:229-267, 2013.

[3] L. Amgoud, L. Bodenstaff, M. Caminada, P. McBurney, S. Parsons, H. Prakken, J. van
Veenen, and G. Vreeswijk. Final review and report on formal argumentation system.
ASPIC IST-FP6-002307, Deliverable D2.6, 2006.

[4] L. Amgoud and M. Caminada. On the evaluation of argumentation formalisms. Arti-
ficial Intelligence, 171:286-310, 2007.

[5] G. Antoniou. A tutorial on default logics. ACM Computing Surveys, 31:337-359, 1999.

[6] K. Atkinson. What should we do ?: Computational representation of presuasive argu-
ment in practical reasoning. PhD Thesis, Department of Computer Science, University of
Liverpool, 2005.

[7] K. Atkinson and T. J. M. Bench-Capon. Practical reasoning as presumptive argumen-
tation using action based alternating transition systems. Artificial Intelligence, 171:855—
874,2007.

[8] T.]. M. Bench-Capon. Persuasion in practical argument using value-based argumen-
tation frameworks. Journal of Logic and Computation, 13:429-448, 2003.

[9] T.J. M. Bench-Capon. Computational models of argument. Proceedings of Computa-
tional Models of Argument (COMMA) 2006, 144, 2006.

[10] T. J. M. Bench-Capon, T. Geldard, and P. H. Leng. A method for the computational
modelling of dialectical argument with dialogue games. Artificial Intelligence and Law,
8:233-254, 2000.

[11] T.J. M. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporat-
ing theories and values. Artificial Intelligence, 150:97-143, 2003.

[12] S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and
inconsistent knowledge bases. Proceedings of the ninth International Conference on Un-
certainty in Artificial Intelligence, pages 411-419, 1993.

51



52 BIBLIOGRAPHY

[13] Ph. Besnard and H. Hunter. Constructing argument graphs with deductive argu-
ments: a tutorial. Argument and Computation, 5:5-30, 2014.

[14] E. Bex, T. J. M. Bench-Capon, and K. Atkinson. Did he jump or was he pushed ?:
Abductive practical reasoning. Artificial Intelligence and Law, 17:79-99, 2009.

[15] E Bex, S. Modgil, H. Prakken, and C. Reed. On logical specifications of the Argument
Interchange Format. Journal of Logic and Computation, 23:951-989, 2013.

[16] E.J. Bex, P. van Koppen, H. Prakken, and B. Verheij. A hybrid formal theory of argu-
ments, stories and criminal evidence. Artificial Intelligence and Law, 18:123-152, 2010.

[17] L. Birnbaum, M. Flowers, and R. McGuire. Towards an Al model of argumentation.
Proceedings of the First AAA/Conference, pages 313-315, 1980.

[18] D. G. Bobrow. Special issie on non-monotonic logic. Artificial Intelligence, 13, 1980.

[19] A.Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93:63-101, 1997.

[20] A. Bondarenko, R. A. Kowalski, and F. Toni. An assumption-based framework for
non-monotonic reasoning. Proceedings of the second International Workshop on Logic Pro-
gramming and Nonmonotonic Logic, pages 171-189, 1993.

[21] M. Caminada. On the issue of reinstatement in argumentation. Logics in Artificial
Intelligence, 4160:111-123, 2006.

[22] Martin W. A. Caminada. A discussion game for grounded semantics. Proceedings
of the third International Workshop on Theory and Applications of Formal Arqumentation,
9524:59-73, 2015.

[23] I Diakidou, A. Kakas, L. Michael, and R. Miller. A psychology-inspired approach to
automated narrative text comprehension. 14th International Conference on Principles of
Knowledge Representation and Reasoning, pages 610-613, 2014.

[24] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77:321-357, 1995.

[25] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation.
Artificial Intelligence, 171:642-674, 2007.

[26] M. Elvang-Goransson, P. Krause, and J. Fox. Acceptability of arguments as ‘logical
uncertainty’. Proceedings of the second European Conference on Symbolic and Quantative
Approaches to Reasoning and Uncertainty, 747 of Lecture Notes in Computer Science:85—
90, 1993.

[27] T. ]J. M. Bench-Capon et. al. A History of Al and Law in 50 Papers: 25 Years of the
International Conference on Al and Law. Artficial Intelligence and Law, 3:215-319, 2012.

[28] J. Fox and S. Parsons. On using arguments for reasoning about actions and values.
Proceedings of the AAAI Spring Symposium on Qualitative Preferences in Deliberation and
Practical Reasoning, 1997.

[29] D. Gabbay. Editorial comment about “on the difference between aba and aa”. IFCoLog
Journal of Logic and its Applications, 2:1-14, 2015.



BIBLIOGRAPHY 53

[30] R. Girle, D. L. Hitchcock, P. McBurney, and B. Verheij. Decision support for practical
reasoning. a theoretical and computational perspective. Arqumentation machines. New
frontiers in arqument and computation, pages 55-83, 2004.

[31] T. E Gordon. The pleadings game. Artificial Intelligence and Law, 4:239-292, 1993.

[32] T. E Gordon. The Pleadings Game. An artificial intelligence model of procedural jus-
tice. Dordrecht: Kluwer, 1995.

[33] T. E. Gordon, H. Prakken, and D. Walton. The carneades model of argument and
burden of proof. Artificial Intelligence, 171:875-896, 2007.

[34] T. E. Gordon, H. Prakken, and D. N. Walton. The carneades model of argument and
burden of proof. Artificial Intelligence, 171:875-896, 2007.

[35] T. E Gordon, H. Prakken, and D. N. Walton. The carneades model of argument and
burden of proof. Artificial Intelligence, 171:875-896, 2007.

[36] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumentation seman-
tics for defeasible logic. Journal of Logic and Computation, 14:675-702, 2004.

[37] E. Grasso, A. Cawsey, and R. Jones. Dialectical argumentation to solve conflicts in
advice giving: a case study in the promotion of healthy nutrition. International Journal
of Human-Computer Studies, 53:1077-1115, 2001.

[38] H. L. A. Hart. The ascription of responsibility and rights. Proceedings of the Aristotelean
Society, 49:171-194, 1949.

[39] J. Horty, R. H. Thomason, and D. S. Touretzky. A skeptical theory of inheritance in
nonmonotonic semantic networks. Artificial Intelligence, 42:311-348, 1990.

[40] A. Hunter. A probabilistic approach to modelling uncertain logical arguments. Inter-
national Journal of Approximate Reasoning, 54:47-81, 2013.

[41] G.W. Leibniz. Leibniz Selections. New York: Scribner, P. P. Wiener (Ed. Trans.):51, 1951.

[42] R. P. Loui. Defeat among arguments: a system of defeasible inference. Computational
Intelligence, 2:100-106, 1987.

[43] R.P. Loui. Process and policy: resource-bounded non-demonstrative reasoning. Com-
putational Intelligence, 14:1-38, 1998.

[44] L. McCarty. Reflections on taxman. an experiment in artificial intelligence and legal
reasoning. Harvard Law Review, 90:89-116, 1977.

[45] L. McCarty. An implementation of eisner v. macomber. Proceedings of the fifth interna-
tional conference on artificial intelligence and law, pages 276-286, 1995.

[46] S. Modgil and H. Prakken. The ASPIC framework for structured argumentation: a
tutorial. Argument and Computation, 5:31-62, 2014.

[47] S.H. Nielsen and S. Parsons. An application of formal argumentation: fusing bayesian
networks in multi-agent systems. Artificial Intelligence, 171:754-775, 2007a.

[48] D. Nute. Defeasible reasoning: A philosophical analysis in prolog. Aspects of Artificial
Intelligence, pages 251-288, 1988.

[49] D. Nute. Defeasible logic. Handbook of Logic in Artificial Intelligence and Logic Program-
ming, pages 253-395, 1994.



54 BIBLIOGRAPHY

[50] Ch. Perelman and L. Olbrechts-Tyteca. The New Rhetoric. A Treatise on Argumenta-
tion. University of Notre Name Press, 1969.

[51] Plato. The Republic. New York :Books, Book 1:190, 1943.

[52] J. L. Pollock. Self-defeating arguments. Minds and Machines, 1:367-392, 1991.

[53] J. L. Pollock. A theory of defeasible reasoning. International Journal of Intelligent Sys-
tems, 6:33-54, 1991.

[54] J. L. Pollock. How to reason defeasibility. Artificial Intelligence, 57:1-42, 1992.
[55] J. L. Pollock. Justification and defeat. Artificial Intelligence, 67:377-407, 1994.
[56] J.L. Pollock. Knowledge and justification. Princeton University Press, 1974.
[57] J.L. Pollock. Defeasible reasoning. Cognitive Science, 11:481-518, 1987.

[58] J.L. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press,
Cambridge, 1995.

[59] H. Prakken. Relating protocols for dynamic dispute with logics for defeasible argu-
mentation. Synthese, 127:187-219, 2001.

[60] H.Prakken. Argumentation schemes and generalisations in reasoning about evidence.
Proceedings of the ninth International Conference on Artificial Intelligence and Law, pages
32-41, 2003.

[61] H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal
of Logic and Computation, 15:1009-1040, 2005.

[62] H. Prakken. An abstract framework for argumentation with structured arguments.
Argument and Computation, 1:93-124, 2010.

[63] H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in
legal reasoning. Artificial Intelligence and Law, 4:331-368, 1996.

[64] H. Prakken and G. Sartor. Argument-based logic programming with defeasible prior-
ities. Journal of Applied Non-Classical Logics, 7:25-75, 1997.

[65] H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dialogue
game. Artificial Intelligence and Law, 6:231-287, 1998.

[66] H. Prakken and G. Sartor. The three faces of defeasibility in the law. Ratio Juris, 17:118-
139, 2004.

[67] H. Prakken and G. Sartor. A logical analysis of burdens of proof. Legal Evidence and
Proof: Statistics, Stories, Logic, pages 223-253, 2009.

[68] W. Ross. The right and the good. Oxford University Press, 1930.

[69] G. R. Simari and R. P. Loui. A mathematical treatment of defeasible argumentation
and its implementation. Artificial Intelligence, 53:125-157, 1992.

[70] D.S. Touretzky. Implicit ordering of defaults in inheritance systems. Proceedings of the
fourth National Conference on Artificial Intelligence, pages 322-325, 1984.

[71] David Touretzky. The mathematics of inheritance systems. Morgan Kaufmann, 1986.



BIBLIOGRAPHY 55

[72] E. H. van Eemeren, B. Garssen, E. C. W. Krabbe, A. F. Snoeck Henkemans, B. Verheij,
and J. H. M. Wagemans. Handbook of argumentation theory. Dordrecht: Springer, 2014.

[73] B. Verheij. Two approaches to dialectical argumentation: admissable sets and argu-
mentation stages. Proceedings of the Eighth Dutch Conference on Artificial Intelligence
(NAIC-96), pages 357-368, 1996.

[74] B. Verheij. Jumping to conclusions. a logico-probabilistic foundation for defeasible
rule-based arguments. Logics in artificial intelligence. 13th European conference, pages
411-423, 2012.

[75] G. Vreeswijk. Defeasible dialectics: a controversy-oriented approach towards defeasi-
ble argumentation. Journal of Logic and Computation, 3:317-334, 1993.

[76] G. Vreeswijk. Studies in defeasible argumentation. Doctoral dissertation Free University
Amsterdam, 1993.

[77] G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225-279, 2007.

[78] G. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred
semantics. Proceedings of the 7th European Workshop on Logics in Artificial Intelligence,
1919:239-253, 2000.

[79] D. N. Walton. Metadialogues for resolving burden of proof disputes. Argumentation,
2006b.

[80] D. N. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge: Cam-
bridge University Press, 2008.

[81] D.N. Walton. Visualization tools, argumentation schemes and expert opitnion evi-
dence in law. Law, Probability and Risk Advance Access, pages 1-22, 2007.



