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Learning causal relations from observations: A
method and its application to the spread of the

‘fear factor’ in financial markets

Abstract

This thesis describes how to learn Bayesian networks from observations
and how they provide optimal predictions, a measure to avoid overfitting
and a resilient approach for incomplete data. Ultimately, their potential
for causal interpretations leads to the topic of causal structure discov-
ery. These are only some reasons why they are predominantly utilised
in many areas – from medical research to finance. The latter will also
be the domain of our use case with focus on the twelve most influential
countries for financial markets: we apply the theory to implied volatil-
ity data, which reflects the expected market fluctuations. We show how
this indicator, also referred to as the fear factor, spreads across the global
financial markets with Switzerland as epicenter.
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1 Introduction

Implied volatility has always rippled in the face of crises – when the dot-com
bubble burst in 2000, in the midst of the 2008 financial crisis and with the
onset of the Covid-19 pandemic in 2020. Since implied volatility reflects the
expected fluctuation of the stock market, it is also referred to as the fear factor.
So, how does this fear factor spread in the global financial markets, and how
does one country impact other countries? In this thesis, we want to learn visual
graphical models that show causal relations between the twelve most important
countries for financial markets and how their dedicated expected volatilties a↵ect
each other. To do so, we need directed graphical models that represent cause-
e↵ect relationships with dedicated probability distributions – causal Bayesian
networks. For this reason, we show in detail how one can learn these networks
from data and infer the causal structure.

We thoroughly explain how one can learn from data through probability
theory by reformulating the problem as exact inference and maximum likeli-
hood and how Bayesian networks provide a robust foundation for learning by
combining existing knowledge (a-priori probabilities) with observed data (evid-
ence). Furthermore, we address why Bayesian networks provide optimal pre-
dictions and a measure to avoid overfitting. Considering that the topology of
our graphical model is crucial, we illustrate in particular the process for the
structure learning of Bayesian networks. Specifically, we cover the causal struc-
ture in great detail and demonstrate an algorithm to infer causation from our
networks – this will reveal insight into the actual impact of one country on an-
other, not just correlations. Since our obtained volatility data contains missing
values and to further strengthen our approach, we show how Bayesian networks
even handle decision making with incomplete data and explain the expectation
maximisation algorithm in detail.
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«Causal Hill-Climbing – qNML» compared to «Causal Tabu – qNML»

Figure 1: Our ultimate conclusion reveals Switzerland’s role as the epicentre
and shows how the fear factor spreads across the global financial markets.
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Our final causal Bayesian network shows thoroughly the role of Switzerland
as the financial hub in the global financial market. Switzerland divides the
network in Figure 1 into a western and an eastern hemisphere with dedicated
sub-clusters. Thus, the time zones and consequently the tradable hours could
be an important generating process for the implied volatility data. Although we
cannot draw many conclusions, Switzerland’s role as a global financial epicenter
seems very intuitive.
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2 Basics

We begin with an introduction to Bayesian statistics to gain a better understand-
ing of Bayesian networks and the corresponding learning methods, explaining
the terminology and basics of probability theory and networks. Then we cover
the topic of exact inference – calculating a desired probability from other known
probabilities. Followed by a brief example of parameter learning and structure
learning. [36] As we divide our overall approach in two sections – complete and
incomplete data – we need to explain those categories: We classify complete
data, when each data point describes the values for every variable. Incomplete
data ranges from missing values to entire hidden (latent) variables – which are
not observable in our data. For incomplete data we have to further distinguish
by means of a small running example – collecting information in a hospital:
Data are missing completely at random (MCAR), if the absence is neither de-
pendent on the original variable nor on other variables, e.g., a doctor losing his
notes rendering that days data corrupted. Missing at random (MAR), meaning
the missing is independent of the variable itself but the absence is dependent
on other variables in the data set e.g., di↵erences in frequency of data between
genders, due to more women receiving care in this specific hospital section in
general. The last category is missing not at random (MNAR) – meaning the
the reason of a value’s absence is directly related to that variable, e.g., if a
patient’s vital signs cannot be measured because the doctor felt he was too
weak. [13] [35] [20] [46]

2.1 Bayes theorem

Thomas Bayes’s ‘An essay towards solving a problem in the doctrine of chances’
was published two years after his death in 1763 in the Philosophical Transactions
of the Royal Society of London. The intended title ‘A Method of Calculating
the Exact Probability of All Conclusions founded on Induction’ [67] gives a more
reasonable insight on the topic: The first formulation of conditional probabilit-
ies and therefore the foundation of today’s Bayes theorem. [39]

Conditional probabilities are also called a-posteriori probabilities as they de-
scribe a probabilistic statement of belief after seeing an event. The counterpart
– an unconditional probability – is called a-priori probability. The a-posteriori
probability is defined as follows (for P (b) > 0 ): [59]

P (a | b) = P (a ^ b)

P (b)

which can be rewritten as the product rule:

P (a ^ b) = P (a | b)P (b)

7



And Bayes theorem can be derived from this product rule for hypothesis h and
data d: [59]

P (d ^ h) = P (d | h)P (h) and P (d ^ h) = P (h | d)P (d)

by combining both to

P (h | d) = P (d | h)P (h)

P (d)

where P (h) is the a-priori probability of h before seeing d and P (h | d) the a-
posteriori probability of h after seeing d. The following example from Russell
may better illustrate the relevance: While the a-priori probability of having
a cavity is P (cavity) = 0.2, the a-posteriori probability of having a cavity, if
the patient also su↵ers from toothache, is P (cavity | toothache) = 0.6. There-
fore, Bayes theorem can be used for updating probabilities after obtaining new
evidence – or learning from data. [5] [59]

2.2 Bayesian networks

From a syntactic point of view, a Bayesian network is a Directed Acyclic
Graph (DAG) G = hV,Ei with a finite set of vertices V and a set of directed
edges E between those vertices – meaning there are no undirected or bidirected
edges. [39] Two vertices are called adjacent if there is an edge between them and
non-adjacent if not. Each vertex (or node) as a representation of a discrete or
continuous random variable holds some local probability information. In order
to reduce complexity, this graphical representation assumes the Markov prop-
erty of each node being conditionally independent of its non-descendants given
its parents – thus called the Markov assumption. Therefore, each vertex Vi has a
conditional probability distribution P (Vi | Parents(Vi)), quantifying the e↵ect
of the parent node and the edges between them represent conditional depend-
ence. From a semantic point of view, a Bayesian network is a representation of
the joint probability distribution: [59] [46] [35] [56]

P (v1, . . . , vn) =
nY

i=1

P (vi | Parents(Vi))

“[. . . ]a Bayesian network can be viewed as a collection of prob-
abilistic classification/regression models, organized by conditional-
independence relationships.”

– David Heckerman, A tutorial on learning with Bayesian networks [36, p. 14]
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Figure 2: Exemplary Bayesian network with dedicated conditional probability
tables (CPT). [59, p. 432]

This Bayesian network is based on an alarm system that reliably detects
burglaries with a probability of 0.94 – as described in the CPT. However, it is
also occasionally triggered by earthquakes. Additionally, there are two neigh-
bours (John and Mary), who also call when they hear the alarm. The entries in
the conditional probability tables are our parameters, describing the probability
distribution of the Bayesian network. Thus, for this exemplary network with
binary variables (either true or false) 10 parameters are necessary to describe
the joint probability distribution. [59]

Although di↵erent Bayesian networks can mimic the same underlying dis-
tribution, the topological ordering of the nodes is not trivial. We aim for min-
imal, compact networks, which can be achieved by placing the causes before
e↵ects. [56] [59] [36]

(a) Similar network with 13 parameters. (b) Similar network with 31 parameters.

Figure 3: While all three represent the same joint distribution, the resulting
network is more compact if causes are placed before e↵ects. The required para-
meters of each binary node are calculated by 2n, where n denotes the number
of parents. [59, p. 436]
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2.3 Exact inference

We described inference as calculating a desired probability from other known
probabilities. There are two categories – exact and approximate inference. Due
to the complexity of the calculations for exact inference, it is intractable to apply
for large networks. Therefore, the latter uses sampling algorithms to provide
approximate solutions, but these will not be further discussed. We solely focus
on exact inference to calculate the a-posteriori probability P after an observed
event d with d1, d2, . . . , dj 2 D (set of evidence variables/observable data).
Where the bold P is used for a vector of numbers or a conditional distribution:
P(a | b) returns the values of P (a = ai | b = bj) for each pair of i, j. [59]

The most intuitive approach of inference is by enumeration or marginalisa-
tion – the summation of ‘the probabilities for each possible value of the other
variables’ [59, p. 414] solely to eliminate them from the equation.

As an example for the variables A and B:

P(A) =
X

b

P(A,B = b)

So, a query for the a-posteriori probability distribution P(X | d) can be
calculated as follows with X as query variable and y as hidden (unobserved)
variable.

P(X | d) = P(X,d)

P (d)

1

= ↵P(X,d) = ↵

X

y

P(X,d,y)

In Bayesian networks, we already have the complete joint distribution as
products of conditional probabilities, which simplifies such queries significantly
– by summation of those products of conditional probabilities. Due to the con-
stant ↵, there is still the need for normalisation to attain the actual probabilities
(this will be explained in more detail in the following example as well as in Sec-
tion 4). [59] [5]

But for now, the focus will be on our exemplary Bayesian network from
Russell [59], introduced in the previous section. In order to calculate the prob-
ability of a Burglary, given John and Mary called, P (Burglary | JohnCalls =
true,MaryCalls = true), our latent variable y would include the nodes Earth-

quake and Alarm. For more compact calculations, we simply denote the initials,
e.g., instead of JohnCalls = true, we refer to j and instead of JohnCalls = false,
we write ¬j. With the above expression this yields:

P(Burglary | j,m) = ↵P(Burglary, j,m) = ↵

X

e

X

a

P(Burglary, j,m, e, a)

We focus on the case of Burglary = true:

P (b | j,m) = ↵

X

e

X

a

P (b)P (e)P (a | b, e)P (j | a)P (m | a)

1due to ↵ = 1

P (d)
being a constant.
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For our two binary variables e and a, this means that we calculate and then
sum four individual products of probabilities. With our conditional probability
tables from Figure 2, we receive these values:

Table 1: The initial results of the individual products.

e ¬e

a 0.70 · 0.90 · 0.95 · 0.002 · 0.001 = 1.20⇥ 10�06 0.70 · 0.90 · 0.94 · 0.998 · 0.001 = 5.91⇥ 10�04

¬a 0.01 · 0.05 · 0.05 · 0.002 · 0.001 = 5.00⇥ 10�11 0.01 · 0.05 · 0.06 · 0.998 · 0.001 = 2.99⇥ 10�08

The sum of these four values is P (b | j,m) = ↵ 5.92⇥ 10�4. With the same
procedure for Burglary = false, we obtain P (¬b | j,m) = ↵ 1.49⇥ 10�3. Thus,
to lose ↵ and normalise these probabilities, we simply divide them by the sum
of both and yield:

P(B | j,m) = ↵h5.92⇥ 10�4
, 1.49⇥ 10�3i ⇡ h0.28, 0.72i

This means, if the neighbours call, the probability of a burglary is approx-
imately 28%.

There is further potential for improvement in terms of complexity by pruning
the redundant calculations e.g., with application of the variable elimination
algorithm, but this will not be part of our scope. [59]

2.4 Interventions as foundation for causality

Since di↵erent Bayesian networks can represent the same underlying distribution
as described in Section 2.2, they are not necessarily portraying causal relation-
ships. However, there are advantages in Bayesian networks, when the topological
ordering of the nodes is causal. Since correlation stems from causation, causal
relations are more reliable and furthermore causal networks can represent ex-
ternal changes – interventions. Thus, we use interventions to define the causal
order of Bayesian networks. By intervening on individual variables, we change
the underlying graph and recalculate the resulting distribution: all incoming
arcs to the individual target variable are removed, the variable itself is set to
1 (or True for boolean variables), and no other relations than the target vari-
able are changed. Using a small example from Pearl [56], we show how these
modular configurations in causal networks provide insights into predictions from
interventions. [56] [3]
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(a) P (x1, x2, x3, x4, x5). (b) PX3= On (x1, x2, x4, x5).

Figure 4: The joint probability distribution of the causal network is given
by P (x1, x2, x3, x4, x5) = P (x1)P (x2 | x1)P (x3 | x1)P (x4 | x2, x3)P (x5 | x4).
With one atomic change of setting the variable X3 to a constant (SPRINK-
LER = ON) and thus removing the incoming arc from its parent (X1),
we can calculate the result of this intervention: PX3=On (x1, x2, x4, x5) =
P (x1)P (x2 | x1)P (x4 | x2, X3 = On)P (x5 | x4). [56, p. 15, 23]

This is inherently di↵erent from observing X3 = On, which can be calculated
by P (x1, x2, x4, x5 | X3 = On). The removal of an arc shows the di↵erence
between observing and doing, which is the reason the latter is called the do-
Operator for our intervention. [56] [3]

2.5 Parameter and structure learning

As we have seen in Section 2.2, there are two components of Bayesian networks,
which are crucial: The overall structure of the network and the local probability
information each node holds. Therefore, we will start by analysing each part
on its own before putting it together as a comprehensive learning problem.
The first part will cover parameter learning: The calculation of the conditional
probabilities formulated as a problem of inference and maximum likelihood given
a fixed structure. The second part will focus on structure learning: Optimising
the networks structure based on three di↵erent approaches: (1) constraint-based
algorithms, applying conditional independence tests, (2) score-based algorithms,
optimising a score function and (3) hybrid algorithms which combine both. As
constraint-based and hybrid algorithms are shown to be less accurate and very
rarely faster than score-based ones, we will refrain from implementing them in
the thesis at hand. Since structure learning is based on concepts of parameter
learning, we start with the latter. [59] [36] [62] [61]
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2.6 Receiver Operating Curves (ROC) for evaluation

In order to validate learned models – here the Bayesian networks – we compare
predictions made from the model with previously separated test data. In this
way, we can objectively evaluate them according to their predictive qualities.
For this comparison, we utilise these fundamental principles:
Sensitivity or true positive rate (TPR) is derived from the true positives TP,
i.e., the correctly identified positives P from the test set: TPR = TP

P
Specificity or true negative rate (TNR) is derived from the true negatives TN,
i.e., the correctly identified negatives N from the test set: TNR = TN

N
By plotting both the sensitivity and specificity in relation, we obtain the so
called Receiver Operating Curve (ROC). For the results of both measures 1 or
100% is the optimum, and if the curve is the diagonal, we observed a random
process. In Figure 5, we can see some common examples of curves. In order
to further summarise these evaluations, we can calculate the Area Under the
Curve (AUC) to rank the models. Again, a value of 0.5 indicates a random
process. [35] [17] [46] [59]
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Figure 5: Exemplary receiver operating curves for a good, medium, random and
inverse model fit. The perfect score would be 1.0 on each dimension – specificity
and sensitivity.
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3 Related work

The article ‘A Guide to the Literature on Learning Probabilistic Networks from
Data’ [8] provides an useful overview of the complete landscape of learning net-
works from data. In ‘Bayesian Theory [5] the foundations in statistics and in
depth discussions for our topic are covered. Complexity and the algorithmic
point of view, but also great explanations of basic techniques for Bayesian
learning of network structures with complete data are discussed in ‘Learning
Bayesian networks: The combination of knowledge and statistical data . [37] In
Lauritzen, S. L., and Spiegelhalter [47] a great and versatile example of
application is presented, that we also reproduce later in this thesis. Further-
more, in the tutorial from Heckerman [36] the basics on learning – especially
MAP learning are explained in depth. For the EM algorithm in the last section
Friedman [20] is recommended. Pearl [57] and Meek [49] are the foundation
for the inferred causal models.

Beyond the research papers, the textbooks from Mitchell [50], Russell
[59] and Hastie [35] are comprehensive introductions to the basics in statist-
ics, and Pearl [56] for causality. For the applied section of this thesis – the
implementation in R – the work from Nagarajan [52] and Scutari [61] is
helpful. And for the niche topic of Information Criterions the publications from
Schwarz [60] and Neath [54] provide useful overviews. For the fear factor
itself, the implied volatility, Hull [42] is the recommended literature, as well as
for options, futures, and derivatives in addition to Joshi [45].
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4 Learning with complete data

For the section of parameter learning with complete data, we will introduce
a running example from Russell [59]: Candy comes in two flavours (cherry
and lime) – wrapped in the same paper and sold in large indistinguishable bags.
There are five di↵erently composed bags of candy, represented by hi (hypothesis)
generating the hypothesis space H: [59]

h1: 100% cherry

h2: 75% cherry + 25% lime

h3: 50% cherry + 50% lime

h4: 25% cherry + 75% lime

h5: 100% lime

Our objective is to assign the correct hypothesis to a randomly chosen
bag. For the hypotheses h1, ...h5 the a-priori distribution is already given:
(0.10, 0.20, 0.40, 0.20, 0.10). Nonetheless, as we cannot detect from mere obser-
vation which hypothesis hi holds true, we need to gather evidence (data d), by
unwrapping one candy at a time: dj being either cherry or lime. Our objective
is to predict the next candy flavour – by application of Bayesian learning.

4.1 Optimal parameter learning

Optimal parameter learning means calculating the probability of each hypo-
thesis, considering all observable data dj 2 d. This means, predictions are
made with all hypotheses independently, considering their probabilities – the
process of inference from Section 2.3. In order to make a forecast P(X | d)
about a random variable X, we require the a-priori probability of each hypo-
thesis P (hi) and the likelihood of the data under each hypothesis P (d | hi) as
given. With the assumption2 of observations being independent and identically
distributed (i.i.d.), we can derive by application of Bayes theorem: [59] [58]

P(X | d) =
X

i

P (X | d, hi)P (hi | d)

3

=
X

i

P (X | hi)P (hi | d)

Bayes
theorem=

X

i

P (X | hi)
P (d | hi)P (hi)

P (d)

const.
=

X

i

P (X | hi)↵P (d | hi)P (hi)

i.i.d.
=

X

i

P (X | hi)↵
Y

j

P (dj | hi)P (hi)

2In our example this assumption is true because the bags of candy are (infinitely) large.
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In order to give the equationP(X | d) =
P

i
P (X | hi)↵

Q
j
P (dj | hi)P (hi)

more insight, we go through our example in two steps and explain the intuition
behind the math. Our final prediction consists of weighted averages of each
hypothesis’s individual prediction. ‘The hypotheses themselves are essentially
intermediaries between the raw data and the predictions.’ [59, p. 773]

In the first step, we calculate the likelihood of each hypothesis under the
data P (hi | d) = ↵j

Q
j
P (dj | hi)P (hi). In our simplified example, we selec-

ted a bag associated to h5: Making predictions while only drawing one flavour
(lime) – updating the probability with each new lime candy up to ten times
(d1, ..., d10). So, with the composition of candy from Section 4, we can make
the first calculations and determine P (hi)

Q
j
P (dj | hi) and the current norm-

alisation constant ↵j : [59]

Table 2: 1
↵
P (hi | d) = P (hi)

Q
j
P (dj | hi).

Hypothesis h1 h2 h3 h4 h5 Marginalisation
P (hi) 0.10 0.20 0.40 0.20 0.10 for Normalisation
P (lime) 0.00 0.25 0.50 0.75 1.00 1

↵j
=

P
i
P (hi)

Q
j
...

d = d1 0.10 · 0.001 0.20 · 0.251 0.40 · 0.501 0.20 · 0.751 0.10 · 1.001 1
↵1

= 0.50
d = d2 0.10 · 0.002 0.20 · 0.252 0.40 · 0.502 0.20 · 0.752 0.10 · 1.002 1

↵2
= 0.33

d = d3 0.10 · 0.003 0.20 · 0.253 0.40 · 0.503 0.20 · 0.753 0.10 · 1.003 1
↵3

= 0.24
d = d4 0.10 · 0.004 0.20 · 0.254 0.40 · 0.504 0.20 · 0.754 0.10 · 1.004 1

↵4
= 0.19

d = d5 0.10 · 0.005 0.20 · 0.255 0.40 · 0.505 0.20 · 0.755 0.10 · 1.005 1
↵5

= 0.16
d = d6 0.10 · 0.006 0.20 · 0.256 0.40 · 0.506 0.20 · 0.756 0.10 · 1.006 1

↵6
= 0.14

d = d7 0.10 · 0.007 0.20 · 0.257 0.40 · 0.507 0.20 · 0.757 0.10 · 1.007 1
↵7

= 0.13
d = d8 0.10 · 0.008 0.20 · 0.258 0.40 · 0.508 0.20 · 0.758 0.10 · 1.008 1

↵8
= 0.12

d = d9 0.10 · 0.009 0.20 · 0.259 0.40 · 0.509 0.20 · 0.759 0.10 · 1.009 1
↵9

= 0.12
d = d10 0.10 · 0.0010 0.20 · 0.2510 0.40 · 0.5010 0.20 · 0.7510 0.10 · 1.0010 1

↵10
= 0.11

After multiplying each value by the dedicated normalisation constant ↵j

– the reciprocal value of
P

i
P (hi)

Q
j
P (dj | hi) – we obtain the a-posteriori

likelihoods P (hi | d) of the hypotheses.

Hypothesis h1 h2 h3 h4 h5

P (hi) 0.10 0.20 0.40 0.20 0.10
P (lime) 0.00 0.25 0.50 0.75 1.00

d = d0 0.10 0.20 0.40 0.20 0.10
d = d1 0.00 0.10 0.40 0.30 0.20
d = d2 0.00 0.04 0.31 0.35 0.31
d = d3 0.00 0.01 0.21 0.36 0.42
d = d4 0.00 0.00 0.13 0.33 0.53
d = d5 0.00 0.00 0.08 0.30 0.62
d = d6 0.00 0.00 0.04 0.25 0.70
d = d7 0.00 0.00 0.02 0.21 0.77
d = d8 0.00 0.00 0.01 0.16 0.82
d = d9 0.00 0.00 0.01 0.13 0.86
d = d10 0.00 0.00 0.00 0.10 0.90

Table 3: P (hi | d) = ↵P (hi)
Q

j P (dj | hi).

Figure 6: Posterior probabilities
by the number of observations in
d being a lime candy. [59, p. 774]

3Under the assumption that each hypothesis specifies a probability distribution over X. [58]
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As we can see in the results from Table 3 in Figure 6, the likelihood of hy-
pothesis h5 (all lime) being true, increases with each lime candy. While this is
very intuitive, the rapid decline in likelihood for hypothesis h3 (50:50 compos-
ition), and the peak of h4 at d2 – two lime candies – is quite surprising. Only
a small sample of evidence is necessary for the hypotheses to vastly distinguish
themselves [59].

Finally, for our prediction of our next candy being lime, P(X = lime | d)
we sum the product of the predictions within each hypothesis P (X = lime | hi)
and the previously normalised values from Table 2 P (hi | d). Now we have the
likelihoods over all hypotheses marginalised over the hypotheses in Table 4:

Table 4: P(X | d) =
P

i
P (X | hi)P (hi | d).

Hypothesis h1 h2 h3 h4 h5 Marginalisation
P (hi) 0.10 0.20 0.40 0.20 0.10 for
P (lime) 0.00 0.25 0.50 0.75 1.00 Final result

d = d1 P (h1 | d1) · 0.00 P (h2 | d1) · 0.25 P (h3 | d1) · 0.50 P (h4 | d1) · 0.75 P (h5 | d1) · 1.00
P

i
P (...)P (... | d1)

d = d2 P (h1 | d2) · 0.00 P (h2 | d2) · 0.25 P (h3 | d2) · 0.50 P (h4 | d2) · 0.75 P (h5 | d2) · 1.00
P

i
P (...)P (... | d2)

d = d3 P (h1 | d3) · 0.00 P (h2 | d3) · 0.25 P (h3 | d3) · 0.50 P (h4 | d3) · 0.75 P (h5 | d3) · 1.00
P

i
P (...)P (... | d3)

d = d4 P (h1 | d4) · 0.00 P (h2 | d4) · 0.25 P (h3 | d4) · 0.50 P (h4 | d4) · 0.75 P (h5 | d4) · 1.00
P

i
P (...)P (... | d4)

d = d5 P (h1 | d5) · 0.00 P (h2 | d5) · 0.25 P (h3 | d5) · 0.50 P (h4 | d5) · 0.75 P (h5 | d5) · 1.00
P

i
P (...)P (... | d5)

d = d6 P (h1 | d6) · 0.00 P (h2 | d6) · 0.25 P (h3 | d6) · 0.50 P (h4 | d6) · 0.75 P (h5 | d6) · 1.00
P

i
P (...)P (... | d6)

d = d7 P (h1 | d7) · 0.00 P (h2 | d7) · 0.25 P (h3 | d7) · 0.50 P (h4 | d7) · 0.75 P (h5 | d7) · 1.00
P

i
P (...)P (... | d7)

d = d8 P (h1 | d8) · 0.00 P (h2 | d8) · 0.25 P (h3 | d8) · 0.50 P (h4 | d8) · 0.75 P (h5 | d8) · 1.00
P

i
P (...)P (... | d8)

d = d9 P (h1 | d9) · 0.00 P (h2 | d9) · 0.25 P (h3 | d9) · 0.50 P (h4 | d9) · 0.75 P (h5 | d9) · 1.00
P

i
P (...)P (... | d9)

d = d10 P (h1 | d10) · 0.00 P (h2 | d10) · 0.25 P (h3 | d10) · 0.50 P (h4 | d10) · 0.75 P (h5 | d10) · 1.00
P

i
P (...)P (... | d10)

Figure 7: Bayesian pre-
diction P (dN+1 = lime |
d1, ..., dN ) for the next
(N +1) candy being lime.
[59, p. 774]

As we can see in the results from Table 19 (Ap-
pendix) in Figure 7, the likelihood over all hypotheses
hi of the next candy being lime, increases with each
lime candy. After the 8th observation in d the likeli-
hood grows to over 0.95.

The essential aspect of Bayesian learning is that
the prediction is ultimately consistent with the true
hypothesis. Due to the likelihood of observing data
not corresponding to the real-world is shrinking with
each evidence in d, the a-posteriori probability of any
false hypothesis will eventually vanish. [59] However,
most importantly this prediction is optimal and any
other method is less accurate – given the same hypo-

thesis space and a-priori probabilities and the data. [50] In this example, the
hypothesis space was i = 5 and for a more realistic application of an unknown
composition of a bag of candy (k = 100 pieces) and only two flavours (n = 2),
there would already be i = 101 hypotheses4:

✓✓
n

k

◆◆
=

✓
n+ k � 1
n� 1

◆
= 101

So, this optimality of Bayesian learning is very resource consuming and for many
cases even intractable. Therefore, we need to explore more simplified methods.

4h1: (100 lime | 0 cherry), h2: (99 lime | 1 cherry), ..., h101: (0 lime | 100 cherry).
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4.2 Maximum-a-posteriori (MAP) learning

The first simplification of optimal Bayesian parameter learning is Maximum-a-
posteriori (MAP) learning. The core idea is not to make predictions by calcu-
lating weighted averages of each hypothesis’s individual prediction, but to make
the prediction solely based on the most probable hypothesis hMAP – the one
maximising P (hi | d): [59]

hMAP = arg max
hi2H

P (hi | d)

MAP predictions are approximately Bayesian with P(X | d) ⇡ P (X | hMAP ),
but neither optimal nor always flawless: In our running example after three
limes (d3), the most likely hypothesis is h5 (100% lime) as seen in Figure 6.
Based on that hypothesis, the prediction of another lime candy would be 1.0,
while the optimal Bayesian prediction is 0.8 according to Figure 7. With more
data the results of both approaches converge, as the a-priori distributions are
quickly overridden by the data and the a-posteriori probability of any false hy-
pothesis vanishes. Thus, for small data sets caution is advised. For suitable data
sets, this approach brings significant advantages in complexity as optimisation
problems are less resource draining than marginalisation of large hypothesis
spaces. [59]

As mentioned in the introduction, the Bayesian approach to learn from ob-
servations, as described in Section 4.1, o↵ers a solution to overfitting – the
unwanted excessive adaption to training data, leading to poor performance on
unobserved data. Bayesian learning penalises complexity: While often only the
most complex hypothesis can reproduce the data exactly, the a-priori probab-
ility will usually decrease significantly with the increasing complexity of the
hypothesis. This compromise between complexity of hypotheses and their ad-
aptability to data is why MAP learning is the probabilistic implementation of
Ockham’s razor: ‘Prefer the simplest hypothesis that fits the data.’ [50, p. 65]

“Pluralitas non est ponenda sine necessitate”
“Plurality [of entities] should not be posited without necessity”

– William of Ockham, (1280–1349) [59, p. 733]

18



4.3 Minimum Description Length (MDL)

Another perspective to view MAP Learning and Ockham’s razor is the Minimum
Description Length (MDL) principle. [50]

hMAP = argmax
h2H

P (h | d)

= argmax
h2H

P (d | h)P (h)

P (d)

= argmax
h2H

P (d | h)P (h)

5

= argmax
h2H

log2 P (d | h) + log2 P (h)

6

= argmin
h2H

� log2 P (d | h)� log2 P (h)

= argmin
h2H

� log2 P (h)| {z }
Number of bits
to specify the

hypothesis h 2 H

� log2 P (d | h)| {z }
Number of bits
to specify the
data d in h

As explained in Section 4.2 the expression of hMAP states, that short hy-
potheses are preferred – in this representation the minimisation of each term
is evident: One for encoding the hypotheses and one for the data within the
hypothesis. [59] From a perspective of information theory ‘optimal code (i.e.,
the code that minimizes the expected message length) assigns �log2 pi bits to
encode message i’ [50, p. 172] where pi is the probability of encountering that
message. This embodies the concept of (Shannon) entropy, quantifying the ex-
pected (im)purity for a random variable’s possible outcomes. The description
length (number of bits) L required to encode message i using code R is de-
noted as LR(i). With this notation we can rewrite LRh(h) = � log2 P (h) and
LRd|h(d | h) = � log2 P (d | h) with Rh and Rd|h being optimal encodings.
So, hMAP can be rewritten as minimisation of both description lengths – the
hypothesis and the data given the hypothesis. [50]

hMAP = argmin
h2H

LRh(h) + LRd|h(d | h)

In order to show that MDL and MAP are equivalent (hMDL = hMAP ), we
choose R1 as optimal encoding for the hypothesis Rh and R2 as optimal encoding
for the data given the hypothesis Rd|h. Thus, for the Minimum Description
Length principle, we can choose hMDL so, [50]

hMDL = argmin
h2H

LR1(h) + LR2(d | h)

5which can be expressed as maximising the log2.
6which can be expressed as minimising the negative of the expression.
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4.4 Maximum Likelihood (ML) learning

Our last simplification can be made under the assumption of every hypothesis
h 2 H being equally probable a-priori 8hi, h 2 H : P (hi) = P (h). [50]

hMAP = argmax
h2H

P (h | d)

= argmax
h2H

P (d | h)P (h)

P (d)

= argmax
h2H

P (d | h)P (h)

hML = argmax
hi2H

P (d | hi)

8hi,h 2 H : P (hi) = P (h)

So, we can reduce MAP learning to maximising P (d | hi) – the maximum
likelihood (ML) hypothesis hML.

Obviously, the assumption of a uniform prior over H is quite bold, but given
that many hypotheses in science are set up subjectively and without any cri-
terion to distinguish the probabilities, it is a reasonable simplification. More
importantly, as stated in Section 4.2 with larger data sets, the a-priori probab-
ilities are quickly overridden by the data and the a-posteriori probability of any
false hypothesis vanishes. [59]

For our running example of candy bags from Russell [59], we assume we do
not know the composition of flavours (cherry and lime) – resulting in a uniform
a-priori probability over hypotheses space H. For the random variable Flavour

the probability of cherry is ✓ and for lime therefore 1� ✓. After N candies (of
which c are cherry and ` = N � c are lime) we get the likelihood: [59]

P (d | h✓) =
NY

j=1

P (dj | h✓) = ✓
c · (1� ✓)`

hML is determined by the value ✓ maximising the expression above. In order
to reduce the complexity of the optimisation (argmaxP (d | h✓)), we maximise
the log function7 and therefore the log likelihood : [59]

L (d | h✓) = logP (d | h✓) =
NX

j=1

logP (dj | h✓) = c log ✓ + ` log(1� ✓)

After di↵erentiating the likelihood function L with respect to ✓ and setting
the result to zero, we obtain: [59]

dL (d | h✓)

d✓
=

c

✓
� `

1� ✓
= 0 ) ✓ =

c

c+ `
=

c

N

7This is legitimate because log P is a monotonic function of P .
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So, as we can see, the maximum likelihood hypothesis hML predicts the true
composition of flavours to be equal to the candies unwrapped and observed.

As this is the default approach for maximum likelihood learning – and there-
fore broadly implemented – a brief recap from Russell: [59]

I Find expression for the likelihood of the data as function of the parameters.

II Di↵erentiate the log likelihood with respect to each parameter.

III Set the derivative to zero to find the parameters of hML.

However, as discussed in previous sections, if the data set is too small, the
results may vary: An event that has not been observed can not be predicted –
meaning after seeing zero lime candies after N observations, hML assigns the
probability 0 to ever seeing a lime candy. In Section 4.5 we present a way to
avoid this. [59]
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4.5 Naive Bayes classifier

“If it looks like a duck, swims like a duck, and quacks like a duck,
then it probably is a duck.”

– The duck test, a form of abductive reasoning.8

Figure 8: E�ciency of naive
Bayes classifier. [59, p. 779]

Before we start with the general form of
structure learning, we introduce a simplified
version: The naive Bayes classifier – struc-
ture learning of fixed (star shaped) structures.
The duck test gives a basic introduction to the
concept: If the attributes fit a certain class, we
assign this class. So, ‘[i]f it looks like a duck,
swims like a duck, and quacks like a duck’, we
can assign with some certainty P the class vari-
able C = cduck. We therefore want to classify
(or predict) the random variable C 2 C under
the data (attributes), where C is the space of
all classes. The structure of naive Bayes networks is always the same star shape
with attributes as leaves and C as root – because of the assumption making the
model naive: All observed attributes xj are conditionally independent. If this
assumption holds true, the approach is equivalent to MAP learning, because we
choose the most probable hypothesis of classes – or in short the most probable
class C = cMAP given the k attributes x1, x2, ...xk: [59] [17] [50]

cMAP = argmax
C2C

P (C | x1, x2 . . . xk)

= argmax
C2C

P (x1, x2 . . . xk | C)P (C)

P (x1, x2 . . . xk)
9

= argmax
C2C

P (x1, x2 . . . xk | C)P (C)

cNB

10

= argmax
C2C

P (C)
Y

j

P (xj | C)

Nonetheless, even if the attributes are not conditional independent, the clas-
sifier is highly e�cient, as it does not require an explicit search in the hypothesis
space, and is also robust as described in Figure 8. [59]

8Original source unknown – early uses from James Whitcombe Riley (1916) and Ronald
Reagan (1967). [71]

9Simplification due to ↵ = 1

P (x1,x2,...xk)
being a constant.

10Simplification due to conditional independence.
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As derived, the probability of each class is determined by: [59]

P (C | x1, x2, . . . , xk) = ↵P(C)
Y

j

P (xj | C)

And P (C) and P (xj | C) are estimated based on the observed relative fre-
quency in the training data. [17]

C

x1 x2 . . . xk

Figure 9: The Bayesian network of class C for the k attributes x1, x2, ...xk.

As our in depth example, we focus on an everyday task: Emails – and
unfortunately spam mail. How can we calculate as reliably and e�ciently as
possible the probability of the email being spam, given the attributes x1, x2, ...xk

of this new email?

P (Spam | x1, x2, ...xk)

We are going to implement the naive Bayes classifier to predict the class C

of our incoming emails (either Spam or ¬Spam) by using their content – k

words x1, x2, ...xk – for prediction and training. At first, we have to build our
histograms with the total number of words already encountered, visualised in
Figure 10: [17]

(a) Histogram ¬Spam. (b) Histogram Spam.

Figure 10: Both histograms show the word frequency n of each word x1, x2, ...xk

observed in either ¬Spam or Spam.
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The overall likelihood of emails being either ¬Spam or Spam results from
their frequencies – in our example we received 12 emails, 4 of which are spam:
P (¬Spam) = 8

8+4 and P (Spam) = 4
8+4 . For the words x1, x2, . . . , xk we get

the total number of words N for each class cj with
P

k

i=1 n. [59]

By application of ↵P(C)
Q

j
P (xj | C) in Table 5, we obtain for the words

“Dear” and “Friend” the (normalised) likelihoods.

Table 5: Probability P (C | x1, x2, . . . , xk) of classification C – either ¬Spam or
Spam – based on frequency of words x1, x2, ...xk (here: “Dear” and “Friend”).

P P (xj | C) = Frequency n

WordsN inC
P (C | x1, x2, . . . , xk) = ↵P(C)

Q
j
P (xj | C)

P (¬Spam) = 8
12

P
�
“Dear

00 | ¬Spam
�
= 8

17 P (¬Spam)P
�
“Dear

00 | ¬Spam
�
P
�
“Friend00 | ¬Spam

�

= ↵P
�
¬Spam | “Dear

00
, “Friend00

�
= 0.0922 ! 0.93P

�
“Friend00 | ¬Spam

�
= 5

17

P (Spam) = 4
12

P
�
“Dear

00 | Spam
�
= 1

7 P (Spam)P
�
“Dear

00 | Spam
�
P
�
“Friend00 | Spam

�

= ↵P
�
Spam | “Dear

00
, “Friend00

�
= 0.0068 ! 0.07P

�
“Friend00 | Spam

�
= 1

7

c¬Spam

Dear Friend

Figure 11: The dedicated Bayesian network of the naive Bayes classifier for the
words “Dear” and “Friend” with the normalised probability 0.93.

We follow the same approach for the words “Money” and “Bayes”, but
encounter a problem already mentioned in section 4.4:

Table 6: Probability P (C | x1, x2, . . . , xk) of classification C – either ¬Spam or
Spam – based on frequency of words x1, x2, ...xk (here: “Money” and “Bayes”).

P P (xj | C) = Frequency n

WordsN inC
P (C | x1, x2, . . . , xk) = ↵P(C)

Q
j
P (xj | C)

P (¬Spam) = 8
12

P
�
“Money

00 | ¬Spam
�
= 1

17 P (¬Spam)P
�
“Money

00 | ¬Spam
�
P
�
“Bayes00 | ¬Spam

�

= ↵P
�
¬Spam | “Money

00
, “Bayes00

�
= 0.0069 ! 1.00P

�
“Bayes00 | ¬Spam

�
= 3

17

P (Spam) = 4
12

P
�
“Money

00 | Spam
�
= 5

7 P (Spam)P
�
“Money

00 | Spam
�
P
�
“Bayes00 | Spam

�

= ↵P
�
Spam | “Money

00
, “Bayes00

�
= 0.0000 ! 0.00P

�
“Bayes00 | Spam

�
= 0

7

Since the word “Bayes” is not yet in the vocabulary for spam, the probability
will always be 0 regardless of any other words. To avoid this situation – since
there is no more significance in this value – we bypass it by adding a fictitious
occurrence of each word: n = n+1. The total number thus increases to a whole
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of 11 words for spam (+1 for each word in our list – i.e., “Dear”, “Friend”,
“Money” and “Bayes”) and 21 total words for ¬spam. This results in the
following final table: [59]

Table 7: Probability P (C | x1, x2, . . . , xk) of classification C – either ¬Spam or
Spam – based on frequency of words x1, x2, ...xk (here: “Money” and “Bayes”).

P P (xj | C) = Frequency n

WordsN inC
P (C | x1, x2, . . . , xk) = ↵P(C)

Q
j
P (xj | C)

P (¬Spam) = 8
12

P
�
“Money

00 | ¬Spam
�
= 2

21 P (¬Spam)P
�
“Money

00 | ¬Spam
�
P
�
“Bayes00 | ¬Spam

�

= ↵P
�
¬Spam | “Money

00
, “Bayes00

�
= 0.0121 ! 0.42P

�
“Bayes00 | ¬Spam

�
= 4

21

P (Spam) = 4
12

P
�
“Money

00 | Spam
�
= 6

11 P (Spam)P
�
“Money

00 | Spam
�
P
�
“Bayes00 | Spam

�

= ↵P
�
Spam | “Money

00
, “Bayes00

�
= 0.0165 ! 0.58P

�
“Bayes00 | Spam

�
= 1

11

cSpam

Money Bayes

Figure 12: The dedicated Bayesian network of the naive Bayes classifier for the
words “Money” and “Bayes” with the normalised probability 0.58.

(a) Histogram ¬Spam. (b) Histogram Spam.

Figure 13: Updated histograms after adjusting the frequency by n = n+ 1.

With this simple trick – visualised in Figure 13 – we can handle situations,
where we have not seen certain data yet. Either a lime candy from Section 4.4,
or the frequency n = 0 of certain words in our spam filter (otherwise, it could
be bypassed by inventing new words).
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4.6 Structure learning and the Bayesian Information Cri-

terion (BIC)

After the special case of structure learning (the naive Bayes classifier), we can
now continue with the general model. Until now, the structure was either
already given, or provided through some expertise. Unfortunately, in many
situations neither is an option: from medical research (e.g., “smoking can cause
cancer”) to environmental studies (e.g., “e↵ect of CO2 concentrations on cli-
mate”) assumptions need to be backed with data.

If we cannot rely on any prior knowledge to start from a partial correct
Bayesian network (and optimise from there), we begin with an empty DAG –
containing no links – and start adding parents for each node and iterate for all
possible orderings. Additionally, we can reverse, add, or delete links as long the
graph remains acyclical as visualised in Figure 16. However, for each change
while iterating, we need to test whether an appropriate structure has been found.
At the very least we have to verify if the conditional independence statements
– implied by the structure (Markov assumption) – are actually satisfied in our
data.

a b

c

Log Likelihood score:  -1037.2

(a) A shielded collider.

a b

c

Log Likelihood score:  -1037.2

(b) An unshielded collider.

Figure 14: Comparison of Log Likelihood scores between a shielded and unshiel-
ded collider for three random binary variables a, b and c with n = 500.

Nonetheless, this approach will lead us to a fully connected (and almost
always overfitted) network – as simplified in Figure 14. Therefore, to find a re-
liable model, we need to penalise complexity while maximising the likelihood of
the structure generating our data. Avoiding the unwanted excessive adaption to
training data and finding a compromise between complexity and the adaptabil-
ity to data, sounds like MDL from Section 4.3: the information-theoretic imple-
mentation of Ockham’s razor. [59] [60] Thus, we introduce the Bayesian Informa-
tion Criterion (BIC) or Schwarz Criterion, derived by Schwarz (1978) [60] as an
asymptotic approximation to the posterior probability of a candidate model Mk,
which does not depend on the prior. So, the a-posteriori most probable model
(the one which seems most plausible from the available data) is preferred. [54]
Rissanen (1987) derived a minimum description length (MDL) criterion equi-
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valent11 (the additive inverse to be precise) to the BIC. [52] Thus, its two terms
will be very familiar: One measuring how well the model fits the data and one
that punishes the complexity. With n observations in data d for k-dimensional
candidate model Mk, there is a density function F(k), where L(✓k | d) – the
likelihood function defined in Section4.4 – indicates the likelihood corresponding
to this density. By maximising that likelihood L(✓k | d), we obtain the estimate
✓̂k and thus L(✓̂k | d) for expression of the entire criterion: [36] [54]

BIC = � 2 lnL(✓̂k | d)| {z }
Model fit under data

+ k ln(n)| {z }
Complexity punishment

So, in short the maximised value of the likelihood function of the model given
the data on the one hand and the number of parameters (dimensions) for the
model on the other hand.

Due its simplicity, e�ciency and consistency, the Bayesian Information Cri-
terion is predominantly used for model selection and implemented in the thesis
at hand.

For our example of the general case of structure learning, we use a synthetic
data set – generated by a constructed Bayesian network from Lauritzen and
Spiegelhalter (1988). [47] With this approach, we know what the end result
should look like as seen in Figure 15, and can evaluate our results appropriately.

“Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung
cancer or bronchitis, or none of them, or more than one of them.
A recent visit to Asia increases the chances of tuberculosis, while
smoking is known to be a risk factor for both lung cancer and bron-
chitis. The results of a single chest X-ray do not discriminate between
lung cancer and tuberculosis, as neither does the presence or absence
of dyspnoea. [...] either [...] is an economical way [...] of express-
ing our judgement that [X-ray] and [dyspnoea] do not discriminate
between [tuberculosis] and [lung cancer].”

– Lauritzen and Spiegelhalter (1988) [47, p. 163], A fictitious example

11We mention this equivalence because unfortunately the derivation of the BIC is out of
scope, due to its length and it provides background for the following intuition.
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asia

0.010
0.990

yes

no

tub
0.010
0.990

yes

no

smoke
0.500
0.500

yes

no

lung

0.055
0.945

yes

no

bronc
0.450
0.550

yes

no

either
0.065
0.935

yes

no

xray

0.110
0.890

yes

no

dysp

0.436
0.564

yes

no

Figure 15: Original Bayesian network generating our data set (n=5000) with
conditional probability tables (CPT) and the final probabilities as nodes.

Table 8: Head of our binary sampled synthetic data set. [47] [61]

asia smoke tub lung bronc either xray dysp

no yes no no yes no no yes
no yes no no no no no no
no no yes no no yes yes yes
no no no no yes no no yes
no no no no no no no yes
... ... ... ... ... ... ... ...

Due to the number of each possible structure growing more than exponential
in its number of variables, we have to resort to numerical methods like sampling
(Monte Carlo) and/or convex optimisation (local search).

In order to find the best possible value of BIC, we implemented two greedy
search algorithms to explore the search space until the global minimum is
reached. As described above we start with an empty graph and reverse, add, or
delete one arc at a time. The first one is called “Hill-Climbing” – named after
an analogy to a mountaineer looking for the summit, blinded by dense fog, and
directing as steeply uphill as possible. If it only goes down in all directions,
he has reached the summit. With random restarts the algorithm tries to avoid
local optima. The other is “Tabu search” – a modified version of Hill-Climbing
– able to even escape local optima. This algorithm maintains a tabu list of
already visited states to not revisit, which can also be leveraged to switch from
a local minimum to a known better state. In our implementation, Tabu search
also performs additional iterations after an optimum is found to verify a global
optimum. [59] [61] [52]
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Figure 16: Visualisation of the algorithm iterating through possible arc altera-
tions (adding, deleting, or reversing individual arcs) and their dedicated impact
on the BIC score.
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As depicted in Figure 16, starting with an empty graph, the BIC score is
recalculated for every change. The arc alteration increasing the score the most
is incorporated. In step 7, the additional arc would increase the score, but since
there is another possible arc (8) that would increase the score even more, this
one is accepted. In step 10 – 12 every possible arc to the last node asia (only
two of them are illustrated) decreases the BIC score.12

asia

tub

smoke

lung

bronceither

xray dysp

(a) Our learned Bayesian network.

asia

tub

smoke

lung

bronceither

xray dysp

(b) The intended Bayesian network.

Figure 17: As the BIC punishes complexity, the arc between asia and tub de-
creases the overall score and thus cannot be learned as its likelihoods – 0.05 and
0.01 as depicted in Figure 15 – are too small for the sample size n = 5000 (thus
marked red).

With both algorithms we are able to learn the same Bayesian network from
our synthetic data. According to intuition, if we increase the sample size (here:
n > 7500), we can also learn the missing arc (marked red in Figure 17b) and
therefore the complete network as intended. However, to further distinguish
both algorithms, we need to visualise the BIC itself. Thus, we introduce two
additional scores and visualise them as arc strength in our DAGs. At first, we
calculate the Pearson Chi-Squared (�2) statistic – testing the null hypothesis
of conditional independence. This test provides insight into whether the rela-
tionships in the network occurred by chance. The p-value indicates significance,
where lower values imply stronger relationships. And the delta of BIC denotes
the change of the network score caused by the removal of the arc. So, the
di↵erence in the overall BIC score with and without the arc.13 [52] [35] [61] [46]

12In bnlearn the BIC is rescaled by �2: BIC = + lnL(✓̂k | d)� 1

2
k ln(n), thus higher values

are better. [61]
13As previously mentioned, in bnlearn higher BIC values correspond to better networks. [61]
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Table 9: Results from learning the Bayesian networks from data: Both al-
gorithms performed equivalently and both reached the global optimum.

Arcs Hill-Climbing algorithm Tabu search algorithm

from to p-value (�2) � BIC value p-value (�2) � BIC value

bronc dysp 0.00 �1382.14 0.00 �1382.14
either dysp 9.67⇥ 10�94 �119.61 9.67⇥ 10�94 �119.61
either xray 0.00 �768.17 0.00 �768.17
lung either 0.00 �1084.90 0.00 �1084.90
smoke bronc 4.22⇥ 10�105 �236.87 4.22⇥ 10�105 �236.87
smoke lung 4.39⇥ 10�44 �106.93 4.39⇥ 10�44 �106.93
tub either 0.00 �231.55 0.00 �231.55

asia

tub

smoke

lung

bronceither

xray dysp

(a) p-values (�2) ranging from 0 to 1.

asia

tub

smoke

lung

bronceither

xray dysp

(b) � BIC values (2 R).

Figure 18: As both algorithms result in the same scores, we only portray one
graph each.

We can see that both algorithms yield the same result and the significance
of all arcs indicates the network fits the distribution. Thus, we can trust our
learned Bayesian network. The � BIC values show, that the arcs with the
highest conditional probabilities also have the biggest influence in the overall
network scores – which is quite intuitive. As discussed previously, only the
arc with the largest positive impact on the BIC score is implemented in each
iteration. Therefore, the order of arcs learned in Figure 16 corresponds to
descending � BIC scores.

In order to verify that not just the structure, but also the parameters
fit our original Bayesian network, we conduct conditional probability queries
with cpquery – a bnlearn function estimating the conditional probabilities by
sampling (further specified in detail in Code 1). While we could retrieve the
conditional probabilities directly, this function provides the possibility for more
complex and precise queries later on in Section 6.4. As we can see in Table 20
(Appendix) for the most values only minor di↵erences can be determined. Non-
etheless, for very small probabilities there are higher deviations and of course
for our missing arc the value is enormous: Instead of sampling a conditional
probability P (tub | asia) = 0.050 it obviously estimated P (tub) = 0.010 due to
the missing link. Therefore, our parameters are as expected. [61]
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4.7 Inferred causation

“I would rather discover one causal law
than be King of Persia.”

– Democritus, (460 – 370 B.C.) [56, p. 41]

Bayesian networks provide the potential for causal interpretations, but up to
this point, we have focused on probability distributions and conditional prob-
abilities – in other words, correlation, not causation. Thus, the field of causal
discovery will be of essence and we now introduce and apply methods to in-
fer the actual causal structure. [56] [12] There are several options to learn a
causal model directly, but we aim for a more comparable approach (here ROC
from Section 6.4) and thus derive causality from networks by causal structure
search. [33] Prior to our causal model, we introduce d-separation defined by
Pearl: [56]

Definition. A path p is d-separated by a set of variables S if:

1. p contains either i! n! j or i n! j such that node n is in S, or

2. p contains a collider i! n j such that neither node n nor a descendant
of n is in S.

A is d-separated from B by S, if S blocks every undirected path from a node
in A to a node in B.

Theorem. The d-separation of A and B by S implies the conditional independ-
ence P (A,B | S) = P (A | S)P (B | S).
Proof. See Verma [69].

This is a fundamental definition for the independence of nodes and the flow
of information within the network. In Section 2.4, we already developed some
preliminary concepts, but a further small example might provide more intuition:
Knowing that it rained does not tell us whether the sprinkler was on. However,
knowing that it did not rain after seeing the wet grass tells us, that the sprinkler
must have been on.

Figure 19: Exemplary illustration of the significance of d-separation.

Wet

Grass

Sprinkler Rain
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Figure 20:
Markov
equivalence.

For our further approach, we broaden our assumptions and in
addition to acyclicity we define the following: [56] [57] [66] [16] [52]

I Causal Markov assumption – an extension to our previous
Markov assumption and followed directly from d-separation:
instead of conditional probabilities, a deterministic relation-
ship is implied and nodes are conditionally independent of its
non-descendants, given its direct causes.

II Causal faithfulness or stability assumption – as it assumes all
independencies to be stable and thus for any change in the
parameters they will remain. So, only the d-separated nodes
are independent.

III Causal su�ciency assumption – of no common confounders:
all the common causes of our variables are already present in
our network.

Theorem. Let G and G
0 be two directed acyclic graphs with a

finite set of vertices V . A distribution that is faithful to G is also
faithful to G

0, if and only if they both share the same adjacencies
and unshielded colliders.

Proof. See Verma [70].

Thus, for learning causal relations from observations, these
equivalences in graphs are of particular interest: all structures
with identical unshielded colliders and adjacencies – derived from
the Markov assumption of Section 2.2 – form a Markov equivalence
class. Since all causal structures are described by Markov equival-
ence classes, it is fundamental to specify them further, here exem-
plarily for three nodes in Figure 20 in green. The two cascading arrangements
and the pattern of a common parent are all equivalent – only the v-structure or
unshielded collider in red does not belong to the equivalence class. Most causal
discovery approaches learn exclusively these equivalence classes. [56]

Our causal structure search is based on the Inductive Causation (IC) al-
gorithm from Pearl and Meek. The gist is the inductive reasoning of Ock-
ham’s razor (see Sections 4.3 and 4.6) to discard any model for which we find
a more compact minimal model that represents our data equally. This inferred
causation means in essence, that a is supposed to have a causal influence on b

if there is a ! b ‘in every minimal structure consistent with the data’ [56, p.
45]. Thus, the topology of our Bayesian network – the underlying DAG – is
su�cient for our causal structure search. [49] [57] [56] [16]
As we learn a causal Markov equivalence class, only unshielded colliders present
in our underlying Bayesian network are to be adapted. Any further v-structures
must be avoided, as illustrated in Figure 21. These rules are sound, as any other
orientation in these patterns lead to further unshielded colliders or acyclicity.
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This approach is illustrated as pseudo code in Figure 22 and implemented in R
(Appendix). [49] [57]

Colliders na b =) na b

Rule 1 na b =) na b

Rule 2

n

a b

=)

n

a b

Rule 3

n

a c

b

=)

n

a c

b

Rule 4

n

a c

b

=)

n

a c

b

Figure 21: After orienting the unshielded colliders present in our original
Bayesian network once, we follow these four rules of the Inductive Causation
algorithm repeatedly until convergence to obtain a maximally oriented Partially
Directed Acyclical Graph (PDAG).
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Algorithm 1 Inductive Causation based on Pearl and Meek

Input: Bayesian network (BN) from bnlearn
Output: Partially Directed Acyclic Graph (PDAG) in bnlearn
1: procedure Inductive Causation(BN)
2: PDAG skeleton(BN)
3: for nodes n in PDAG do

4: if neighbours(n) > 1 then

5: for permutations (a, b) of neighbours(n) do

6: if arcs a! n and b! n exist in BN then

7: if no edge between a, b then

8: add arcs a! n and b! n . C
9: end if

10: end if

11: end for

12: end if

13: end for

14: new.arcs = TRUE
15: while new.arcs = TRUE do

16: new.arcs = FALSE
17: for nodes n in PDAG do

18: if neighbours(n) > 1 then

19: for permutations (a, b) of neighbours(n) do

20: if no edge between a, b then

21: if (a! n) and not (b! n) then

22: add arc n! b and new.arcs = TRUE . R1
23: end if

24: end if

25: if b in descendants(n) and not (b! n) then

26: add arc n! b and new.arcs = TRUE . R2
27: end if

28: end for

29: end if

30: if neighbours(n) > 2 then

31: for permutations (a, b, c) of neighbours(n) do

32: if (a! b) and (c! b) then

33: add arc n! b and new.arcs = TRUE . R3
34: end if

35: if (a! b) and (b! c) then

36: add arc n! c and new.arcs = TRUE . R4
37: end if

38: end for

39: end if

40: end for

41: end while

42: end procedure

Figure 22: The algorithm based on Pearl and Meek uses bnlearn methods
“skeleton”, “neighbours” and “descendants” and only adds arcs if the PDAG
remains acyclical. The implementation in Code 5 is also extended by tests in
Code 6.
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4.8 Conclusion

Decision making based on data is a central component of all scientific disciplines
– from medicine to finance and economics – but also in many industries. Either
to explain or explore data or to make predictions.

In this thesis we have introduced optimal Bayesian predictions by lever-
aging exact inference and marginalisation and shown how to avoid overfitting
with MAP learning. We examined Bayesian statistics from a perspective of
information theory before deriving our final simplification – ML learning – as
predominantly used in science and industry. Our everyday example of the na-
ive Bayes classifier provided an intuitive introduction to structure learning and
demonstrated how to avoid probabilities of 0. With the general case of struc-
ture learning we introduced the Bayesian Information Criterion for model selec-
tion and illustrated its use by learning a Bayesian network from data. Overall
Bayesian networks provide a robust foundation for learning by combining exist-
ing knowledge (a-priori probabilities) with observed data (evidence) and o↵er
optimal predictions and elegant solutions to overfitting. Since Bayesian net-
works provide the potential for causal interpretations, we concluded with causal
structure search and showed how one can elegantly infer causality from Bayesian
networks.
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5 Approach for real-life problems: incomplete

data

In reality, the data almost always looks di↵erent from our synthetic problem: In-
complete data – composed of missing values or hidden (latent) variables, which
can not be observed. Therefore, in the next section we focus on more realistic
assumptions for learning from data and present an approach that aims to over-
come these obstacles.

a b c d

NA 0 1 1
1 0 NA 0
1 NA 1 NA

NA 0 1 0
... ... ... ...

(a) Example for missing values – often
labeled “NA” (not available).

a b c d ?

0 0 1 1 ?
1 0 0 0 ?
1 1 1 1 ?
1 0 1 0 ?
... ... ... ... ...

(b) Example of a latent variable that
cannot be observed.

Figure 23: Small example of cases of incomplete data.

The desire to be able to learn in the presence of missing values is obvious, but
we need to address the importance of latent variables: through leveraging expert
knowledge to place hidden variables – explicitly not occurring in the original
network – we can often learn simpler models. In medical research for example,
only the symptoms (and often the doctor’s diagnosis, resulting treatment, and
the final outcome after the treatment) can be observed – but never the disease
itself. So, if we try to model a Bayesian network containing behaviours and
symptoms (values either none, moderate, or severe), the resulting structure
could end in a nearly fully connected network with a total number of parameters
of 708 as seen in Figure 24a. In order to reduce parameters and therefore
complexity we apply our expert knowledge and place the node heart disease. The
number of parameters could be reduced to 78 and thus less data are necessary
to learn these parameters. [59] [20]

While it looks simple, hidden variables significantly complicate learning from
a point of inference. For example in Figure 24b for the recently added node, we
must find a new way to learn the conditional distribution, because we have no
data. [59]
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(a) 708 parameters. (b) 78 parameters.

Figure 24: Reduction of variables by introducing unknown hidden variable
through expert knowledge. [59, p. 789]

Both problems – missing values and latent variables – can be addressed by
one common approach: The Expectation Maximisation (EM) algorithm intro-
duced by Dempster [13]. In the following section we will discuss the general
form of the EM algorithm, further explain it by means of two examples and
finally apply it to our synthetic data set.

5.1 Expectation Maximisation (EM) algorithm

How does the Expectation Maximisation (EM) algorithm even work? The gist
is to estimate expected values for the missing data – the expectation step (E-
step). Thereupon, recalculate the parameters by using the expected values as
if they were observed values – the maximisation step (M-step). The algorithm
iterates through both steps until it converges to a maximum likelihood hypo-
thesis rendering the estimated values for the latent variables.

First, we need to establish new definitions: We want to estimate a set of
parameters ✓, describing the underlying probability distribution. For j inde-
pendently occurring events, the observable data d = d1, d2, . . . , dj and the un-
observable data z = z1, z2, . . . , zj combine to the complete data y = d [ z.
The probability distribution of random variable z depends on the observed data
and the parameters ✓. We distinguish between h as current hypothesis for the
values of ✓, and h

0 as updated hypothesis estimated for each iteration. The
fundamental principle of the EM algorithm is similar to Section 4.4: Finding
the maximum likelihood hypothesis h0 that maximises E[lnP (y | h0)] – describ-
ing the expected value of our random variable y. As usual we maximise the
logarithm lnP (y | h0) instead. Thus, we define the function Q(h0 | h): [13] [50]

Q (h0 | h) = E [lnP (y | h0) | h,d]

For h determined by ✓, Q(h0 | h) returns the expected value of P (y | h0) as a
function of h0 given the observed data.
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The heart of the algorithm is the iteration of these two steps until it con-
verges: [50]

• E-step: The Expectation step estimates the expected distribution over all
data y with observed data d and current h and assigns it to Q(h0 | h).

Q(h0 | h) E[ln P (y | h0) | h,d] (1)

• M-step: The Maximisation step replaces the current hypothesis h with
the updated hypothesis h0 that maximises the Q function.

h arg max
h02H

Q(h0 | h) (2)

Concisely, the E-step computes the expected log likelihood of assumed com-
plete data – being the a-posteriori over the hidden variables, given the data.
Thereupon, the M-step maximises this expected log likelihood in regard to the
parameters.

Thus, to further illustrate how the algorithm works, and how to, for example,
learn the distribution of heart disease from Figure 24b, we follow the example
of Do [15] and revise our initial problem of candies from Section 4. There are
two indistinguishable bags of candy with dedicated probability distributions h1

to h5 (but since h1 and h5 are too distinct, they are excluded). Thus, the two
bags of candy contain either 25, 50 or 75 percent lime candy and the rest cherry
candy. After drawing N = 10 candies from each bag three times, there are six
draws of ten candies each with no indication of the two bags as illustrated in
Figure 25b. In order to determine their true underlying distributions, the EM
algorithm is applied. [50] [15] [59]

Bag A Bag B

l l c l l l l l c l
l c c l c l l l c c

l c l l l c l l l l
c c l c c l l l c c

l c l c l c l l l l
l c l c c l c l c c

77% 43%

(a) True distributions of candies.

Observable counts

l l c l l l l l c l
l c c l c l l l c c
l c l l l c l l l l
c c l c c l l l c c
l c l c l c l l l l
l c l c c l c l c c

60%

(b) Observable counts of candies.

Figure 25: Arbitrary sample data for the small example of the EM algorithm
with the dedicated percentage of lime candy, where each row represents a draw
of ten candies and l indicates lime and c cherry candy.
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Despite the incomplete data, we attempt to calculate the true distributions
based on only the six individual draws and the counts of candies assigned to
them. ✓A denotes the probability of a lime candy from bag A and 1 � ✓A the
probability of a cherry candy. Furthermore, n denotes the count of lime candies
per draw, N = 10 the number of total candies each and i the iteration of the
algorithm. In order to estimate the true parameters, we calculate the relative
frequency of the expected counts of lime candies. For the first E-step, we assume

arbitrary distinct initial values for the hidden parameters ✓(0)
A

and ✓
(0)
B

to then
calculate the likelihood of each draw for each bag.

Table 10: (✓(i)
A
)n · (1� ✓

(i)
A
)(N�n) and (✓(i)

B
)n · (1� ✓

(i)
B
)(N�n).

For ✓(0)
A

= 0.65 For ✓(0)
B

= 0.55

0.658 · (1� 0.65)(10�8) 0.558 · (1� 0.55)(10�8)

0.655 · (1� 0.65)(10�5) 0.555 · (1� 0.55)(10�5)

0.658 · (1� 0.65)(10�8) 0.558 · (1� 0.55)(10�8)

0.654 · (1� 0.65)(10�4) 0.554 · (1� 0.55)(10�4)

0.657 · (1� 0.65)(10�7) 0.557 · (1� 0.55)(10�7)

0.654 · (1� 0.65)(10�4) 0.554 · (1� 0.55)(10�4)

Table 11: Normalisation of the likelihoods from Table 10 by marginalisation as
described in Section 4.1.

For ✓(0)
A

= 0.65 For ✓(0)
B

= 0.55

0.70 0.30
0.40 0.60
0.70 0.30
0.30 0.70
0.60 0.40
0.30 0.70

To finalise the E-Step, after normalising the likelihoods, we calculate the
expected counts of lime and cherry by multiplying the observed counts with the
values from Table 11.
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Table 12: E-step results – the expected counts of lime and cherry for each draw
and bag, including the total counts for the calculation of relative frequencies.

Bag A Bag B

lime cherry lime cherry

5.6 1.4 2.4 0.6
2.0 2.0 3.0 3.0
5.6 1.4 2.4 0.6
1.2 1.8 2.8 4.2
4.2 1.8 2.8 1.2
1.2 1.8 2.8 4.2

19.8 10.2 16.2 13.8

For the M-step, we derive the updated parameters by calculating the relative
frequency of lime candy with the expected values from the Table 12:

✓
(1)
A

=
19.8

19.8 + 10.2
= 0.6597 and ✓

(1)
B

=
16.2

16.2 + 13.8
= 0.5405

This procedure is repeated until convergence, as shown in the following table:

Table 13: After several iteration the algorithm converges to our desired results.

Iteration i ✓
(i)
A

✓
(i)
B

0 0.65 0.55
1 0.66 0.54
2 0.67 0.53
3 0.68 0.52
4 0.69 0.51
5 0.70 0.50
6 0.70 0.50
7 0.71 0.49
8 0.71 0.49
9 0.71 0.49
10 0.72 0.49
... ... ...

Thus, the EM algorithm converges to one distribution that is 72% and one
that is 49%, which represents closest the bags h2 and h3.
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This very general procedure to learn from incomplete data has one major
downfall: It can terminate in local optima. Furthermore, the estimation of
the E-step may turn out to be intractable, as for example in large Bayesian
networks. So, this algorithm often needs to be assisted by sampling procedures.
As a note of caution, this approach is intended for data missing (completely)
at random (MCAR/MAR), but should not be implemented as sole solution for
data missing NOT at random (MNAR). [46] [59] [50] [15]

5.2 EM algorithm for Bayesian networks

In Section 4.5 we introduced the naive Bayes classifier and an example for spam
emails. We will base our following adapted example from Russell [59] for
the EM algorithm on this and refine it even further. While their content – k

words x1, x2, ...xk – will be ignored due to privacy in this scenario, emails also
often include links or additional pictures. Furthermore, we distinguish between
a formal and a non-formal salutation. While those additional features are in-
dependent, given its category cSpam, the conditional probability distribution for
each feature depends on that category.

Figure 26: The Bayesian network of class Spam for the 3 attributes links l,
pictures p and formal salutation f.

cSpam

l p f

The notation for the parameters is as follows: ✓ is the a-priori probability
for an email being spam. ✓S�l and ✓¬S�l are the probabilities, that the email
contains links, given it is spam or not spam. The same notation applies for
✓S�p, ✓¬S�p, ✓S�f and ✓¬S�f for the conditional probabilities of picture and
formal salutation. This describes a mixture model – containing a mixture of
di↵erent distributions – with the category Spam being a hidden variable. In
order to recover our classification labels, we apply the EM algorithm for data
generated by the true model with (n = 1000) observations and the following
parameters: [59]

✓ = 0.5, ✓S�l = ✓S�p = ✓S�f = 0.8, ✓¬S�l = ✓¬S�p = ✓¬S�f = 0.3

Due to ✓ = 0.5, the emails are equally likely to be spam or no spam. One
category contains mostly a formal salutation, links and pictures and the other
more informal greetings, no links nor pictures. The discrete data generated for
the eight possible kinds of emails are as described below:
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Table 14: The result of n = 1000 sampled binary observations for our parameters
(1 for true and 0 for false).

formal salutation = 1 formal salutation = 0

links = 1 links = 0 links = 1 links = 0

picture = 1 273 93 104 90
picture = 0 79 100 94 167

At first we need to initialise our parameters (randomly). Again, the exponent
denotes the algorithms iteration:

✓
(0) = 0.6, ✓

(0)
S�l

= ✓
(0)
S�p

= ✓
(0)
S�f

= 0.6, ✓
(0)
¬S�l

= ✓
(0)
¬S�p

= ✓
(0)
¬S�f

= 0.4

As we cannot calculate ✓ for our latent variable of emails being spam dir-
ectly, we estimate the expected counts instead – for n̂(Spam) being the sum of
probability that the email is spam:

✓
(1) =

n̂(Spam)

n
=

P
n

j=1 P
�
Spam | linkj , picturej , formalj

�

n

As explained in Section 4.5 we can calculate the inference for our naive Bayes
model manually by means of conditional independence:

✓
(1) =

1

n

nX

j=1

P (lj | S)P (aj | S)P (fj | S)
P (lj | S)P (aj | S)P (fj | S) + P (lj | ¬S)P (aj | ¬S)P (fj | ¬S)

This formula is applied to all eight categories of emails, beginning with the
273 emails with links, pictures and formal greetings (l, p, f ):

273

1000
·

✓
(0)
S�l

✓
(0)
S�p

✓
(0)
S�f

✓
(0)
S�l

✓
(0)
S�p

✓
(0)
S�f

+ ✓
(0)
¬S�l

✓
(0)
¬S�p

✓
(0)
¬S�f

(1� ✓(0))
⇡ 0.22797

Combined with the other seven kinds of emails, we obtain ✓
(1) = 0.6124.

For our individual parameters we now estimate the expected counts, starting
with ✓S�l: X

j:linkj=1

P
�
Spam | linkj = 1, picture

j
, formalj

�

finally obtaining for our first iteration:

✓
(1)
S�l

= 0.6684, ✓
(1)
S�p

= 0.6483, ✓
(1)
S�f

= 0.6558,

✓
(1)
¬S�l

= 0.3887, ✓
(1)
¬S�p

= 0.3817, ✓
(1)
¬S�f

= 0.3827
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Figure 27: Likelihood of the
data given the two models.
[59, p. 792]

As described in Figure 27 the log likelihood of the
data, given the new model from the EM algorithm
climbs from ⇡ -2044 to ⇡ -2021 after just one it-
eration. After the tenth iteration, the new model
surpasses the original model at ⇡ -1982.
An intriguing takeaway from this example is,
that learning the parameters of a Bayesian net-
work with latent variables, requires only local a-
posteriori probabilities – the conditional probab-
ility tables.
However, one sensitive topic for the classification

of spam emails remains: identifiability. While we could separate spam and non
spam emails, we have no further way of labelling both classes correctly. Depend-
ing on the initialisation of parameters, the algorithm can converge to either one
them. [59]

For our final example we implemented the structural EM, that combines the
EM algorithm from above to optimise parameters with a graph search from Sec-
tion 4.6 to also update the structure of our Bayesian network. This algorithm
conducts its search in the joint space of structure and parameters. So, for
each iteration, not only the parameters of the current structure can be optim-
ised, but also a new structure can be selected as announced in Section 5. [20]

asia

tub

smoke

lung

bronceither

xray dysp

Figure 28: Final imple-
mentation of the struc-
tural EM algorithm for
manually and intention-
ally corrupted synthetic
data set in bnlearn.

Contrary to the introductory example of this Sec-
tion, expert knowledge can be lacking or be in-
su�cient. Even if we knew a hidden vari-
able existed, we still need to place it ad-
equately in the network. As described in Sec-
tion 4.6, we can modify all arcs as long as
the graph remains acyclical and iterate for all
possible orderings of our nodes. However, for
the structural EM we can also add, remove or
reposition new (hidden) variables. As previ-
ously described for each iteration only the struc-
ture maximising the likelihood given the cur-
rent parameters is accepted and applied. [59]
[20]

So, to test the structural EM, we fragmented our
synthetic data set by removing large sections of multiple variables to obtain
an incomplete data set. We additionally whitelisted the missing arc from Sec-
tion 4.6, because we already established, that even for complete data (n = 5000
observations) this link cannot be learned. [61]

While the computational run time increased significantly, the final result in
Figure 28 is quite promising. The structure and the parameters could still be
approximated as intended.

44



6 Use case in finance: Implied Volatility

In order to apply our obtained knowledge, we propose a use case in finance with
real world data. Our interest targets the so called implied volatility data and
the relationships of this indicator between di↵erent countries. Since implied
volatility reflects the expected fluctuation of the share price and is often used
to capture the market’s sentiment towards the developments of a particular
asset, it is also referred to as the fear factor and used to predict crises. The
approach we propose is structured as follows: first, we discuss the terminology of
financial markets and then analyse and process our raw data. After learning our
Bayesian networks, we validate their predictive properties and compare them
appropriately. Finally, we apply methods of causal discovery to infer the actual
impact between countries. [45] [42] [48]

6.1 Terminology: financial markets and derivatives

Besides dark pools, there are two di↵erent ways to conclude a transaction: over-
the-counter (OTC) between two firms and exchange trades. At exchanges for
every transaction the order book is filled with the relevant (and thus for us
useful) information, while OTC and dark pool trades remain invisible to the
public eyes. We further separate between the stock market and derivatives
market, which is significantly bigger in terms of underlying assets. By exploit-
ing minuscule price di↵erences on two or more exchanges to their own benefit,
arbitrageurs balance these markets. Thus, we can utilise the information from
the derivative exchanges to gain insights into the stock market and vice versa.
But what are derivatives? As an umbrella term, it is vaguely defined as an
agreement between two parties on a future transaction, where the value can be
derived from a number of underlying variables. The two most popular deriv-
atives are futures and options. While the future is a firm agreement to buy or
sell an underlying asset at a specified time in the future at a specified price,
the option gives the holder the right – the option – to exercise the trade up to
the specified time. Since options are the foundation for most implied volatility
calculations, we will examine them in more detail with a small example.

45



Table 15: In this arbitrary example we consider three call options – entailing
the right to buy the underlying stock – with similar prices on the stock market
(spot price). The strike price of an option is the price at which the underlying
asset can be purchased until the date of maturity. We chose strike prices similar
to spot prices (at-the-money options), so the options have no intrinsic value.
For example, a call option with a strike price of 105.00 and a spot price of 125.00
has an intrinsic value of 20.00, due to immediate arbitrage opportunities.

Ticker Stock name Spot price Strike price Option price Time to maturity

AAPL Apple Inc. 167.92 170.00 1.62 30 days
META Meta Platforms, Inc. 168.53 170.00 3.45 30 days
NVDA NVIDIA Corporation 169.86 170.00 1.92 30 days

These options can now be used to calculate the so called implied volatility –
volatility implied by the option’s prices. While calculating historical volatility
– via standard deviation – is straight forward, the calculation of implied volat-
ility is more complicated and not part of this thesis. For example, the famous
Black-Scholes approach aims to approximate the price of an option by model-
ling the geometric brownian motion – taking into account for volatility, time to
maturity, spot and strike prices among other variables. If applied in the oppos-
ite direction, this model can calculate the implied volatility for the underlying
asset, using the current option prices. Since the exact calculations are not scope
of this thesis, we choose to provide more intuition with our example: while all
three stocks are traded roughly at the same price and the options also have the
same strike price and time to maturity, they di↵er significantly in their option
prices – prices that arise directly from the assessments of all market participants.
Thus, a higher option price (minus the intrinsic value) is the result of greater
uncertainty about the whereabouts of the underlying asset until maturity. This
uncertainty implied by option prices is our implied volatility and this also shows
why it is often called the fear factor. [45] [42]

Implied volatilities are calculated for countless financial products – but our
focus is on national equity market indices, replicating a countries stock market
performance in one instrument. We gathered a data set of implied volatility
indices from the twelve most important countries for financial markets in terms
of market capitalisation14 of listed companies (summarised in Table 21). [72]
Intraday data would be optimal to analyse the simultaneous changes on each
exchange, but unfortunately, we were only able to collect daily data (end of
day). However, for a long time horizon of up to 10 years. [42]

14Product of the stock price and the number of available shares. [42]
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6.2 Data management: preprocessing and validation

Our data set (Table 21, Appendix) contains twelve di↵erent implied volatility
indices, each replicating the implied volatility of national stock market indices.
For reasons of readability, we refer to them in the following by the name of
the respective country. The raw time series of daily implied volatility in percent
points (Figure 29) demonstrates an important property for our further analyses:
stationarity. Thus, our means, variances and correlations do not vary excessively
and we do not have to address the influence of a global trend within our time
series. Also within non-dynamic Bayesian networks the underlying generating
process can not change over time and the predictive accuracy of our models
would di↵er at di↵erent points in time. Obviously, our data shows some outliers
(especially Russia in 2014, due to oil prices) and trends at more granular level,
but in general our data provides su�cient quality. [33] [64]
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Figure 29: Stationary time series: an index value of 30 means that the implied
volatility of the underlying is considered to be at 30%.

However, we care mostly about the daily changes while the di↵erent markets
interact. Therefore, we calculated them as daily log returns for multiple reas-
ons: the most important one is, that a stock market can be approximated as a
geometric Brownian motion. Thus, we can apply the famous Itô’s lemma15 to
derive a log-normal distribution and since we are aiming for normally distrib-
uted variables, we chose the natural logarithm to achieve this. Furthermore,
this approach yields a normalised data set (Figure 30). [45] [42]

15Itô calculus is beyond the scope of this thesis, but is a recommendation for interested
readers and enthusiasts for stochastic calculus.
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Figure 30: Daily log returns.

Since we want to analyse the impact of one country on another, but do
not need to predict the exact value of the index, we are satisfied with the up-
and downward movements. Thus, we discretise our data, with 1 representing
positive and -1 negative changes. Due to the immense activity in these large
financial instruments, there are no sideways movements and therefore no values
of 0. As in Figure 31 illustrated, the values are balanced and not skewed in
either direction.
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Figure 31: A balanced distribution between -1 and 1.

For validation purposes, we randomly split our dataset row-wise into a test
and training set with the ratio 1⁄3 and 2⁄3, leaving still enough data to train
reliable models. For the EM algorithm, we use the incomplete data as is, but
for the score based approaches we omit the rows of the train set with missing
values – resulting in the EM algorithm seeing more data. The test set for both
is without rows of missing values and therefore the same to be comparable for
subsequent validation. [46] [35]
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6.3 Learning networks from implied volatility data

With our processed and discretised data, we can now learn our Bayesian net-
work’s structure and parameters. Due to the diversity of algorithms and score
functions in bnlearn, we have to make some restrictions. As previously dis-
cussed in Section 2.5, hybrid and constraint-based approaches perform less ac-
curately. [62] Therefore, we only implemented three hybrid algorithms (Restric-
ted Maximization, Hybrid HPC, Max-Min Hill-Climbing) to verify this hypo-
thesis for our data, but mostly focus on the score functions in Table 16 optim-
ised by Hill-Climbing and Tabu from Section 4.6. Furthermore, we implement
the EM algorithm from Section 5.2, with the maximisation step conducted by
each Hill-Climbing and Tabu.

Table 16: Overview of all scoring functions available using bnlearn and imple-
mented with Hill-Climbing and Tabu. [9] [63] [61]

Abbreviation Name Category Score equivalent

AIC Akaike Information Criterion Information-theoretic 3
BIC Bayesian Information Criterion Information-theoretic 3
fNML factorised Normalized Maximum Likelihood Information-theoretic 7
qNML quotient Normalized Maximum Likelihood Information-theoretic 3
Loglik Log-likelihood Information-theoretic 3
Pred-Loglik Predictive Log-likelihood Information-theoretic 3
BDe Bayesian Dirichlet equivalent Bayesian 3
BDj Bayesian Dirichlet equivalent (Je↵rey’s prior) Bayesian 7
BDLa locally averaged Bayesian Dirichlet Bayesian 7
BDs Bayesian Dirichlet sparse Bayesian 7
mBDe modified Bayesian Dirichlet equivalent Bayesian 7
K2 K2 Bayesian 7

a b

c

Figure 32:
Unshielded
collider or
v-structure

As the name suggests, information-theoretic scoring functions
are based on information theory and often equivalent to a well es-
tablished concept (e.g., BIC , MDL, Loglik , (cross) entropy),
and Bayesian scoring functions utilise Bayes theorem and maxim-
ise the a-posteriori probability distribution of the networks. [9] [61]
Score-equivalence means, the scoring function assigns the same
score to all networks in one Markov equivalence class, denoted by
identical adjacencies and unshielded colliders (illustrated in Fig-
ure 32). We already covered them in Section 4.7. [52] [61] [10]

Thus, to verify – or exclude – the presented scoring functions, as well as
hybrid- and score-based algorithms, we run a k-fold cross validation to measure
the loss of our data. This means we partition our data in k equal-sized parts,
and learn the model with k�1 parts. In order to validate them, we calculate the
negated expected log-likelihood – negative entropy – of the remaining partition
k, where lower values are better. [52] [35] [61] The results in Figure 33 show,
that we can not exclude certain combinations, as the overall loss is very similar.
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Figure 33: k-fold cross validation with k = 10 folds to verify the fit of the
algorithms and scoring functions to our data as implemented in Code 2.

We apply both, the score-based and hybrid approaches by averaging n = 100
networks of a bootstrap approach: while resampling from the given dataset, we
generate a small amount of noise, in order to superimpose spurious correla-
tions. By estimating the confidence in individual arcs and setting their min-
imum threshold – here 0.7 [4] – we obtain an overall more robust structure with
rarely any false positives, as implemented in Code 3. The following networks
in Figure 34 are the results, but as they di↵er in many arcs and orderings,
we need to define a way to objectively validate and compare of our di↵erent
models. [52] [61] [43] [21]

6.4 Evaluating networks from implied volatility data

In order to validate our learned Bayesian networks, we exploit the binary rep-
resentation of our data and follow the approach described in Section 2.6. We
make predictions from our networks using predict() and compare them with
the test data. In Figure 35, we can see the ROC for each country – or node in
our network in this case – depicted for each algorithm for comparability. Thus,
to further summarise these evaluations, we calculate the Area Under the Curve
(AUC) and populate Table 22 (Appendix), ordered by the sum of all values to
rank our models. [35] [17] [46] [59]
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Figure 34: Resulting learned Bayesian networks with dedicated algorithms and
scoring functions.
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Figure 35: ROC curves of all implemented algorithms per country (node).
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As illustrated in Figure 35 and Table 22 (Appendix), most countries demon-
strated significant predictive qualities. However, Canada, India, and especially
Russia are very close to a random process. We continue our analysis, considering
the possibility of dropping them from our data set and thus Bayesian networks.

We proceed by comparing the best performing networks (in terms of prob-
ability distributions) and illustrating their overlap, as shown in Figure 36.

AU CA

CN

FR

DE

HK

IN

JPRU

CH

GB

US

«EM – Hill-Climbing» compared to «EM – Tabu»

AU

CA

CN

FR

DE

HK

IN

JPRU

CH

GB

US

«EM – Hill-Climbing» compared to «Hill-Climbing – qNML»

AU

CA

CN

FR

DE

HK

IN

JPRU

CH

GB

US

«EM – Tabu» compared to «Hill-Climbing – qNML»

AU

CA

CN

FR

DE

HK IN

JP

RU

CH

GBUS

Mutual Arcs of these networks

Arcs present in both networks, A and B Arcs present in A, but missing in B Arcs present in B, but missing in A

Legend: «A» compared to «B» 

Figure 36: Comparison of the three networks with the highest total AUC scores.
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After comparing the Bayesian networks in terms of structural similarities, we
now examine the reliability of the predictions and the corresponding conditional
probabilities. In Figure 37, we illustrate this confidence using arc strength
and show that we can expect reliable distributions for France, Germany, and
Switzerland in particular. Table 17 provides an excerpt of some recognisable
conditional probabilities.
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Figure 37: Comparison of the three networks with the highest total AUC scores
– confidence depicted as arc strength by � BIC scores (see Section 4.6).

Table 17: Excerpt of some recognisable conditional probabilities, conducted
with cpquery: since the structures are not identical, these values cannot be
retrieved directly from the conditional probability tables.

Conditional Probability EM – Hill-Climbing EM – Tabu Hill-Climbing – qNML

P (Germany | France) 0.83 0.83 0.86
P (Switzerland | France, Germany) 0.85 0.85 0.83
P (¬UK | ¬France, ¬Germany, ¬Switzerland) 0.85 0.85 0.85
P (Hongkong | China, Switzerland) 0.69 0.69 0.59
P (China | Switzerland, USA) 0.74 0.74 0.68
P (USA | China, Germany) 0.69 0.69 0.66
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6.5 Causal networks and final result

When we introduced this use case, we talked about the impact of the countries
on each other. However, up to this point, we have merely identified significant
conditional probabilities – in other words, correlation, not causation. For this
reason, we now apply methods of causal discovery from Section 4.7 to infer
the actual cause – the desired impact. [56] [12] We do not attempt to identify
the best causal Bayesian network, but rather a small set of plausible causal
Bayesian networks that fit our data. While there are several methods to learn a
causal model directly, we aim for a more comparable approach (here ROC from
Section 6.4) and thus derive causality from our networks by causal structure
search as depicted in our algorithm in Figure 22 and implemented in Code 5
(Appendix). [49] [57] [33]
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  16 of 18 edges are oriented (89%)
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Figure 38: The three causal networks with the highest total AUC scores.

Now we can apply our algorithm from Figure 22 and Code 5 and discuss
the results. In Figure 38 our two best performing networks could barely be
oriented, only the Hill-Climbing – qNML network has significant orientations.
Since we are interested in causal networks with both, many orientations and
reliable predictive qualities, we expand our focus to the best quantile in terms
of AUC. Thus, the additional causal networks are illustrated in Figure 39. Also
for Tabu – qNML we can orient most of the edges and only India – Switzerland

and UK – France is missing a directed arc. Furthermore, as Russia is no part
of the network and thus no cause for any e↵ects, we can now remove it from
our data set, due to its low significance in our ROC analysis. Canada and India

will remain in our data set, as their AUC scores are not necessarily random for
our best performing networks with values slightly below or above 0.7 [41].

60



  16 of 18 edges are oriented (89%)

AU

CA

CN

FR

DE

HK

IN

JP

RU

CH

GBUS

Causal Network from Tabu – qNML     

  17 of 24 edges are oriented (71%)

AU

CA

CN FR

DE

HK

IN

JPRU

CH

GB

US

Causal Network from Tabu – AIC     

  10 of 17 edges are oriented (59%)

AU

CA

CN

FR

DE

HK

IN

JP

RU

CH

GB

US

Causal Network from Hill-Climbing – BDj     

Figure 39: The remaining three causal networks from the highest quantile in
terms of AUC scores.

For the two causal networks with the most orientations in Figure 40, it
can be argued that Switzerland is the financial hub. As described in the Ap-
pendix, China’s underlying is traded in the USA, but tracks Chinese equities
traded on the Hongkong stock exchange. This explains the connection between
China, USA, and Hongkong. So, without China – or with more reliable data on
China’s implied volatility – Switzerland divides the network into a western and
an eastern hemisphere with dedicated sub-clusters. Thus, the time zones and
consequently the tradable hours could be an important generating process for
the data. Although we cannot draw many conclusions, Switzerland’s role as a
global financial epicentre seems very intuitive.
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Figure 40: Final causal structure: overlap of our networks with the most ori-
entations in the highest quantile of total AUC.
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6.6 Critique

Even if impacts can be discovered without chronological temporal information,
causal discovery can only benefit from it. With intraday data this approach
would be even more reliable. Also, with respect to measurement errors, with
more granular data our models would be more resilient, e.g., to the influence
of high-frequency traders and other speculators. Currently, we have to assume
that our multivariate time series of ten years is invariant. However, since the
underlying generating process changes frequently, this likely results in an under-
fit for our averaged static model. Thus, dynamic Bayesian networks could be
implemented with a shorter (but denser) time frame and validated by rolling
windows and tested against recent unseen data. [57] [33] [52]

In Section 2.4, we established causality on the foundation of intervention
and introduced Pearl’s do-Operator, but as a thought experiment, this leads
to the question of who intervenes in the financial market. Overall, our approach
of inferred causation is based on assumptions that are unlikely to apply to our
use case and need to be carefully evaluated. We included only the largest global
financial players, no other countries, and most importantly, no other variables.
On the one hand, the selection bias and, on the other hand, the assumption that
there are no common confounding factors are very fragile: why should implied
volatility not also be influenced by completely di↵erent processes? Even if the
IC algorithm works with latent variables, we need to include more detailed
and comprehensive data from more potential influencers and then implement a
dynamic approach. [7] [33] [57]

6.7 Conclusion

Decision making based on observations is an essential element of all scientific
disciplines – from the explanation of the generating process behind the data to
profound predictions. With two brief examples, we formalised and implemented
the EM algorithm for both parameter and structure learning, and provided an
approach to realistic problems. We have shown, that even with incomplete or
ambiguous data we can reason under uncertainty. Some of our probabilistic
models and theories performed better and more e�ciently than others. Over-
all Bayesian networks provide a robust foundation for learning by combining
existing knowledge (a-priori probabilities) with observed data (evidence) and
o↵er optimal predictions and an elegant measure to avoid overfitting. In our
use case, we showed how to process real-world financial data, applied our ob-
tained knowledge to train models, and utilised their predictions to benchmark
the performance. With methods of causal structure discovery, we obtained more
knowledge than through mere correlations and we were able to infer the cause –
the actual impact of one country on another. Even if more granular data would
be desirable, we gained valuable insights into the global financial markets, es-
pecially we unveiled the role of Switzerland as financial epicentre.
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Appendix

Excel spreadsheet calculations

Table 18 shows the intermediate results from Section 4.1 of Table 2 calculated
in Excel.16 First, the probability P of each hypothesis under the data d was
calculated.

Table 18: 1
↵
P (hi | d) = P (hi)

Q
j
P (dj | hi)

Hypothesis h1 h2 h3 h4 h5 Marginalisation
P (hi) 0.10 0.20 0.40 0.20 0.10 for
P (lime) 0.00 0.25 0.50 0.75 1.00 Normalisation

d = d1 0.00 0.05 0.20 0.15 0.10 0.50
d = d2 0.00 0.01 0.10 0.11 0.10 0.33
d = d3 0.00 0.00 0.05 0.08 0.10 0.24
d = d4 0.00 0.00 0.03 0.06 0.10 0.19
d = d5 0.00 0.00 0.01 0.05 0.10 0.16
d = d6 0.00 0.00 0.01 0.04 0.10 0.14
d = d7 0.00 0.00 0.00 0.03 0.10 0.13
d = d8 0.00 0.00 0.00 0.02 0.10 0.12
d = d9 0.00 0.00 0.00 0.02 0.10 0.12
d = d10 0.00 0.00 0.00 0.01 0.10 0.11

In Table 19 we obtain the final result – after multiplying each value by the
dedicated normalisation constants – by calculating the prediction X over the
data d and marginalising as described in Table 4.

Table 19: P(X | d) =
P

i
P (X | hi)P (hi | d)

Hypothesis h1 h2 h3 h4 h5 Marginalisation
P (hi) 0.10 0.20 0.40 0.20 0.10 for
P (lime) 0.00 0.25 0.50 0.75 1.00 Final result

d = d0 0.00 0.05 0.20 0.15 0.10 0.50
d = d1 0.00 0.03 0.20 0.23 0.20 0.65
d = d2 0.00 0.01 0.15 0.26 0.31 0.73
d = d3 0.00 0.00 0.11 0.27 0.42 0.80
d = d4 0.00 0.00 0.07 0.25 0.53 0.85
d = d5 0.00 0.00 0.04 0.22 0.62 0.89
d = d6 0.00 0.00 0.02 0.19 0.70 0.92
d = d7 0.00 0.00 0.01 0.15 0.77 0.94
d = d8 0.00 0.00 0.01 0.12 0.82 0.95
d = d9 0.00 0.00 0.00 0.10 0.86 0.96
d = d10 0.00 0.00 0.00 0.08 0.90 0.97

16The significant figures in this and all other calculations are based on Higham [38] and on
our underlying information about a-priori probabilities and sample sizes.
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Conditional probability queries

Table 20: The conditional probability queries were conducted with cpquery,
with n = 100.000 observations for each the original Bayesian network (BN) and
the learned one. The query values are an average from 25 individual samples
(executions). Deviation is calculated as follows: learned�original

original

Conditional Probability Original BN Learned BN Deviation (in %)

P (tub | asia) 0.048 170.010 -80.28%
P (tub | ¬asia) 0.010 180.009 -13.77%
P (lung | smoke) 0.100 0.102 1.89%
P (lung | ¬smoke) 0.010 0.011 13.43%
P (bronc | smoke) 0.600 0.606 1.07%
P (bronc | ¬smoke) 0.300 0.301 0.33%
P (either | tub, lung) 1.000 1.000 0.00%
P (either | tub,¬lung) 1.000 1.000 0.00%
P (either | ¬tub, lung) 1.000 1.000 0.00%
P (either | ¬tub,¬lung) 0.000 0.000 0.00%
P (dysp | either, bronc) 0.900 0.895 -0.53%
P (dysp | either,¬bronc) 0.702 0.705 0.48%
P (dysp | ¬either, bronc) 0.800 0.816 2.02%
P (dysp | ¬either,¬bronc) 0.100 0.091 -9.51%
P (xray | either) 0.981 0.979 -0.16%
P (xray | ¬either) 0.050 0.053 5.49%

17Due to the missing arc, instead of sampling a conditional probability P (tub | asia) ⇡ 0.050
cpquery estimated P (tub) ⇡ 0.010.

18See footnote above. Deviation is less significant due to P (tub | ¬asia) ⇡ P (tub) ⇡ 0.010.
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Raw data

The raw data has been acquired from investing.com and onvista.de [ac-
cessed 27-April-2022]. Unfortunately, only daily time frames were available.
The utilised data is 30-day implied volatility, calculated based on near-term
and next-term option prices. [1] [19] As expected the VXFXI is implicit in the
prices of its underlying FXI (iShares Trust FTSE China 25 Index Fund) options.
However, the anomaly here is, that FXI – an instrument traded in NYSE Arca,
New York – tracks Chinese equities traded on the Hongkong Stock Exchange
and the VXFXI is traded at CBOE, Chicago. This will most certainly not lead
to perfect portrayal of China’s implied volatility. [6] [19] Also the tradable hours
should be treated with caution. Many derivatives exchanges o↵er night sessions
or OTC trades to their customers. However, since most of the (transparent)
total volume is traded during the opening and closing periods of regular trad-
ing hours, our modelling assumption is therefore supported. [34] The data from
Table 21 give a total of 2724 observations, and after omitting rows with NA val-
ues, 1017 remain. Since the data is split with the ratio 1⁄3 and 2⁄3, the training
set for the EM algorithm consists of 1816 rows and the remaining algorithms
are trained with a set of 687 rows. Both are tested with a set of 330.

18Tradable hours pulled from dedicated website of exchange.
19Sometimes referred to as AXVI.
20Sometimes referred to as Nikkei 225 VI.
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R Code (RStudio)

Table 23: Utilised packages and their versions.

Package Version

Base R 4.2.0
BiocGenerics 0.41.2
bnlearn 4.7.1
dplyr 1.0.8
forcats 0.5.1
ggplot2 3.3.5
gRain 1.3.9
graph 1.73.0
gRbase 1.8.7
gtools 3.9.2
... ...

... ...
kableExtra 1.3.4
pROC 1.18.0
purrr 0.3.4
readr 2.1.2
reshape2 1.4.4
Rgraphviz 2.39.1
scales 1.2.0
stringr 1.2.0
tibble 3.1.6
tidyr 1.2.0
tidyverse 1.3.1
viridis 0.6.2

Code 1: The conditional probability queries were conducted with cpquery, with
n = 100.000 observations for each the original Bayesian network and the learned
one, and then averaged from 25 individual samples executions. Finally the
deviation is calculated (see Table 20).

1 a r c s t r . t . p <− arc . s t r ength ( tabu ( as ia , s c o r e = ” b i c ” ) , as ia ,
c r i t e r i o n = ”x2” )

2 s t r ength . p l o t ( tabu ( as ia , s c o r e = ” b i c ” ) , a r c s t r . t . p )
3

4 a r c s t r . t . b <− arc . s t r ength ( tabu ( as ia , s c o r e = ” b i c ” ) , a s i a )
5 s t r ength . p l o t ( tabu ( as ia , s c o r e = ” b i c ” ) , a r c s t r . t . b )
6

7

8 # Merge a l l in fo rmat ion and output to LaTex
9 mergedtables <−

10 merge (
11 merge ( a r c s t r . h . p , a r c s t r . h . b , by = c ( ” from” , ” to ” ) )

,
12 merge ( a r c s t r . t . p , a r c s t r . t . b , by = c ( ” from” , ” to ” ) )

,
13 by = c ( ” from” , ” to ” )
14 )
15 colnames ( mergedtables ) <−
16 c ( ” from” , ” to ” , ”p−value HC” , ”BIC HC” , ”p−value Tabu” , ”

BIC Tabu” )
17 kable ( mergedtables ,
18 d i g i t s = 4 ,
19 booktabs = T,
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20 format = ” l a t ex ” )
21

22 # Compare with intended Graph
23 dag l ea rned <− tabu ( as ia , s c o r e = ” b i c ” )
24 compare ( dag learned , bn . net ( o r i g i n a l ) )
25 #true p o s i t i v e ( tp ) a r c s −− appear ing both in t a r g e t and in cur rent
26 #f a l s e p o s i t i v e ( fp ) a r c s −− appear ing in cur rent but not in t a r g e t
27 #f a l s e negat ive ( fn ) a r c s −− appear ing in t a r g e t but not in cur rent
28 graphviz . compare ( dag learned , bn . net ( o r i g i n a l ) )
29

30 # Condi t iona l P r o b a b i l i t i e s by Query Sampling − 100000 obs e rva t i on s
f o r each o f the 25 i nd i v i dua l samples ( execut i ons )

31

32 df <−
33 data . frame (
34 event = c (
35 ’ ( tub==”yes ”) ’ ,
36 ’ ( tub==”yes ”) ’ ,
37 ’ ( lung==”yes ”) ’ ,
38 ’ ( lung==”yes ”) ’ ,
39 ’ ( bronc==”yes ”) ’ ,
40 ’ ( bronc==”yes ”) ’ ,
41 ’ ( e i t h e r==”yes ”) ’ ,
42 ’ ( e i t h e r==”yes ”) ’ ,
43 ’ ( e i t h e r==”yes ”) ’ ,
44 ’ ( e i t h e r==”yes ”) ’ ,
45 ’ ( dysp==”yes ”) ’ ,
46 ’ ( dysp==”yes ”) ’ ,
47 ’ ( dysp==”yes ”) ’ ,
48 ’ ( dysp==”yes ”) ’ ,
49 ’ ( xray==”yes ”) ’ ,
50 ’ ( xray==”yes ”) ’
51 ) ,
52 ev idence = c (
53 ’ ( a s i a==”yes ”) ’ ,
54 ’ ( a s i a==”no”) ’ ,
55 ’ ( smoke==”yes ”) ’ ,
56 ’ ( smoke==”no”) ’ ,
57 ’ ( smoke==”yes ”) ’ ,
58 ’ ( smoke==”no”) ’ ,
59 ’ ( tub==”yes ” & lung==”yes ”) ’ ,
60 ’ ( tub==”yes ” & lung==”no”) ’ ,
61 ’ ( tub==”no” & lung==”yes ”) ’ ,
62 ’ ( tub==”no” & lung==”no”) ’ ,
63 ’ ( e i t h e r==”yes ” & bronc==”yes ”) ’ ,
64 ’ ( e i t h e r==”yes ” & bronc==”no”) ’ ,
65 ’ ( e i t h e r==”no” & bronc==”yes ”) ’ ,
66 ’ ( e i t h e r==”no” & bronc==”no”) ’ ,
67 ’ ( e i t h e r==”yes ”) ’ ,
68 ’ ( e i t h e r==”no”) ’
69 )
70 )
71 # loop through a l l rows o f our df with events and ev idence and

sample each the o r i g i n a l and the l ea rned BN f o r bes t comparison
72 f o r ( i in 1 : nrow ( df ) ) {
73 # use tex t f o r the func t i on cpquery , as i t has some bugs
74
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75 # o r i g i n a l DAG f i r s t
76 pas t e t ex t = paste ( ” cpquery ( o r i g i n a l , ” ,
77 df $ event [ i ] ,
78 ” , ” ,
79 df $ ev idence [ i ] ,
80 ” ,n=100000” ,
81 ” ) ” )
82 # Average the r e s u l t o f 100 .000 obs e rva t i on s with 25

execut i on s to gather a s t ab l e f i n a l r e s u l t
83 my. sum = 0
84 number . nodes = 25
85

86 f o r ( j in 1 : number . nodes ) {
87 cur rent = eva l ( parse ( t ex t = pas t e t ex t ) )
88 my. sum = my. sum + current
89 }
90 # new column f o r r e s u l t s
91 df $ o r i g i n a l [ i ] = my. sum / number . nodes
92

93 # learned DAG second ( tabusearch )
94 pas t e t ex t = paste ( ” cpquery ( tabusearch , ” ,
95 df $ event [ i ] ,
96 ” , ” ,
97 df $ ev idence [ i ] ,
98 ” ,n=100000” ,

Code 2: k-fold cross validation with k = 10 to verify the fit of the algorithms and
scoring functions to our data. Due to the runtime, a progress bar is incorporated.

1 va l i d a t e s c o r e s <−
2 f unc t i on ( complete . data ,
3 k ,
4 s c o r e . a lgor i thms ,
5 s co re s ,
6 hybrid . a lgor i thms ) {
7 #empty g l oba l l i s t s
8 name . l i s t <− l i s t ( )
9 l o s s . l i s t <− l i s t ( )

10

11 #Progres s bar as the func t i on takes some time
12 p <− 0
13 pb <− txtProgressBar (
14 min = 0 ,
15 max = length ( s co r e . a lgor i thms ) ∗ l ength ( s c o r e s ) +
16 l ength ( hybrid . a lgor i thms ) ,
17 s t y l e = 3 ,
18 width = 50 ,
19 char = ”=”
20 )
21

22 #i t e r a t e through a l l a lgor i thms and s c o r e s
23 n <− 0
24 f o r ( a in s co r e . a lgor i thms ) {
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25 n <− n + 1
26 f o r ( s in s c o r e s ) {
27 #pred log l i k e s co r e on separated t e s t set , so i t needs a

separated case
28 i f ( s == ”Pred−Log l ik ” ) {
29 l l 1 <−
30 sample ( 1 : nrow ( complete . data ) ,
31 nrow ( complete . data ) / 3)
32 l l 2 <− − l l 1
33 l l 1 data <−
34 as . data . frame ( lapp ly ( complete . data [ l l 1 , ] , as . f a c t o r ) )
35 l l 2 data <−
36 as . data . frame ( lapp ly ( complete . data [ l l 2 , ] , as . f a c t o r ) )
37 #new t e s t t r a i n s p l i t
38 out <− paste0 ( s co r e . a lgor i thms . names [ n ] , ” – ” , s )
39 name . l i s t <− append (name . l i s t , out )
40 #permutation l i s t
41 #k−f o l d c r o s s v a l i d a t i o n
42 cv . r e s <−
43 bn . cv (
44 l l 1 data ,
45 bn = to lower ( a ) ,
46 l o s s = ” l o g l ” ,
47 f i t = ”mle” ,
48 runs = k ,
49 a lgor i thm . args = l i s t (
50 s c o r e = to lower ( s ) ,
51 newdata = l l 2 data ,
52 opt imized = TRUE
53 )
54 )
55 #save the l o s s as a l i s t
56 Log . Like . Loss <− l i s t ( c ( l o s s ( cv . r e s ) ) )
57 l o s s . l i s t <− append ( l o s s . l i s t , Log . Like . Loss )
58 p <− p + 1
59 setTxtProgressBar (pb , p)
60

61 }
62 e l s e {
63 out <− paste0 ( s co r e . a lgor i thms . names [ n ] , ” – ” , s )
64 name . l i s t <− append (name . l i s t , out )
65 #permutation l i s t
66 #k−f o l d c r o s s v a l i d a t i o n
67 cv . r e s <−
68 bn . cv (
69 complete . data ,
70 bn = to lower ( a ) ,
71 l o s s = ” l o g l ” ,
72 f i t = ”mle” ,
73 runs = k ,
74 a lgor i thm . args = l i s t ( s c o r e = to lower ( s ) )
75 )
76 #save the l o s s as a l i s t
77 Log . Like . Loss <− l i s t ( c ( l o s s ( cv . r e s ) ) )
78 l o s s . l i s t <− append ( l o s s . l i s t , Log . Like . Loss )
79 p <− p + 1
80 setTxtProgressBar (pb , p)

76



81

82 }
83 }
84 }
85

86 #Hybrid
87 n <− 0
88 f o r ( a in hybrid . a lgor i thms ) {
89 n <− n + 1
90 out <− paste0 ( hybrid . a lgor i thms . names [ n ] )
91 name . l i s t <− append (name . l i s t , out )
92 #permutation l i s t
93 #k−f o l d c r o s s v a l i d a t i o n
94 cv . r e s <− bn . cv (
95 complete . data ,
96 bn = to lower ( a ) ,
97 l o s s = ” l o g l ” ,
98 f i t = ”mle” ,
99 # ”bayes ”

100 runs = k
101 )
102 #save the l o s s as a l i s t
103 Log . Like . Loss <− l i s t ( c ( l o s s ( cv . r e s ) ) )
104 l o s s . l i s t <− append ( l o s s . l i s t , Log . Like . Loss )
105 p <− p + 1
106 setTxtProgressBar (pb , p)
107

108 }
109 #save the l i s t s o f l o s s as dataframe and return
110 names <− name . l i s t [ seq l en ( l ength (name . l i s t ) ) ]
111 df <− data . frame ( u n l i s t ( names ) , u n l i s t ( l o s s . l i s t ) )
112 names ( df ) <− c ( ”Algorithm” , ”Loss ” )
113 c l o s e (pb)
114 r e turn ( df )
115 }

Code 3: Bootstrap approach to implement pipeline for averaged models with
n = 100 runs including a progress bar, due to the long runtime.

1 bu i ld models <−
2 f unc t i on ( incomplete . t r a i n i n g data ,
3 complete . t r a i n i n g data ,
4 n ,
5 thresho ld ,
6 s c o r e . a lgor i thms ,
7 s co re s ,
8 hybrid . a lgor i thms ) {
9

10 #empty l i s t to save a l l p o s s i b l e permutat ions
11 permutation . l i s t <<− l i s t ( )
12 #Progressbar as t h i s f unc t i on takes s i g n i f i c a n t time
13 p <− 0
14 t <−
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15 pb <− txtProgressBar (min = 0 ,
16 max = length ( s co r e . a lgor i thms ) ∗ l ength (

s c o r e s )+length ( hybrid . a lgor i thms )+
length ( s co r e . a lgor i thms ) ,

17 s t y l e = 3 ,
18 width = 50 ,
19 char = ”=” )
20 i <− 0
21 f o r ( a in s co r e . a lgor i thms ) {
22 i <− i + 1
23 #i t e r a t e through a l l a lgor i thms and s c o r e s
24 f o r ( s in s c o r e s ) {
25 #pred log l i k e s co r e on separated t e s t set , so i t needs a

separated case
26 i f ( s == ”Pred−Log l ik ” ) {
27 l l 1 <−
28 sample ( 1 : nrow ( complete . t r a i n i n g data ) ,
29 nrow ( complete . t r a i n i n g data ) / 3)
30 l l 2 <− − l l 1
31 l l 1 data <−
32 as . data . frame ( lapp ly ( complete . t r a i n i n g data [ l l 1 , ] , as .

f a c t o r ) )
33 l l 2 data <−
34 as . data . frame ( lapp ly ( complete . t r a i n i n g data [ l l 2 , ] , as .

f a c t o r ) )
35 #new t e s t t r a i n s p l i t
36 out <− paste0 ( s co r e . a lgor i thms . names [ i ] , ” – ” , s )
37 #name o f p l o t
38 permutation . l i s t <<− append ( permutation . l i s t , out )
39 #permutation l i s t
40 #boot s t rap approach
41 r e s . boot . s t r ength = boot . s t r ength (
42 l l 1 data ,
43 R = n ,
44 a lgor i thm = to lower ( a ) ,
45 a lgor i thm . args = l i s t (
46 s co r e = to lower ( s ) ,
47 newdata = l l 2 data ,
48 opt imized = TRUE
49 #optimized f o r f a s t e r r e s u l t s ( r euse sampled s c o r e s )
50 ) ,
51 cpdag = FALSE
52 # we do not care about the equ iva l ence c l a s s YET. Thus

we want a bayes ian network
53 )
54 #averaged network from bootstrapped approach
55 r e s <−
56 averaged . network ( r e s . boot . s t rength , th r e sho ld =

thre sho ld )
57 a r c s ( r e s ) <− d i r e c t ed . a r c s ( r e s )
58 #as s i gn arc s t r ength and network
59 a s s i gn ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
60 bn . f i t ( res , l l 1 data ) ,
61 env i r = parent . frame ( ) )
62 a s s i gn (
63 paste0 ( ” a r c s t r . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
64 arc . s t r ength ( res , l l 1 data , c r i t e r i o n = ” b i c ” ) ,
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65 env i r = parent . frame ( )
66 )
67 p <− p+1
68 setTxtProgressBar (pb , p)
69

70 }
71

72 e l s e {
73 out <− paste0 ( s co r e . a lgor i thms . names [ i ] , ” – ” , s )
74 permutation . l i s t <<− append ( permutation . l i s t , out )
75 #permutation l i s t
76 #boot s t rap approach
77 r e s . boot . s t r ength = boot . s t r ength (
78 complete . t r a i n i n g data ,
79 R = n ,
80 a lgor i thm = to lower ( a ) ,
81 a lgor i thm . args = l i s t ( s c o r e = to lower ( s ) , opt imized =

TRUE) ,
82 #optimized f o r f a s t e r r e s u l t s ( r euse sampled s c o r e s )
83 cpdag = FALSE
84 # we do not care about the equ iva l ence c l a s s YET. Thus

we want a bayes ian network
85 )
86 #averaged network from bootstrapped approach
87 r e s <−
88 averaged . network ( r e s . boot . s t rength , th r e sho ld =

thre sho ld )
89 #as s i gn arc s t r ength and network
90 a r c s ( r e s ) <− d i r e c t ed . a r c s ( r e s ) # ignore und i rec ted a r c s
91 a s s i gn ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
92 bn . f i t ( res , complete . t r a i n i n g data ) ,
93 env i r = parent . frame ( ) )
94 a s s i gn (
95 paste0 ( ” a r c s t r . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
96 arc . s t r ength ( res , complete . t r a i n i n g data , c r i t e r i o n = ”

b i c ” ) ,
97 env i r = parent . frame ( )
98 )
99 p <− p+1

100 setTxtProgressBar (pb , p)
101 }
102 }
103 }
104

105 #Hybrid
106 i <− 0
107 f o r ( a in hybrid . a lgor i thms ) {
108 i <− i + 1
109 out <− paste0 ( hybrid . a lgor i thms . names [ i ] )
110 permutation . l i s t <<− append ( permutation . l i s t , out )
111 #permutation l i s t
112 #boot s t rap approach
113 r e s . boot . s t r ength = boot . s t r ength (
114 complete . t r a i n i n g data ,
115 R = n ,
116 a lgor i thm = to lower ( a ) ,
117 cpdag = FALSE
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118 # we do not care about the equ iva l ence c l a s s YET. Thus we
want a bayes ian network

119 )
120 #averaged network from bootstrapped approach
121 r e s <− averaged . network ( r e s . boot . s t rength , th r e sho ld =

thre sho ld )
122 a r c s ( r e s ) <− d i r e c t ed . a r c s ( r e s ) # ignore und i rec ted a r c s
123 #as s i gn arc s t r ength and network
124 a s s i gn ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
125 bn . f i t ( res , complete . t r a i n i n g data ) ,
126 env i r = parent . frame ( ) )
127 a s s i gn ( paste0 ( ” a r c s t r . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
128 arc . s t r ength ( res , complete . t r a i n i n g data , c r i t e r i o n =

” b i c ” ) ,
129 env i r = parent . frame ( ) )
130 p <− p+1
131 setTxtProgressBar (pb , p)
132 }
133

134 #EM
135 i <− 0
136 f o r ( a in s co r e . a lgor i thms ) {
137 i <− i + 1
138 s t a r t = bn . f i t ( empty . graph (names ( incomplete . t r a i n i n g data ) ) ,

incomplete . t r a i n i n g data )
139 out <− paste0 ( ”EM – ” , s co r e . a lgor i thms . names [ i ] )
140 #permutation l i s t
141 permutation . l i s t <<− append ( permutation . l i s t , out )
142 # s t r u c t u r a l EM
143 r e s <−
144 s t r u c t u r a l . em( incomplete . t r a i n i n g data ,
145 maximize = to lower ( a ) ,
146 s t a r t = s t a r t )
147 #as s i gn arc s t r ength and network
148 a s s i gn ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
149 bn . f i t ( res , incomplete . t r a i n i n g data ) ,
150 env i r = parent . frame ( ) )
151 a s s i gn (
152 paste0 ( ” a r c s t r . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) ,
153 arc . s t r ength ( res , complete . t r a i n i n g data , c r i t e r i o n = ” b i c ”

) ,
154 env i r = parent . frame ( )
155 )
156 p <− p+1
157 setTxtProgressBar (pb , p)
158 }
159 #prepare the dataframe with the permutation l i s t
160 df <− data . frame ( as . data . frame ( do . c a l l ( rbind , permutation . l i s t )

) )
161 colnames ( df ) <− ”Algorithm”
162 c l o s e (pb)
163 r e turn ( df )
164 }
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Code 4: Evaluation of our learned models by comparing predictions with test
data and exporting the dedicated ROC plots. Due to the runtime, a progress
bar is incorporated.

1 roc p l o t s <− f unc t i on ( complete . t e s t i n g data ) {
2 # prog r e s s bar as the func t i on takes some time
3 p <− 0
4 pb <− txtProgressBar (min = 0 ,
5 max = nco l ( complete . t e s t i n g data ) ,
6 s t y l e = 3 ,
7 width = 50 ,
8 char = ”=” )
9 f o r ( i in 1 : nco l ( complete . t e s t i n g data ) ) {

10 #i t e r a t e through the columns −− here c oun t r i e s
11 AUROC. l i s t <− l i s t ( )
12 f i l ename <−
13 paste0 ( ”Exports /ROC/” , colnames ( complete . t e s t i n g data [ i ] ) , ” .

pdf ” )
14 c a i r o pdf ( f i l e = f i l ename )
15 par ( pty = ” s ” , fami ly = ”Optima” )
16 #s t a r t p l o t with s ty l e , ax i s and t i t l e s
17 p lo t (
18 NA,
19 main = colnames ( complete . t e s t i n g data [ i ] ) ,
20 ylim = c (0 , 1) ,
21 xlim = c (1 , 0) ,
22 xlab = ” S p e c i f i c i t y ” ,
23 ylab = ” S e n s i t i v i t y ” ,
24 f ami ly = ”Optima”
25 )
26 #co l o r pa l a t t e and legend
27 mypal <− v i r i d i s ( l ength ( u n l i s t ( permutation . l i s t ) ) )
28 l egend (
29 ” bottomright ” ,
30 l egend = un l i s t ( permutation . l i s t ) ,
31 c o l = mypal ,
32 bty = ”n” ,
33 l t y = 1 ,
34 cex = 0.63
35 )
36 z <− 0
37 #i t e r a t e through our models and p lo t the curve f o r each
38 f o r ( j in permutation . l i s t ) {
39 z <− z + 1
40 out <− paste0 ( j )
41 f i t t e d <− get ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) )

)
42 #make p r ed i c t i on with model
43 p r ed i c t i o n <−
44 p r ed i c t (
45 f i t t e d ,
46 colnames ( complete . t e s t i n g data [ i ] ) ,
47 complete . t e s t i n g data ,
48 #bayes ian p r ed i c t i o n with a l l the a v a i l a b l e nodes
49 method = ”bayes−lw” ,
50 prob = TRUE
51 )
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52 #as s i gn the probs
53 p r ed i c t i on . a t t r i b u t e s <− a t t r i b u t e s ( p r ed i c t i on ) $prob [ 1 , ]
54 #plo t the roc curve
55 roc . curve <−
56 roc (
57 re sponse = complete . t e s t i n g data [ [ i ] ] ,
58 p r ed i c t o r = p r ed i c t i on . a t t r i bu t e s ,
59 l e v e l s = c (−1 , 1) ,
60 d i r e c t i o n = ”>”
61 )
62 par ( pty = ” s ” , fami ly = ”Optima” )
63 l i n e s (
64 main = colnames ( complete . t e s t i n g data [ i ] ) ,
65 roc . curve ,
66 xlim = c (1 , 0) ,
67 ylim = c (0 , 1) ,
68 c o l = mypal [ z ] ,
69 lwd = 0 .8
70 )
71 #AUROC value
72 app <− auc ( roc . curve )
73 ## save AUROC in l i s t
74 AUROC. l i s t <− append (AUROC. l i s t , app )
75

76 }
77 ## save AUROC in column o f country and add new row f o r each

model
78 new . data . frame <−
79 data . frame ( as . data . frame ( do . c a l l ( rbind , AUROC. l i s t ) ) )
80 colnames (new . data . frame ) <− colnames ( complete . t e s t i n g data [ i ] )
81 AUROC <<− cbind (AUROC, new . data . frame )
82

83 ## Fin i sh PDF
84 dev . o f f ( )
85 p <− p+1
86 setTxtProgressBar (pb , p)
87 }
88 #c l o s e p rog r e s s bar
89 c l o s e (pb)
90 }
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Code 5: Inductive Causation algorithm based on Pearl and Meek from Figure
22 – implemented on top of bnlearn package with try blocks to avoid acyclicity.
In order to get a better insight into the algorithm, we provide exports with
information about the applied rule and the associated nodes after each change
in the structure (like a flip-book). In addition, the final export provides the
ratio of oriented arcs in percent, as this is one of our main interests.

1 i nduc t i v e causat ion <− f unc t i on (my bn) {
2 #Star t with sk e l e t on o f BN −− our PDAG
3 bn <− s k e l e t on (bn . net (my bn) )
4 #under ly ing network o f the Bayesian network f o r the unsh i e lded

c o l l i d e r s
5 my bn <− bn . net (my bn)
6 #l o c a l v a r i a b l e s to i nd i c a t e whether something changed and thus a

new p lo t needs to be generated
7 r <− ””
8 co <− FALSE
9 # fo r nodes n in PDAG

10 f o r (n in nodes (bn) ) {
11 # i f ne ighbours (n) > 1
12 i f ( l ength ( nbr (bn , n) ) > 1) {
13 #l i s t o f ne ighbors
14 x <− nbr (bn , n)
15 #permutation o f a l l ne ighbors o f l ength 2
16 perm . l i s t <− permutat ions ( l ength (x ) , 2 , x , r epea t s = FALSE)
17 #i t e r a t e through a l l permutat ions a , b
18 f o r ( z in 1 : ( l ength (perm . l i s t ) / 2) ) {
19 a <− perm . l i s t [ z , 1 ]
20 b <− perm . l i s t [ z , 2 ]
21 # i f no edge/ arc between a and b && only edge between n−a

and n−b
22 # the approach doesnt seem i n t u i t i v e , but the re i s no

f a s t e r way to check f o r a r c s than dropping or adding
those in a copy o f the network and then compare them

23 updated <− drop . edge (bn , a , b , )
24 updated <− drop . arc ( updated , a , b )
25 updated <− s e t . edge ( updated , a , n )
26 updated <− s e t . edge ( updated , b , n )
27 r e s <− paste0 ( a l l . equal ( updated , bn ) )
28 check <− ”TRUE”
29 # and only i f o ld bn has these o r i e n t a t i o n s
30 updated bn <− s e t . arc (my bn , a , n , check . c y c l e s = FALSE)
31 updated bn <−
32 s e t . arc ( updated bn , b , n , check . c y c l e s = FALSE)
33 r e s bn <− paste0 ( a l l . equal ( updated bn , my bn) )
34 i f ( ( check == re s ) & ( check == re s bn) ) {
35 # i f no edge/ arc between a and b && only edge between n−a

and n−b
36 r e s1 <−
37 t ry ( s e t . arc (bn , a , n , check . c y c l e s = TRUE) , s i l e n t =

TRUE)
38 r e s2 <−
39 t ry ( s e t . arc (bn , b , n , check . c y c l e s = TRUE) , s i l e n t =

TRUE)
40 #try b locks to make sure our PDAG remains a c y c l i c a l
41 i f ( ! ( c l a s s ( r e s1 ) == ” try−e r r o r ” ) &
42 ! ( c l a s s ( r e s2 ) == ” try−e r r o r ” ) ) {
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43 bn <− s e t . arc (bn , a , n )
44 bn <− s e t . arc (bn , b , n)
45 # c o l l i d e r has been added and thus we can p lo t the

change
46 co <− TRUE
47 }
48 }
49 i f ( co == TRUE) {
50 # Only f o r v i s u a l i s a t i o n s
51 out <− paste0 ( ” Co l l i d e r s − ” , n , ” − ” , a , ” − ” , b)
52 f i l ename <−
53 paste0 ( ”Exports /Networks/Causal / I t e r a t i o n /” , out , ” . pdf

” )
54 bn p lo t (bn , out , f i l ename , ”” )
55 # so we can s e t the va r i ab l e ” co” to FALSE again
56 co <− FALSE
57 }
58 }
59 }
60

61 }
62

63 new arc s <− TRUE
64 i <− 0
65 # whi le loop : only i f no more a r c s can be or i ented , the loop

terminate s
66 whi le (new arc s == TRUE) {
67 i <− i + 1
68 new arc s <− FALSE
69 f o r (n in nodes (bn) ) {
70 # i f l ength ( nbr (n) )>1:
71 i f ( l ength ( nbr (bn , n) ) > 1) {
72 x <− nbr (bn , n)
73 perm . l i s t <− permutat ions ( l ength (x ) , 2 , x , r epea t s = FALSE)
74 #fo r a l l permutat ions ( a , b) o f nbr (n) with l=2
75 f o r ( z in 1 : ( l ength (perm . l i s t ) / 2) ) {
76 a <− perm . l i s t [ z , 1 ]
77 b <− perm . l i s t [ z , 2 ]
78 updated <− drop . edge (bn , a , b )
79 updated <− drop . arc ( updated , a , b )
80 # i f no edge/ arc between a , b then
81 r e s <− paste0 ( a l l . equal ( updated , bn ) )
82 check <− ”TRUE”
83 # the approach doesnt seem i n t u i t i v e , but the re i s no

f a s t e r way to check f o r a r c s than dropping or adding
those in a copy o f the network and then compare them

84 i f ( ( check == re s ) ) {
85 updated <− drop . edge (bn , n , b)
86 # i f not (b−>n or n−>b) , so i f edge not arc
87 r e s <− paste0 ( a l l . equal ( updated , bn ) )
88 i f ( ! ( check == re s ) ) {
89 updated <− s e t . arc (bn , a , n , check . c y c l e s = FALSE)
90 # i f a−>n R1
91 r e s <− paste0 ( a l l . equal ( updated , bn ) )
92 i f ( ( check == re s ) ) {
93 # try n −> b and new arc s = TRUE | | R1
94 r e s <−
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95 t ry ( s e t . arc (bn , n , b , check . c y c l e s = TRUE) ,
s i l e n t = TRUE)

96 #try b locks to make sure our PDAG remains a c y c l i c a l
97 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
98 bn <− s e t . arc (bn , n , b)
99 new arc s <− TRUE

100 #se t ded icated ru l e f o r the p l o t s
101 r <− ” − R1”
102 }
103 }
104 }
105 }
106 # to make sure only one change per i t e r a t i o n happens f o r

b e t t e r v i s u a l i s a t i o n s
107 i f ( r == ”” ) {
108 updated <− drop . edge (bn , n , b)
109 # i f not (b−>n or n−>b) , so i f edge not arc
110 r e s <− paste0 ( a l l . equal ( updated , bn ) )
111 i f ( ( ! ( check == re s ) ) ) {
112 # i f b in descendants (bn , ”n”) R2
113 des <− paste0 ( i s . e lement (b , descendants (bn , n) ) )
114 i f ( ( check == des ) ) {
115 # try n −> b and new arc s = TRUE | | R2
116 r e s <−
117 t ry ( s e t . arc (bn , n , b , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
118 #try b locks to make sure our PDAG remains a c y c l i c a l
119 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
120 bn <− s e t . arc (bn , n , b)
121 new arc s <− TRUE
122 #se t ded icated ru l e f o r the p l o t s
123 r <− ” − R2”
124 }
125 }
126 }
127 }
128 }
129 }
130 #ru l e s 3 and 4 only f o r 3 nodes or more
131 i f ( l ength ( nbr (bn , n) ) > 2) {
132 x <− nbr (bn , n)
133 perm . l i s t <− permutat ions ( l ength (x ) , 3 , x , r epea t s = FALSE)
134 #fo r a l l permutat ions ( a , b) o f nbr (n) with l=2
135 f o r ( z in 1 : ( l ength (perm . l i s t ) / 3) ) {
136 a <− perm . l i s t [ z , 1 ]
137 b <− perm . l i s t [ z , 2 ]
138 c <− perm . l i s t [ z , 3 ]
139 # i f a −> b and c −> b and n − b f o r r3
140 # i f a −> b and b −> c and n − c f o r r4
141 # check f o r common ru l e s
142 updated1 <− drop . edge (bn , n , a )
143 updated2 <− drop . edge (bn , n , b)
144 updated3 <− drop . edge (bn , n , c )
145 updated <− s e t . arc (bn , a , b , check . c y c l e s = FALSE)
146 r e s1 <− paste0 ( a l l . equal ( updated1 , bn ) )
147 r e s2 <− paste0 ( a l l . equal ( updated2 , bn ) )
148 r e s3 <− paste0 ( a l l . equal ( updated3 , bn ) )
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149 r e s <− paste0 ( a l l . equal ( updated , bn ) )
150 check <− ”TRUE”
151 i f ( ( ! ( ( check == re s1 ) |
152 ( check == re s2 ) |
153 ( check == re s3 ) ) ) & ( check == re s ) ) {
154 # i f c−>b then n−>b
155 updated <− s e t . arc (bn , c , b , check . c y c l e s = FALSE)
156 r e s <− paste0 ( a l l . equal ( updated , bn ) )
157 i f ( ( check == re s ) ) {
158 r e s <− t ry ( s e t . arc (bn , n , b , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
159 #try b locks to make sure our PDAG remains a c y c l i c a l
160 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
161 bn <− s e t . arc (bn , n , b)
162 new arc s <− TRUE
163 #se t ded icated ru l e f o r the p l o t s
164 r <− ” − R3”
165 }
166 }
167 #i f b−>c then n−>c
168 updated <− s e t . arc (bn , b , c , check . c y c l e s = FALSE)
169 r e s <− paste0 ( a l l . equal ( updated , bn ) )
170 i f ( ( check == re s ) ) {
171 r e s <− t ry ( s e t . arc (bn , n , c , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
172 #try b locks to make sure our PDAG remains a c y c l i c a l
173 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
174 bn <− s e t . arc (bn , n , c )
175 new arc s <− TRUE
176 #se t ded icated ru l e f o r the p l o t s
177 r <− ” − R4”
178 }
179 }
180 }
181 }
182 }
183 i f ( ! ( r == ”” ) ) {
184 # Only f o r v i s u a l i s a t i o n s whi l e i t e r a t i n g
185 out <− paste0 ( ”Or i enta t i on − ” , n , r , ” − ” , i )
186 f i l ename <−
187 paste0 ( ”Exports /Networks/Causal / I t e r a t i o n /” , out , ” . pdf ” )
188 bn p lo t (bn , out , f i l ename , ”” )
189 #se t ded icated ru l e back to empty
190 r <− ””
191 }
192 }
193

194

195 }
196

197 r e turn (bn)
198 }
199

200 #Fina l export o f p l o t s with i nd i c a t o r o f how many arc s can be
o r i en t ed in the s u b t i t l e

201 causa l p l o t s <− f unc t i on (AUROC, n) {
202 x <− 0
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203 f o r ( j in AUROC[ 1 : n , 1 ] ) {
204 x <− x + 1
205 out <− paste0 ( j )
206 f i t t e d <−
207 get ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) )
208 bn <− i nduc t i v e causat i on ( f i t t e d )
209 und i rec ted <− as . numeric ( l ength ( ( und i rec ted . a r c s (bn) ) ) / 4)
210 d i r e c t ed <− as . numeric ( l ength ( ( d i r e c t ed . a r c s (bn) ) ) / 2)
211 t o t a l <− und i rec ted + d i r e c t ed
212 r e s u l t <− round ( ( ( d i r e c t ed / t o t a l ) ∗ 100) , d i g i t s = 0)
213 # di r e c t ed o f t o t a l edges are o r i en t ed ( r e s u l t %)
214 out <− paste0 ( ”Causal Network from ” , out )
215 f i l ename <− paste0 ( ”Exports /Networks/Causal /Causal ” , x , ” . pdf ” )
216 submain <−
217 paste0 ( d i r e c t ed , ” o f ” , t o ta l , ” edges are o r i en t ed ( ” ,

r e s u l t , ”%)” )
218 bn p lo t (bn , out , f i l ename , submain )
219 }
220 }

Code 6: Tests for the unshielded colliders and the orientation rules of the In-
ductive Causation algorithm in Code 5.

1 causa l t e s t <− f unc t i on (AUROC, i , n ) {
2 x <− 0
3 f o r ( j in AUROC[ i : n , 1 ] ) {
4 x <− x + 1
5 out <− paste0 ( j )
6 f i t t e d <−
7 get ( paste0 ( ” f i t t e d . ” , gsub ( ” [ [ : space : ] ] ” , ”” , out ) ) )
8 bn <− bn . net ( f i t t e d )
9 #compare the unsh ie lded c o l l i d e r s o f the Bayesian network with

the r e s u l t i n g causa l p l o t s
10 exp r e s s i on <−
11 unsh i e lded . c o l l i d e r s (bn , a r c s = FALSE, debug = FALSE)
12 r e turn ( exp r e s s i on )
13 }
14 }
15

16 # or i e n t a t i o n r u l e s are the same as the induc t i v e causat ion
a lgor i thm without the c o l l i d e r s

17 o r i e n t a t i o n r u l e s <− f unc t i on (my bn) {
18 bn <− my bn
19 r <−””
20 new arc s <− TRUE
21 i <− 0
22 # whi le loop : only i f no more a r c s can be or i ented , the loop

terminate s
23 whi le (new arc s == TRUE) {
24 i <− i + 1
25 new arc s <− FALSE
26 f o r (n in nodes (bn) ) {
27 # i f l ength ( nbr (n) )>1:
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28 i f ( l ength ( nbr (bn , n) ) > 1) {
29 x <− nbr (bn , n)
30 perm . l i s t <− permutat ions ( l ength (x ) , 2 , x , r epea t s = FALSE)
31 #fo r a l l permutat ions ( a , b) o f nbr (n) with l=2
32 f o r ( z in 1 : ( l ength (perm . l i s t ) / 2) ) {
33 a <− perm . l i s t [ z , 1 ]
34 b <− perm . l i s t [ z , 2 ]
35 updated <− drop . edge (bn , a , b )
36 updated <− drop . arc ( updated , a , b )
37 # i f no edge/ arc between a , b then
38 r e s <− paste0 ( a l l . equal ( updated , bn ) )
39 check <− ”TRUE”
40 # the approach doesnt seem i n t u i t i v e , but the re i s no

f a s t e r way to check f o r a r c s than dropping or adding
those in a copy o f the network and then compare them

41 i f ( ( check == re s ) ) {
42 updated <− drop . edge (bn , n , b)
43 # i f not (b−>n or n−>b) , so i f edge not arc
44 r e s <− paste0 ( a l l . equal ( updated , bn ) )
45 i f ( ! ( check == re s ) ) {
46 updated <− s e t . arc (bn , a , n , check . c y c l e s = FALSE)
47 # i f a−>n R1
48 r e s <− paste0 ( a l l . equal ( updated , bn ) )
49 i f ( ( check == re s ) ) {
50 # try n −> b and new arc s = TRUE | | R1
51 r e s <−
52 t ry ( s e t . arc (bn , n , b , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
53 #try b locks to make sure our PDAG remains a c y c l i c a l
54 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
55 bn <− s e t . arc (bn , n , b)
56 new arc s <− TRUE
57 #se t ded icated ru l e f o r the p l o t s
58 r <− ” − R1”
59 }
60 }
61 }
62 }
63 # to make sure only one change per i t e r a t i o n happens f o r

b e t t e r v i s u a l i s a t i o n s
64 i f ( r == ”” ) {
65 updated <− drop . edge (bn , n , b)
66 # i f not (b−>n or n−>b) , so i f edge not arc
67 r e s <− paste0 ( a l l . equal ( updated , bn ) )
68 i f ( ( ! ( check == re s ) ) ) {
69 # i f b in descendants (bn , ”n”) R2
70 des <− paste0 ( i s . e lement (b , descendants (bn , n) ) )
71 i f ( ( check == des ) ) {
72 # try n −> b and new arc s = TRUE | | R2
73 r e s <−
74 t ry ( s e t . arc (bn , n , b , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
75 #try b locks to make sure our PDAG remains a c y c l i c a l
76 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
77 bn <− s e t . arc (bn , n , b)
78 new arc s <− TRUE
79 #se t ded icated ru l e f o r the p l o t s
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80 r <− ” − R2”
81 }
82 }
83 }
84 }
85 }
86 }
87 #ru l e s 3 and 4 only f o r 3 nodes or more
88 i f ( l ength ( nbr (bn , n) ) > 2) {
89 x <− nbr (bn , n)
90 perm . l i s t <− permutat ions ( l ength (x ) , 3 , x , r epea t s = FALSE)
91 #fo r a l l permutat ions ( a , b) o f nbr (n) with l=2
92 f o r ( z in 1 : ( l ength (perm . l i s t ) / 3) ) {
93 a <− perm . l i s t [ z , 1 ]
94 b <− perm . l i s t [ z , 2 ]
95 c <− perm . l i s t [ z , 3 ]
96 # i f a −> b and c −> b and n − b f o r r3
97 # i f a −> b and b −> c and n − c f o r r4
98 # check f o r common ru l e s
99 updated1 <− drop . edge (bn , n , a )

100 updated2 <− drop . edge (bn , n , b)
101 updated3 <− drop . edge (bn , n , c )
102 updated <− s e t . arc (bn , a , b , check . c y c l e s = FALSE)
103 r e s1 <− paste0 ( a l l . equal ( updated1 , bn ) )
104 r e s2 <− paste0 ( a l l . equal ( updated2 , bn ) )
105 r e s3 <− paste0 ( a l l . equal ( updated3 , bn ) )
106 r e s <− paste0 ( a l l . equal ( updated , bn ) )
107 check <− ”TRUE”
108 i f ( ( ! ( ( check == re s1 ) |
109 ( check == re s2 ) |
110 ( check == re s3 ) ) ) & ( check == re s ) ) {
111 # i f c−>b then n−>b
112 updated <− s e t . arc (bn , c , b , check . c y c l e s = FALSE)
113 r e s <− paste0 ( a l l . equal ( updated , bn ) )
114 i f ( ( check == re s ) ) {
115 r e s <− t ry ( s e t . arc (bn , n , b , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
116 #try b locks to make sure our PDAG remains a c y c l i c a l
117 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
118 bn <− s e t . arc (bn , n , b)
119 new arc s <− TRUE
120 #se t ded icated ru l e f o r the p l o t s
121 r <− ” − R3”
122 }
123 }
124 #i f b−>c then n−>c
125 updated <− s e t . arc (bn , b , c , check . c y c l e s = FALSE)
126 r e s <− paste0 ( a l l . equal ( updated , bn ) )
127 i f ( ( check == re s ) ) {
128 r e s <− t ry ( s e t . arc (bn , n , c , check . c y c l e s = TRUE) ,

s i l e n t = TRUE)
129 #try b locks to make sure our PDAG remains a c y c l i c a l
130 i f ( ! ( c l a s s ( r e s ) == ” try−e r r o r ” ) ) {
131 bn <− s e t . arc (bn , n , c )
132 new arc s <− TRUE
133 #se t ded icated ru l e f o r the p l o t s
134 r <− ” − R4”
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135 }
136 }
137 }
138 }
139 }
140 i f ( ! ( r == ”” ) ) {
141 # Only f o r v i s u a l i s a t i o n s whi l e i t e r a t i n g
142 out <− paste0 ( ”Or i enta t i on − ” , n , r , ” − ” , i )
143 f i l ename <−
144 paste0 ( ”Exports /Networks/Causal / I t e r a t i o n /” , out , ” . pdf ” )
145 bn p lo t (bn , out , f i l ename , ”” )
146 #se t ded icated ru l e back to empty
147 r <− ””
148 }
149 }
150

151

152 }
153

154 r e turn (bn)
155 }
156

157 ## Test ca s e s to be app l i ed in main c l a s s ##
158

159 # r1 = model2network ( ” [ a ] [ b ] [ n | a : b ] ” )
160 # r1 <− s e t . edge ( r1 , ”n” , ”b”)
161 #
162 # r2 = model2network ( ” [ a | n ] [ b | a : n ] [ n ] ” )
163 # r2 <− s e t . edge ( r2 , ”n” , ”b”)
164 #
165 # r3 = model2network ( ” [ a | n ] [ b | a : c : n ] [ c | n ] [ n ] ” )
166 # r3 <− s e t . edge ( r3 , ”n” , ”a ”)
167 # r3 <− s e t . edge ( r3 , ”n” , ”b”)
168 # r3 <− s e t . edge ( r3 , ”n” , ”c ”)
169 #
170 # r4 = model2network ( ” [ a | n ] [ b | a : n ] [ c | b : n ] [ n ] ” )
171 # r4 <− s e t . edge ( r4 , ”n” , ”a ”)
172 # r4 <− s e t . edge ( r4 , ”n” , ”b”)
173 # r4 <− s e t . edge ( r4 , ”n” , ”c ”)
174 #
175 #
176 # #repeat f o r r1 to r4
177 # graphviz . p l o t ( r1 , layout = ”dot ”)
178 # te s t <− o r i e n t a t i o n r u l e s ( r1 )
179 # graphviz . p l o t ( t e s t , l ayout = ”dot ”)
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