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Abstract

Answer set programming is a branch of logic programming utilizing the stable model se-
mantics to compute solutions for modelled problems. This thesis offers an overview which
highlights important scientific works that inspired, created, and advanced answer set pro-
gramming. The foundations of first-order logic used by answer set programming as well as
the stable model semantics will be briefly described. The programming language AnsPro-
log will be explained and demonstrated with the help of multiple examples. The systems
used to implement answer set programming will be described, showing the evolution of
older approaches into the current standards. An exemplary use of answer set programming
will be outlined.
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Zusammenfassung

Answer Set Programming ist ein Zweig der Logikprogrammierung, der die stabile Mod-
ellsemantik zur Berechnung von Losungen fiir Probleme nutzt. Diese Arbeit bietet einen
Uberblick iiber die wichtigsten wissenschaftlichen Arbeiten, welche Answer Set Program-
ming inspiriert, geschaffen und weiterentwickelt haben. Die Grundlagen der Logik er-
ster Ordnung, die von Answer Set Programming verwendet wird, sowie die stabile Mod-
ellsemantik werden umrissen. Die Funktionsweise des Answer Set Programming und
ihre Implementierung in der Programmiersprache AnsProlog wird erldutert und anhand
mehrerer Beispiele demonstriert. Die Systeme, die zur Implementierung von Answer Set
Programming verwendet werden, werden beschrieben, wobei die Entwicklung von dlteren
Ansdtzen zu den heutigen Standards aufgezeigt wird. Eine beispielhafte Anwendung von
Answer Set Programming wird umrissen.
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CHAPTER 1

Introduction

Declarative programming is an alternative approach to imperative programming where
instead of computing how the problem should be solved a model of the logic behind the
problem is constructed and solved. A well known representative of the declarative ap-
proach to programming is logic programming. The idea of logic programming is to use
mathematical logic to represent and execute computer programs.

One particular variety of logic programming is answer set programming. Answer set pro-
gramming is rooted in relational databases, non-monotonic reasoning, knowledge repre-
sentation, and model theory. It uses and combines the strengths of these subject areas to
easily model and solve combinatorial or optimization problems.

Over the years many ideas have been developed to both make answer set programming
more accessible as well as to increase the scope and types of problems it can solve. Exam-
ples for this include aggregate and recursive functions, double negation, as well as partial
functions. Programming languages like AnsProlog were created to yield a programming
framework which utilizes answer set semantics.

Answer set programming is a powerful tool that can be used in a multitude of ways reach-
ing from simple planning and optimization tasks up to solving highly complex DNA anal-
yses.
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1.1 Aim of this thesis

Answer set programming is seldomly used outside of academical endeavours even though
it offers wide applicability. The goal of this thesis is not only to show possible and actual
uses of answer set programming but also to convey the ideas and principles behind it.

* This thesis explains and defines the necessary concepts and terminologies required
to construct answer set programs. This includes the basics of logic programming,
in particular first-order logics as well as the stable model semantics. Examples will
illustrate these concepts.

¢ The programming language AnsProlog will be explained. It will be shown how the
components of answer set programming are implemented and used in AnsProlog
as well as the steps AnsProlog has to take to derive an answer for an answer set
program. With AnsProlog being the de-facto standard for answer set programming,
this thesis also highlights how AnsProlog came to be the way it is.

¢ This is being followed by concrete implementations of AnsProlog, outlining the prac-
tical aspects of deriving solutions for problems. The differences of some individual
AnsProlog implementations are briefly discussed as well.

e Finally, an actual use case of answer set programming is showcased and it is ex-
plained why answer set programming is attractive for the problem in the first place.

In the following sections the history of answer set programming will be outlined to provide
context for some of the evolutionary steps of answer set programming. Additionally, the
most relevant works will be highlighted.
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1.2 Related work: A short history of answer set program-
ming

Logic programming is a programming paradigm based on a use of mathematical logic to
execute and depict computer programs. Logic programming is counted towards the declar-
ative programming languages. Declarative programming means to solve a problem by sim-
ply stating the problem. An early declarative programming language is Prolog which was
developed by Alain Colmerauer in 1972. Prolog enables programmers to use first-order
logics to execute computer programs [40]. It forms the basis for many modern and still
widely used logic programming languages including XSB, Visual Prolog, and A-Prolog .
In 1976, Robert Kowalski standardized the semantics of predicate logic for the use in pro-
gramming languages with his colleague Van Emden [64].

Some concepts of answer set programming have been introduced and formalized in the
following years. In 1977, Raymond Reiter published a paper explaining the idea of closed-
world assumption in databases, one of the concepts which is utilized by answer set pro-
gramming [54]. One year later, Keith Clark wrote about negation as failure, which plays a
vital part in how answer set programming views information [19].

Raymond Reiter continued to advance logic programming and introduced the concept of
non-monotonic reasoning ten years later in 1987 [53].

The stable model semantics has been investigated by Michael Gelfond and Vladimir Lifs-
chitz in 1988 and is one of the core ideas behind answer set programming [34].

The stable model semantics can be used to effectively solve combinatorial problems which
is why it seemed appealing to utilize it to deal with problems such as plan generation and
knowledge representation. Ilkka Niemeld and Victor Marek also contributed to the evolu-
tion of the stable model.

Niemeld focused on knowledge configuration, an activity which is part of product config-
uration, where a product is customized to fit the need of a particular customer [61]. Marek
suggested to use stable model semantics for planning problems [63]. Both authors suggest
the use of answer set solvers to determine the stable model as a solution for their respective
problems.

Because of the many conceptual additions to logic programming, in particular by making
use of the stable model semantics, it was suggested by Lifschitz in his 1999 book ”Ac-
tion Languages, Answer Sets, and Planning”, that the name for this new problem solv-
ing paradigm should be “answer set programming” [43]]. This suggestion was promptly
adopted and as such answer set programming became a new branch of logic programming.
Various tools and programs to apply answer set programming to a problem have been de-
veloped. The most notable early example of such a tool is Smodels, a program which takes
a set of grounded rules as input and computes the possible stable models for these. An
improved version, published in 1999, offers features such as cardinality and weight con-
straints which further increases expressibility [58].

The grounder [parse was developed together with Smodels, its sole purpose is to replace
variables in sets of rules given as input such that Smodels could compute their answer.
These two tools form the basis for many other implementations such as ASSAT, Smodels
-cc, and GnT. Two implementations of grounding and answer set solving that follow a dif-
ferent approach are Cmodels and Clasp.

Loosely based on Smodels the program Cmodels was presented by Lierler in 2005 [42]. Its
approach uses incremental answer set solving which allows for partial evaluation of a pro-
gram. The program Clasp has been developed in 2007 by Gebser, Neumann, Kaufmann,
and Schaub [28]. It offers a conflict-driven approach to answer set programming, intro-
ducing nogoods, a type of constraint applied to an answer set program which is used to
determine non-relevant parts of a rule.
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The number of applications of answer set programming outside of academia is low. One
exception to this is an application prototype that has been developed by the National Aero-
nautics and Space Administration which is a decision support system for a space shuttle
[51].

Answer set programming is still evolving. Some of the advancements that were made in-
clude reactive answer set programming [24], optimization constructs [60], and quantified
answer set programming [4], to only name a few.

An event contributing to the evolution of answer set programming is the open answer set
programming competition, a biennially benchmark where the different answer set solvers
are compared to each other [12]. These competitions not only set a standard for how an-
swer set solvers work but also present possible different approaches to the solving process
[30].



CHAPTER 2

Concepts of answer set programming

Answer set programming is a declarative programming paradigm to model and solve a
variety of problems. Declarative programming states the problem and then proceeds to
find an answer. Logic programming is the basis for answer set programming.

To explain answer set programming and its foundation, the stable model semantics, it is
important to explain first-order logic and model theory, which is done in the following
chapters.
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2.1 Logic programming: Concepts and notations

Definition 1 (Logic symbols): The elements a first-order logic are the logic connectives
A (conjunction), Vv (disjunction), — (implication), - (negation), the quantifiers V (univer-
sal quantifier) and 3 (existential quantifier), as well as an infinite amount of variables
X,¥,2,X1,¥1,..., the closing and opening parentheses ), (, and the truth values L (false) and T
(true) [8].

Definition 2 (Signature): The signature L of a first-order logic can be described as a pair
of sets L=({Funk} },cn,{Reld} }ncn) where Funk} and Rela} are two families of computably
enumerable symbol sets, the n-ary functions and the n-ary relations of L. The 0-ary func-
tions are called constants and the 0-ary relations are called propositional relation symbols.

Definition 3 (Term): Let L be a signature. An L-term is inductively defined as follows:
1. Each variable is an L-term.
2. Each constant in L is an L-term.

3. Letn > 1, f be an n-ary function symbol, and #, ...,#, be L-terms. Then f(z1, ...,1,) is an
L-term.

Definition 4 (Atoms): Let L be a signature, n € N, p be an n-ary relation of L and 11, ..., 1, be
L-terms. Then p(t1,...,,) is an L-atom. If n = 0 then the atom p() is called a propositional
L-atom and is written p [15].

Definition 5 (Literal and negation): Let A be an atom. Then A and —A are literals [5].

Definition 6 (Formula): Let L be a signature. An L-formula is inductively defined as fol-
lows:

1. Every L-atom is an L-formula.

2. T and L are L-formulas.

3. If ¢ is an L-formula then —¢ is also an L-formula.

4. If ¢ and ¢ are L-formulas then (¢ A ¢), (¢ V ¢), and (¢ — ¢) are also L-formulas.
5. If ¢ is an L-formula and x is a variable then Vx¢ and Jx¢ are also L-formulas.

Definition 7 (Subformula): Let ¢ and ¢ be formulas. An immediate subformula is induc-
tively defined as follows:

Atomic formulas and the truth values T and L have no immediate subformulas.

The formulas (¢ A @), (¢ V ¢), and (¢ — ¢) each have the two immediate subformulas: ¢
and ¢.

The formulas Jx¢, Vx¢ and —¢ each have the immediate subformula: ¢.

The subformulas of ¢ are ¢ itself as well as all immediate subformulas of ¢ and the subfor-
mulas of the immediate subformulas of ¢.

Example 1: Let ¢ = (=(T A L) — T) be a formula. Its immediate subformulas are T and
=(TAL). =(T A L) has the immediate subformula (T A L). The formula (T A L) has two
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immediate subformulas T and L.

Definition 8 (Clause): A clause is a disjunction of a finite set of literals. Let Ay,...,A, be a
set of atoms, n and m be arbitrary numbers with n > 0 and m > 0 and Ly, ...,L,, be a set of
literals. Then a clauseis A1 V...VA,VL{ V...V L,,.

Definition 9 (Rules and programs): Let ¢ =A; VA,V ...VA, VL V..V Ly be a clause as
defined in[Definition 8 The rule notation of the clause @ is A V... VA, < Li A... ALy where
A1V ...VA, is called the consequent or head and L; A ... ALy is called the antecedent or
body of the rule. ForA;V...VA, <~ T and L <~ L; A... ALy the notations A; V... VA, < and
 Li A\...\Ly, respectively, can be used as shorthand. A program is a finite set of rules [15].

Example 2: Let L be a signature of first-order logic. Let a, b, and ¢ be variables. The set of
rules {a <~ bAc,b < c,c <} is a program [13].

Definition 10 (Rectification): Let ¢ be a formula, Q be a quantifier and x be a variable. ¢ is
rectified if for each quantification Q of a variable x, there is neither another quantifier for x
as well as no quantifier free occurrence of x in ¢. A formula can be rectified by renaming
variables [15].

Example 3: Let L be a signature, R(.,.) and P(.,.) be 2-ary function symbols in L and {x,y}
be a set of variables. Let ¢ be the formula:

¢ = VxR(x.y) A B3yP(x,)

In ¢ the variable x has both been quantified universally and existentially. y occurs both
quantified and free in this formula. A possible rectification of ¢ would be:

@' = VxR(x,w) A Jz3YP(z,y)
with z and w being variables. ¢ and ¢’ are equivalent.
Definition 11 (Ground): A term or an atom is called ground if it contains no variable [52].

Definition 12 (Substitution): Let T={ry,...,#,} be a finite set of terms, let X = {xy,...,x, } be
a finite set of variables and let @ be a homomorphous function mapping every variable in
X toatermin T. o is a substitution and is represented by the finite set {x; — @x,...,x, —
®x,}. X is called the domain of @ and the set {wx, ..., ®x,,} is called its co-domain [15].

Definition 13 (Grounding substitution): Let @ be a substitution and T a finite set of terms.
o is grounding 7 if for every term ¢ in T the substitution wt is ground. The co-domain of a
grounding substitution consists only of grounded terms [13].

Definition 14 (Herbrand universe and Herbrand base): Let L be a signature. The Herbrand
universe HU of L is the set of all ground L-terms. The Herbrand base HB of L is the set of
all ground L-atoms. It is further assumed that L contains at least one constant ¢ [11].

Example 4: Let L be a language. Let a(.) be the only predicate in L and let 0 be the only
constant in L. The Herbrand universe HU of L is HU = {0}. The Herbrand base HB of L is

HB = {a(0),a(a(0)),a(a(a(0))),....}.

Definition 15 (Interpretation): Let L be a signature. An interpretation / over a signature L
is a triple I=(D, F, V). The elements of this triple are:
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D is a non-empty set called the domain or universe of /.

F is a function which assigns every n-ary function f and every relation r in L an n-ary
function f! or relation r/, respectively, such that f/ : D" — D and r/ : D" C D.

V is a variable assignment, that is, a function which maps every variable x to an element
in D.

Definition 16 (Model): Let P be a program, R = {ry,...,r,} be the set of all rules in P, and
I be an interpretation of P. I is a model of P exactly if all rules of P are satisfied under 7,
denoted as I = P, in the sense that I = ry,...,I =r, [13].

Example 5: Let r be the rule T <— aAb. Let I be an interpretation with D = {T, L}, F = {},
andV ={a+— T,b+— L}. Iisnotamodel of r since T + T A L is not satisfied.

LetI' = (D,F,V') be an interpretation with V' = {a+~ T,b+— T}. I' =rbecause T <~ TAT is
satisfied. I’ is a model of r.

Definition 17 (Herbrand interpretation and Herbrand model): Let P be a program and
let I be an interpretation of P. I is a Herbrand interpretation Iy of P if its domain is the
Herbrand universe HU of P. Iy is a Herbrand model of P if Iy = P [15].

Definition 18 (Minimal Herbrand model): Let P be a program and M = (D, F,V) be a Her-
brand model of P. M is minimal if there exists no other Herbrand model M’ = (D', F,V) of
P such that the domain D’ is a subset of the domain D [22].

If there exists exactly one minimal Herbrand model M of P then M is called the unique
minimal Herbrand model of P [48]. A negation free program always has a unique minimal
Herbrand model [21].
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2.2 Stable model semantics in answer set programming

A rule based program (cf. may contain negated atoms which allow for different se-
mantics. One of these semantics is the stable model semantics which can be computed by
performing the so-called Gelfond-Lifschitz transform. A stable model for a program may
not exist but if it exists, it is identical to one of the minimal Herbrand models.

The program that arises from computing the Gelfond-Lifschitz transform has fewer rules
and atoms than the original program which is why it is called the “reduct” of the original
program [35], to indicate that is is a “reduced version” of the original program.

To explain how the Gelfond-Lifschitz transform works, some more definitions need to be
made.

Definition 19 (Definition of a predicate): Let P be a program and let p be a predicate in P.
The set of rules that contain p in their head is called the definition of p [56].

Definition 20 (Stratified program): Let P be a program. P is stratified if there is a partition
P=PUPU...UP,, with Py, P, ..., P, being disjoint rules, such that for every predicate p the
following criteria holds:

1. The definition of p is contained in exactly one of the partitions of P.

2. For 1 <i<n,if p does not occur negated in P, then its definition is contained in U;<;P,,
otherwise its definition is contained in U;;P; [56].

A more intuitive explanation of a stratified program is that in a stratified program a predi-
cate is only allowed to occur negated if it has been defined in an earlier partition.

Example 6: Let P be a program with the following set of rules:

{p=—gn-m,
q < s,

¥ <— —t,
5,

t+}

A possible stratification of P is:

P={p< —gN-r}U
{q + —s,r + —t}U
{s,t+}

Definition 21 (Closed-world assumption): Let P be a program and a be an atom in P. A
closed-world assumption means that the truth value of a is false if a is not defined in P [54].
Closed-world assumption is a concept used by relational databases. Related to the closed-
word assumption is negation as failure which expresses incomplete information inside of
a program or database [19].

Definition 22 (Negation as failure and weak negation): Let P be a program, a an atom in
P, not an operator, and R be the set of all rules in P. The formula not a is satisfied when
there is no rule in R which entails a [9].

The operator not represents negation as failure. Negation of the form not q is called weak
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negation while a negation of the form —a is called strong negation. For the strong negation
—a to be satisfied in a program P there needs to exists at least one satisfied rule in P that
implies that a is false. For the weak negation not a to be satisfied in P there must not exist
a rule that implies a to be true or false.

Example 7: Let P be a program with the rule:
innocent (x) <~ not guilty (x)
Let P’ be a program with the rule:
innocent (x) « ~guilty (x)

Both of these programs have the goal to check if a person is innocent but have two very
different meanings. P considers a person x to be innocent as long as they are not proven
to be guilty. P’ only considers a person x to be innocent if they are proven to not be guilty
[57].

Definition 23 (Gelfond-Lifschitz transformation): Let P be a stratified program, A be the
set of atoms in P, R be the set of rules in P and B be a subset of the Herbrand base of P.
The Gelfond-Lifschitz transformation of P with respect to B and thus the reduct ITp of P, is
produced with the following steps:

1. A grounding substitution @ (Definition 13) is applied to all rules in R, replacing all
variables in A with grounded terms.

2. For every a € B all rules containing the negation —a in their body are removed from
R.

3. Every negated atom is removed from the bodies of the remaining rules in R [34].

The idea behind this transformation is to remove rules that can not be entailed.

Definition 24 (Stable model): Let P be a program and let ITp be the reduct of P. Let My be
the set of all Herbrand models of P. A model M with M |=TIIp is a unique minimal Herbrand
model of P if M € M. The model M is called stable [34].

The Gelfond-Lifschitz transformation creates a negation free version of a program which
has at most one minimal Herbrand model that coincides with the unique
minimal Herbrand model of the original program. The Gelfond-Lifschitz transformation
does not change the meaning of a program.

Example 8: Let P be a program with the rules:
p(1,2) «
q(x) ¢ p(x,y),=q(y)

To find the stable model of P the Gelfond-Lifschitz transformation is applied. The first step
to create the reduct Ilp is to ground the program P. This yields the following set of ground
rules:

p(1,2) +
q(1) < p(1,1),~¢(1)
q(1) < p(1,2),~¢(2)
q(2) < p(2,1),7¢(1)
q(2) < p(2,2),74(2)



2.2. STABLE MODEL SEMANTICS IN ANSWER SET PROGRAMMING 11

To perform the second step a subset of the Herbrand base B of P needs to be chosen. A
sensible choice of B includes the atoms p(1,2) and ¢(1). The former atom is chosen because
p(1,2) is a fact of the program P. The second atom is chosen as it is being entailed from the
rule with the body p(1,2),—-¢(2) as ¢(2) cannot be deduced with only considering the facts
in the program.

So, the second step of the Gelfond-Lifschitz transformation is performed with B = {p(1,2),
q(1)}, removing all rules that contain —p(1,2) or =¢(1). The remaining rules are:

p(1,2) «
q(1) < p(1,2),—q(2)
q(2) < p(2,2),q(2)

During the third step all remaining negated predicates get removed from the bodies of the
rules in P. The created reduct Ip is:

p(1,2)
q(1) < p(1,2)
q(2) < p(2,2)

Thus, the minimal Herbrand model of T1p is MH™ = {p(1,2),¢(1)}, since the antecedent of
q(2) + p(2,2) can not be entailed. Ilp is also unique, and so IIp is also the stable model of
P.
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2.3 The paradigm of answer set programming

Answer set programming is a branch of logic programming which emerged through the in-
fluence of databases, non-monotonic reasoning, knowledge representation, and the stable
model semantics. The use of these branches leads to answer set programming being able
to provide a general-purpose approach for solving complex combinatorial, search, and op-
timization problems.

Databases solve queries by looking for fulfilling conditions. One of the concepts databases
contributed to answer set programming is the closed-world assumption (Definition 21).

Non-monotonicity is another concept used by answer set programming. A logic is non-
monotonic if a previous conclusion can be invalidated through newly gained knowledge
[23]. So for a program that would mean that adding a rule can reduce the number of mod-
els a program has. Non-monotonicity is utilized by answer set programming to perform
reasoning by defaults, which lets conclusions be derived through a lack of evidence that
would prove them wrong.

Example 9: A standard example to depict non-monotonic reasoning has to do with fly-
ing and non-flying birds. The sentence “most birds fly” is plausible because most birds
can fly even though there a lot of exceptions like ostriches or penguins. Now looking at a
specific bird, birdie, it would make sense to assume that birdie can fly since “most birds fly”.
But it has never been stated what type of bird birdie is. Without non-monotonic reasoning
it would have to be assumed that birdie does not fly because it has not been proven to fly
for now. This could be changed however by stating that birdie is some kind of flying bird
[53].

The stable model semantics provides a way for answer set programming
to compute the solution for the problem at hand. The stable models of a program are solu-
tions to the problem it expresses and are called answer sets. The process of computing the
answer sets for a problem can be broken up into four major steps: modelling, grounding,
solving, and reinterpreting [55]:

1. Modelling is the description of the problem as a set of rules. The rules of an answer
set program are usually written in the programming language AnsProlog.

2. Grounding a program (Definition 13) makes it possible to determine a stable model

for the program. This is done by a separate program called a grounder. The way a

grounder works will be further explained in|Chapter 3.2

3. Solving the program means to compute its stable model. This process makes use of
Satisfiability-Solvers or SAT-Solvers.

4. Reinterpretation is the final step and contextualizes the stable model with respect to
the original problem. This step leads to the stable model being readable as a solution
to the problem that the program was modelled for.

An answer set program is comprised of five common types of rules: normal rules, facts,
constraints, choice rules, and weight rules and constraints [44]. Normal rules in an answer

set program have the same form as rules in first-order logic (Definition 9).

Definition 25 (Fact): Let a be an atom. A rule of the form a < is called a fact and is equiva-
lenttoa<« T.
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Example 10: Let P be a program describing the correlation of education, age and salary of
an individual x. Let the rules of P be:

highSalary (x) < educated(x),employed (x)

employed (x) < ofAge (x)

ofAge (x) ¢
The rule highSalary (x) < educated (x),employed (x) says that a person x that is
educated and employed has a high salary. The rule employed (x) < ofAge (x) implies

that a person x who is employed must be of age. The fact ofAge (x) < means that every
person x that is looked at by this program is of age.

Definition 26 (Constraint): Let {b,...,b,,c1,...,c;n} be a set of atoms. A constraint is of the
form:

—bi,....by, 1y
This is equivalent to
L+ DbiN...AbyAN—CIA... \N—Cpy

A constraint implies that satisfying its body leads to a contradiction in the program [22].

Example 11: Let P be a program for colouring the vertices of a graph connected through
edges. Let a constraint in P be

<—edge (X,Y), red (X),red(Y)

A model of this program would not be able to contain two connected vertices that are
coloured red since that would cause the body of the constraint to be satisfied, which in
turn leads to a contradiction in the program.

Definition 27 (Choice rule): Let {ay,..,ax, b1, ...,by,c1,...,cm } be a set of atoms. A choice rule
is of the form

{ai,...;ax} < b1,...;by,—C1,y ey Cm

The meaning of a choice rule is that if the body of the rule is satisfied then any subset of the
head, excluding the empty set, is considered satisfied [55].

The head of a choice rule is read like a disjunction of atoms, that is the head {aj,...,a;} is
equivalent to a; V...V g.

Example 12: Let P be a program which describes the colours used in a painting and let a
choice rule in P be:

{red(x) ,blue (x),yellow(x),green (x) } {<—paintingColour (x)

This implies that the painting x can be any combination of the colours red, blue, yellow,
or green as long as the predicate paintingColour (x) holds. So for example {red (x) ,
green (x) }, {blue (x) ,yellow (x),green (x) }, and {red (x) } are all valid colourings
of the painting x.

Definition 28 (Weight rule): Let {/y,...,/,} be a set of literals, {k,wy,...w, } be a set of integers
and a an atom. A weight rule is of the form

a+ k< [ll =W1,...,ln=Wn}
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A weight rule assigns a weight w; to each of the literals /; in the body. The head a is implied
when the sum of the weights of all satisfied literals is equal to or higher than £ [10].

Example 13: Let {bread, pretzel,milk, egg, groceries} be a set of atoms and let P
be a program which makes sure that groceries of at least a certain value are bought. Let P
contain the weight rule:

groceries < 6 < [bread = 2, pretzel = 1, milk = 3, egg = 4]

The rule is satisfied by any combination of atoms with a combined weight of 6 or more.
Some models of this rule are {bread, milk, pretzel}, {bread, egg} or {bread,
milk, pretzel, egg}.

Definition 29 (Weight constraint): Let {/j,...,/,} be a set of literals, {k, p,w,...w, } be a set
of integers and let a be an atom. A weight constraint is of the form

k<[li =wi,...ly,=ws <p

The weight constraint assigns a weight w; to each literal /; and is satisfied when the sum of
the weight of satisfied literals is between the lower bound & and the upper bound p [50].

Example 14: Let P be a program which ensures that a truck x is not too heavily loaded but
is also not too lightly loaded. Let a rule in P be:

2 < [barrel(x) = 2, crate(x) = 3, container(x) = 6] <6

The lower bound of the weight constraint being 2 ensures that x can not be empty and
the upper bound 6 ensures that items with a combined weight of 7 or higher can not sat-
isfy the rule. Some models of this rule are {barrel (x) }, {crate (x) }, {barrel (x),
crate (x) } and {container (x) }.

Definition 30 (Weight solution): Let P be a program, ¢ be a function which maps a model
M for P to an integer and w be an integer that represents the required minimum weight of
a solution. For a model to be accepted as a solution it needs to fulfil the criterion o(M) > w
[16].

The rules and constraints that have been introduced above are enough to solve a wide va-
riety of problems with answer set programming. However further research was conducted
to increase the scope of problems that can be solved with answer set programming. Exam-
ples are functional dependencies, aggregates, double negations, and “Guess and Check”.

Aggregates provide the ability to declaratively express the properties of sets of terms. To
define the syntax of the aggregate it is necessary to define aggregate functions and aggre-
gate elements.

Definition 31 (Aggregate function): Let T be a set of terms. An aggregate function #f maps
T to a term and consists of the cardinality symbol # and a function symbol f.

Some common examples for aggregate functions are #count, which determines the number
of elements in the set of terms, #sum, which adds up all the terms in the set of terms, #min,
which determines the lowest value in the set of terms, and #max, which determines the
highest value in the set of terms.

Definition 32 (Aggregate element): Let V be a set of variables {vi,...,v,} with m > 1 and
let ¢ be a conjunction of literals over V. An aggregate element has the syntax vi,...,vy, : ¢,
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and selects those variables in V which satisfy ¢.

Definition 33 (Aggregate): Let E = {ey,...,e,} be a set of aggregate elements, let #f be an
aggregate function, let k be a term and let ® be a 2-ary relation that compares two terms.
An aggregate is of the form #f(ey,...,e,)®k. The aggregate is satisfied if the relation ® is
satisfied [2].

Example 15: Let P be a program and let a constraint in P be
+— time(T), #count {A : task(a,T)} > 1

The predicate t ime (T) in the body of the constraint is used to represent a time interval 7.
The aggregate #count {A : task(A,T)} > 1issatisfied if there is more than one term
A that satisfies task (A, T). The constraint causes a contradiction in P if the aggregate is
satisfied. That means there can not be multiple task (2, T) for a unique time interval T.



CHAPTER 3

Answer set programming with AnsProlog

The language AnsProlog or A-Prolog is the standard language for creating answer set pro-
grams. AnsProlog is based on the declarative language Prolog. While AnsProlog possesses
many functionalities and the syntax of Prolog, it also allows for choice rules, aggregates,
and constraints.

16
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3.1 Syntax and semantics

AnsProlog is a language based on facts and rules, which evaluates all stable models for a
given program and presents those as answers.

A fact in AnsProlog has the following syntax:

p(xl,...,xn).
where n denotes the arity of the predicate p (x1, ..., xn). Facts are considered to be true
in the program. The dot ”.” marks the end of facts and rules.

A rule in AnsProlog has the following syntax:

a :— bl,...,bn.

where a, b1, ..., bn are predicates. The rule corresponds to the logic formula
a<+byAN...Ab,. Acomma”,” is seen as a conjunction ("A”) and the connector ”: -" corre-
sponds to an an implication.

An example in the form of an AnsProlog program, which also happens to be a Prolog pro-

gram, illustrates these basic concepts.

Example 16: Code Example 3.1 computes the paths in a directed graph that consists of
nodes and connecting edges.

node (1) . edge (1, 2)

node (2) . edge (1,4)

node (3) . edge (2,4)

node (4) . edge (3,1)

path (Id, Id) :- node(Id).

path (From, To) :- edge (From, Stop),path(Stop, To) .

Code Example 3.1: Paths in a directed graph

The four facts with the node predicate number the nodes in the graph. The facts with the
edge predicate set up edges between nodes, stating at which node the edge originates and
at which node it ends.

The rule “path (Id, Id) :- node (Id).” setsup areflexive property, so that every node
has a path from and to itself.
Therule “path (From, To) :- edge (From, Stop),path (Stop, To) .” declares all other

paths between nodes.
Executing this program leads to the following solution:

{path(1,1); path(2,2); path(3,3); path(4,4); path(1,2);
path(1,4); path(2,4); path(3,1); path(3,2); path(3,4)}

Duplicate paths do not occur in this solution. The solution includes all paths that are avail-
able between nodes inside of the directed graph [45].

Next, the syntax and semantics of constraints in AnsProlog needs to be discussed. A con-
straint in AnsProlog has the following syntax:

:— al,...,an.
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where al, ..., an are predicates. The constraint corresponds to the logic formula
—aV..Va,.

Example 17: Code Example 3.2 is an AnsProlog program that computes the colouring of
the nodes of a directed graph which are connected by edges, such that connected nodes do
not have the same colour.

node (1) . red(X) .

node (2) . blue (X) .
node (3) . green (X) .
edge (1,2). edge (2, 3) .
edge (1,3) . edge (3,1) .
edge (2,1) . edge (3,2) .

:— edge(X,Y),red(X),red(Y).
:— edge (X,Y),blue(X),blue(Y).
:— edge (X,Y),green (X),green(Y) .

Code Example 3.2: Coloured graph nodes

The predicates for nodes and edges are used as in The facts red, blue and
green define the three colours available for colouring. The constraints at the end of the
program cause a contradiction if two connected nodes are of the same colour, and as such
filter out all colour combinations that do not fulfil the prerequisite of the posed problem.
Executing this program presents the following set of solutions:

{{red (1), blue(2), green(3)}; {red(2), blue(3), green(l)};
{red(3), blue(l), green(2)}}

This example shows how constraints are used in AnsProlog and how they reduce the num-
ber of stable models for a given program by filtering out solutions that do not fulfil their
condition.

Having discussed facts and rules, the syntax of negations in AnsProlog will be explained
next. AnsProlog supports both kinds of negation as described in|Definition 5|and [Detinition|
The classical form of negation is expressed in AnsProlog as:

—a

whereas negation as failure is expressed as:

not a

while a represents a predicate in both code examples.

Example 18: Code Example 3.3 shows the use of both kinds of negations.

-b.
c :— not a, -b.

Code Example 3.3: Negations

where a, b, and c are predicates. The predicate b is in fact false due to the first line. The
predicate a, on the other hand, has no rule or fact proving it to be false or true, which
satisfies the weak negation "not a”. AnsProlog computes {-b, c} as an answer to this
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program.

Answer set programming can also deal with choices expressed by choice rules. The syntax

for choice rules (Definition 26) in AnsProlog is:

{a}.

and means that a can either be true or false in a program. When choice rules are used in an
AnsProlog program, the number of solutions increases combinatorially [33].

Example 19: Code Example 3.4 shows a choice rule.

{p}.

Code Example 3.4: Choice rule

The two solutions of Code Example 3.4 are either that p is false or that p is true, which is
expressed as the two sets {} and {p} in AnsProlog.

Code Example 3.5 shows Code Example 3.4 with one additional choice rule containing the
predicate q.

{p}.
{q}.

Code Example 3.5: Added choice rule

The solutions for Code Example 3.5 are {}, {p}, {q}, and {p, g}. This shows how choice
rules exponentially increase the amount of possible solutions.

Choice rules can also be declared in an abbreviated way bringing them further in line with

their definition in The choice rule of the form:

{piqt.

is equivalent to the following two choice rules:

{p}.
{q}.

Additionally, choice rules can contain a rule body as described in that is a
rule body which contains multiple atoms.

Aggregates and aggregate functions are also implemented in AnsProlog. The form of the

aggregate is identical to the way it was defined in [Definition 33| The constraint from
can be used in AnsProlog as follows:

:— time (T), #count{A:task(A,T)} > 1.

Code Example 3.6: Timed aggregate

where time (T) is a predicate that represents time intervals and task (A, T) is a predicate
that represents a task A that can be performed during the time T.

The template aggregate functions provided by AnsProlog are #count{x}, #sum{X}, #max{x},
#min{X}, #max{X, Y}, and #min{X, Y} [2].

Some of the constructs in AnsProlog offer syntactical shortcuts to describe larger amounts
of rules or facts in a single line of code. AnsProlog provides the ability to use ranges:
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Code Example 3.7: Abbreviations

which is an abbreviation for the following enumeration of facts:

Weight constraints and rules have two variations in AnsProlog: Cardinality constraints and
weight constraints [14]. The syntax of cardinality constraints is:

a{pl(X),...,pn(X)}b.

where a and b are numbers defining an upper and lower bound and p1 (X), ..., pn (X)
are predicates. This cardinality constraint is satisfied if the number of satisfied predicates
it contains is between a and b.

The second variation of a weight constraint has the following syntax:

af{pl (X)=wl,...,pn(X)=wn}b.

where a and b are numbers defining a lower and an upper bound, p1 (X), . . ., pn (X) are
a predicates, and w1, ..., wn are floating point numbers. This type of weight constraint
assigns a weight to every predicate. The weight constraint is satisfied, if the sum of the
weights of its satisfied predicates is between a and b [38].

Example 20: The Code Example 3.8 shows a cardinality constraint that makes sure that a
node has exactly one colour.

node (1) . node(2). node(3).
l{coloured (X,blue), coloured (X, green), coloured (X, red)}1 :— node (X).

Code Example 3.8: Cardinality constraint

The first line in Code Example 3.8 numbers the nodes as in Code Example 3.1. In the second
line a cardinality constraint serves as the head of a rule. The rule makes sure that every
node is assigned exactly one colour. This condition is achieved by setting the lower and
upper bound of the cardinality constraint to 1, so that for every node exactly one predicate
coloured holds for a particular solution.

Example 21: Code Example 3.9 shows an AnsProlog program which ensures that a truck X
is not too heavily loaded.

item(barrel) . item(crate). item(container).
loadTruck (X) :— 1l{on(X,barrel)=2,0on (X,crate)=3,o0on(X,container)=6}8.

Code Example 3.9: Weight rule
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The three facts consisting of the item predicate define the items that can be loaded on a
truck. The weight rule limits how many of the items can be put on the truck to satisfy
loadTruck (X). The sum of the weights of the satisfied items is only allowed to be be-
tween 1 or 8. For a truck 1 the solutions are:

{{on(1l,barrel), loadTruck (1) }; {on(l,barrel),on(l,crate),
loadTruck (1) }; {on(l,barrel),on(l,container), loadTruck (1) }}
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3.2 Grounding

An integral step during answer set programming is grounding. Grounding is required for
computing the stable model of a program.

Example 21: Code Example 3.10 shows a program that is not yet grounded.

entity (1) . entity(2) .
tupel (X1, ...,¥Xn) :— entity(X1l),...,entity(Xn).

Code Example 3.10: Grounding size

This program consists of two facts and a single rule. Grounding this program binds all vari-
ables with constants by creating rules for every possible combination. Every entity (Xi)
in the body of the rule needs to be substituted with entity (1) or entity (2), so that
every possible interpretation is represented.

The grounded version of Code Example 3.10 contains 2" ground rules, corresponding to
the number of n-tuples over a set of two elements [39]. The size of the grounded program
shows that even relatively simple and short programs might require large amounts of space
for grounding.

The version of a program that gets created through grounding is called an
instantiation of the program.

Applications called grounders deal with the instantiation of programs. The purpose of
grounders is not only to ground the program but also to simplify and reduce the size of
instantiations.

Example 22: Code Example 3.11 shows a program that is about to be instantiated.

a(l,2).
b(X),c(Y) :— a(X,Y).

Code Example 3.11: Instantiating

The instantiation of the last line in Code Example 3.11 leads to the following four rules:

a
T a
a
a

Only the first of these instantiations can be satisfied since no facts justify the other rules.
The other instantiations are not relevant for solving the problem, and can be omitted while
still preserving the meaning of the program.

Some notable grounders are Iparse [47], GrinGo [32], and the DLV-2 system [1l]. Grounders
use different approaches for grounding but the main idea is as follows:

1. A set of constants and ground predicates gets defined as an extension E. In a program
the extension is the set of all ground predicates and constants.

2. The first non-ground rule r in a program is chosen for grounding.
3. Variables in r are matched with elements in E and substituted by them.

4. This substitution is reiterated over all variables in r until a ground rule is created.
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5. The grounder performs a backtracking step, if a ground rule is created or there exist
no more matches for an unsubstituted variable in r. The backtracking step reverts the
last variable substitution and checks for an additional match in E.

6. The instantiation of r is complete when there are no more possible backtracking steps.

An example will illustrate how a grounder creates the instantiation of a single rule while
using a given extension.

Example 23: Let the rule r be:

a(X), b(Y) - pX,2), q(z,Y).

Code Example 3.12: Instantiating of a rule

andletE={p(1,2), a(2,1), g(2,3)}Dbe theextension of r. The grounder creates the
instantiation from left to right in the body of the rule, trying to match elements of E with
the predicates in the body of the rule .

Starting with p (X, 2) the grounder checks for matching predicates in E. The first match is
p (1, 2). The grounder substitutes 1 for X and 2 for z and moves on to match q (z, Y) . For
a(z,Y) the variable z is already bound to 2, so the grounder tries to match the predicate
a(2,Y) inE. Itfinds g (2, 1) and substitutes 1 for Y. With that, the entire body is ground
and the rule:

a(l), b(1) := p(1,2), g(z2,1).

is created. The grounder performs a backtracking step after a rule has been created and
returns to the previous matching process for q (2, Y) . It finds one more match in g (2, 3)
and creates the grounded rule:

a(l), b(3) := p(l,2), g(2,3).

The grounder again performs a backtracking step after the creation of a grounded rule.
Now the grounder cannot find any more matches for q (2, Y) so it performs an additional
backtracking step, and checks for more matches for p (X, Z) . The grounding process ends
here because there are no more matches left for p (X, Z) and there are no more possible
backtracking steps. The grounded rules generated through this process are:

a(l), b(l) :- p(1,2), g(2,1).
a(l), b(3) = p(1,2), g(2,3).

To ground a program P, the process of grounding a rule gets repeated from top to bottom
for all rules in P. At the start of the instantiation, the extension of the rules is the set of
all facts in P. New predicates that are proven through the grounding of previous rules are
added to the extension.

Example 24: Code Example 3.13 shows a program that needs to be grounded and is adapted
from [39].

p(l,2). g(2,1). g(2,3).
a(X), b(y) :- p(X,2), g(z2,Y).
c(X) :— a(Xx).

Code Example 3.13: Instantiating of a program

The initial extension E of Pis {p(1,2), a(2,1), a(2,3)}. The first rule and the ex-
tension are the same as in as such the first generated grounded rules of the
instantiation are also :
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This instantiation entails the predicates a (1), b (1), and b (3), which are added to the
extension E. The grounder moves on to the rule ¢ (X) :- a(X) and checks for matches
for a (X) in E. It finds the atom a (1) and substitutes 1 for X in the rule ¢ (X) :- a (X),
thus creating the rule:

The grounder performs a backtracking step to check for more matches for a (x) . There are
no more matches left, so the grounder terminates. The grounded program is:

p(l,2). g(2,1). g(2,3).

a(l), b(l) := p(l,2), g(2,1).
a(l), b(3) = p(1,2), g(2,3).
c(l) := a(l)

At the end of the grounding step, the extensionis {p (1,2), g(2,1), g(2,3), a(l),
b(l), b(3), c(1)}.

Grounding a recursive rule generates grounded predicates that are required for the creation
of further grounded instances of the rule. In a recursive rule, the grounding process must be
iterated until a fixpoint is reached. After every iteration, the extension of the rule becomes
the predicates that were satisfied during the previous iteration, as well as all the constants
and predicates in the starting extension. The grounding process ends if no new predicates
can be added to the extension.

Example 25: Code Example 3.14 shows an AnsProlog program that computes paths in a
directed graph.

edge (1,2). edge(2,3). edge(3,4).
path(From, To) :—- edge(From,To).
path (From, To) :- edge(From, Stop),path(Stop, To).

Code Example 3.14: Recursive instantiation

The nodes of the graph are not explicitly stated but implicitly given by their connected
edges. E = {edge (1,2), edge(2,3), edge(3,4)} is the extension of the program
shown in Code Example 3.14. The first rule defines all paths that directly connect two
nodes. The second rule uses recursion to create all paths which connect more than two
nodes.

The rules that are created when grounding the first rule are :

path(1l,2) :- edge(l,2).
path(2,3) :- edge(2,3).
path(3,4) :- edge(3,4).

All three of the implied path (X, Y) predicates are added to E. For the first iteration of the
second rule, the same grounding process gets performed as in[Example 26|and creates the
following grounded rules:

path(1,3) :- edge(l,2),path(2,3).
path(2,4) :- edge(2,3),path(3,4).
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In the next iteration of the grounding process, the extension of the rule is modified such
that E = {path (1,2), path(1,3), path(2,3), path(2,4), path(3,4),

edge (1,2), edge(2,3), edge(3,4)}. Performing the grounding process using the
new extension yields the grounded rule:

path(l,4) :- edge(l,2),path(2,4).

In the next iteration E = {path (1,2), path(l,3), path(l,4), path(2,3),
path(2,4), path(3,4), edge(l,2), edge(2,3), edge(3,4)}. Performing the
grounding process using the new extension yields no new rules, and consequently, a fixed
point was reached. The final instantiation of the program is:

path(1,2) :- edge(l,2).
path(2,3) :- edge(2,3).
path(3,4) :- edge(3,4).
path(1,3) :- edge(l,2),path(2,3).
path(2,4) :- edge(2,3),path(3,4).
path(l,4) :- edge(l,2),path(2,4).

Code Example 3.15: Grounded recursive rule

The syntax and methods that have been presented in the current and preceding chapters
provide only a very basic overview over AnsProlog and grounding. However, AnsPro-
log also supports more sophisticated features, such as GZ-aggregates [3]], inductive logic-
programming [20], and consistency restoring rules [6].

The following chapter will highlight some implementations of answer set programming
in order to not only show the concepts of answer set programming but also provide a more
hands-on perspective on this topic.




CHAPTER 4

Practical Aspects of Answer Set Programming

The implementation of answer set programming requires applications that can evaluate
and solve the programs written in AnsProlog. A variety of such applications have been de-
veloped since the introduction of answer set programming; some examples include Smod-
els, Cmodels, ASSAT, DLV, and Clasp. Smodels and Clasp are good examples to show the
evolution of answer set programming and thus will be looked at in more detail.

Smodels was introduced in 1995 and is one of the oldest answer set solvers [59]. The Smodels
implementation requires an input program to be grounded, and as such needs to be paired
with a grounder such as Iparse. Smodels computes the solution of a program by utilizing a
backtracking algorithm that searches for the stable models of the input program [47].
Clasp was introduced in 2007 and offers a conflict-driven approach to answer set solving.
It is part of the application bundle Clingo, which includes Clasp as an answer set solver and
GrinGo as a grounder. Clasp uses the nogoods learning algorithm to find a solution for a
program [28].

The difference between Smodels and Clasp is fundamental: Smodels is able to compute the
solution for programs containing normal and choice rules, constraints, and weight con-
straints, while Clasp is able to additionally allow for functions, aggregates, and strong nega-
tions.

The performance of Clasp and Smodels also differs: Clasp uses a more effective approach
to answer set solving. Clasp outperforms Smodels in both space and time requirements, as
multiple benchmarks indicate [29,18].

Both of these answer set solvers and their approaches will be described to highlight how
the implementation of answer set solving has evolved. This comparison will be supple-
mented by an actual application of answer set programming, in the form of a space shuttle
decision system.

26
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4.1 Smodels and lparse

Smodels is a C++ application that was developed to implement the stable model semantics
in a way to be used in realistic applications. The development of Smodels was closely linked
to the development of the grounder parse, which would later become Iparse [49].

The algorithm used by Smodels is not able to deal with non-grounded programs, and as
such uses Iparse. The Iparse application does not only ground a program, but also removes
superfluous rules from the instantiation, as described in It should be stated
that both Iparse and Smodels work as filters which means that they read from standard input
and their results are written to standard output.

The input for Iparse is a logic program written in a Prolog style syntax which is also al-
lowed to contain constraints, built-in functions, choice rules, and cardinality and weight
constraints. Additionally, only domain-restricted programs are accepted by Iparse. What
domain-restricted programs are, is best explained through an example.

Example 26: Code Example 4.1 shows an AnsProlog program that determines the family
tree of some individuals called jack, jill, and joan.

ancestor (X,Y) :— ancestor(X,2), parent(z,Y), person (X).
ancestor (X,Y) :— parent (X,Y).

son(X,Y) :— parent(Y,X), male(X).

daughter (X,Y) :— parent(Y,X), female (X).

person (X) :— male(X).

person (X) :— female (X).

parent (jack, Jjill). parent (joan, jack).
male (jack) . female(jill). female(joan).

Code Example 4.1: Domain-restricted program

The predicates of Code Example 4.1 can be divided into two classes, domain predicates
and non-domain predicates. Domain predicates are all the predicates that are defined non-
recursively, while all other defined predicates are non-domain predicates. For P that means
that its only non-domain predicate is ancestor (X, Y), since the first rule defines it recur-
sively.

A rule is called domain-restricted if every variable that appears in the head of a rule also
appears in an unnegated domain predicate in its body. A program is domain-restricted if
every rule it contains is domain-restricted.

In the first rule all three variables X, Y, and z appear in the parent and person predi-
cates. The first rule is domain-restricted, since the variables X, Y, and Z appear in the two
domain predicates parent (Z,Y) and person (X). This criterion holds for all the other
rules as well, which means that the program is domain-restricted [47].

The reason for allowing only domain-restricted programs in Iparse is that it is necessary
to know which rules allow for effective grounding. If, for example, a program was to be
grounded that contains the rule:

a(X) :— not b(X,Y).

there needs to be a grounded version of the rule for every possible substitution for Y. In this
sense, the domain predicates are used to “restrict the domain” of the variables in a program
[62].

The first step Iparse takes for a domain-restricted logic program is to process its rules by
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performing the matching process described in[Chapter 3.2] This creates the grounded ver-
sion of the program. Iparse then translates all rules in the program into primitive rules, that
is rules which only consist of predicates, conjunctions, disjunctions, negations, and impli-
cations. This translation step is performed to make it possible for Smodels to compute the
stable model of more complicated constructs like weight constraints.

The grounded primitive program is then once again translated, this time into a numerical
representation, which is the output of Iparse. This numerical representation, in turn, is the
input for Smodels.

The algorithm employed by Smodels to determine the stable model of its input program
is based on the Davis-Putnam procedure. The Davis-Putnam procedure proves a formula
¢ by showing that a ground instance of —¢ is unsatisfiable [66].

The Smodels application roughly performs these three steps: expand, conflict, and look-ahead.
The expand step is the assignment of truth values to unassigned atoms in the program. The
conflict step checks for contradictions in the program which would lead to backtracking.
The look-ahead step uses the Davis-Putnam procedure to check if an atom is satisfied in
the stable model.

If a stable model has been found, then Smodels saves that model and performs a back-
tracking step to look for further stable models. In case no stable model could be derived,
Smodels “looks ahead” by checking if there is a predicate in the program which is weakly
negated, and checks whether a solution is possible with the opposite truth value. Smodels
either adds the predicate from the look-ahead step to the potential stable model if it does
not cause a contradiction, or omits it if a negation was found.

All the steps are then repeated iteratively by Smodels with the predicates that were derived
to be contained in the stable model. The process terminates once there are no more predi-
cates left that could potentially be assigned a truth value.

Example 27: Code Example 4.2 shows an AnsProlog program that computes the colouring
of nodes in a graph under the condition that connected nodes can not be of the same colour.

color(l..2). node(1l..2).
edge (1,2).
1 {nodeColor (N, C):color(C)} 1 :- node(N).

:— nodeColor (X, C), nodeColor(Y,C), edge(X,Y), color(C).

Code Example 4.2: Smodels algorithm

The instantiation of Code Example 4.2 is:

color(l..2). node(1l..2).

edge (1,2).

1 {nodeColor(1l, ,nodeColor (1, } 1 :—= node(l).
,nodeColor (2, } 1 := node(2).

, edge(l,2), color(l).

(1
1 {nodeColor (2,
(1
(1 , edge(l,2), color(2).

1)
1)
:— nodeColor(1l, 1)
2)

—_ — — ~—

2

2

, nodeColor (2,1
, 2

:— nodeColor , nodeColor (2

Executing this program with Smodels yield two stable models:

{color(l..2),node(l..2),edge(1l,2),nodeColor(l,1),nodeColor(2,2)}

and

{color(l..2),node(l..2),edge(1l,2),nodeColor(l,2),nodeColor(2,1)}
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Smodels is being executed together with Iparse by calling the following command in a ter-
minal window:

o

% Iparse input_program | smodels

Additional command line options that can be given to I[parse are, for example, -d X, ..., Y,
which sets the used domain for the grounding process to X, ..., Y, and —~c const=n,
which overrides the value of a constant const in the input program with the value n.
Command line options that can be given to Smodels are, for example, nolookahead, which
skips the look-ahead step of the algorithm, and a number behind Smodels indicates how
many stable models should be computed.

Example 28: Let colour. 1p be the graph colouring program from Example 31. A com-
mand line that uses the facts in the program as a domain, that does not use the look-ahead
step, and computes one stable model is:

o)

% lparse —-d facts colour.lp | smodels 1 —-nolookahead

The resulting output for running this command line is:

Answer: 1
Stable Model: nodeColor(l,1),nodeColor(2,2)

This shows that Smodels omits the domain used in the program from the presented stable
model.

Looking at the performance and requirements of Smodels and Iparse shows that they of-
fer an effective solution for solving small answer set programs. The complexity of finding
the stable model of a grounded program with all the constructs that are accepted by Smodels
has been proven to be part of NP [50]. Additionally, the space required for the grounding
process of Iparse grows in a linear way [47].

Since its complexity and spatial requirements are so low, Smodels is a solid choice for mod-
elling and solving combinatorial problems, the complexity of which mostly lies in NP-hard,
and which require large amounts of space for computing all possible configurations.
Nowadays, Smodels is being outperformed by many of the newer solvers. Smodels is, how-
ever, often still used as a benchmark for other solvers because of its historical importance
as one of the first answer set programming applications [18].
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4.2 Clasp and GrinGo

The answer set solver Clasp and the grounder GrinGo were introduced in 2007 and are, at
the time of writing, being distributed as a single application called Clingo [26]. Clasp offers
a completely new approach to answer set solving, while GrinGo improves upon previously
introduced grounders, namely dlv and Iparse.

The process and order of solving a program with the help of GrinGo and Clasp is the same
as with Iparse and Smodels. The program is input into GrinGo, which generates a primitive
grounded program so that Clasp can compute its stable models. The computed stable mod-
els are then presented in text form.

GrinGo and Clasp are also invoked by means of a command line with a nearly identical
syntax to the one shown in Example 31. The syntax of a basic command line for GrinGo
and Clasp is:

)

% gringo input_program | clasp

Many command line options which work for Smodels and Iparse also work with GrinGo and
Clasp, for example setting the domain with -d and adding a number after the Clasp com-
mand name to define how many stable models should be computed.

GrinGo and Clasp seem rather similar to Smodels and Iparse from the outside. Their dif-
ferences, however, will become apparent on a closer look.

The grounding process of GrinGo can be divided into four steps. The first step is parsing,
where GrinGo checks if the syntax of the input program is correct. In that case, an internal
representation of the program is created, and GrinGo moves on to the next step.

The second step is checking, in which GrinGo verifies that the input program has a finite
ground instantiation that does not change the meaning of the original program. The check-
ing step uses this analysis of the program to determine and schedule which predicates are
going to be grounded first.

The third step is instantiation, in which the scheduled predicates are grounded to create the
instantiation. The method used to effectively ground the rules is based on the back-jumping
algorithm used by dlv.

The fourth and final step is evaluation, in which the grounded rules from the previous step
are examined to identify all newly derivable predicates. Those new predicates are then
scheduled to be grounded and used to repeat the instantiation step. Additionally, the sim-
plification of the grounded program, as has been shown in Chapter 3.2, is also performed
during this step. If there are no new derivable predicates, the grounded program is being
output [32].

The algorithm that is utilized by GrinGo during the instantiation step is an enhanced ver-
sion of the back-jumping algorithm. The idea behind this algorithm is to distinguish between
the predicates that contain relevant variables, and the ones that contain irrelevant variables.
A variable is considered irrelevant in a rule if it is contained in a predicate for which all
the truth values of each of its grounded instances are known. The algorithm then avoids
revisiting predicates with irrelevant variables for new substitutions.

GrinGo also splits rules into two parts: one holding only relevant variables, the other hold-
ing irrelevant variables. The instance containing irrelevant variables contains also relevant
variables if they are dependencies of irrelevant variables.

It is possible for GrinGo to skip the generation of redundant grounded rules by skipping the
repeated substitution of irrelevant variables. These substitutions always lead to the same
result for the rule [29]. An example should illustrate how this algorithm is applied and
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what it achieves.

Example 29: Code Example 4.3 shows a program that is about to be grounded and consists
of the following set of rules:

x(1,1..4).
y(A) :— x(A,B), not z(A).

Code Example 4.3: Relevant and irrelevant variables

The variable 2 is relevant in the second line because it appears in not z (2), which has a
grounded instance with an unknown truth value. The variable B is irrelevant in the second
rule because it only appears in x (2, B) for which all ground instances are defined through
the fact in the first line.

The predicate x is split into x (&, x) and x (A, B) by GrinGo to represent the relevant and
irrelevant variables. When GrinGo grounds the first rule, it looks for matches for x (2, *)
first, finding x (1, »). This matching step is followed up by another for x (1, B), finding
x (1, 1) and creating the grounded rule:

y(l) := x(1,1), not z(1l).

GrinGo performs a backtracking step after the creation of a grounded rule, but because B is
an irrelevant variable, it performs another backtracking step and checks for more matches
for x (A, ). GrinGo finds no more matches and terminates after the creation of the one
grounded rule.

This example shows how GrinGo avoids the creation of additional rules, which all effec-
tively have the same meaning and effect on the program.

The grounding process of GrinGo offers faster and more consistent run times compared to
Iparse, since it is able to skip a large amount of irrelevant variable substitutions.

Moving on to Clasp, it is important to first explain what nogoods is since it is a central part
of how Clasp solves a program.

Definition 34 (Nogoods): Let al,...,am,an, ...,al,r be atoms, let T and F be predicates that
evaluate to the truth values true and false, respectively, and let v, be the rule:

r :-al,...,am, —-an,..., —-al.

The rule can be represented by two implications, the first one being
r—alN..NamA-anA...\—-al

which is equivalent to the conjunction
(=rvVal)A..A(=rVam)A(—rV-an) A ...\ (—rV —al)

The second implication is

al A...NamA—-an/A...\N—-al —r

The conjunction of the first implications is used to derive a set of truth value assignments
for which v, is not satisfied. These sets of truth value assignments are nogoods [25].

6(v,) = {{Tv,,Fal},....{Tv,,Fam},{Tv,, Tan},...,{Tv,, Tal}}
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The second implication gives rise to the nogood
A(v;) = {Fv,,Tal,...,Tam,Fan,...,Fal}

A short example will show how these nogoods are utilized during program solving.

Example 30: Code Example 4.4 shows a small AnsProlog program which is adapted from
[25].

a :— b.
a :— —-c.

Code Example 4.4: Nogoods
The resulting nogoods of the rules of Code Example 4.4 are
{Ta,Fb,F —c},{{Fa,Tb},{Fa, T —c}}

These nogoods are used to determine the resulting truth value assignments of variables
when a different variable gets assigned a truth value. The resulting truth value assign-
ments for Fa through the nogood {{Fa,Tb},{Fa, T —c}} are Fb and F — ¢, because fulfilling
a nogood would lead to a contradiction in the program. For solving a program, these re-
sulting truth value assignments mean that if a is proven to be false in the program then »
and —c must also be false. These nogoods are used during the incremental construction
of the stable model to effectively assign truth values to multiple variables at once while
avoiding contradictions in the program.

The system architecture of Clasp consists of three distinct parts. The first part is the parser
that takes Iparse programs as input and translates them into an internal representation.

The second part is the program builder, which generates the nogoods representation of the
input program. The program builder additionally creates an atom-body-dependency graph
that represents the variables which need to be assigned truth values to satisfy the body of
rules and, in turn, satisfy their heads. The non-trivial parts of this graph, so the parts in
which different variable assignments lead to different outcomes, are then input into the
third part, alongside the grounded program and the set of nogoods.

The third and final part of Clasp is the solver. The solver holds two databases; one for the
originally generated or static nogoods, and another for nogoods that are generated from
new conflicts or loops inside of the program. These newly generated nogoods are called
recorded nogoods, and have an added activity counter. This activity counter allows Clasp
to delete nogoods that are rarely important during the solving step, and as such are not
required to be saved in the active database. The solver additionally sets up a watch list for
variables that are part of nogoods with more than three elements. This watch list is used to
quickly and easily update longer nogoods once a variable is assigned a truth value [28].

The solver starts the solving process once the data structures have been generated. The
algorithm behind Clasp starts by assigning truth values to unassigned variables, either
through propagation or a decision heuristic.

Propagation in Clasp means applying the unit clause rule to its nogoods. The unit clause
rule states that if a clause is a unit clause, meaning a rule with only one unassigned literal
in its body, the literal must be assigned the truth value that satisfies the rule [27]. Applying
propagation to nogoods results in the derivation of additional atoms. These derived atoms
are assigned a pointer to the nogoods they were derived from to make future conflict solv-
ing and backtracking easier and faster. The body-dependency graph helps to quickly apply
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the propagation and compute the resulting new variable assignments.

Conflict resolution is engaged when propagation causes a conflict in the program, mean-
ing cases in which a new nogood would be propagated which causes another nogood to
be fulfilled. The conflict resolution determines and records the nogood which causes the
conflict, and performs backtracking to the propagation step in which the conflict nogood
was originally derived.

The decision heuristics that is applied if propagation is not possible is one in which the
solver utilizes its recorded or learned conflict nogoods. The heuristics assigns values to
the yet unassigned literals in the program, with the values being determined by how often
the literal appears in yet unsolved nogoods as well as in conflict nogoods. The heuristic
values are re-evaluated every time a new nogood is derived. The solver then assigns a
truth value to the literal with the highest heuristic value and proceeds like it does during
propagation. There are multiple other heuristics that are offered by Clasp and that can be
applied through an additional command in the command line. These additional heuristics
include VSIDS [46]], BerkMin [37], and VMTF [41]. It should be added that Clasp offers not
to use learned nogoods for its decision heuristics, and instead use a look-ahead approach
to check for literals that might cause conflicts later on.

The solver creates a stable model once every literal in the program has an assigned truth
value, and none of the nogoods is fulfilled. The solver then performs backtracking steps to
check for additional stable models, if the initial invoke command demands more than one.

Clasp utilizes additional methods to increase its performance. These methods include restart
policies, in which the solving process gets restarted with a different starting strategy if too
many conflicts occur, and nogood deletion, in which unused and underutilized nogoods get
deleted from the record to both save memory space and reduce the number of nogoods that
have to be checked.

The above description of Clasp serves as an overview and is not comprehensive. It should,
however, convey the idea and outline of how Clasp solves programs by looking for conflicts
through nogoods, and constructs solutions by finding ways to avoid these conflicts.

Clasp is one of the most efficient and fastest answer set solvers at the time of writing. Clasp,
and modified versions of it, won in most categories of the fifth answer set programming
competition in 2016 [17] and are still performing well in the benchmarks set by the sev-
enth answer set programming competition [31], which include optimization and decision
problems, as well as query-answering.

When comparing Clasp to Smodels, it is evident that the former is not only more robust,
through its restart options and conflict resolution, but also requires less space and time for
solving a program because of its use of pointers, nogood deletion, and more effective back-
jumping methods [28].
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4.3 A decision support system for a Space Shuttle - An ex-
ample

A well know application of answer set programming is a decision support system for space
shuttles. This system is one of the first practical applications of answer set programming,
and is outlined in an article from 2001 [51], which, in turn, is based on multiple other
works. These other works developed a concept for a core module My, which is used for
verifying and finding plans for the operations performed by the reaction control system
(RCS) of a space shuttle [7,36)65].

The RCS of a space shuttle is controlled by the astronauts during manoeuvres in orbit
through flipping switches that control valves or power specific circuitry. There are pre-
scripted plans that the astronauts can follow to achieve specific goals. However, issues
start arising if there is any kind of failure in the system, for example a faulty switch. The
number of plans that would be required to deal with all of these eventualities is too large
to pre-plan for. The solution to deal with these types of problems is an intelligent system
that can generate and check plans quickly and under the constraints of the failures.

This intelligent system was designed as a set of independent modules combined with a
graphical Java interface to offer an easy way to enter and return information. The modules
are written in A-Prolog and model different components of the RCS, as well as the goals
that can be achieved by them. The graphical interface is used to input information about
the tasks that have been performed by the RCS so far, which faults have been detected, and
what tasks should be performed. The tasks that can be performed are to check if the tasks
the RCS has already performed have led to a specific goal, or to generate a plan, meaning
a set of tasks that satisfies a specific goal in a limited number of steps.

The graphical interface checks if the input is complete, and if so, assembles the appro-
priate modules into an A-Prolog program IT which it passes to the reasoning system that
computes the stable model. The reasoning system that is used in the article are /parse and
Smodels. This approach reduces the checking of a plan to only checking if a model exists
for IT with the given plan as input, meaning as a set of facts when looking at it from an
A-Prolog perspective.

A planning module is used to generate a set of plans that fulfil a desired goal under the
constraints given by the failures of the system. These plans coincide with the stable models
of the program. As such, planning is reduced to answer set solving. The graphical interface
translates these stable models into a user-friendly, readable set of tasks, and presents it as a
set of solutions to the given information. A look at one of the modules should give an idea
of how these programs are constructed.

Example 33: The plumbing module PM consists of approximately 40 rules, and models the
plumbing system of the RCS. The purpose of the plumbing system is to deliver fuel and
oxidisers from the tanks of the space shuttle to its jets. The system consists of tanks, jets,
and pipe junctions as well as valves that control the flow from one element to another. PM
presents these system as a directed graph in which the tanks, jets, and pipe junctions func-
tion as nodes, and the valves function as the connecting edges.

The purpose of PM is to describe the paths that the fuel and oxidisers can take through-
out the system, and how those paths are affected by leaks and the status of the valves.
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Every jet that is required for a maneuver must have a leak free and open path leading to it
for the maneuver to be performed.

The input for the rules that make up PM is the structure of the plumbing system, its cur-
rent faulty components, and a list of all its open valves. PM then computes the distribution
of pressure throughout the system, which jets are supplied with fuel, and, in turn, which
maneuvers can be performed by the space shuttle at the moment.

An example for how this is achieved is through a rule that contains the predicate
pressurizedBy (N1, Tk). The rule describes the pressure of a node N1 that is obtained
through a tank Tk. There are special nodes that are always pressurized, namely the helium
tanks, and for all other nodes this is decided recursively. This means that if a node N1,
that is not leaking, is pressurized by a tank Tk and is connected through an open valve to
another node N2, N2 is also pressurized. The way that this rule is written in A-Prolog is:

h(pressurizedBy (N1, Tk),T) :-
not tankOf (N1,R),
not h(leaking(N1l),T),
link (N2,N1,V),
h(inState (V,open),T),
h (pressurizedBy (N2, Tk),T) .

Code Example 4.5: Pressurized node

The other modules that are part of the system are the valve control module, the extended
valve control module, which extends the valve module to also consider electrical circuits,
the circuit theory module, which describes the electrical circuits required by the RCS, and
the previously mentioned planning module. All modules except for the planning module
follow the idea that has been described in the example above, in which they model the
current status of the components of their system.

The planning module uses the other modules to check if the current status of the subsys-
tems fulfils a given goal, or, alternatively, which steps need to be taken to fulfil that goal.
The goals can often be split into subgoals that need to be fulfilled by each individual sys-
tem, which, in turn, can be checked individually by the planning module or be assembled
into set of steps that must be taken for each subsystem.

Modularity is an integral aspect of the decision support system, which leads to a signif-
icant increase in the efficiency of the planning process. Each module can be optimized on
its own and can be omitted if it is not required for a specific goal.

The decision support system illustrates the utility of both answer set programming and
planning in general. The utilization of answer set programming and A-Prolog in a large
knowledge-intensive application was a first for its time, and highlights their efficiency and
applicability. This system still serves as one of the most exemplary applications of answer
set programming to this day.




CHAPTER B

Conclusion

Answer set programming is an approach to problem solving that is still evolving. Its many
implementations and extensions have greatly increased the scope of problems that it can
solve while also increasing its efficiency. Even though there are very few practical appli-
cations of answer set programming outside of academical purposes, the ones that do exist
offer a good example of what it can achieve.

36
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51 Summary

Answer set programming is an effective declarative approach to problem solving. It is
deeply rooted in first-order logic and logic programming, and incorporates different meth-
ods and concepts derived from both. The core concept of answer set programming is the
stable model semantics. The stable model semantics is used to allow for the computation
of a solution to a problem.

The canonical language for answer set programming is called A-Prolog or AnsProlog.
AnsProlog depends upon grounding, an integral step which contextualizes the program
and is performed by applications such as Iparse and GrinGo.

There are many implementations of answer set programming in the form of answer set
solvers. One of the first answer set solvers ever created was Smodels, which serves as a
standard for answer set programming. Another answer set solver which is still used to this
day is Clasp, which utilizes a different, conflict-driven approach to solving.

One of the most well-known applications of answer set programming is a decision-support
system for a space shuttle.

Answer set programming has proven to be a flexible and practical branch of logic program-
ming. Its easy-to-use modelling language as well as the availability of a wide selection of
different answer set solvers and grounders makes it highly accessible. This accessibility
and effectiveness makes answer set programming a very attractive choice for solving com-
plex problems. Its constant evolution and increasing proposed applications makes it very
likely that answer set programming will be utilized even more in the future.
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