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Abstract

This thesis introduces an imperative, statically typed and object-oriented mini-language. Along
with the language introduction, the core features of object-oriented programming are highlighted.
For this, various program examples are presented. An implementation of the language using
the Haskell programming language is also provided. This implementation serves two purposes.
Firstly, the reader is encouraged to run the example programs and also run their own programs
using the implementation. Secondly, the latter part of the thesis describes the implementation in
detail. It uses the established combination of parsing and code generation to translate the program
to machine code. The target machine of the code generator is a simulated abstract machine that is
also part of the Haskell implementation.
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Zusammenfassung

Diese Bachelorarbeit führt eine imperative, statisch getypte und objektorientierte Mini-Sprache
ein. Zusammen mit der Einführung der Sprache wird die Kernfunktionalität von objektori-
entierter Programmierung hervorgehoben. Hierfür werden verschiedene Programmbeispiele
präsentiert. Eine Implementierung der Sprache, die die Programmiersprache Haskell verwen-
det, wird ebenfalls bereitgestellt. Diese Implementierung erfüllt zwei Zwecke. Erstens wird
der Leser ermutigt, die Beispielprogramme, und auch selbst geschriebene Programme, unter
Verwendung der Implementierung auszuführen. Zweitens wird im hinteren Teil der Arbeit
die Implementierung im Detail beschrieben. Diese verwendet die etablierte Kombination aus
Parsing und Code-Erzeugung, um das Programm in Maschinencode zu übersetzen. Die Zielmas-
chine des Code-Erzeugers ist eine simulierte abstrakte Maschine, die ebenfalls Teil der Haskell-
Implementierung ist.
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CHAPTER 1

Introduction

The history of object-oriented programming (OOP) dates back to the 1970s with languages like
Smalltalk, Java, C++ and many others. Today, OOP is a core feature of some of the most widely
used programming languages. Yet, there is much confusion about what exactly constitutes the
essence of OOP. This is at least partly due to the fact that almost all modern programming lan-
guages that offer support for OOP do so in different ways and also offer many additional features
that are not essential to OOP in and of itself.

This thesis introduces an imperative, statically typed and object-oriented mini-language that
is limited to the most important features of OOP. The language is not intended to serve as an
example of a fully-featured production-grade language, but rather as a didactic means to better
understand the involved concepts and their implementation. For the provided implementation
(see [10]), the Haskell programming language is used. Although Haskell might be regarded as
a niche language, the author intends to show that it is particularly suitable for describing the
implementation of programming languages in a clear and concise way.

Chapter 2 defines the most essential aspects of object-oriented programming relevant today.
Based on this definition, the design of the aforementioned language is described in chapter 3.
After briefly introducing the compiler concepts used for the implementation in chapter 4, the
implementation itself is discussed in chapter 5 to chapter 7. Mentioning perspectives for future
work, the thesis is concluded in chapter 8.

1



CHAPTER 2

Concepts of Object-Oriented Programming Languages

Object-oriented programming is a collection of interlinked concepts that has organically evolved
over the last 50 years. This has lead to a general sense of ambiguity around OOP and a dissent
over specific implementation details. Here, the author tries to lay out a useful definition of the
important concepts to build the language upon.

Today, there is an authoritative definition of object-oriented concepts, which is from the ISO
standard for information technology vocabulary (see [7]). It gives a concise definition of what
object-oriented means:

Definition 1: object-oriented

pertaining to a technique or a programming language that supports objects, classes, and
inheritance

So a (minimal) object-oriented programming language needs to support objects, classes and
inheritance. But what are objects, classes and inheritance? Fortunately, the standard defines these
terms as well:

Definition 2: object

set of operations and data that store and retain the effect of the operations

This means that objects differ from traditional (mutable) structures in languages like C in that
they carry an additional set of operations with their data. They differ from mathematical objects
in that in general, they are not automatically equal if they contain the same data and operations,
which is why they are best understood carrying an additional unique identifier with them that
clearly distinguishes them from other objects. Even though it is often debated that this is an
implementation detail which should not be raised into the context of a fundamental definition,
an understanding of this notion of objects is incomplete without it. This definition is consistent
with the way objects are defined in most popular object-oriented languages like Java and C++.

The notion of a class builds on objects:

2



CHAPTER 2. CONCEPTS OF OBJECT-ORIENTED PROGRAMMING LANGUAGES 3

Definition 3: class

template for objects that defines the internal structure and the set of operations for in-
stances of such objects

In other words, a class is a definition of the data structures and operations for any object that
is an instance of that class.

Finally, inheritance:

Definition 4: inheritance

copying of all or part of the internal structure and of the set of operations from one class
to a subordinate class

Instead of this procedural notion of inheritance that hints explicitly at a possible implemen-
tation of the concept, one can equivalently understand it as a transitive relation between classes,
where the subordinate class or subclass inherits the data structures and operations of the upper
class, just by declaring its subordination, without declaring the inherited structures explicitly.



CHAPTER 3

The Mini-Language O

This chapter introduces step by step the syntax and semantics of the language O, and motivates
the relevant decisions made in the design process. Throughout the chapter, different example
programs are provided for illustration of certain concepts or problems. All example programs can
directly be run from the provided implementation’s folder resources/example-programs
(see [10]) without having to copy them by hand from this thesis.

3.1 Lexical Syntax

The Lexical Syntax of a language decides how the character sequence describing the program
is split up into lexemes or tokens. Underlying this is a formal grammar that is regular for most
common programming languages - this is also true for O. Without defining this lexical grammar
for the language O explicitly, it suffices to say that a lexeme for O can be one of the following:

• a symbol name that begins with a small letter and consists of only small and capital letters
(commonly called lowerCamelCase),

• a class name that begins with a capital letter and consists of only small and capital letters
(commonly called UpperCamelCase),

• a string that begins and ends with the character ’"’, and otherwise contains arbitrary other
characters,

• an integer that consists of only digits,

• one of USING, CLASS, SUBCLASSOF, FIELDS, INIT, INT, OBJ, PROCEDURE, METHOD,
RETURNS, CALL, READ, IF, THEN, WHILE, DO, PRINTI, PRINTS, PRINTLNS, ERROR, NOT,
:=

• or one of the characters = , . > < + - * / ( ) [ ] { }

Any two consecutive lexemes must be separated by at least one white space, end of line or tab
character.

The process of lexical analysis, that is checking for lexical errors and producing the correspond-
ing lexemes, is carried out by the tokenizer described in chapter 5.

4



CHAPTER 3. THE MINI-LANGUAGE O 5

3.2 Simple programs and instruction overview

As mentioned in chapter 1, the language is imperative. This means that instructions are used to
tell the machine explicitly which actions to perform in order to carry out the computation. An O-
program is a sequence of such instructions, along with an optional set of classes and procedures,
which are introduced at a later point. In its simplest form, an O-program can be very short, as
hello-world program 3.1 shows.

DO { PRINTLNS "Hello world!" }

Listing 3.1: Example program hello.olang

Program 3.1 starts with DO to indicate the start of the main program, which is the sequence
of instructions to execute. PRINTLNS is the instruction that prints out the supplied string and
concludes with a new line. As expected, the program produces the following output:

Hello World!

O provides instructions and expressions similar to those defined for the mini-language I in
[3]. The basic instructions are described in Table 3.1. Instead of a complete specification of the
functionality, it should rather be regarded as an overview. Most primitives are discussed later in
greater detail.

Instruction Meaning
n := expr Assigns the value of expression expr to variable n
INT n Declares a new integer variable with name n
OBJ T n Declares a new object variable of type T with name n
CALL proc(...) Invokes procedure proc with parameters (...)
READ n Reads an integer value from the standard input and assigns the

value to n
PRINTI expr Prints value of expression expr to the standard output
PRINTS str Prints string str to the standard output
PRINTLNS str Prints string str followed by a new line character to the standard

output
ERROR Terminates the program (an error is encountered)

Table 3.1: The basic O-instructions

Expressions are either basic or composite. Basic expressions are integer values, variable refer-
ences, field references, or procedure calls, method calls or class instantiations with empty param-
eter lists. Composite expressions are either arithmetic expressions combining expressions with
the operators + - * /, or procedure calls, method calls or class instantiations with non-empty
parameter lists. Round brackets can be used in arithmetic expressions to indicate the order of
evaluation - if they are not used, evaluation follows the usual order of operations. The division /
is implemented by integer division, which always yields an integer value by truncating the result
if necessary.

Note that a variable declaration will shadow any variable of the same name declared earlier,
like in many imperative languages. This should be avoided in general, but can be useful in con-
junction with the scoping mechanism introduced later. Integer variable declarations will assign a
default value of 0, whereas object variable declarations will assign an invalid address.

Most languages support the declaration of boolean variables, fractional number variables and
string variables. To keep the syntax and implementation simple, O omits these other types of



CHAPTER 3. THE MINI-LANGUAGE O 6

variables. Unfortunately, the omission of boolean variables results in the necessity to utilize an
arguably bad coding style of using integer variables to store truth values, where 0 represents a
truth value of false, and a non-zero integer value represents a truth value of true. It appears to
the author that this is a trade-off worth making.

Using only basic instructions, the very simple calculator program 3.2 for adding two integers
can be created.

DO {
PRINTLNS "This program calculates the sum of two integers a + b."
INT a
INT b
PRINTS "Please enter a: "
READ a
PRINTS "Please enter b: "
READ b
PRINTS "a + b = "
PRINTI a + b

}

Listing 3.2: Example program sum.olang

Running program 3.2 with the integers 1 and 2 yields:

This program calculates the sum of two integers a + b.
Please enter a: 1
Please enter b: 2
a + b = 3

In addition to the basic instructions, the composite instructions described in Table 3.2 are pro-
vided.

Instruction Meaning
{ seq } Executes the instructions in seq in sequence
IF cond THEN cmd If condition cond holds, then executes instruction (or sequence

of instructions) cmd
WHILE cond DO cmd As long as condition cond holds, repeatedly executes instruction

(or sequence of instructions) cmd

Table 3.2: The composite O-instructions

Conditions are either a comparison of two expressions using one of the comparators < = >,
or a negation of another condition using the keyword NOT.

Note that {...} introduces a new scope, meaning the variables declared within are only visi-
ble within - any reference to an inner variable from outside the scope will lead to a compile-time
error.

This can already be used to implement considerably more complicated algorithms, like a prim-
itive prime sieve:

DO {
PRINTLNS "I will now begin listing all primes"
INT n
n := 2
WHILE n > 0 DO {
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INT m
INT isprime
m := 2
isprime := 1
WHILE m < n DO {

IF (n / m) * m = n THEN isprime := 0
m := m + 1

}
IF NOT isprime = 0 THEN {

PRINTI n
PRINTLNS ""

}
n := n + 1

}
}

Listing 3.3: Example program primes.olang

Program 3.3 will eventually list all primes and consequently never halts:

I will now begin listing all primes
2
3
5
7
11
13
...

Note that program 3.3 is only capable of listing any prime if an integer variable may assume any
integer value. In contrast to most programming languages, where an integer value has a fixed
lower and upper bound somewhere between −264 and +264, the integer values in O have no such
strict lower and upper bound. Instead, the lower and upper bound depend on the machine and
operating system that the program is running on. The bound is reached if there is not enough
memory for the program to represent the value. Generally, this means that an integer value in O
can become very large, at the cost of making arithmetic operations slower.

3.3 Procedures

Writing a program as a sequence of instructions can become laborious quickly, especially once the
need for re-using a certain part of the program as a subroutine arises. To allow for this, O provides
procedures. A procedure is, like the classes that are introduced later, defined in the preamble of a
program like follows:

USING [
PROCEDURE foo(INT a, INT b) RETURNS INT c {

... procedure code ...
}

] DO {
... main program code ...

}
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This defines a procedure foo with two integer parameters a and b, returning an integer c.
There can be any number of formal parameters of arbitrary type. For now, it suffices to say that

a formal parameter n can be an integer parameter (INT n) or an object parameter of some type
T (OBJ T n) - types are discussed in detail at a later point in the chapter, and again in chapter 7.
Return parameters are optional - there can be zero or one return parameter defined. Multiple
return parameters are not allowed. Once defined, procedures can be invoked (or called), which
involves providing argument expressions of the correct type. At run-time, the values of the pro-
vided argument expressions will be copied, and the copies are bound to the corresponding names
declared in the formal parameter list of the procedure. This behaviour is commonly referred to as
call by value. If a return parameter is defined, it will be treated as a declaration, which effects to
initializing it with the default value. Then, the procedure code is executed. When the procedure
finishes execution, it yields the value of its return parameter at that point. If a procedure has a
return parameter, it is invoked as part of an expression. If it does not, it is invoked using the CALL
instruction. This distinction always makes clear when a return value is expected. A procedure
can be invoked in the main program, invoke itself, or be invoked in another procedure defined
later. In principle, the language could also support indirect recursion, but due to a shortcoming
in the code generator’s implementation (see chapter 7), the provided implementation does not
allow for that.

Additionally, a procedure may have a preamble to its code which can define a set of sub-
procedures for it to use:

PROCEDURE foo(INT a, INT b) RETURNS INT c
USING [

PROCEDURE bar(INT a) {
... bar procedure code ...

}
]
{

... foo procedure code ...
}

These sub-procedures can only be invoked from the procedure they are defined within.
Note that a procedure only has access to its arguments and the variables it declares in its

code, so the input it relies on to carry out the computation must be supplied either through the
arguments, or the usage of the READ-instruction in the procedure’s code (or the indirect usage
thereof in another procedure that is invoked). This makes procedures modular to a high degree,
but in general they are still subject to side effects and therefore referentially opaque.

Procedures are not only a way for outsourcing code - together with recursion they provide a
powerful way of expressing computations. Consider the ackermann function, ack : N×N→ N,
as defined by Robinson (see [12]):

ack(0,m) = m+1
ack(n+1,0) = ack(n,1)

ack(n+1,m+1) = ack(n,ack(n+1,m))

Using recursive procedures, program 3.4 for calculating the ackermann function can be created:

USING [
PROCEDURE ack(INT n, INT m) RETURNS INT a {
IF n < 0 THEN {

PRINTLNS "ERROR: n is not a natural number!"
ERROR

}
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IF m < 0 THEN {
PRINTLNS "ERROR: m is not a natural number!"
ERROR

}
IF NOT n < 0 THEN

IF NOT m < 0 THEN {
IF n = 0 THEN a := m + 1
IF NOT n = 0 THEN {

IF m = 0 THEN a := ack(n - 1, 1)
IF NOT m = 0 THEN a := ack(n - 1, ack(n, m - 1))

}
}

}
] DO {

PRINTLNS "This program calculates the ackermann function ack(n, m)."
INT n
INT m
PRINTS "Please enter a natural number n: "
READ n
PRINTS "Please enter a natural number m: "
READ m
PRINTS "ack(n, m) = "
PRINTI ack(n, m)

}

Listing 3.4: Example program ackermann.olang

Running program 3.4 with n = 3 and m = 6 yields:

This program calculates the ackermann function ack(n, m).
Please enter a natural number n: 3
Please enter a natural number m: 6
ack(n, m) = 509

The fact that the ackermann function is not a primitive recursive function (see [12]) provides evi-
dence for the computational power of O. More discussion on this topic, including a more elaborate
program example involving the dynamic data structure of linked lists, can be found in chapter 9.

3.4 Objects and classes

As established in chapter 2, an object is an identifiable collection of mutable data along with
operations on this data, and a class is a template for such objects. Since in O objects can only be
created from class templates (as class instances), it makes sense to talk about classes first.

In O, a simple case of a class without methods and only one field, in the preamble of some
program, looks like the following:

1 USING [
2 ...
3 CLASS Intbox(INT i)
4 FIELDS INT i
5 INIT { this.i := i }
6 ...
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7 ] DO {
8 ...
9 }

Here, CLASS Intbox declares a class with name Intbox, and FIELDS INT i translates to any
instance of the class having a data field named i that holds an integer value. INIT { this.i
:= i } defines the class’s initializer that is some code which is executed upon object creation
(class initialization). In this case, the initializer code is just one instruction that assigns the ini-
tializer parameter (INT i on line 1) to the new object’s field that is also named i. To refer to the
object that is being created, the identifier this is used.

Declaring a class in the program’s preamble also introduces a type of the same name that can
be used in declarations. Declaring an object variable named o of type Intbox is simple:

OBJ Intbox o

Note that this declaration does not create an object of class Intbox! It merely creates a container
for an identifier (an address) of objects of class Intbox (commonly referred to as a pointer). In
comparison, the declaration

INT i

creates a container for an integer value, which is also initialized with a value of 0.
Creating an object of a class is done by invoking the class’s initializer like a procedure with

the class’s name, providing all the necessary arguments. In case of class Intbox, an object can be
created with the expression Intbox(1). By checking the initializer code, it can be verified that
the field i of this newly created object has the integer value 1.

Object fields can be accessed by dot notation on object variables. A field i of an object referred
to by the object variable a is accessed by the field reference a.i. So verifying the above claim
about the value of field i can be accomplished by running a test program:

USING [
CLASS Intbox(INT i)
FIELDS INT i
INIT { this.i := i }

] DO {
OBJ Intbox i
i := Intbox(1)
PRINTI o.i

}

Listing 3.5: Example program intbox0.olang

Running program 3.5 yields the expected value of 1.
The level of indirection introduced by object variables has consequences that might not be

immediately obvious. To illustrate this, consider the following example with two procedures:

USING [
CLASS Intbox(INT i)
FIELDS INT i
INIT { this.i := i }

PROCEDURE setZero(OBJ Intbox b) {
b.i := 0

}
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PROCEDURE setZero(INT i) {
i := 0

}
] DO {

OBJ Intbox ib
ib := Intbox(1)
CALL setZero(ib)
PRINTI ib.i
PRINTLNS ""

INT i
i := 1
CALL setZero(i)
PRINTI i
PRINTLNS ""

}

Listing 3.6: Example program intbox1.olang

The first setZero procedure takes as input an Intbox and sets its field to 0. The second pro-
cedure takes an integer parameter and sets it to 0. In the main program, an Intbox and an integer
variable, both initialized with value 1, are used as parameters to the procedures. One can observe
that as a side effect of the Intbox-procedure, the parameter object changes. The INT-procedure
however does not change the parameter’s value from the main program’s point of view. Why
do the procedures behave this way? As mentioned, invoking a procedure involves copying the
values of the supplied argument expressions. But an object variable holds merely an address, so
what happens when object variables are passed as arguments? Technically, object variables are
not treated differently from integer variables in this regard, but the value of an object variable is an
address, and the value of an integer variable is an integer, so what is copied is an address instead
of an integer. This behaviour resembles that of languages like C or Java, where the distinction
between call by value, call by reference and sometimes even call by sharing is made. However, this
distinction has lead to much confusion because it suggests that the language operates differently
for different kinds of variables, while under this, arguably simpler interpretation, it really does
not. O employs a strict call by value strategy, where the value of an integer variable is an integer,
and the value of an object variable is an address.

To operate on objects of given classes, instead of procedures, methods can be used. A method
is a kind of procedure that is defined in the context of a class, and that can be invoked given any
object of that class. This given object is not named explicitly as a formal parameter of the method
- rather, a method is invoked by using dot notation on object variables, similar to field references.
In the method code, the object can be referenced by using this - in the same way that is used for
initializer code. To illustrate this, the prior example 3.6 could have used a method instead of the
Intbox-procedure:

USING [
CLASS Intbox(INT i)
FIELDS INT i
INIT { this.i := i }
[

METHOD setZero() {
this.i := 0

}
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]

PROCEDURE setZero(INT i) {
i := 0

}
] DO {

OBJ Intbox ib
ib := Intbox(1)
CALL ib.setZero()
PRINTI ib.i
PRINTLNS ""

INT i
i := 1
CALL setZero(i)
PRINTI i
PRINTLNS ""

}

Listing 3.7: Example program intbox2.olang

Of course, classes can be used to represent meaningful data structures. Program 3.8 imple-
ments rational numbers along with a few operations on them. It asks for two rational numbers
which are then added, subtracted, multiplied and divided. The result is provided in simplified
form.

1 USING [
2 CLASS Rational (INT numerator, INT denominator)
3 FIELDS INT numerator
4 INT denominator
5 INIT {
6 IF denominator = 0 THEN {
7 PRINTLNS "denominator cannot be zero!"
8 ERROR
9 }

10 this.numerator := numerator
11 this.denominator := denominator
12 }
13 [
14 METHOD getNumerator() RETURNS INT num {
15 num := this.numerator
16 }
17

18 METHOD getDenominator() RETURNS INT den {
19 den := this.denominator
20 }
21

22 METHOD add(OBJ Rational summand) RETURNS OBJ Rational sum {
23 INT newnum
24 newnum := this.numerator * summand.getDenominator() + summand.getNumerator()

* this.denominator↪→

25 INT newden
26 newden := this.denominator * summand.getDenominator()
27 sum := Rational(newnum, newden)
28 }
29

30 METHOD subtract(OBJ Rational subtrahend) RETURNS OBJ Rational difference {
31 OBJ Rational addend
32 addend := Rational(-subtrahend.getNumerator(), subtrahend.getDenominator())
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33 difference := this.add(addend)
34 }
35

36 METHOD multiply(OBJ Rational factor) RETURNS OBJ Rational product {
37 INT newnum
38 newnum := this.numerator * factor.getNumerator()
39 INT newden
40 newden := this.denominator * factor.getDenominator()
41 product := Rational(newnum, newden)
42 }
43

44 METHOD divide(OBJ Rational divisor) RETURNS OBJ Rational quotient {
45 OBJ Rational reciprocal
46 reciprocal := Rational(divisor.getDenominator(), divisor.getNumerator())
47 quotient := this.multiply(reciprocal)
48 }
49

50 METHOD isPositive() RETURNS INT isPositive {
51 isPositive := 1
52 IF this.numerator / this.denominator < 0 THEN isPositive := 0
53 }
54

55 METHOD isNatural() RETURNS INT isNatural {
56 isNatural := 0
57 IF this.isPositive() = 1 THEN {
58 IF (this.numerator / this.denominator) * this.denominator =

this.numerator THEN isNatural := 1↪→

59 }
60 }
61

62 METHOD simplify() RETURNS OBJ Rational simple
63 USING [
64 PROCEDURE gcd(INT a, INT b) RETURNS INT res {
65 IF a < 0 THEN res := - gcd(-a, b)
66 IF NOT a < 0 THEN {
67 IF b < 0 THEN res := - gcd(a, -b)
68 IF b = 0 THEN res := a
69 IF b > 0 THEN {
70 IF a = 0 THEN res := b
71 IF NOT a = 0 THEN {
72 IF a > b THEN res := gcd(a - b, b)
73 IF NOT a > b THEN res := gcd(a, b - a)
74 }
75 }
76 }
77 }
78 ]
79 {
80 INT gcd
81 gcd := gcd(this.numerator, this.denominator)
82 simple := Rational(this.numerator / gcd, this.denominator / gcd)
83 }
84

85 METHOD compare(OBJ Rational other) RETURNS INT order {
86 order := this.numerator * other.getDenominator() - other.getNumerator() *

this.denominator↪→

87 }
88

89 METHOD print() {
90 PRINTI this.numerator
91 PRINTS " / "
92 PRINTI this.denominator
93 }
94 ]
95
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96 PROCEDURE readRational() RETURNS OBJ Rational rat {
97 PRINTS "Please enter the numerator: "
98 INT num
99 READ num

100 PRINTS "Please enter the denominator: "
101 INT den
102 READ den
103 rat := Rational(num, den)
104 }
105 ] DO {
106 PRINTLNS "This program prompts you to enter two rational numbers, and performs some

calculations with them."↪→

107 PRINTLNS "*First number*"
108 OBJ Rational fst
109 fst := readRational()
110 PRINTLNS "*Second number*"
111 OBJ Rational snd
112 snd := readRational()
113

114 PRINTS "("
115 CALL fst.print()
116 PRINTS ") + ("
117 CALL snd.print()
118 PRINTS ") = "
119 OBJ Rational sum
120 sum := fst.add(snd)
121 sum := sum.simplify()
122 CALL sum.print()
123 PRINTLNS ""
124

125 PRINTS "("
126 CALL fst.print()
127 PRINTS ") - ("
128 CALL snd.print()
129 PRINTS ") = "
130 OBJ Rational difference
131 difference := fst.subtract(snd)
132 difference := difference.simplify()
133 CALL difference.print()
134 PRINTLNS ""
135

136 PRINTS "("
137 CALL fst.print()
138 PRINTS ") * ("
139 CALL snd.print()
140 PRINTS ") = "
141 OBJ Rational product
142 product := fst.multiply(snd)
143 product := product.simplify()
144 CALL product.print()
145 PRINTLNS ""
146

147 PRINTS "("
148 CALL fst.print()
149 PRINTS ") / ("
150 CALL snd.print()
151 PRINTS ") = "
152 OBJ Rational quotient
153 quotient := fst.divide(snd)
154 quotient := quotient.simplify()
155 CALL quotient.print()
156 PRINTLNS ""
157 }

Listing 3.8: Example program rational.olang
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Running the program with rational numbers 3
5 and 7

9 yields:

This program prompts you to enter two rational numbers, and performs
some calculations with them.↪→

*First number*
Please enter the numerator: 3
Please enter the denominator: 5

*Second number*
Please enter the numerator: 7
Please enter the denominator: 9
(3 / 5) + (7 / 9) = 62 / 45
(3 / 5) - (7 / 9) = 8 / -45
(3 / 5) * (7 / 9) = 7 / 15
(3 / 5) / (7 / 9) = 27 / 35

3.5 Inheritance and types

To incorporate all important features of object-oriented programming, O also supports inheritance.
Inheritance introduces a transitive relation between an upper class and a subclass. For classes S
and U:

Definition 5: inheritance relation

S ⊂ U :⇔ S is a subclass of U

In O, a class can be denoted as a subclass of another class by using the keyword SUBCLASSOF,
followed by the upper class name, in the class definition. This results in the subclass inheriting
the fields and methods of the upper class. The initializer is never inherited, it needs to be rede-
fined in each subclass separately. An inherited method can also be overridden by re-declaring
it in the subclass - the re-declared method must have the same name and formal parameter list
- except that the formal parameter names are allowed to be different. If the overridden method
has no return parameter, the overriding method must not have a return parameter either. If the
overridden method does have a return parameter, the overriding method must also have a return
parameter, although it is admitted for the return parameter in the overriding method to be of any
subtype (see next paragraph) of the overridden method’s return parameter.

As mentioned, declaring a class introduces a new type to the program. A type that occurs in a
program is always one of:

• Type INT for integer values, variables and parameters,

• type BOOL for boolean values which occur only in conditions,

• and type OBJ T for addresses, variables and parameters for objects of class T

Without inheritance, the introduced types are all independent of each other. The inheritance
relation changes this, giving rise to a subtype-relation <:, where S <: T reads "S is a subtype of T":

Definition 6: subtype relation

S <: T :⇔ S = T ∨ class(S) ⊂ class(T), where class(OBJ C) = C

The subtype relation is a weak partial order on the set of types, because it is reflexive, anti-
symmetric and transitive.

The principle of subtype polymorphism hinted at with return parameters, applies in a much
more general way. In O, everywhere a value of type T is expected, a value of type S can be
substituted if S <: T.
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3.5.1 Dynamic binding

One important consequence of subtype polymorphism in O is dynamic binding on method calls.
Consider the following example 3.9 involving different kinds of animals.

1 USING [
2 CLASS Animal()
3 INIT {
4 PRINTLNS "An animal was born!"
5 }
6 [
7 METHOD makeSound() {
8 PRINTLNS "*generic animal sound*"
9 }

10 ]
11

12 CLASS Dog()
13 SUBCLASSOF Animal
14 INIT {
15 PRINTLNS "A dog was born!"
16 }
17 [
18 METHOD makeSound() {
19 PRINTLNS "Woof!"
20 }
21 ]
22

23 CLASS Cat()
24 SUBCLASSOF Animal
25 INIT {
26 PRINTLNS "A cat was born!"
27 }
28 [
29 METHOD makeSound() {
30 PRINTLNS "Meow!"
31 }
32 ]
33 ] DO {
34 INT choice
35 OBJ Animal chosenOne
36

37 PRINTLNS "What kind of animal do you like most?"
38 PRINTLNS "0: Dogs"
39 PRINTLNS "1: Cats"
40 PRINTLNS "otherwise: a different one"
41

42 READ choice
43 IF choice = 0 THEN {
44 PRINTLNS "Congratulations, you get a dog!"
45 chosenOne := Dog()
46 }
47 IF choice = 1 THEN {
48 PRINTLNS "Congratulations, you get a cat!"
49 chosenOne := Cat()
50 }
51 IF NOT choice = 0 THEN {
52 IF NOT choice = 1 THEN {
53 PRINTLNS "Congratulations, you get some other animal!"
54 chosenOne := Animal()
55 }
56 }
57 PRINTLNS "What sound does it make?"
58 CALL chosenOne.makeSound()
59 }
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Listing 3.9: Example program animals.olang

Any of the assignments in lines 45, 49 and 54 is valid according to subtype polymorphism,
since the resulting object is always of subtype of the variable chosenOne. Still, a question arises
in line 58. Since both Cat and Dog override makeNoise() from Animal, and the behaviour of
a variable in the program must reflect its content, the method that is called must be different in
each case. This is indeed true. Running the program with input 0 yields:

What kind of animal do you like most?
0: Dogs
1: Cats
otherwise: a different one
0
Congratulations, you get a dog!
A dog was born!
What sound does it make?
Woof!

Input 1 results in expectedly different behaviour:

What kind of animal do you like most?
0: Dogs
1: Cats
otherwise: a different one
1
Congratulations, you get a cat!
A cat was born!
What sound does it make?
Meow!

This means that the method that is actually called can not be determined from the type of the
variable alone, since it is not possible to know at compile-time about the user input that will
be given, or about the results of all computations that may be involved - it can not be statically
bound. It depends on the type of the object that is referred to by the variable at run-time - this is
called dynamic binding, and it has far-reaching consequences for the implementation of the code
generator and abstract machine discussed in chapter 7 and chapter 6.

To illustrate the utility of inheritance, one might think about implementing a slightly more ad-
vanced calculator than example 3.8 which allows for defining arithmetic expressions and evaluat-
ing them. An arithmetic expression could be an integer, or a sum, difference, product or quotient.
Example 3.10 features a simplified version of the object-oriented composite pattern (see [6]). It
uses the classes

• AExpression in place of the composite interface (together with UnaryAExpression and
BinaryAExpression),

• Atom in place of the leaf class,

• Sum, Difference, Product, Quotient, Faculty and Exponential as composites.

Note that unfortunately, the (invalid) instantiation of one of the interface classes is not checked
by the compiler, and hence leads to a run-time error, since O does not support the declaration of
interfaces or abstract classes (both of which are a kind of class that must not be instantiated).

1 USING [
2 CLASS AExpression()
3 INIT {
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4 PRINTLNS "ERROR: This is an interface"
5 ERROR
6 }
7 [
8 METHOD evaluate() RETURNS INT res {
9 PRINTLNS "ERROR: This is an interface"

10 ERROR
11 }
12

13 METHOD print() {
14 PRINTLNS "ERROR: This is an interface"
15 ERROR
16 }
17 ]
18

19 CLASS UnaryAExpression()
20 SUBCLASSOF AExpression
21 FIELDS OBJ AExpression inner
22 INIT {
23 PRINTLNS "ERROR: This is an interface"
24 ERROR
25 }
26

27 CLASS BinaryAExpression()
28 SUBCLASSOF AExpression
29 FIELDS OBJ AExpression left
30 OBJ AExpression right
31 INIT {
32 PRINTLNS "ERROR: This is an interface"
33 ERROR
34 }
35

36 CLASS Atom(INT number)
37 SUBCLASSOF AExpression
38 FIELDS INT number
39 INIT {
40 this.number := number
41 }
42 [
43 METHOD evaluate() RETURNS INT num {
44 num := this.number
45 }
46

47 METHOD print() {
48 PRINTI this.number
49 }
50 ]
51

52 CLASS Sum(OBJ AExpression left, OBJ AExpression right)
53 SUBCLASSOF BinaryAExpression
54 INIT {
55 this.left := left
56 this.right := right
57 }
58 [
59 METHOD evaluate() RETURNS INT sum {
60 OBJ AExpression left
61 OBJ AExpression right
62 left := this.left
63 right := this.right
64 sum := left.evaluate() + right.evaluate()
65 }
66

67 METHOD print() {
68 OBJ AExpression left
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69 OBJ AExpression right
70 left := this.left
71 right := this.right
72

73 PRINTS "("
74 CALL left.print()
75 PRINTS " + "
76 CALL right.print()
77 PRINTS ")"
78 }
79 ]
80

81 CLASS Difference(OBJ AExpression left, OBJ AExpression right)
82 SUBCLASSOF BinaryAExpression
83 INIT {
84 this.left := left
85 this.right := right
86 }
87 [
88 METHOD evaluate() RETURNS INT diff {
89 OBJ AExpression left
90 OBJ AExpression right
91 left := this.left
92 right := this.right
93 diff := left.evaluate() - right.evaluate()
94 }
95

96 METHOD print() {
97 OBJ AExpression left
98 OBJ AExpression right
99 left := this.left

100 right := this.right
101

102 PRINTS "("
103 CALL left.print()
104 PRINTS " - "
105 CALL right.print()
106 PRINTS ")"
107 }
108 ]
109

110 CLASS Product(OBJ AExpression left, OBJ AExpression right)
111 SUBCLASSOF BinaryAExpression
112 INIT {
113 this.left := left
114 this.right := right
115 }
116 [
117 METHOD evaluate() RETURNS INT product {
118 OBJ AExpression left
119 OBJ AExpression right
120 left := this.left
121 right := this.right
122 product := left.evaluate() * right.evaluate()
123 }
124

125 METHOD print() {
126 OBJ AExpression left
127 OBJ AExpression right
128 left := this.left
129 right := this.right
130

131 PRINTS "("
132 CALL left.print()
133 PRINTS " * "
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134 CALL right.print()
135 PRINTS ")"
136 }
137 ]
138

139 CLASS Quotient(OBJ AExpression dividend, OBJ AExpression divisor)
140 SUBCLASSOF BinaryAExpression
141 INIT {
142 this.left := dividend
143 this.right := divisor
144 }
145 [
146 METHOD evaluate() RETURNS INT product {
147 OBJ AExpression left
148 OBJ AExpression right
149 left := this.left
150 right := this.right
151 INT divisor
152 divisor := right.evaluate()
153 IF divisor = 0 THEN {
154 PRINTLNS "ERROR: divisor must not be zero."
155 ERROR
156 }
157 product := left.evaluate() / divisor
158 }
159

160 METHOD print() {
161 OBJ AExpression left
162 OBJ AExpression right
163 left := this.left
164 right := this.right
165

166 PRINTS "("
167 CALL left.print()
168 PRINTS " / "
169 CALL right.print()
170 PRINTS ")"
171 }
172 ]
173

174 CLASS Faculty(OBJ AExpression inner)
175 SUBCLASSOF UnaryAExpression
176 INIT {
177 this.inner := inner
178 }
179 [
180 METHOD evaluate()
181 RETURNS INT faculty
182 USING [
183 PROCEDURE faculty(INT num) RETURNS INT faculty {
184 IF num < 0 THEN {
185 PRINTLNS "ERROR: Undefined factorial"
186 ERROR
187 }
188 IF num = 0 THEN {
189 faculty := 1
190 }
191 IF num > 0 THEN {
192 faculty := num * faculty(num - 1)
193 }
194 }
195 ] {
196 OBJ AExpression inner
197 inner := this.inner
198 INT num
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199 num := inner.evaluate()
200 faculty := faculty(num)
201 }
202

203 METHOD print() {
204 OBJ AExpression inner
205 inner := this.inner
206

207 PRINTS "("
208 CALL inner.print()
209 PRINTS "!)"
210 }
211 ]
212

213 CLASS Exponential(OBJ AExpression base, OBJ AExpression exponent)
214 SUBCLASSOF BinaryAExpression
215 INIT {
216 this.left := base
217 this.right := exponent
218 }
219 [
220 METHOD evaluate()
221 RETURNS INT exp
222 USING [
223 PROCEDURE exp(INT base, INT exponent) RETURNS INT exp {
224 IF exponent < 0 THEN {
225 PRINTLNS "ERROR: Illegal exponent"
226 ERROR
227 }
228 IF base = 0 THEN {
229 exp := 0
230 IF exponent = 0 THEN {
231 exp := 1
232 }
233 }
234 IF NOT base = 0 THEN {
235 IF exponent = 0 THEN {
236 exp := 1
237 }
238 IF exponent > 0 THEN {
239 exp := base * exp(base, exponent - 1)
240 }
241 }
242 }
243 ] {
244 OBJ AExpression base
245 base := this.left
246 OBJ AExpression exponent
247 exponent := this.right
248 INT b
249 b := base.evaluate()
250 INT e
251 e := exponent.evaluate()
252 exp := exp(b, e)
253 }
254

255 METHOD print() {
256 OBJ AExpression left
257 OBJ AExpression right
258 left := this.left
259 right := this.right
260

261 PRINTS "("
262 CALL left.print()
263 PRINTS "^"
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264 CALL right.print()
265 PRINTS ")"
266 }
267 ]
268

269 ] DO {
270 OBJ AExpression exp
271 exp := Product(Exponential(Faculty(Atom(3)), Exponential(Atom(3), Atom(3))),

Quotient(Product(Atom(3), Atom(4)), Difference(Atom(9), Atom(7))))↪→

272

273 CALL exp.print()
274 PRINTS " = "
275 PRINTI exp.evaluate()
276 }

Listing 3.10: Example program expression.olang

Note the deliberate use of subtype polymorphism and dynamic binding in lines 271, 273 and
275, as well as the recursive method calls. Instead of entering the expression through the standard
input, it is directly defined in the program. Running the program yields the following output:

(((3!)^(3^3)) * ((3 * 4) / (9 - 7))) = 6140942214464815497216

3.5.2 Static binding and invocation ambiguity

While method invocations are dynamically bound, the formal parameters of methods and pro-
cedures are statically bound in O. To understand what static binding means, and how it differs
from dynamic binding, it might be useful to consider example 3.9 once again. In examples 3.6 and
3.7, it was demonstrated how a procedure could be substituted by a method. Once inheritance is
involved, this substitution becomes problematic:

1 USING [
2 CLASS Animal()
3 INIT {
4 PRINTLNS "An animal was born!"
5 }
6 [
7 METHOD makeSound() {
8 PRINTLNS "*generic animal sound*"
9 }

10 ]
11

12 CLASS Dog()
13 SUBCLASSOF Animal
14 INIT {
15 PRINTLNS "A dog was born!"
16 }
17 [
18 METHOD makeSound() {
19 PRINTLNS "Woof!"
20 }
21 ]
22

23 CLASS Cat()
24 SUBCLASSOF Animal
25 INIT {
26 PRINTLNS "A cat was born!"
27 }
28 [
29 METHOD makeSound() {
30 PRINTLNS "Meow!"
31 }
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32 ]
33

34 PROCEDURE makeSound(OBJ Animal a) {
35 PRINTLNS "*generic animal sound*"
36 }
37

38 PROCEDURE makeSound(OBJ Dog d) {
39 PRINTLNS "Woof!"
40 }
41

42 PROCEDURE makeSound(OBJ Cat c) {
43 PRINTLNS "Meow!"
44 }
45 ] DO {
46 OBJ Animal a
47 a := Animal()
48 CALL makeSound(a)
49 CALL a.makeSound()
50 a := Dog()
51 CALL makeSound(a)
52 CALL a.makeSound()
53 a := Cat()
54 CALL makeSound(a)
55 CALL a.makeSound()
56 }

Listing 3.11: Example program animals-procedures.olang

One might think that the invocations makeSound(a) and a.makeSound() would result in
the same output given that the defined procedures mirror the methods above. But in fact, the
effect is completely different, as the output shows:

An animal was born!

*generic animal sound*
*generic animal sound*
A dog was born!

*generic animal sound*
Woof!
A cat was born!

*generic animal sound*
Meow!

The second and third invocations produce different outputs since formal parameters are statically
bound. This static binding uses only syntactic information about the involved types that is avail-
able at compile-time. In this case, the compiler knows that the variable a is of type OBJ Animal
- but not about the exact type of the involved values at run-time, as shown in 3.9.

Implementing dynamic binding for formal parameters is possible, but not usually done for
two reasons. Firstly, the implementation is relatively slow and complicated - invocations rely
on runtime type information and extensive checks must be performed before every invocation.
Secondly, it can make program execution more unpredictable, especially once parameter lists get
longer and more overloaded procedures or methods (that is, multiple declarations with same
name but different formal parameter lists) are involved. This holds especially true for mini-
languages where simplicity and clarity is of importance.

To find the correct procedure or method to invoke, the compiler first calculates the set of meth-
ods or procedures that are applicable for the given invocation, and then picks the most specific
match (if a most specific match exists). To see why this process is not as simple as it seems, and
that unexpected failure modes exist, a more precise notion of applicable and most specific is needed.

The first step is to generalize the subtype relation to sequences of types.
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Definition 7: applicability relation

A finite sequence S of types is applicable to another sequence T of types if both share the
same length and any two respective members are related through the subtype relation:

(S)n
i=0 <: (T )m

i=0 :⇔ n = m ∧ ∀0 ≤ i ≤ n. Si <: Ti

The reflexivity, antisymmetry and transitivity of the applicability relation follows from the
subtype relation’s properties, hence the applicability relation is also a weak partial order.

An invocation then matches a method or procedure if the name matches and the invocation’s
sequence of compile-time parameter expression types is applicable to the sequence of types of the
formal parameter list. Formally, the set of matching procedures or methods can be defined:

Definition 8: matching set

Given the set C of procedures or methods in question and an invocation of name N, with
sequence T of expression types, the set of matching type sequences or matching set M is

M = { T ′ | ∃p ∈C. N = name(p) ∧ T ′ = types(p) ∧ T <: T ′ }

The name and types functions denote the corresponding procedure or method name and
type sequence.

The matching set forms a weak partially ordered set together with the applicability relation.
The most specific match is the procedure or method whose formal parameter list corresponds to
the minimum of the matching set. In case there is no minimum, the matching set is either empty
or ambiguous.

To illustrate this, consider again example 3.10 of arithmetic expressions, but with some addi-
tional procedure definitions in the preamble:

...
PROCEDURE foo(OBJ AExpression e, OBJ AExpression e) { ... }
PROCEDURE foo(OBJ AExpression e, OBJ Atom a) { ... }
PROCEDURE foo(OBJ Atom a, OBJ AExpression e) { ... }

] DO {
OBJ Atom one
OBJ Atom two
...
CALL foo(one, two)

}

The invocation’s matching set is

(OBJ AExpression, OBJ AExpression)

(OBJ AExpression, OBJ Atom) (OBJ Atom, OBJ AExpression)

Since the set has no minimum, it is ambiguous and the invocation fails at compile-time.
The problem can be alleviated by removing one of the procedures or adding a fourth:

...
PROCEDURE foo(OBJ AExpression e, OBJ AExpression e) { ... }
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PROCEDURE foo(OBJ AExpression e, OBJ Atom a) { ... }
PROCEDURE foo(OBJ Atom a, OBJ AExpression e) { ... }
PROCEDURE foo(OBJ Atom aOne, OBJ Atom aTwo) { ... }

] DO {
OBJ Atom one
OBJ Atom two
...
CALL foo(one, two)

}

With this fourth procedure, the matching set is

(OBJ AExpression, OBJ AExpression)

(OBJ AExpression, OBJ Atom) (OBJ Atom, OBJ AExpression)

(OBJ Atom, OBJ Atom)

which results in a successful invocation of procedure foo(OBJ Atom aOne, OBJ Atom
aTwo).

3.5.3 Liskov substitution principle

The notion of subtype polymorphism introduced for O is purely syntactic in nature. By inheri-
tance, it is guaranteed that a subclass always exhibits the superclass’s interface. This is sufficient
for ensuring that the program is type-correct in the sense that no sudden crash can occur due
to missing methods or incompatible return values, but it cannot ensure that the program works
correctly for any given subtype. This is because general correctness is a semantic property - it
depends on the behaviour of the objects. The Liskov substitution principle or subtype requirement
(see [9]) formalizes this:

Definition 9: subtype requirement

Let φ(x) be a property provable about objects x of type T. Then φ(y) should be true for
objects y of type S if S <: T.

This notion of behavioural subtyping is more meaningful, but it goes beyond the scope of
simple type checking. The programmer has to ensure correct behaviour using formal methods,
some of which are covered in [9].

As a simple example of a violation of the subtype requirement, consider once again the class
for rational numbers from example 3.8 and consider this override of method add in a subclass
Integer:

CLASS Integer
SUBCLASSOF Rational
...
[

...
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METHOD add(OBJ Rational summand) RETURNS OBJ Rational sum {
sum := this

}
...

]

Even though such a program would be type-correct, it obviously violates the subtype requirement
since the behaviour should be calculating the sum of both numbers, not the identity of the first
number.

3.6 Formal syntax

To conclude the introduction of the language O and prepare for the implementation in the latter
part of the thesis, a formal syntax definition for O is needed. The first step of defining the lexical
syntax was already done in section 3.1. This provides the lexemes that the actual formal grammar
is built upon. The following is a formal grammar described in W3C-EBNF-syntax:

3 Program ::= ('USING' '[' ClassDeclaration* ProcedureDeclaration* ']')?
4 'DO' Command
5 ClassDeclaration ::= 'CLASS' ClassName FormalParameterList
6 ('SUBCLASSOF' ClassName)?
7 ('FIELDS' SymbolDeclaration+)?
8 'INIT' Command
9 ('[' MethodDeclaration+ ']')?

10 IntSymbolDeclaration ::= 'INT' SymbolName
11 ObjectSymbolDeclaration ::= 'OBJ' ClassName SymbolName
12 SymbolDeclaration ::= IntSymbolDeclaration | ObjectSymbolDeclaration
13 FormalParameterList ::= '(' (SymbolDeclaration (',' SymbolDeclaration)*)? ')'
14 ActualParameterList ::= '(' (Expression (',' Expression)*)? ')'
15 MethodDeclaration ::= 'METHOD' ProcedureHeader Command
16 ProcedureDeclaration ::= 'PROCEDURE' ProcedureHeader Command
17 ProcedureHeader ::= SymbolName FormalParameterList
18 ('RETURNS' SymbolDeclaration)?
19 ('USING' '[' ProcedureDeclaration+ ']')?
20 Call ::= SymbolReference ActualParameterList?
21 SymbolReference ::= SymbolName ('.' SymbolName)?
22 Command ::= SymbolReference ':=' Expression
23 | SymbolDeclaration
24 | 'CALL' Call
25 | 'READ' SymbolName
26 | '{' Command+ '}'
27 | 'IF' Condition 'THEN' Command
28 | 'WHILE' Condition 'DO' Command
29 | 'PRINTI' Expression
30 | 'PRINTS' String
31 | 'PRINTLNS' String
32 | 'ERROR'
33 Condition ::= Expression Relation Expression | 'NOT' Condition
34 Relation ::= '=' | '<' | '>'
35 Expression ::= ('+' | '-')? Term (('+' | '-') Term)*
36 Term ::= Factor (( '*' | '/' ) Factor)*
37 Factor ::= Call
38 | ClassName ActualParameterList /* Class Instantiation */
39 | Integer
40 | '(' Expression ')'

Listing 3.12: Formal EBNF grammar for the language O

Since chapter 5 implements an LL(1)-Parser, an LL(1)-grammar is needed. Such a grammar can
be obtained from the above by removing the +, * and ? operators and simulating them with new
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non-terminals. This must be done by relying on right-recursion instead of left-recursion. To check
that the resulting grammar is of type LL(1), the two LL(1)-conditions (see [3]) must be verified by
calculating the corresponding f irst- and f ollow-sets and verifying that they are disjoint. A trans-
formed grammar, suitable for applying it to the online context free grammar checker (see [11]),
can be found in the provided implementation’s file resources/syntax/syntax.grammar-
checker.

Note that the LL(1)-property relies on the lexeme abstraction. Otherwise, lines 29, 30 and 31
alone would destroy the LL(1)-property due to them all beginning with the character ’P’, creating
overlapping f irst-sets for the Command-rule. But since they are treated as the atomic lexemes
PRINTI, PRINTS and PRINTLNS, the sets are disjoint.



CHAPTER 4

Concepts of Compilers

The concepts used in the implementation of O are largely based on adaptations of the ideas for
implementing imperative languages presented in [3]. The language is translated by a compiler
with two main components. The first component is the parser described in chapter 5, which uti-
lizes the underlying lexical syntax and formal grammar defined in section 3.1 and section 3.6 to
create an abstract tree representation of the program. This representation is then used by the code
generator described in chapter 7 to generate the machine code. Instead of a physical machine, the
translation target is an abstract machine that is simulated by a Haskell program. This program is
implemented as a separate component described in chapter 6.

The approach of using abstract machines provides two major benefits. Firstly, using a simu-
lated machine makes a program portable to anywhere this machine can run. This obviates the
need for far-reaching abstractions like intermediate-code generation (see [1]) to support multiple
machine architectures with the same compiler. Secondly, since an abstract machine is not bound
to any physical machine model, it can be designed to match the language’s memory model and
type system very well. Both combined result in a considerable simplification of the code genera-
tor, at the relatively lower cost of introducing a new, but independent component to the system.
This has helped projects like the Java Virtual Machine to great success - today, in addition to Java,
there are numerous languages compiled to JVM bytecode. And it is also the main reason for
pursuing the abstract machine approach for the implementation of O.
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CHAPTER 5

Tokenizer and Parser Implementation for O

The parsing process of the language consists of two separate phases: the tokenization or lexing
phase and the actual parsing phase. For each phase, there is a separate component that realizes the
corresponding functionality. In the following sections, both of them will be discussed in greater
detail.

5.1 Tokenizer

The tokenizer realizes a mapping from an input sequence of characters, which represents the
program text, to a list of abstract tokens. The abstract tokens represent the keywords, symbols
and identifiers that can occur in a program. For example, the tokenizer would map the input
":=" to a token that could be called (::=). Some of these abstract tokens can carry additional
information as well, take the input "Rational" as an example. This is not a keyword or symbol
of our language, but it is a valid class identifier. The corresponding abstract token has to carry
this name with it, so the tokenizer could map this input to ClassName "Rational". The input
"i := i + 1" would then be mapped to the list [SymbolName "i", (::=), SymbolName
"i", (:+), Integer 1].

In other words, the tokenizer receives as input a sequence of characters and returns a sequence
of tokens. It can be implemented as a simple backtracking parser that produces a corresponding
token if the input matches a given mapping from keywords to abstract tokens. The parsing library
parsec 1 happens to lend itself well to this kind of task, so it is also being used for the tokenizer.
This token-parser needs the capability to backtrack in case some tokens’ string representations
share a non-empty prefix, which is the case for this language - amongst others, there are both the
tokens PROGRAM and PROCEDURE. To incorporate backtracking, parsec’s try-operator is used.

5.2 Parser

The parser fulfils 3 functions in the compiling process:

1. Ensuring that the program is syntactically correct,
1Parsec is a parser combinator library (formerly called combinator parsers) that allows the construction of complex

parsers from simple ones. For more information about the library, see [8]. To ease the understanding of the token-parser’s
code, it might be helpful to look at the parser (see 5.2) first.
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2. Creating a data structure that holds all information the code generator (see chapter 7) re-
quires in order to generate the program’s machine code (see chapter 6),

3. Discarding information like braces or separators, that the code generator does not need.

To accomplish this, it first derives the input from the target grammar. As was already estab-
lished in chapter 3, the grammar is of type LL(1). Both LL(1)-Conditions together imply that the
derivation process can be defined in a deterministic way, since at any particular point during a
leftmost derivation, there is at most one applicable production that matches the input (compare
[3]). Therefore, backtracking is not needed.

The parser is implemented as a non-backtracking recursive descent parser. A recursive descent
parser performs the derivation recursively, defining parsers not only for the start symbol, but for
any non-terminal. These parsers then recursively run each other and consume the prefix of the
input stream that belongs to their respective non-terminal.

This recursive structure makes it simple to construct the Abstract Syntax Tree (AST) directly as
part of the derivation process. The AST holds all information that is necessary for generating the
machine code.

Example: Parsing expressions and comparisons

Suppose one needs to parse the comparison "1 + 1 = 2". The resulting abstract token list is
[Integer 1, (:+), Integer 1, (:=), Integer 2]. In the provided implementation,
these are the data-definitions for comparisons and expressions, with the relevant lines high-
lighted:

data Condition
= Comparison Expression Relation Expression
| Negation Condition

data Relation = Equals | Smaller | Greater

data Expression
= Expression (NonEmpty (Sign, Term))

data Term
= Term Factor [(Operator, Factor)]

data Factor
= CallFactor Call
| ClassInstantiation ClassName ActualParameterList
| Integer Integer
| CompositeFactor Expression

data Sign = Plus | Minus

data Operator = Times | Divide

The corresponding parser code that generates these structures is:

condition =
(Comparison <$> expression <*> relation <*> expression)
<|> (Negation <$> (accept NOT *> condition))

relation =
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(accept (:<) *> pure Smaller)
<|> (accept (:>) *> pure Greater)
<|> (accept (:=) *> pure Equals)

expression =
Expression <$> ((:|) <$> firstSignTerm <*> manySignTerms)
where
firstSignTerm = do

ms <- optionMaybe sign
t <- term
return (fromMaybe Plus ms, t)

manySignTerms = many ((,) <$> sign <*> term)

term = Term <$> factor <*> many ((,) <$> operator <*> factor)

factor =
(CallFactor <$> call)
<|> (ClassInstantiation

<$> acceptClassName
<*> actualparameterlist)

<|> (Integer <$> acceptInteger)
<|> (CompositeFactor <$>

(accept OpenRoundBracket
*> expression
<* accept CloseRoundBracket))

sign =
(accept (:-) *> pure Minus)
<|> (accept (:+) *> pure Plus)

operator =
(accept (:*) *> pure Times)
<|> (accept (:/) *> pure Divide)

Above code warrants further explanation. The provided implementation uses the parser com-
binator library parsec (see [8]) which relies heavily on various instances of applicative functors
and monads. Notably, parsers defined in parsec are automatically an applicative and monadic ac-
tion. The code Comparison <$> expression <*> relation <*> expression will cre-
ate a parser that takes the resulting expressions and relation in order, and wraps them into a
Comparison. The same can be accomplished with monadic notation as well:

do
e1 <- expression
r <- relation
e2 <- expression
return $ Comparison e1 r e2

The provided implementation uses a combination of applicative notation in most cases and
monadic notation in cases where the structure of the syntax tree diverges more from the formal
grammar.

The Alternative-operator (<|>) implements branching:

sign =
(accept (:-) *> pure Minus)
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<|> (accept (:+) *> pure Plus)

In case the next token is a (:-), the parser yields the result of accept (:-) *> pure Minus.
Otherwise, the next branch is tried. <|> is right-associative, which effectively results in parsec
evaluating the alternatives in sequential order.

It is worth mentioning that parsec’s try-operator is absent in the parser implementation, due
to the fact that it is non-backtracking.

With this in mind, one can see that the token list [Integer 1, (:+), Integer 1,
(:=), Integer 2] will get parsed into the following syntax tree:

Comparison

Expression Equals Expression

:| :|

(,) : (,) []

Plus Term (,) [] Plus Term

Integer Plus Term Integer []

1 Integer [] 2

1

Figure 5.1: syntax tree for comparison "1 + 1 = 2"

5.3 Note on online algorithms and lazy evaluation

In most compilers, the tokenizer is implemented as an online-algorithm (see [2]). Translated to the
functional paradigm, this would mean that the parser could start evaluating before the tokenizer
is finished evaluating its input. One might think that Haskell’s lazy evaluation strategy (see [5])
could effectively result in the tokenizer being evaluated in this fashion. Unfortunately, indepen-
dent of the evaluation strategy, the provided implementation does not allow for this property -
for the parser to start evaluating, the tokenizer must have already finished evaluating the input.
This is due to the fact that parsec (which is, as mentioned, also used for the tokenizer) always
distinguishes between a successful parse (Right _) and a parse error (Left _), and even the
last input character could still trigger an error. The same argument holds true for the parser in the
code generator’s context (see chapter 7), which is less relevant, but still interesting to note.



CHAPTER 6

Abstract Machine Implementation for O

The abstract machine for O consists of a set of simple core instructions along with the necessary
data structures, which will be introduced in the next section. This core machine supports O’s
imperative constructs. In the latter sections, the core is extended to support O’s procedures and
object-oriented features. The extension of the instruction set then serves as the target language of
the code generator (see chapter 7). The machine is implemented as a Haskell program.

One feature that is notably absent from both the abstract machine and code generator is garbage
collection. Garbage collection is a mechanism of reclaiming memory that is occupied by objects
that are safe to remove because they are neither directly nor indirectly referenced in the program
any more (see [1]). The omission of a garbage collection mechanism would impose an unaccept-
able restriction for any modern production-grade language supporting object-oriented concepts
without explicit memory management. But it is a compromise worth making in order to simplify
both components of the provided implementation.

6.1 The core machine

The core machine is stack-based - it builds on a set of machine instructions that operate by manip-
ulating the machine’s stack memory and registers. Additionally, certain machine instructions can
make the machine ask for an input from the runtime environment or generate some output to the
runtime environment of the machine.

The provided implementation defines three runtime environments, one of which is the default
environment that connects to the operating system’s standard input and output, the other two are
for testing and generating traces of the program execution.

For storing the machine instructions to execute, the machine also has a code memory code,
which is simply a sequence of instructions. During the runtime of the machine, this code memory
is not changed.

The core machine has two registers. The instruction register I, which stores the instruction
that is currently being executed, and the program counter PC, which stores the address of the next
instruction in the code memory.

The stack memory stack is a mutable sequence of integer values that is always initialized as
[0, 0]. This non-empty initial value is to ensure compatibility of machine instructions after
the extensions in section 6.2 are applied - otherwise, it can be ignored. In contrast to the code
memory, the stack memory can grow or shrink during the runtime of the machine. As the name
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suggests, the stack memory is generally being used as a stack, which means that values are either
pushed onto the top of the stack or they are popped (removed) from the top of the stack - the top
meaning the rightmost value, or value with the highest address in the sequence. Despite the name
suggesting otherwise, some instructions can and will read or write values below the top of the
stack.

The core instructions are explained in table 6.1 and 6.2, presented both using an intuitive
explanation and pseudocode. The pseudocode uses the following abbreviations:

Abbreviation Meaning
loadInstruction a

I := code[a]
PC := a + 1

pop Pop the stack’s topmost value, yielding the popped
value.

push i Push the value of i onto the stack.
print e Print value of expression e to the environment out-

put.
read Read an integer value from the environment input,

yielding the integer value.
nop Do nothing.

Instruction Intuition Pseudocode
PushInt n Push integer n onto the stack.

push n
loadInstruction PC

LoadStack a Load the value from stack
address a and push it onto
the stack.

push stack[2 + a]
loadInstruction PC

StoreStack a Pop the stack’s topmost
value and store it to stack
address a.

stack[2 + a] := pop
loadInstruction PC

CombineUnary op Combine the stack’s topmost
value with operator op. Sup-
ported operators: NOT (¬)

push (op pop)
loadInstruction PC

CombineBinary op Combine the stack’s two top-
most values using opera-
tor op. Supported opera-
tors: Equals (=), Smaller (<),
Greater (>), Plus (+), Minus
(-), Times (*), Divide (/)

snd := pop
fst := pop
push (op fst snd)
loadInstruction PC

Table 6.1: The core machine instructions, part 1



CHAPTER 6. ABSTRACT MACHINE IMPLEMENTATION FOR O 35

Jump a Unconditionally jump to
code address a. loadInstruction a

JumpIfFalse a Jump to code address a if the
stack’s topmost value rep-
resents a boolean value of
False.

if pop = 0
then loadInstruction a
else loadInstruction PC

Read Read an integer value from
the environment’s input and
push it onto the stack.

push read
loadInstruction PC

PrintInt Pop the stack’s topmost
value and print it to the
environment’s output.

print pop
loadInstruction PC

PrintStr s Print the string s to the envi-
ronment’s output. print s

loadInstruction PC

PrintStrLn s Print the string s followed by
a new line character to the
environment’s output.

print (s ++ '\n')
loadInstruction PC

Halt Halt the machine.
nop

Table 6.2: The core machine instructions, part 2

Stepping the machine is done by executing one instruction. When a machine program is to
be run, a corresponding machine is created, with the registers and memory initialized. Running
a machine means stepping it repeatedly until the Halt-instruction is reached. Therefore, the
instruction cycle can be described by pseudocode 6.1.

code := program
I := code[0]
PC := 1
stack := [0, 0]
while I != Halt do executeInstruction

Listing 6.1: Instruction cycle for core machine

As an example of a machine program execution, consider program 6.2 which calculates the
factorial of a natural number.

1 DO {
2 PRINTS "Please enter a natural number n: "
3 INT n
4 READ n
5 INT faculty
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6 faculty := 1
7 IF n < 0 THEN {
8 PRINTI n
9 PRINTLNS " is not a natural number!"

10 ERROR
11 }
12 WHILE n > 0 DO {
13 faculty := faculty * n
14 n := n - 1
15 }
16 PRINTS "n! = "
17 PRINTI faculty
18 }

Listing 6.2: Example program fac0.olang

The compiler translates this O-program into the machine program depicted in listing 6.3. Pro-
gram instructions are annotated with a mix of corresponding elements from O and machine pseu-
docode to make the program more readable.

0 PushInt 0 # BEGIN of main program - stack memory allocation for n
1 PushInt 0 # stack memory allocation for faculty
2 PrintStr "Please enter a natural number n: "
3 PushInt 0
4 StoreStack 0 # initialize n := 0
5 Read
6 StoreStack 0 # READ n
7 PushInt 0
8 StoreStack 1 # initialize faculty := 0
9 PushInt 1

10 StoreStack 1 # faculty := 1
11 LoadStack 0 # push n
12 PushInt 0
13 CombineBinary Smaller # IF n < 0
14 JumpIfFalse 19 # skip IF body if n >= 0
15 LoadStack 0 # push n
16 PrintInt # PRINTI n
17 PrintStrLn " is not a natural number!"
18 Halt # ERROR
19 LoadStack 0 # push n
20 PushInt 0
21 CombineBinary Greater # WHILE n > 0
22 JumpIfFalse 32 # skip WHILE body if n <= 0
23 LoadStack 1 # push faculty
24 LoadStack 0 # push n
25 CombineBinary Times # push faculty * n
26 StoreStack 1 # faculty := faculty * n
27 LoadStack 0 # push n
28 PushInt 1
29 CombineBinary Minus # push n - 1
30 StoreStack 0 # n := n - 1
31 Jump 19 # end of WHILE body: return to condition
32 PrintStr "n! = "
33 LoadStack 1 # push faculty
34 PrintInt # PRINTI faculty
35 Halt # END of main program

Listing 6.3: Annotated machine code for example 6.2

Run with n = 3, machine program 6.3 produces the sequence of machine states depicted in
table 6.3.
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Step PC I Stack
0 1 PushInt 0 [0,0]
1 2 PushInt 0 [0,0,0]
2 3 PrintStr "Please enter a natural number n: " [0,0,0,0]
3 4 PushInt 0 [0,0,0,0]
4 5 StoreStack 0 [0,0,0,0,0]
5 6 Read [0,0,0,0]
6 7 StoreStack 0 [0,0,0,0,3]
7 8 PushInt 0 [0,0,3,0]
8 9 StoreStack 1 [0,0,3,0,0]
9 10 PushInt 1 [0,0,3,0]

10 11 StoreStack 1 [0,0,3,0,1]
11 12 LoadStack 0 [0,0,3,1]
12 13 PushInt 0 [0,0,3,1,3]
13 14 CombineBinary Smaller [0,0,3,1,3,0]
14 15 JumpIfFalse 19 [0,0,3,1,0]
15 20 LoadStack 0 [0,0,3,1]
16 21 PushInt 0 [0,0,3,1,3]
17 22 CombineBinary Greater [0,0,3,1,3,0]
18 23 JumpIfFalse 32 [0,0,3,1,1]
19 24 LoadStack 1 [0,0,3,1]
20 25 LoadStack 0 [0,0,3,1,1]
21 26 CombineBinary Times [0,0,3,1,1,3]
22 27 StoreStack 1 [0,0,3,1,3]
23 28 LoadStack 0 [0,0,3,3]
24 29 PushInt 1 [0,0,3,3,3]
25 30 CombineBinary Minus [0,0,3,3,3,1]
26 31 StoreStack 0 [0,0,3,3,2]
27 32 Jump 19 [0,0,2,3]
28 20 LoadStack 0 [0,0,2,3]
29 21 PushInt 0 [0,0,2,3,2]
30 22 CombineBinary Greater [0,0,2,3,2,0]
31 23 JumpIfFalse 32 [0,0,2,3,1]
32 24 LoadStack 1 [0,0,2,3]
33 25 LoadStack 0 [0,0,2,3,3]
34 26 CombineBinary Times [0,0,2,3,3,2]
35 27 StoreStack 1 [0,0,2,3,6]
36 28 LoadStack 0 [0,0,2,6]
37 29 PushInt 1 [0,0,2,6,2]
38 30 CombineBinary Minus [0,0,2,6,2,1]
39 31 StoreStack 0 [0,0,2,6,1]
40 32 Jump 19 [0,0,1,6]
41 20 LoadStack 0 [0,0,1,6]
42 21 PushInt 0 [0,0,1,6,1]
43 22 CombineBinary Greater [0,0,1,6,1,0]
44 23 JumpIfFalse 32 [0,0,1,6,1]
45 24 LoadStack 1 [0,0,1,6]
46 25 LoadStack 0 [0,0,1,6,6]
47 26 CombineBinary Times [0,0,1,6,6,1]
48 27 StoreStack 1 [0,0,1,6,6]
49 28 LoadStack 0 [0,0,1,6]
50 29 PushInt 1 [0,0,1,6,1]
51 30 CombineBinary Minus [0,0,1,6,1,1]
52 31 StoreStack 0 [0,0,1,6,0]
53 32 Jump 19 [0,0,0,6]
54 20 LoadStack 0 [0,0,0,6]
55 21 PushInt 0 [0,0,0,6,0]
56 22 CombineBinary Greater [0,0,0,6,0,0]
57 23 JumpIfFalse 32 [0,0,0,6,0]
58 33 PrintStr "n! = " [0,0,0,6]
59 34 LoadStack 1 [0,0,0,6]
60 35 PrintInt [0,0,0,6,6]
61 36 Halt [0,0,0,6]

Table 6.3: Machine trace for program 6.3, n = 3

Note that the manual reproduction of above trace would show the irregularity of Read ac-
tually taking two steps to execute. The presented trace was obtained using a non-interactive
machine environment. All interactive machine environments are initiated with an empty ma-
chine input buffer, which causes the machine to request a new input when encountering a Read-
instruction. This delays the execution by one step. Non-interactive environments like the testing-
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environment pre-supply all necessary input in the buffer, so the execution is not delayed.

6.2 Support for procedures

To simplify the code generator, the abstract machine should explicitly support procedure invoca-
tions. To understand how this support is to be implemented, it is necessary to consider again how
procedure invocations work in O. When a procedure is invoked, parameter values are copied into
the context of the procedure. Then, the procedure code execution starts. After that, the program
returns to the next instruction after the invocation - possibly returning some value, and discarding
the local variables and parameter values of the invocation.

This hints at the possibility of managing the procedure invocations’ data on a stack, making it
compatible with the structure of the abstract machine. On the machine’s stack, the data that rep-
resents the context of a procedure invocation is called a procedure activation record or stack frame.
A stack frame contains all information that is needed to execute the procedure’s machine instruc-
tions correctly for the given invocation. As procedure invocations continue to happen, new stack
frames are pushed onto the machine’s stack. They are popped when the corresponding invoca-
tion ends. Each stack frame has a base address that is the index of the first element in the frame.
The data in a stack frame consists of:

Data Description
dynamic link DL The base address of the directly preceding stack

frame - which is the one that belongs to the caller
of the current invocation.

return address RA The address of the instruction in codewhere the ex-
ecution should continue after the procedure finishes
execution.

local variables A sequence of integer values representing the state
of the invocation’s parameters, local declarations
and return parameter.

local stack A sequence of integer values that can grow and
shrink during procedure execution and that serves
as temporary memory for executing O-instructions.

The main program can be thought of having the first stack frame, with an undefined dynamic
link and return address. This is not a problem since the program ends with the main program in-
vocation. Table 6.4 displays the stack frame layout followed in the abstract machine, from bottom
(index 0) to top.

Relative index Content
0 DL
1 RA

2 .. n+1 The n local variables
n+2 .. The local stack

Table 6.4: Stack frame layout for abstract machine

To store the base address of the current invocation’s stack frame, the machine is extended with
a base address register B.

Since in O, procedures are self-contained in that they cannot refer to external variables, the
abstract machine does not need to implement the kind of relative addressing used for accessing
static predecessors (see [3]). The only kind of relative addressing needed is the addressing of local
variables relative to the current base address. Table 6.5 shows the changes necessary to make
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the core machine instructions capable of relative addressing. Tables 6.6 and 6.7 show the new
machine instructions that are introduced. Additionally, the instruction cycle is slightly altered to
reflect the addition of the base address register B:

code := program
I := code[0]
PC := 1
stack := [0, 0]
B := 0
while I != Halt do executeInstruction

Listing 6.4: Instruction cycle for core machine with procedures

Instruction Intuition Pseudocode
LoadStack a Load the value from relative

stack address a and push it
onto the stack. push stack[B + 2 + a]

loadInstruction PC

StoreStack a Pop the stack’s topmost
value and store it to relative
stack address a. stack[B + 2 + a] := pop

loadInstruction PC

Table 6.5: Necessary adaptations for procedure support in core machine instructions

Instruction Intuition Pseudocode
CallProcedure a n Invoke the procedure at code

address a, creating a new
stack frame and passing n
parameters.

p_n := pop
...
p_1 := pop
push B
B := length stack - 1
push PC
push p_1
...
push p_n
loadInstruction a

Table 6.6: New instruction CallProcedure



CHAPTER 6. ABSTRACT MACHINE IMPLEMENTATION FOR O 40

Instruction Intuition Pseudocode
Return ret Return from the current pro-

cedure invocation, jumping
back to the return address,
popping the current stack
frame, and, depending on
ret, possibly returning a
value.

BOld := B
ra := stack[B + 1]

if ret == True
then retVal := pop

B := stack[B]
while length stack > BOld
do pop

if ret == True
then push retVal

loadInstruction ra

Table 6.7: New instruction Return

To illustrate these additions, consider again in example 6.5 the computation of factorials, this
time using a recursive procedure.

1 USING [
2 PROCEDURE fac(INT n) RETURNS INT faculty {
3 IF n < 0 THEN {
4 PRINTI n
5 PRINTLNS " is not a natural number!"
6 ERROR
7 }
8 IF n = 0 THEN {
9 faculty := 1

10 }
11 IF n > 0 THEN {
12 faculty := n * fac(n - 1)
13 }
14 }
15 ] DO {
16 PRINTS "Please enter a natural number n: "
17 INT n
18 READ n
19 PRINTS "n! = "
20 PRINTI fac(n)
21 }

Listing 6.5: Example program fac1.olang

The code generator translates program 6.5 to the machine program depicted in listing 6.6.

0 Jump 29 # skip procedure fac
1 PushInt 0 # BEGIN of procedure fac - stack memory allocation for faculty
2 LoadStack 0 # push n
3 PushInt 0
4 CombineBinary Smaller # IF n < 0
5 JumpIfFalse 10 # skip IF body if n >= 0
6 LoadStack 0 # push n
7 PrintInt # PRINTI n
8 PrintStrLn " is not a natural number!"
9 Halt # ERROR
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10 LoadStack 0 # push n
11 PushInt 0
12 CombineBinary Equals # IF n = 0
13 JumpIfFalse 16 # skip IF body if n != 0
14 PushInt 1
15 StoreStack 1 # faculty := 1
16 LoadStack 0 # push n
17 PushInt 0
18 CombineBinary Greater # IF n > 0
19 JumpIfFalse 27 # skip IF body if n <= 0
20 LoadStack 0 # push n
21 LoadStack 0 # push n
22 PushInt 1
23 CombineBinary Minus # push n - 1
24 CallProcedure 1 1 # push fac(n - 1)
25 CombineBinary Times # push n * fac(n - 1)
26 StoreStack 1 # faculty := n * fac(n - 1)
27 LoadStack 1 # push faculty (return value)
28 Return True # END of procedure - return with value of faculty
29 PushInt 0 # BEGIN of main program - stack memory allocation for n
30 PrintStr "Please enter a natural number n: "
31 PushInt 0
32 StoreStack 0 # initialize n := 0
33 Read
34 StoreStack 0 # READ n
35 PrintStr "n! = "
36 LoadStack 0 # push n
37 CallProcedure 1 1 # push fac(n)
38 PrintInt # PRINTI fac(n)
39 Halt # END of main program

Listing 6.6: Annotated machine code for example 6.5

Although the machine program is barely longer than the iterative version from section 6.1, the
computation is significantly slower due to the required management of stack frames. Tables 6.8
and 6.9 show the trace produced when running the program with n = 3.

Step PC I Stack B
0 1 Jump 29 [0,0] 0
1 30 PushInt 0 [0,0] 0
2 31 PrintStr "Please enter a natural number n: " [0,0,0] 0
3 32 PushInt 0 [0,0,0] 0
4 33 StoreStack 0 [0,0,0,0] 0
5 34 Read [0,0,0] 0
6 35 StoreStack 0 [0,0,0,3] 0
7 36 PrintStr "n! = " [0,0,3] 0
8 37 LoadStack 0 [0,0,3] 0
9 38 CallProcedure 1 1 [0,0,3,3] 0

10 2 PushInt 0 [0,0,3,0,38,3] 3
11 3 LoadStack 0 [0,0,3,0,38,3,0] 3
12 4 PushInt 0 [0,0,3,0,38,3,0,3] 3
13 5 CombineBinary Smaller [0,0,3,0,38,3,0,3,0] 3
14 6 JumpIfFalse 10 [0,0,3,0,38,3,0,0] 3
15 11 LoadStack 0 [0,0,3,0,38,3,0] 3
16 12 PushInt 0 [0,0,3,0,38,3,0,3] 3
17 13 CombineBinary Equals [0,0,3,0,38,3,0,3,0] 3
18 14 JumpIfFalse 16 [0,0,3,0,38,3,0,0] 3
19 17 LoadStack 0 [0,0,3,0,38,3,0] 3
20 18 PushInt 0 [0,0,3,0,38,3,0,3] 3
21 19 CombineBinary Greater [0,0,3,0,38,3,0,3,0] 3
22 20 JumpIfFalse 27 [0,0,3,0,38,3,0,1] 3
23 21 LoadStack 0 [0,0,3,0,38,3,0] 3
24 22 LoadStack 0 [0,0,3,0,38,3,0,3] 3
25 23 PushInt 1 [0,0,3,0,38,3,0,3,3] 3

Table 6.8: Machine trace for program 6.6, n = 3, part 1
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Step PC I Stack B
26 24 CombineBinary Minus [0,0,3,0,38,3,0,3,3,1] 3
27 25 CallProcedure 1 1 [0,0,3,0,38,3,0,3,2] 3
28 2 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2] 8
29 3 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0] 8
30 4 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2] 8
31 5 CombineBinary Smaller [0,0,3,0,38,3,0,3,3,25,2,0,2,0] 8
32 6 JumpIfFalse 10 [0,0,3,0,38,3,0,3,3,25,2,0,0] 8
33 11 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0] 8
34 12 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2] 8
35 13 CombineBinary Equals [0,0,3,0,38,3,0,3,3,25,2,0,2,0] 8
36 14 JumpIfFalse 16 [0,0,3,0,38,3,0,3,3,25,2,0,0] 8
37 17 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0] 8
38 18 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2] 8
39 19 CombineBinary Greater [0,0,3,0,38,3,0,3,3,25,2,0,2,0] 8
40 20 JumpIfFalse 27 [0,0,3,0,38,3,0,3,3,25,2,0,1] 8
41 21 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0] 8
42 22 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2] 8
43 23 PushInt 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,2] 8
44 24 CombineBinary Minus [0,0,3,0,38,3,0,3,3,25,2,0,2,2,1] 8
45 25 CallProcedure 1 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,1] 8
46 2 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1] 13
47 3 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0] 13
48 4 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1] 13
49 5 CombineBinary Smaller [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,0] 13
50 6 JumpIfFalse 10 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,0] 13
51 11 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0] 13
52 12 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1] 13
53 13 CombineBinary Equals [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,0] 13
54 14 JumpIfFalse 16 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,0] 13
55 17 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0] 13
56 18 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1] 13
57 19 CombineBinary Greater [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,0] 13
58 20 JumpIfFalse 27 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1] 13
59 21 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0] 13
60 22 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1] 13
61 23 PushInt 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,1] 13
62 24 CombineBinary Minus [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,1,1] 13
63 25 CallProcedure 1 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,0] 13
64 2 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0] 18
65 3 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0] 18
66 4 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,0] 18
67 5 CombineBinary Smaller [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,0,0] 18
68 6 JumpIfFalse 10 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,0] 18
69 11 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0] 18
70 12 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,0] 18
71 13 CombineBinary Equals [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,0,0] 18
72 14 JumpIfFalse 16 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,1] 18
73 15 PushInt 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0] 18
74 16 StoreStack 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,0,1] 18
75 17 LoadStack 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,1] 18
76 18 PushInt 0 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,1,0] 18
77 19 CombineBinary Greater [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,1,0,0] 18
78 20 JumpIfFalse 27 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,1,0] 18
79 28 LoadStack 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,1] 18
80 29 Return True [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,13,25,0,1,1] 18
81 26 CombineBinary Times [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1,1] 13
82 27 StoreStack 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,0,1] 13
83 28 LoadStack 1 [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,1] 13
84 29 Return True [0,0,3,0,38,3,0,3,3,25,2,0,2,8,25,1,1,1] 13
85 26 CombineBinary Times [0,0,3,0,38,3,0,3,3,25,2,0,2,1] 8
86 27 StoreStack 1 [0,0,3,0,38,3,0,3,3,25,2,0,2] 8
87 28 LoadStack 1 [0,0,3,0,38,3,0,3,3,25,2,2] 8
88 29 Return True [0,0,3,0,38,3,0,3,3,25,2,2,2] 8
89 26 CombineBinary Times [0,0,3,0,38,3,0,3,2] 3
90 27 StoreStack 1 [0,0,3,0,38,3,0,6] 3
91 28 LoadStack 1 [0,0,3,0,38,3,6] 3
92 29 Return True [0,0,3,0,38,3,6,6] 3
93 39 PrintInt [0,0,3,6] 0
94 40 Halt [0,0,3] 0

Table 6.9: Machine trace for program 6.6, n = 3, part 2
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6.3 Support for object-oriented features

Supporting O’s object-oriented features requires supporting the representation of objects in the
abstract machine. As explained in section 3.4, in O, there is a difference between the objects
themselves and their addresses held by object variables. It makes sense to keep addresses on the
stack, where they will be subject to the stack frame management introduced in section 6.2. For
the objects themselves though, this poses a problem. The lifespan of an object is not restricted by
the invocation that created it, so it cannot simply be discarded after the end of an invocation. In
principle, one could think of ways to try to keep the objects on the stack, too, but this is far from
ideal since care must be taken to copy objects that might still be referenced after an invocation
ends. Also, the addresses themselves would need to be changed everywhere a reference is kept.
The obvious solution for avoiding these problems is keeping the objects in a separate region of
memory, which is called the heap memory. An object in the abstract machine’s heap carries a
numeric identifier of the class it belongs to, along with a sequence of data fields that represent the
object’s fields.

Additionally, the machine must support O’s dynamic binding mechanism which makes method
invocations different from procedure invocations in that the invoked method is dependent on the
object at runtime. This is done by introducing method tables that hold the addresses of all methods
of a given class. Method tables are indexed by numeric method identifiers.

The abstract machine is therefore extended by the following data structures:

• A heap memory H that is a map of object addresses to objects,

• an object counter O that is used to generate addresses for newly created objects,

• and a set of method tables MTT that hold the addresses of all methods, which is effectively a
two-dimensional sequence using class and method identifiers as indices.

The instruction cycle is changed to reflect this:

code := program
I := code[0]
PC := 1
stack := [0, 0]
B := 0
H := []
O := 0
MTT := []
while I != Halt do executeInstruction

Listing 6.7: Instruction cycle for core machine with procedures and object-oriented features

Additionally, five new instructions are required which are displayed in tables 6.10 and 6.11.

Instruction Intuition Pseudocode
LoadHeap i Push to the stack the field

value of the object with
address a and field index
i.

a := pop
obj := H[a]
push fields(obj)[i]
loadInstruction PC

Table 6.10: New instructions for support of object-oriented features, part 1
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Instruction Intuition Pseudocode
StoreHeap i Store the stack’s topmost

value to the field with in-
dex i, of object with ad-
dress a where a is the
stack’s second topmost
value.

val := pop
a := pop
fields(H[a])[i] :=

val↪→

loadInstruction PC

AllocateHeap n cid Create on the heap a new
object with n fields and
class identifier cid and
push the object’s address
to the stack.

H[O] := createObj(n,
cid)↪→

push O
O := O + 1
loadInstruction PC

CreateMethodTable cid mt Create a new method ta-
ble mt = [(id0, a0),
..., (idn, an)] with
class identifier cid that
holds the code addresses
a0 ... an for meth-
ods with identifiers id0
... idn.

MTT[cid] := [(id0,
a0), ..., (idn,
an)]

↪→

↪→

loadInstruction PC

CallMethod mid n Invokes method with the
stack’s n + 1 topmost
values as parameters, of
which the first is the ad-
dress of the parameter ob-
ject. The method invoked
is the one with index
mid in the corresponding
method table.

p_n := pop
...
p_1 := pop
oa := pop
push B
B := length stack - 1
push PC
push oa
push p_1
...
push p_n
obj := H[oa]
cid := classid(obj)
loadInstruction

MTT[cid][mid]↪→

Table 6.11: New instructions for support of object-oriented features, part 2

Example 6.8 shows the factorial calculation from 6.2 adapted to use an Intbox-object (see
example 3.5) as the accumulator instead of a normal integer.

1 USING [
2 CLASS Intbox(INT i)
3 FIELDS INT i
4 INIT { this.i := i }
5 [
6 METHOD multiply(INT n) {
7 this.i := this.i * n
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8 }
9

10 METHOD print() {
11 PRINTI this.i
12 }
13 ]
14 ] DO {
15 PRINTS "Please enter a natural number n: "
16 INT n
17 READ n
18 OBJ Intbox faculty
19 faculty := Intbox(1)
20 IF n < 0 THEN {
21 PRINTI n
22 PRINTLNS " is not a natural number!"
23 ERROR
24 }
25 WHILE n > 0 DO {
26 CALL faculty.multiply(n)
27 n := n - 1
28 }
29 PRINTS "n! = "
30 CALL faculty.print()
31 }

Listing 6.8: Example program fac2.olang

Example 6.8 translates to the machine code depicted in listing 6.9.
0 Jump 14 # skip initializer for Intbox
1 PushInt 0 # BEGIN of initializer for Intbox - stack memory

allocation for 'this'↪→

2 PushInt (-1)
3 StoreStack 1 # initialize this := -1 (null pointer/invalid

address)↪→

4 AllocateHeap 1 0 # create object of class Intbox
5 StoreStack 1 # this := new Intbox
6 LoadStack 1 # push this
7 PushInt 0
8 StoreHeap 0 # initialize this.i := 0
9 LoadStack 1 # push this

10 LoadStack 0 # push i
11 StoreHeap 0 # this.i := i
12 LoadStack 1 # push this
13 Return True # END of initializer - return with value this
14 Jump 22 # skip method multiply
15 LoadStack 0 # BEGIN of method multiply - push this
16 LoadStack 0 # push this
17 LoadHeap 0 # push this.i
18 LoadStack 1 # push n
19 CombineBinary Times # push this.i * n
20 StoreHeap 0 # this.i := this.i * n
21 Return False # END of method multiply - no return value
22 Jump 27 # skip method print
23 LoadStack 0 # push this
24 LoadHeap 0 # push this.i
25 PrintInt # PRINTI this.i
26 Return False # END of method print - no return value
27 PushInt 0 # BEGIN of main program - stack memory allocation

for n↪→

28 PushInt 0 # stack memory allocation for faculty
29 CreateMethodTable 0 [(1,23),(0,15)] # create method table for class Intbox
30 PrintStr "Please enter a natural number n: "
31 PushInt 0
32 StoreStack 0 # initialize n := 0
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33 Read
34 StoreStack 0 # READ n
35 PushInt (-1)
36 StoreStack 1 # initialize faculty := -1
37 PushInt 1
38 CallProcedure 1 1 # push Intbox(1)
39 StoreStack 1 # faculty := Intbox(1)
40 LoadStack 0 # push n
41 PushInt 0
42 CombineBinary Smaller # IF n < 0
43 JumpIfFalse 48 # skip IF body if n >= 0
44 LoadStack 0 # push n
45 PrintInt # PRINTI n
46 PrintStrLn " is not a natural number!"
47 Halt # ERROR
48 LoadStack 0 # push n
49 PushInt 0
50 CombineBinary Greater # WHILE n > 0
51 JumpIfFalse 60 # skip WHILE body if n <= 0
52 LoadStack 1 # push faculty
53 LoadStack 0 # push n
54 CallMethod 0 1 # push faculty.multiply(n)
55 LoadStack 0 # push n
56 PushInt 1
57 CombineBinary Minus # push n - 1
58 StoreStack 0 # n := n - 1
59 Jump 48 # end of WHILE body: return to condition
60 PrintStr "n! = "
61 LoadStack 1 # push faculty
62 CallMethod 1 0 # CALL faculty.print()
63 Halt # END of main program

Listing 6.9: Annotated machine code for example 6.8

Tables 6.12 and 6.13 show the program trace produced by running example 6.9 with n = 3.

Step PC I Stack B MTT H O
0 1 Jump 14 [0,0] 0 [] [] 0
1 15 Jump 22 [0,0] 0 [] [] 0
2 23 Jump 27 [0,0] 0 [] [] 0
3 28 PushInt 0 [0,0] 0 [] [] 0
4 29 PushInt 0 [0,0,0] 0 [] [] 0
5 30 CreateMethodTable 0 [(1,23),(0,15)] [0,0,0,0] 0 [] [] 0
6 31 PrintStr "Please enter a natural number n: " [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [] 0
7 32 PushInt 0 [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [] 0
8 33 StoreStack 0 [0,0,0,0,0] 0 [(0,[(1,23),(0,15)])] [] 0
9 34 Read [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [] 0
10 35 StoreStack 0 [0,0,0,0,3] 0 [(0,[(1,23),(0,15)])] [] 0
11 36 PushInt (-1) [0,0,3,0] 0 [(0,[(1,23),(0,15)])] [] 0
12 37 StoreStack 1 [0,0,3,0,-1] 0 [(0,[(1,23),(0,15)])] [] 0
13 38 PushInt 1 [0,0,3,-1] 0 [(0,[(1,23),(0,15)])] [] 0
14 39 CallProcedure 1 1 [0,0,3,-1,1] 0 [(0,[(1,23),(0,15)])] [] 0
15 2 PushInt 0 [0,0,3,-1,0,39,1] 4 [(0,[(1,23),(0,15)])] [] 0
16 3 PushInt (-1) [0,0,3,-1,0,39,1,0] 4 [(0,[(1,23),(0,15)])] [] 0
17 4 StoreStack 1 [0,0,3,-1,0,39,1,0,-1] 4 [(0,[(1,23),(0,15)])] [] 0
18 5 AllocateHeap 1 0 [0,0,3,-1,0,39,1,-1] 4 [(0,[(1,23),(0,15)])] [] 0
19 6 StoreStack 1 [0,0,3,-1,0,39,1,-1,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
20 7 LoadStack 1 [0,0,3,-1,0,39,1,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
21 8 PushInt 0 [0,0,3,-1,0,39,1,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
22 9 StoreHeap 0 [0,0,3,-1,0,39,1,0,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
23 10 LoadStack 1 [0,0,3,-1,0,39,1,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
24 11 LoadStack 0 [0,0,3,-1,0,39,1,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
25 12 StoreHeap 0 [0,0,3,-1,0,39,1,0,0,1] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [0])] 1
26 13 LoadStack 1 [0,0,3,-1,0,39,1,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
27 14 Return True [0,0,3,-1,0,39,1,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
28 40 StoreStack 1 [0,0,3,-1,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
29 41 LoadStack 0 [0,0,3,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
30 42 PushInt 0 [0,0,3,0,3] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
31 43 CombineBinary Smaller [0,0,3,0,3,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
32 44 JumpIfFalse 48 [0,0,3,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
33 49 LoadStack 0 [0,0,3,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
34 50 PushInt 0 [0,0,3,0,3] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
35 51 CombineBinary Greater [0,0,3,0,3,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1

Table 6.12: Machine trace for program 6.9, n = 3, part 1
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Step PC I Stack B MTT H O
36 52 JumpIfFalse 60 [0,0,3,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
37 53 LoadStack 1 [0,0,3,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
38 54 LoadStack 0 [0,0,3,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
39 55 CallMethod 0 1 [0,0,3,0,0,3] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
40 16 LoadStack 0 [0,0,3,0,0,55,0,3] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
41 17 LoadStack 0 [0,0,3,0,0,55,0,3,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
42 18 LoadHeap 0 [0,0,3,0,0,55,0,3,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
43 19 LoadStack 1 [0,0,3,0,0,55,0,3,0,1] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
44 20 CombineBinary Times [0,0,3,0,0,55,0,3,0,1,3] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
45 21 StoreHeap 0 [0,0,3,0,0,55,0,3,0,3] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [1])] 1
46 22 Return False [0,0,3,0,0,55,0,3] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
47 56 LoadStack 0 [0,0,3,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
48 57 PushInt 1 [0,0,3,0,3] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
49 58 CombineBinary Minus [0,0,3,0,3,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
50 59 StoreStack 0 [0,0,3,0,2] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
51 60 Jump 48 [0,0,2,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
52 49 LoadStack 0 [0,0,2,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
53 50 PushInt 0 [0,0,2,0,2] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
54 51 CombineBinary Greater [0,0,2,0,2,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
55 52 JumpIfFalse 60 [0,0,2,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
56 53 LoadStack 1 [0,0,2,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
57 54 LoadStack 0 [0,0,2,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
58 55 CallMethod 0 1 [0,0,2,0,0,2] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
59 16 LoadStack 0 [0,0,2,0,0,55,0,2] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
60 17 LoadStack 0 [0,0,2,0,0,55,0,2,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
61 18 LoadHeap 0 [0,0,2,0,0,55,0,2,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
62 19 LoadStack 1 [0,0,2,0,0,55,0,2,0,3] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
63 20 CombineBinary Times [0,0,2,0,0,55,0,2,0,3,2] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
64 21 StoreHeap 0 [0,0,2,0,0,55,0,2,0,6] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [3])] 1
65 22 Return False [0,0,2,0,0,55,0,2] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
66 56 LoadStack 0 [0,0,2,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
67 57 PushInt 1 [0,0,2,0,2] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
68 58 CombineBinary Minus [0,0,2,0,2,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
69 59 StoreStack 0 [0,0,2,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
70 60 Jump 48 [0,0,1,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
71 49 LoadStack 0 [0,0,1,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
72 50 PushInt 0 [0,0,1,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
73 51 CombineBinary Greater [0,0,1,0,1,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
74 52 JumpIfFalse 60 [0,0,1,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
75 53 LoadStack 1 [0,0,1,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
76 54 LoadStack 0 [0,0,1,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
77 55 CallMethod 0 1 [0,0,1,0,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
78 16 LoadStack 0 [0,0,1,0,0,55,0,1] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
79 17 LoadStack 0 [0,0,1,0,0,55,0,1,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
80 18 LoadHeap 0 [0,0,1,0,0,55,0,1,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
81 19 LoadStack 1 [0,0,1,0,0,55,0,1,0,6] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
82 20 CombineBinary Times [0,0,1,0,0,55,0,1,0,6,1] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
83 21 StoreHeap 0 [0,0,1,0,0,55,0,1,0,6] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
84 22 Return False [0,0,1,0,0,55,0,1] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
85 56 LoadStack 0 [0,0,1,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
86 57 PushInt 1 [0,0,1,0,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
87 58 CombineBinary Minus [0,0,1,0,1,1] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
88 59 StoreStack 0 [0,0,1,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
89 60 Jump 48 [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
90 49 LoadStack 0 [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
91 50 PushInt 0 [0,0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
92 51 CombineBinary Greater [0,0,0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
93 52 JumpIfFalse 60 [0,0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
94 61 PrintStr "n! = " [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
95 62 LoadStack 1 [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
96 63 CallMethod 1 0 [0,0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
97 24 LoadStack 0 [0,0,0,0,0,63,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
98 25 LoadHeap 0 [0,0,0,0,0,63,0,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
99 26 PrintInt [0,0,0,0,0,63,0,6] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
100 27 Return False [0,0,0,0,0,63,0] 4 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1
101 64 Halt [0,0,0,0] 0 [(0,[(1,23),(0,15)])] [(0,OBJ 0 [6])] 1

Table 6.13: Machine trace for program 6.9, n = 3, part 2

6.4 Notes on the provided implementation

The previous sections present a slightly simplified model of the actual machine from the pro-
vided implementation. The provided implementation is based on an ExceptT-State-monad-
transformer which carries in its state a data object that represents the machine. The ExceptT-
monad is used to implement exception handling - among other reasons, instruction execution can
fail due to addresses being out of bounds or required input not being present. A Computation
a is then any operation that modifies the machine state and yields some result of type a. For
example, the pop-function is a Computation Integer - it changes the state of the stack, and
yields the popped integer.



CHAPTER 7

Code Generator Implementation for O

On the one side, the parser is able to produce syntax tree representations of programs. On the
other side, the abstract machine provides a translation target for the language. The code gen-
erator now realizes the translation from syntax trees to machine programs. Like the parser, the
code generator is recursive in nature. It is really a set of generators that each generate code for a
certain syntactical structure from O. The generators then recursively rely on each other to obtain
part solutions to their respective code generation problem. The code generators are covered in
section 7.1. At certain points during the code generation, the compatibility of expression types
with their surrounding context must be checked. For this, the type of expression is first calcu-
lated, and then compared against the requirement of the corresponding "hole" - the context of the
expression in the program. The type calculation is outsourced to the typifiers that are covered in
section 7.2. For more general information about type checking, see [1].

7.1 Code generators

Like the abstract machine, the generators are implemented as ExceptT-State-transformers -
they carry some internal state and can throw exceptions at any point. The exceptions are neces-
sary for providing useful feedback to the end user in case of an erroneous program. This includes
errors like references to undefined variables, type errors or ambiguous invocations (see subsec-
tion 3.5.2). This chapter will not cover exception handling in detail. The internal state consists
of all information that is required to generate the correct code, except for the syntax trees them-
selves, which are provided as explicit input to the generators. There are four important parts to
the internal state: The prefix length, the symbol table, the procedure table and the class table. The pre-
fix length denotes the number of preceding machine instructions before the one that is generated
next. The symbol table holds a symbol entry for each symbol that is currently known. Symbols
are introduced either through the declaration of a variable, a formal parameter or a formal return
parameter. The only exception to this rule is the symbol this that is automatically introduced
for the scope of an initializer or method. Similarly, the procedure and class table hold procedure
entries and class entries for each procedure and class that are currently known. Table 7.1 describes
the information contained within symbol-, procedure- and class entries.

48
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Element Contained Information
symbol entry

Element Description
name The string identifier from the O-program
type The declared type
position The relative position of the symbol’s data in

any invocation’s stack frame that contains it

procedure entry

Element Description
name The name of the procedure in the O-program
parameter types The sequence of types of the declared param-

eters in the formal parameter list of the pro-
cedure

return type The type of the formal return parameter
address The address of the procedure in the machine

program

class entry

Element Description
class identifier The numeric identifier assigned to the class
name The name of the class in the O-program
(optional) upper
class identifier

If an upper class exists, the numeric identifier
of the upper class

field table Holds a field entry for each field of the class
(see below)

method table Holds a method entry for each method of the
class (see below)

Table 7.1: Generator state descriptions

Analogous to the symbol table, the field table of a class holds all information about its fields,
containing for each field entry a name, type and position. In the case of fields, the position is the
index of the field in the object’s data segment on the heap. Analogous to the procedure table, the
method table of a class holds all information about its methods, with each method entry spanning
the information of a procedure entry with an additional numeric method identifier.

Some of the elements, such as names and types, are immediately obvious from the program
text. Identifiers, addresses and positions on the other hand are calculated during code generation.
At the start of code generation, the prefix length is 0, and all tables are empty.

The operations that modify a table or lookup an entry are implemented such that the table is
treated like a stack, to realize the variable shadowing introduced in chapter 3.

Since generators modify the internal state, which is implicitly passed into recursive calls, and
more importantly, an invoked generator will change the state of the caller as well (as a conse-
quence of keeping a monadic state), there needs to be a convention about state management. In
case a generator for procedures modifies for example the symbol table, the symbols need to be
cleared from the state afterwards before generation can continue. The convention is the "pol-
luter pays principle" - the generator that causes "pollution" in the state needs to clean it up before
terminating.
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7.1.1 Programs

A program always consists of a list of classes, procedures and an instruction (the "main program"):

data Program =
Program
[ClassDeclaration]
[ProcedureDeclaration]
Instruction

Listing 7.1: Syntax tree data structure for Program

The machine code that is generated follows the structure detailed in listing 7.2:

<code for classes>
<code for procedures>
# stack memory allocation for main program
# one PushInt instruction for any declared variable
PushInt 0
...
PushInt 0
# create one method table for each class
CreateMethodTable 0 ...
...
CreateMethodTable n ...
<main program instruction code>
Halt

Listing 7.2: Machine code layout for Program

Listing 7.3 shows a slightly simplified pseudocode version of the actual code generator for
programs.

1 generate (Program classes procedures main) =
2 # (6) side effects:
3 # - populate class table
4 # - add initializers to procedure table
5 # - increase prefix length
6 classInstructions := generate classes
7 # (10) side effects:
8 # - populate procedure table
9 # - increase prefix length

10 procedureInstructions := generate procedures
11 requiredStackMemory := calculateStackMemoryRequirement main
12 stackMemoryAllocationInstructions := requiredStackMemory * [PushInt 0]
13 prefixLength += requiredStackMemory
14 methodTableInstructions := generateMethodTableInstructions classTable
15 prefixLength += length methodTableInstructions
16 # generate main instruction
17 # side effects are unimportant, since generation ends afterwards
18 mainProgramInstructions := generate main
19 return classInstructions
20 ++ procedureInstructions
21 ++ stackMemoryAllocationInstructions
22 ++ methodTableInstructions
23 ++ mainProgramInstructions
24 ++ [Halt]

Listing 7.3: Code generator for Program
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7.1.2 Class declarations

A class declaration consists of a class name, a list of formal parameters for the initializer, op-
tionally the name of the upper class, a list of fields, the initializer code, and a list of method
declarations:

data ClassDeclaration
= Class

ClassName
FormalParameterList
(Maybe ClassName)
[SymbolDeclaration]
Instruction
[MethodDeclaration]

Listing 7.4: Syntax tree data structure for ClassDeclaration

The code generator for classes fulfils three purposes:

1. Adding the class to the class table,

2. generating the initializer code,

3. generating the code for all methods of the class.

The machine code layout is therefore very simple. If the class contains n methods:

<code for initializer>
<code for method 1>
...
<code for method n>

Listing 7.5: Machine code layout for ClassDeclaration

The provided implementation of the class generator is approximately equivalent to pseu-
docode 7.6. The generateInitializer helper function utilizes the procedure generator to
generate an initializer-procedure for the class. For a class with name cname, the initializer-
procedure will always have the name INIT_cname in the procedure table.

1 generate (Class name parameters mUpperClassName fields initializer methods) =
2 # (5) side effects:
3 # - add new empty class table entry for 'name' with field information
4 # - in case of inheritance, copy relevant information from upper class
5 classID := createClassTableEntry name mUpperClassName fields
6 # (9) side effects:
7 # - add initializer procedure to procedure table
8 # - increase prefix length
9 initInstructions := generateInitializer name parameters initializer

10 # (13) side effects:
11 # - add methods to corresponding class table
12 # - increase prefix length
13 methodInstructions := generateWithContext classID methods
14 return initInstructions ++ methodInstructions

Listing 7.6: Code generator for ClassDeclaration
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7.1.3 Method declarations

Due to the underlying similarity with procedure declarations, the syntax tree data struc-
ture for method declarations is partly shared with procedure declarations in the form of a
ProcedureHeader. Both method and procedure declarations therefore contain a name, formal
parameter list, an optional return parameter, a list of subprocedures and the code:

data MethodDeclaration
= Method

ProcedureHeader
Instruction

data ProcedureHeader
= ProcedureHeader

SymbolName
FormalParameterList
(Maybe SymbolDeclaration)
[ProcedureDeclaration]

Listing 7.7: Syntax tree data structure for MethodDeclaration

The main purpose of the code generator for methods is of course generating code for the
method and adding the method to the corresponding class table. If necessary, an inherited method
is overridden in the process. Overriding follows the rules introduced in 3.5. If there are sub-
procedures, their code is also generated. Machine code that is generated for a method with n
subprocedures follows the layout depicted in listing 7.8.

Jump END
<code for subprocedure 1>
...
<code for subprocedure n>
<code for stack memory allocation>
<code for initialization of return parameter>
<method instruction code>
<return instructions>

END:

Listing 7.8: Machine code layout for MethodDeclaration

Pseudocode 7.9 describes the MethodDeclaration-generator from the provided implemen-
tation.

1 generate classID (Method (ProcedureHeader name parameters mReturnParameter
subprocedures) code) =↪→

2 prefixLength += 1
3 # (6) side effects:
4 # - add method to method table of class "classID"
5 # - in case of inheritance, override inherited method if necessary
6 addMethodToClassTable classID name parameters mReturnParameter
7 # save the old procedure table for the reset later
8 oldProcedureTable := procedureTable
9 # (13) side effects:

10 # - add subprocedures to procedure table
11 # - increase prefix length
12 # see procedure generator for details about context
13 subProcedureInstructions := generateWithContext NORMAL subprocedures
14 # (17) side effects:
15 # - add parameters to symbol table
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16 # - this includes implicit parameter "this" and return parameter
17 thisParam := addMethodParametersToSymbolTable classID parameters mReturnParameter
18 # (20) side effect:
19 # - increase prefix length
20 stackMemoryAllocationInstructions := generateStackMemoryAllocationInstructions

parameters mReturnParameter code↪→

21 # (23) side effect:
22 # - increase prefix length
23 returnParameterInitInstructions := generateMethodReturnParameterInitInstructions

thisParam parameters mReturnParameter↪→

24 # (27) side effects:
25 # - increase prefix length
26 # - modify symbol table (only if code is a single instruction!)
27 methodInstructions := generate code
28 # (30) side effect:
29 # - increase prefix length
30 returnInstructions := generateReturnInstructions mReturnParameter
31 # reset symbol table
32 symbolTable := []
33 # cleanup subprocedures from procedure table
34 procedureTable := oldProcedureTable
35

36 return [Jump prefixLength]
37 ++ subProcedureInstructions
38 ++ stackMemoryAllocationInstructions
39 ++ returnParameterInitInstructions
40 ++ methodInstructions
41 ++ returnInstructions

Listing 7.9: Code generator for MethodDeclaration

7.1.4 Procedure declarations

The syntax tree data structure for procedure declarations is analogous to method declarations:

data ProcedureDeclaration
= Procedure

ProcedureHeader
Instruction

data ProcedureHeader
= ProcedureHeader

SymbolName
FormalParameterList
(Maybe SymbolDeclaration)
[ProcedureDeclaration]

Listing 7.10: Syntax tree data structure for ProcedureDeclaration

The code generation for procedure declarations differs from that of method declarations in
some ways. For one, the procedure is naturally added to the procedure table instead of a method
table. Also, like method declarations, code for a procedure declaration is always generated in a
context. The context is either NORMAL for normal procedures or INIT for initializers. In the case of
initializers, additional instructions are generated to allocate a new object on the heap and initialize
all fields to a default value. Machine code that is generated for a procedure with n subprocedures
follows the layout depicted in listing 7.11.

Jump END
<code for subprocedure 1>
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...
<code for subprocedure n>
<code for stack memory allocation>
<code for initialization of return parameter>
<IF INIT-procedure: code for heap memory allocation>
<procedure instruction machine code>
<return instructions>

END:

Listing 7.11: Machine code layout for ProcedureDeclaration

Pseudocode 7.12 describes the ProcedureDeclaration-generator from the provided im-
plementation.

1 generate kind (Procedure (ProcedureHeader name parameters mReturnParameter
subprocedures) code) =↪→

2 prefixLength += 1
3 # (5) side effect:
4 # - add procedure to procedure table
5 addToProcedureTable name parameters mReturnParameter
6 # save the old procedure table for the reset later
7 oldProcedureTable := procedureTable
8 # (11) side effects:
9 # - add subprocedures to procedure table

10 # - increase prefix length
11 subProcedureInstructions := generateWithContext NORMAL subprocedures
12 # (15) side effect:
13 # - add parameters to symbol table
14 # - this includes return parameter
15 addProcedureParametersToSymbolTable parameters mReturnParameter
16 # (18) side effect:
17 # - increase prefix length
18 stackMemoryAllocationInstructions := generateStackMemoryAllocationInstructions

parameters mReturnParameter code↪→

19 # (21) side effect:
20 # - increase prefix length
21 returnParameterInitInstructions := generateProcedureReturnParameterInitInstructions

parameters mReturnParameter↪→

22 # (24) side effect:
23 # - increase prefix length
24 heapMemoryAllocationInstructions := generateHeapMemoryAllocationInstructions kind

mReturnParameter↪→

25 # (28) side effects:
26 # - increase prefix length
27 # - modify symbol table (only if code is a single instruction!)
28 procedureInstructions := generate code
29 # (31) side effect:
30 # - increase prefix length
31 returnInstructions := generateReturnInstructions mReturnParameter
32 # reset symbol table
33 symbolTable := []
34 # cleanup subprocedures from procedure table
35 procedureTable := oldProcedureTable
36

37 return [Jump prefixLength]
38 ++ subProcedureInstructions
39 ++ stackMemoryAllocationInstructions
40 ++ returnParameterInitInstructions
41 ++ heapMemoryAllocationInstructions
42 ++ procedureInstructions
43 ++ returnInstructions

Listing 7.12: Code generator for ProcedureDeclaration
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7.1.5 Instructions

For every possible instruction (see 3.1 and 3.2), there is one alternative in the syntax tree data type.

data Instruction
= Assignment SymbolReference Expression
| SymbolDeclarationInstruction SymbolDeclaration
| CallInstruction Call
| Read SymbolName
| PrintI Expression
| PrintS String
| PrintLnS String
| Error
| Block (NonEmpty Instruction)
| IfThen Condition Instruction
| While Condition Instruction

data SymbolReference
= NameReference SymbolName
| FieldReference SymbolName SymbolName

data SymbolDeclaration
= IntDeclaration IntSymbolDeclaration
| ObjectDeclaration ObjectSymbolDeclaration

Listing 7.13: Syntax tree data structure for Instruction

Because of this, there is no single machine code layout for all cases. Every case needs to be
treated independently - for SymbolReference and SymbolDeclaration, there needs to be an
additional distinction between the kind of reference or declaration.

7.1.5.1 Basic instructions

For a simple variable assignment, first the code for the expression and then the store instruction
is generated:

<code for expression>
StoreStack ...

Listing 7.14: Machine code layout for Instruction, variable assignment

The code additionally checks that the expression and variable types are compatible according
to the subtyping rules:

1 generate (Assignment (NameReference name) expr) =
2 (symPos, symType) := lookupSymbolPosAndTypeByName name
3 exprType := typify expr
4 checkTypeCompatibility exprType symType
5 # (7) side effect:
6 # - increase prefix length
7 exprInstructions := generate expr
8 prefixLength += 1
9 return exprInstructions

10 ++ [StoreStack symPos]

Listing 7.15: Code generator for Instruction, variable assignment
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For a field assignment, before the expression code, there is an additional load instruction to
load the object address:

LoadStack ...
<code for expression>
StoreHeap ...

Listing 7.16: Machine code layout for Instruction, field assignment

1 generate (Assignment (FieldReference obj field) expr) =
2 (objPos, objType) := lookupSymbolPosAndTypeByName obj
3 (fieldPos, fieldType) := lookupFieldPosAndTypeByTypeAndFieldName objType field
4 exprType := typify expr
5 checkTypeCompatibility exprType fieldType
6 prefixLength += 1
7 # (9) side effect:
8 # - increase prefix length
9 exprInstructions := generate expr

10 prefixLength += 1
11 return [LoadStack objPos]
12 ++ exprInstructions
13 ++ [StoreHeap fieldPos]

Listing 7.17: Code generator for Instruction, field assignment

An integer variable declaration is translated by adding it to the symbol table and storing the
default value 0 to its position in the stack frame:

1 generate (SymbolDeclarationInstruction (IntDeclaration (Int n))) =
2 # (4) side effect:
3 # - add new symbol to symbol table
4 pos := addSymbolToTable n INT
5 prefixLength += 2
6 return [PushInt 0, StoreStack pos]

Listing 7.18: Code generator for Instruction, integer variable declaration

The translation of object variable declaration is analogous, with an additional check for class
validity, and a different default value of −1 (the invalid address):

1 generate (SymbolDeclarationInstruction (ObjectDeclaration (Object cname name))) =
2 checkClassValidity cname
3 # (5) side effect:
4 # - add new symbol to symbol table
5 pos := addSymbolToTable name (OBJ cname)
6 prefixLength += 2
7 return [PushInt (-1), StoreStack pos]

Listing 7.19: Code generator for Instruction, object variable declaration

The translation of a CALL-instruction is just the translation of the Call that is carried within,
but since no assignment is performed, there is an additional check to make sure the type is empty
(see section 7.2). This ensures that no unconsumed values remain on the stack after evaluation.

1 generate (CallInstruction call) =
2 t <- typify call
3 case t of
4 # (6) side effect:
5 # - increase prefix length
6 Nothing -> return (generate call)
7 Just _ -> error ...
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Listing 7.20: Code generator for Instruction, call

A READ-instruction is translated similarly to an assignment to an integer variable, with a Read
instead of expression code:

1 generate (SyntaxTree.Read name) =
2 (pos, t) := lookupSymbolPosAndTypeByName name
3 checkTypeCompatibility INT t
4 prefixLength += 2
5 return [MachineInstruction.Read, StoreStack pos]

Listing 7.21: Code generator for Instruction, read

A PRINTI-instruction is also translated similarly to an assignment to an integer variable, but
the result is printed instead of stored:

1 generate (PrintI expr) =
2 t := typify expr
3 checkTypeCompatibility t INT
4 # (6) side effect:
5 # - increase prefix length
6 exprInstructions := generate expr
7 prefixLength += 1
8 return exprInstructions ++ [PrintInt]

Listing 7.22: Code generator for Instruction, integer print

PRINTS and PRINTSLN are directly translated to PrintStr and PrintStrLn machine in-
structions, respectively:

1 generate (PrintS msg) =
2 prefixLength += 1
3 return [PrintStr msg]
4 generate (PrintLnS msg) =
5 prefixLength += 1
6 return [PrintStrLn msg]

Listing 7.23: Code generator for Instruction, string print

And finally, the ERROR instruction is directly translated to the machine instruction Halt:
1 generate Error =
2 prefixLength += 1
3 return [Halt]

Listing 7.24: Code generator for Instruction, error

7.1.5.2 Composite instructions

An instruction block is simply translated by translating all individual instructions in order, reset-
ting the symbol table afterwards to implement scoping:

1 generate (Block oInstructions) =
2 oldSymbolTable := symbolTable
3 # (6) side effects:
4 # - increase prefix length
5 # - add new symbols to symbol table
6 mInstructions := generate oInstructions
7 symbolTable := oldSymbolTable
8 return mInstructions

Listing 7.25: Code generator for Instruction, block
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An IF-THEN-conditional is translated by first generating code for the condition, then a condi-
tional jump, followed by the code for the body of the conditional:

<code for condition>
JumpIfFalse END
<code for body>

END:

Listing 7.26: Machine code layout for Instruction, IF-THEN-conditional

As with instruction blocks, the symbol table is reset after generating the body:
1 generate (IfThen cond body) =
2 # (4) side effect:
3 # - increase prefix length
4 condInstructions := generate cond
5 prefixLength += 1
6 oldSymbolTable := symbolTable
7 # (10) side effects:
8 # - increase prefix length
9 # - add new symbols to symbol table

10 bodyInstructions := generate body
11 symbolTable := oldSymbolTable
12 return condInstructions
13 ++ [JumpIfFalse prefixLength]
14 ++ bodyInstructions

Listing 7.27: Code generator for Instruction, IF-THEN-conditional

WHILE-loops are the most complicated to translate. There are multiple valid translations that
can be used, but one of the arguably most simple ones uses two jumps, where one is conditional
and one is not. The translation is analogous to IF-THEN-conditionals, with the body getting an
additional Jump instruction at the end to go back to the condition:

START: <code for condition>
JumpIfFalse END
<code for body>
Jump START

END:

Listing 7.28: Machine code layout for Instruction, WHILE-loop

Again, the symbol table needs to be reset after translating the body:
1 generate (While cond body) =
2 oldSymbolTable := symbolTable
3 start := prefixLength
4 # (6) side effect:
5 # - increase prefix length
6 condInstructions := generate cond
7 prefixLength += 1
8 # (11) side effects:
9 # - increase prefix length

10 # - add new symbols to symbol table
11 bodyInstructions := generate body
12 prefixLength += 1
13 symbolTable := oldSymbolTable
14 end := prefixLength
15 return condInstructions
16 ++ [JumpIfFalse end]
17 ++ bodyInstructions
18 ++ [Jump start]



CHAPTER 7. CODE GENERATOR IMPLEMENTATION FOR O 59

Listing 7.29: Code generator for Instruction, WHILE-loop

7.1.6 Calls

Since the syntax tree data structure for calls in O represents not only procedure and method calls,
but also simple references to variables and object fields, the data type has four alternatives for
each case:

data Call
= SymbolReference SymbolReference
| Call SymbolReference ActualParameterList

Listing 7.30: Syntax tree data structure for Call

The simplest case is a variable reference. The position in the stack frame is looked up, and a
machine instruction is generated to push the value onto the stack:

1 generate (SymbolReference (NameReference name)) =
2 pos := lookupSymbolPosByName name
3 prefixLength += 1
4 return [LoadStack pos]

Listing 7.31: Code generator for Call, symbol reference

For a field reference, the address of the object is first pushed onto the stack. Then, the field’s
value is pushed onto the stack using the object address and field position:

1 generate (SymbolReference (FieldReference obj field)) =
2 (objPos, t) := lookupSymbolPosAndTypeByName obj
3 fieldPos := lookupFieldPosByTypeAndFieldName t field
4 prefixLength += 2
5 return [LoadStack objPos, LoadHeap fieldPos]

Listing 7.32: Code generator for Call, field reference

For a procedure call with address a and n parameter expressions, the machine code layout is
depicted in listing 7.33.

<code for expression 1>
...
<code for expression n>
CallProcedure a n

Listing 7.33: Machine code layout for Call, procedure invocation

First, the types of all expressions in the actual parameter list are calculated. This type infor-
mation is used to calculate the given invocation’s matching set minimum (see definition 3.5.2)
and obtain the corresponding address. After generating code for all parameter expressions, the
CallProcedure-instruction is appended:

1 generate (Call (NameReference name) actualParameterList) =
2 paramTypes := typify actualParameterList
3 procAddress := calculateMatchingSetMinimumAddressForProcedureInvocation name

paramTypes↪→

4 # (6) side effect:
5 # - increase prefix length
6 paramInstructions := generate actualParameterList
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7 prefixLength += 1
8 return paramInstructions
9 ++ [CallProcedure procAddress (length actualParameterList)]

Listing 7.34: Code generator for Call, procedure invocation

For a method call with method identifier id and n parameter expressions, the machine code
layout is analogous to procedure calls, with an additional load instruction at the start to load the
object address. It is depicted in listing 7.35.

LoadStack ...
<code for expression 1>
...
<code for expression n>
CallMethod id n

Listing 7.35: Machine code layout for Call, method invocation

Keeping these differences in mind, the generator code is analogous to the procedure invoca-
tion generator:

1 generate (Call (FieldReference objName methodName) actualParameterList) =
2 paramTypes := typify actualParameterList
3 methodID := calculateMatchingSetMinimumIDForMethodInvocation objName methodName

paramTypes↪→

4 objPos := lookupSymbolPosByName objName
5 prefixLength += 1
6 # (8) side effect:
7 # - increase prefix length
8 paramInstructions := generate actualParameterList
9 prefixLength += 1

10 return [LoadStack objPos]
11 ++ concat paramInstructions
12 ++ [CallMethod methodID (length actualParameterList)]

Listing 7.36: Code generator for Call, method invocation

7.1.7 Conditions

A condition in O is either a comparison of two expressions or a negation of another condition:

data Condition
= Comparison Expression Relation Expression
| Negation Condition

Listing 7.37: Syntax tree data structure for Condition

In case of a comparison, the generator needs to first generate the instructions for the first
expression, then the second. After evaluation, both argument values are stored on top of the
stack - so they can be combined according to the relation:

<code for left expression>
<code for right expression>
CombineBinary ...

Listing 7.38: Machine code layout for Condition, comparison

The code performs additional checks to ensure that both expression have an integral type:
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1 generate (Comparison left relation right) =
2 tLeft := typify left
3 tRight := typify right
4 checkTypeCompatibility tLeft INT
5 checkTypeCompatibility tRight INT
6 # (8) side effect:
7 # - increase prefix length
8 leftInstructions := generate left
9 # (11) side effect:

10 # - increase prefix length
11 rightInstructions := generate right
12 prefixLength += 1
13 return leftInstructions
14 ++ rightInstructions
15 ++ [CombineBinary relation]

Listing 7.39: Code generator for Condition, comparison

The case for negations is very simple. Since comparisons are always of type BOOL (if the
generator terminates successfully), no type check has to be performed. The translation consists of
simply appending a CombineUnary Not machine instruction to the code of the inner condition.

1 generate (Negation cond) =
2 # (4) side effect:
3 # - increase prefix length
4 condInstructions := generator cond
5 prefixLength += 1
6 return condInstructions ++ [CombineUnary Not]

Listing 7.40: Code generator for Condition, negation

7.1.8 Expressions

An expression carries a non-empty list of terms that each carry a sign:

data Expression = Expression (NonEmpty (Sign, Term))
data Sign = Plus | Minus

Listing 7.41: Syntax tree data structure for Expression

Note that this simple representation comes with the small drawback that a singular term must
carry a sign with it in the syntax tree, even it turns out to be of an object type. The parser handles
this by appending a plus-sign automatically if no sign is present. This leads to the small but
harmless grammatical problem that for any expression expr without a preceding sign, a plus
sign can be prepended without changing the meaning - even if it is not an arithmetic expression.

That being said, the machine code layout for expressions is simple:

<code for first term>
<code for term 2>
CombinaBinary <sign 2>
...
<code for term n>
CombineBinary <sign n>

Listing 7.42: Machine code layout for Expression
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The first term needs to be treated differently for the rule to work. If the first term carries a plus
sign, then the machine code is just the code of the term - this works even if the term has an object
type. If the first term carries a minus sign, the value of the first term must be negated:

1 generate (Expression ((sign, term) :| signTerms)) =
2 firstTermInstructions := case sign of
3 Plus -> generate term
4 Minus -> do
5 prefixLength += 1
6 # (8) side effect:
7 # - increase prefix length
8 termInstructions := generate term
9 prefixLength += 1

10 return [PushInt 0]
11 ++ termInstructions
12 ++ [CombineBinary Minus]
13 # (15) side effect:
14 # - increase prefix length
15 signTermsInstructions := generate signTerms
16 return firstTermInstructions ++ signTermsInstructions
17 where
18 generate (sign', term') =
19 # (21) side effect:
20 # - increase prefix length
21 termInstructions := generate term'
22 prefixLength += 1
23 return termInstructions ++ [CombineBinary sign']

Listing 7.43: Code generator for Expression

Since type checks are already performed on an expression before the generator is invoked, the
generator for expressions does not need to perform any further type checks by itself.

7.1.9 Terms

Analogous to expressions, a term is a non-empty list of factors, where from the second factor
onward, every factor carries an operator that is either * or /:

data Term = Term Factor [(Operator, Factor)]
data Operator = Times | Divide

Listing 7.44: Syntax tree data structure for Term

Again, the first factor is treated differently. The first factor is generated directly, while the
other ones each get the corresponding operation appended to their code:

<code for first factor>
<code for factor 2>
CombinaBinary <operator 2>
...
<code for factor n>
CombineBinary <operator n>

Listing 7.45: Machine code layout for Term

Like the generator for expressions, the term generator does no type checking. This does not
harm the type safety of O, since typification of expressions is established recursively including
terms and factors (see section 7.2).
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1 generate (Term factor operatorFactors) =
2 # (4) side effect:
3 # - increase prefix length
4 firstFactorInstructions := generate factor
5 # (7) side effect:
6 # - increase prefix length
7 otherFactorsInstructions := generate operatorFactors
8 return firstFactorInstructions ++ otherFactorsInstructions
9 where

10 generate (op, factor') =
11 # (13) side effect:
12 # - increase prefix length
13 factor'Instructions := generate factor'
14 prefixLength += 1
15 return factor'Instructions ++ [CombineBinary op]

Listing 7.46: Code generator for Term

7.1.10 Factors

A factor can be either a Call, a class instantiation, an integer or a composite factor carrying an
expression inside:

data Factor
= CallFactor Call
| ClassInstantiation ClassName ActualParameterList
| Integer Integer
| CompositeFactor Expression

Listing 7.47: Syntax tree data structure for Factor

The cases are all so simple that they barely require explanation. Again, the type-check is
already established on function call, so additional checks are not required.

1 generate (CallFactor call) = generate call
2 # for class name 'cname', generateInitializer generates the initializer as a procedure

with name "INIT_cname"↪→

3 generate (ClassInstantiation cname actualParameterList) = generate (Call (NameReference
("INIT_" ++ cname)) actualParameterList)↪→

4 generate (Integer n) =
5 prefixLength += 1
6 return [PushInt n]
7 generate (CompositeFactor expr) = generate expr

Listing 7.48: Code generator for Factor

7.2 Type checking

The provided implementation does type checking in two parts. Code generators for instructions
and calls use typifiers to calculate types and check the compatibility of the resulting type with the
given context. The typifiers only implement the type calculations themselves. Therefore, they do
not generate any machine code or modify the state of the code generator. Procedure and method
invocations can yield nothing, which typifiers account for by not just returning a type, but an
indicator for if the given typified element yields a value at all. The provided implementation
accounts for this by defining

data OptionalType = Maybe Type
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The result of typification is then either Nothing or Just someType. This section will present
the typifiers from the provided implementation not as code, but as logical rules of inference. In
the following, the set of symbol-, procedure and class tables will just be represented as Γ. The
notation e :: τ reads "e is of type τ". The following typing rules cover statements of the form Γ ` φ ,
reading "in the context of Γ, it can be deduced that φ holds". All rules have some number of
premises and a conclusion. A rule allows to deduce the conclusion if all premises hold. There are
rules with zero premises which are called axioms. The conclusion of an axiom always holds. The
rules are of the form

premise1 ... premisen Name
conclusion

They can be applied recursively until all premises can be deduced true (by applying axioms).

7.2.1 Calls

The rules CALL1 and CALL2 represent lookups in the symbol- and class tables. They allow the
deduction for a variable or field reference if the type can be looked up from the tables.

CALL1 (axiom)
Γ∪{n :: τ} ` SymbolReference (NameReference n) :: τ

CALL2 (axiom)
Γ∪{o.f :: τ} ` SymbolReference (FieldReference o f) :: τ

The CALL3 and CALL4 rule are the most complicated rules. For procedure and method invo-
cations respectively, they allow the deduction of the type of the return parameter of the invoked
procedure or method only if it corresponds to the minimum of the matching set (see subsec-
tion 3.5.2).

Γ ` e1 :: σ1 ... Γ ` en :: σn (π1, ...,πn) = min(M(Γ,p(σ1, ...,σn))) CALL3
Γ = Γ

′∪{p(π1, ...,πn) :: τ} ` Call (NameReference p)[e1, ...,en] :: τ

Γ ` e1 :: σ1 ... Γ ` en :: σn (π1, ...,πn) = min(M(Γ,o.m(σ1, ...,σn))) CALL4
Γ = Γ

′∪{o.m(π1, ...,πn) :: τ} ` Call (FieldReference o m)[e1, ...,en] :: τ

Note that despite the notation suggesting otherwise, the list of expressions for CALL3 and CALL4
can actually be empty, leaving the equality as the only premise of the rule in that instance.

7.2.2 Expressions

An expression of only one positive term has the type of the term. As noted in section 7.1, this is
to include terms that turn out to be of object type:

Γ ` t :: τ
EXPR1

Γ ` Expression [(+, t)] :: τ

An expression with one or more terms can be deduced to be of type INT if the terms are all of the
type INT:

Γ ` t1 :: Just INT ... Γ ` tn :: Just INT n ≥ 1
EXPR2

Γ ` Expression [(s1, t1), ...,(sn, tn)] :: Just INT

There is an overlap of rules EXPR1 and EXPR2 for the case of positive singular terms of type INT.
The right decision is to pick EXPR1 if possible, since it allows for the deduction of both object
types and INT.
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7.2.3 Terms

The rules for terms similarly allow the deduction of object types, but without overlapping:

Γ ` f :: τ
TERM1

Γ ` Term f [] :: τ

Γ ` f1 :: Just INT ... Γ ` fn :: Just INT n ≥ 2
TERM2

Γ ` Term f1 [(op2, f2), ...,(opn, fn)] :: Just INT

7.2.4 Factors

The rules for factors are simple. Since a call factor just represents the call it carries, it inherits its
type:

Γ ` c :: τ
FAC1

Γ ` CallFactor c :: τ

A class instantiation is really a procedure invocation of an initializer-procedure, which is reflected
in its typing rule:

Γ ` Call (NameReference (INIT_ ++ cn)) [e1, ...,en] :: τ
FAC2

Γ ` ClassInstantiation cn [e1, ...,en] :: τ

Of course, independently of Γ, an Integer n is always integral:

FAC3 (axiom)
Γ ` Integer n :: Just INT

Lastly, in similar fashion to FAC1, a composite factor inherits the type of its expression:

Γ ` e :: τ
FAC4

Γ ` CompositeFactor e :: τ

7.2.5 Deduction algorithm

The rules are deterministic with exception to the ambiguity between EXPR1 and EXPR2. In case
of ambiguity, EXPR1 should be picked. Using this, deduction can be carried out by repeatedly
applying the best matching rule to the emerging premises, while leaving the deduced type as a
placeholder. This builds a tree where the conclusions and premises are the nodes, with the rule
instantiations connecting them. If the syntactical element in question is well-typed, all leaves of
the tree are either a solvable equation involving the calculation of the matching set (see CALL3
and CALL4) or an invocation of an axiom (see CALL1, CALL2 and FAC3). The type of the syntac-
tical element can then be deduced top-down, starting from the leaves. This mimics the evaluation
of the typifiers from the provided implementation.

7.3 Example

To illustrate the inner workings of the code generator, one might consider example 6.8 again.
Tables 7.2 to 7.7 show snapshots at certain important points during the code generation. At each
point, the relevant O-program code is provided, showing the corresponding machine code, and
keeping the comments from 6.9. In the right column of each table, the code generator state after
translating the displayed code is shown.
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O-program code Machine code State after

1 USING [

None

Symbol Table
Empty

Procedure Table
Empty

Class Table
Empty

Table 7.2: Code generation for example program fac2.olang, part 1

O-program code Machine code State after

2 CLASS Intbox(INT i)
3 FIELDS INT i
4 INIT { this.i := i }
5 [

0 Jump 14 # skip
initializer for
Intbox

↪→

↪→

1 PushInt 0 # BEGIN of
initializer for
Intbox - stack
memory
allocation for
'this'

↪→

↪→

↪→

↪→

↪→

2 PushInt (-1)
3 StoreStack 1 #

initialize this
:= -1 (null
pointer/invalid
address)

↪→

↪→

↪→

↪→

4 AllocateHeap 1 0 #
create object of
class Intbox

↪→

↪→

5 StoreStack 1 # this
:= new Intbox↪→

6 LoadStack 1 # push
this↪→

7 PushInt 0
8 StoreHeap 0 #

initialize
this.i := 0

↪→

↪→

9 LoadStack 1 # push
this↪→

10 LoadStack 0 # push i
11 StoreHeap 0 # this.i

:= i↪→

12 LoadStack 1 # push
this↪→

13 Return True # END of
initializer -
return with
value this

↪→

↪→

↪→

Procedure Table
Name Param-

eter
Types

Return
Type

Ad-
dress

INIT_Intbox [INT] Just OBJ
Intbox

1

Class Table
ID Name Upper Class ID
0 Intbox None

Field Table for Intbox
Name Type Position
i INT 0

Method Table for Intbox
Empty

Symbol Table
Empty

Table 7.3: Code generation for example program fac2.olang, part 2
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O-program code Machine code State after

6 METHOD multiply(INT
n) {↪→

7 this.i := this.i

* n↪→

8 }

14 Jump 22 # skip
method multiply↪→

15 LoadStack 0 # BEGIN
of method
multiply - push
this

↪→

↪→

↪→

16 LoadStack 0 # push
this↪→

17 LoadHeap 0 # push
this.i↪→

18 LoadStack 1 # push n
19 CombineBinary Times

# push this.i *
n

↪→

↪→

20 StoreHeap 0 # this.i
:= this.i * n↪→

21 Return False # END
of method
multiply - no
return value

↪→

↪→

↪→

Procedure Table
Name Param-

eter
Types

Return
Type

Ad-
dress

INIT_Intbox [INT] Just OBJ
Intbox

1

Class Table
ID Name Upper Class ID
0 Intbox None

Field Table for Intbox
Name Type Position
i INT 0

Method Table for Intbox
ID Name Param-

eter
Types

Return
Type

Ad-
dress

0 multiply [INT] Nothing 15

Symbol Table
Empty

Table 7.4: Code generation for example program fac2.olang, part 3

O-program code Machine code State after

10 METHOD print() {
11 PRINTI this.i
12 }
13 ] DO {

22 Jump 27 # skip
method print↪→

23 LoadStack 0 # push
this↪→

24 LoadHeap 0 # push
this.i↪→

25 PrintInt # PRINTI
this.i↪→

26 Return False # END
of method print
- no return
value

↪→

↪→

↪→

Procedure Table
Name Param-

eter
Types

Return
Type

Ad-
dress

INIT_Intbox [INT] Just OBJ
Intbox

1

Class Table
ID Name Upper Class ID
0 Intbox None

Field Table for Intbox
Name Type Position
i INT 0

Method Table for Intbox
ID Name Param-

eter
Types

Return
Type

Ad-
dress

0 multiply [INT] Nothing 15
1 print [] Nothing 23

Symbol Table
Empty

Table 7.5: Code generation for example program fac2.olang, part 4
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O-program code Machine code State after

15 PRINTS "Please enter a
natural number n: "↪→

16 INT n
17 READ n
18 OBJ Intbox faculty
19 faculty := Intbox(1)
20 IF n < 0 THEN {
21 PRINTI n
22 PRINTLNS " is not a

natural number!"↪→
23 ERROR
24 }
25 WHILE n > 0 DO {
26 CALL

faculty.multiply(n)↪→
27 n := n - 1
28 }
29 PRINTS "n! = "
30 CALL faculty.print()

27 PushInt 0 # BEGIN of
main program -
stack memory
allocation for n

↪→
↪→
↪→

28 PushInt 0 # stack
memory allocation
for faculty

↪→
↪→

29 CreateMethodTable 0
[(1,23),(0,15)] #
create method
table for class
Intbox

↪→
↪→
↪→
↪→

30 PrintStr "Please enter
a natural number
n: "

↪→
↪→

31 PushInt 0
32 StoreStack 0 #

initialize n := 0↪→
33 Read
34 StoreStack 0 # READ n
35 PushInt (-1)
36 StoreStack 1 #

initialize faculty
:= -1

↪→
↪→

37 PushInt 1
38 CallProcedure 1 1 #

push Intbox(1)↪→
39 StoreStack 1 # faculty

:= Intbox(1)↪→
40 LoadStack 0 # push n
41 PushInt 0
42 CombineBinary Smaller

# IF n < 0↪→
43 JumpIfFalse 48 # skip

IF body if n >= 0↪→
44 LoadStack 0 # push n
45 PrintInt # PRINTI n
46 PrintStrLn " is not a

natural number!"↪→
47 Halt # ERROR
48 LoadStack 0 # push n
49 PushInt 0
50 CombineBinary Greater

# WHILE n > 0↪→
51 JumpIfFalse 60 # skip

WHILE body if n <=
0

↪→
↪→

52 LoadStack 1 # push
faculty↪→

53 LoadStack 0 # push n
54 CallMethod 0 1 # push

faculty.multiply(n)↪→
55 LoadStack 0 # push n
56 PushInt 1
57 CombineBinary Minus #

push n - 1↪→
58 StoreStack 0 # n := n

- 1↪→
59 Jump 48 # end of WHILE

body: return to
condition

↪→
↪→

60 PrintStr "n! = "
61 LoadStack 1 # push

faculty↪→
62 CallMethod 1 0 # CALL

faculty.print()↪→

Procedure Table
Name Param-

eter
Types

Return
Type

Ad-
dress

INIT_Intbox [INT] Just OBJ
Intbox

1

Class Table
ID Name Upper Class ID
0 Intbox None

Field Table for Intbox
Name Type Position
i INT 0

Method Table for Intbox
ID Name Param-

eter
Types

Return
Type

Ad-
dress

0 multiply [INT] Nothing 15
1 print [] Nothing 23

Symbol Table
Name Type Position
n INT 0

faculty OBJ Intbox 1

Table 7.6: Code generation for example program fac2.olang, part 5
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O-program code Machine code State after

31 } 63 Halt # END of main
program↪→

Procedure Table
Name Param-

eter
Types

Return
Type

Ad-
dress

INIT_Intbox [INT] Just OBJ
Intbox

1

Class Table
ID Name Upper Class ID
0 Intbox None

Field Table for Intbox
Name Type Position
i INT 0

Method Table for Intbox
ID Name Param-

eter
Types

Return
Type

Ad-
dress

0 multiply [INT] Nothing 15
1 print [] Nothing 23

Symbol Table
Empty

Table 7.7: Code generation for example program fac2.olang, part 6

Lastly, Figure 7.1, Figure 7.2 and Figure 7.3 show the type derivations for the expressions in
lines 19, 26 and 30 from example program 6.8. They all assume Γ to represent the generator state
described in Table 7.6.

FAC3
Γ ` Integer 1 :: Just INT

TERM1
Γ ` Term (Integer 1) [] :: Just INT

EXPR1
Γ ` Expression [(+,Term (Integer 1) [])] :: Just INT (Just INT) = min(M(Γ,INIT_Intbox(Just INT)))

CALL3
Γ ` Call (NameReference INIT_Intbox) [Expression [(+,Term (Integer 1) [])]] :: Just OBJ Intbox

FAC2
Γ ` ClassInstantiation Intbox [Expression [(+,Term (Integer 1) [])]] :: Just OBJ Intbox

Figure 7.1: Type derivation for Intbox(1), fac2.olang, line 19

CALL1
Γ ` SymbolReference (NameReference n) :: Just INT

FAC1
Γ ` CallFactor (SymbolReference (NameReference n)) :: Just INT

TERM1
Γ ` Term (CallFactor (SymbolReference (NameReference n))) [] :: Just INT

EXPR1
Γ ` Expression [(+,Term (CallFactor (SymbolReference (NameReference n))) [])] :: Just INT (Just INT) = min(M(Γ,faculty.multiply(Just INT)))

CALL4
Γ ` Call (FieldReference faculty multiply) [Expression [(+,Term (CallFactor (SymbolReference (NameReference n))) [])]] :: Nothing

Figure 7.2: Type derivation for faculty.multiply(n), fac2.olang, line 26

() = min(M(Γ,faculty.print()))
CALL4

Γ ` Call (FieldReference faculty print) [] :: Nothing

Figure 7.3: Type derivation for faculty.print(), fac2.olang, line 30
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7.4 Limitations of the code generator implementation

The code generator implementation leaves room for improvement in two main areas.
For one, due to its sequential nature (it essentially walks the syntax tree in depth-first order),

mutual recursion can only be handled in very specific cases. It is possible to translate a procedure
or method that invokes one of its subprocedures, where the subprocedure invokes the calling
procedure or method as well. Any other case of mutual recursion - mutually recursive top-level
procedures or methods, as well as class definitions that mutually refer to each other (see the latter
part of section 9) - can not be translated. Alleviating this problem requires a different approach
to code generation. As a first step, it would be useful to allow backtracking to handle forward-
references without mutual recursion: If code generation of a procedure fails, maybe it requires a
forward reference and can only be translated later. But this is not enough for mutual recursion,
since in that case there are always forward references, independent of the order of translation. To
handle this, at least one of the forward references must be ignored at first, leaving placeholders
for some calling instructions. Then, a second stage of translation can fill in these placeholders and
complete the translation.

Additionally, the provided implementation of the code generator lacks any form of code op-
timization. Some optimizations like end-recursion optimization are simple enough to implement
to include them in a sensible implementation of O.
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Conclusion

This thesis describes the design of a mini-language that comprises the most important features of
object-oriented programming. On top of that, it delivers a simple implementation of the language,
which is also described in detail, thus fulfilling the aim of the thesis introduced in chapter 1.
Despite this, there is potential for improvement in several ways.

Firstly, one could think of additions to the language itself. Support for more primitive data
types like boolean, fractional or character-based types could be added. Also, the grammar could
be extended to allow for more flexibility regarding expressions, such as performing method calls
and field references on arbitrary expressions. Furthermore, the addition of simple extensions
like interfaces, abstract classes and static variables, which are common to most popular object-
oriented languages, is a possibility that would not complicate O too much to still be called a
mini-language.

Secondly, the implementation of the language also has some limitations. section 7.4 covered
the difficulty with mutually recursive class definitions, methods and procedures, and how to
extend the code generator to handle mutual recursion. Also, the possibility to incorporate some
simple code optimization strategies was mentioned. The implementation of garbage collection is
another point that was purposefully left out to simplify the implementation (see chapter 6).

These additions are also a step towards an idiomatic implementation of common design pat-
terns. The fact that O shows potential in this regard was demonstrated by the implementation of
the composite pattern in example 3.10. The visitor pattern as well as the alternative implemen-
tation of the example given in section 9 build on a variation of the composite pattern that relies
heavily on mutual recursion and can therefore not currently be compiled using the provided im-
plementation.

Apart from simple optimizations, the language could also be used for experimentation with
other implementation concepts. Since the code generator is probably the most complicated com-
ponent of the implementation, it is naturally more prone to programming errors. The provided
implementation tries to lessen this problem by employing numerous automated tests that also
cover the code generator. Still, it might prove beneficial to compare the existing implementation
to an alternative approach using interpretation, or even try to verify its correctness by formalizing
the semantics established informally for O.

With this, the author wishes to thank any reader that has read thus far and conclude this thesis.
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Appendix

FRACTRAN

In memory of John H. Conway, who passed away in 2020, this section presents an implementation
of the Turing-complete FRACTRAN programming language (see [4]) in O.

A FRACTRAN program is a finite sequence of positive rational numbers ( f )k
i=1. Given an

input N, the produced sequence of numbers Nn is given by N0 = N, Nn+1 = fiNn where i is the
minimum i such that fiNn ∈N. The program stops if no such i exists.

Using example 3.8 for rational numbers, along with a minimal implementation of linked lists,
example 9.1 implements FRACTRAN in O by iterating through the list repeatedly. It has the
programs PRIMEGAME, Fibonacci and POLYGAME pre-programmed for selection. They are
constructed in the corresponding procedures to make the code more readable. There is also the
option of entering a custom FRACTRAN program through the standard input.

The FRACTRAN implementation settles the question of O’s computational power hinted at
in example 3.4. Since using example 9.1, any FRACTRAN program can be executed, and FRAC-
TRAN itself is Turing-complete, O is also Turing-complete.

1 USING [
2 CLASS Rational(INT numerator, INT denominator)
3 FIELDS INT numerator
4 INT denominator
5 INIT {
6 IF denominator = 0 THEN {
7 PRINTLNS "denominator cannot be zero!"
8 ERROR
9 }

10 this.numerator := numerator
11 this.denominator := denominator
12 }
13 [
14 METHOD getNumerator() RETURNS INT num {
15 num := this.numerator
16 }
17

18 METHOD getDenominator() RETURNS INT den {
19 den := this.denominator
20 }
21
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22 METHOD multiply(INT factor) RETURNS OBJ Rational product {
23 product := Rational(factor * this.numerator, this.denominator)
24 }
25

26 METHOD isPositive() RETURNS INT isPositive {
27 isPositive := 1
28 IF this.numerator / this.denominator < 0 THEN isPositive := 0
29 }
30

31 METHOD isNatural() RETURNS INT isNatural {
32 isNatural := 0
33 IF this.isPositive() = 1 THEN {
34 IF (this.numerator / this.denominator) * this.denominator =

this.numerator THEN isNatural := 1↪→

35 }
36 }
37

38 METHOD print() {
39 PRINTI this.numerator
40 PRINTS " / "
41 PRINTI this.denominator
42 }
43 ]
44

45 CLASS RationalList()
46 FIELDS INT hasHead
47 OBJ Rational head
48 INT hasNext
49 OBJ RationalList next
50 INIT {
51 this.hasHead := 0
52 this.hasNext := 0
53 }
54 [
55 METHOD print() {
56 IF this.hasHead = 1 THEN {
57 OBJ Rational el
58 el := this.head
59 CALL el.print()
60 PRINTS ", "
61 IF this.hasNext = 1 THEN {
62 OBJ RationalList next
63 next := this.next
64 CALL next.print()
65 }
66 }
67 }
68

69 METHOD length() RETURNS INT len {
70 len := 0
71 IF this.hasHead = 1 THEN {
72 len := 1
73 IF this.hasNext = 1 THEN {
74 OBJ RationalList next
75 next := this.next
76 len := len + next.length()
77 }
78 }
79 }
80

81 METHOD insert(OBJ Rational element) {
82 IF this.hasHead = 1 THEN {
83 IF this.hasNext = 1 THEN {
84 OBJ RationalList next
85 next := this.next
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86 CALL next.insert(element)
87 }
88 IF this.hasNext = 0 THEN {
89 OBJ RationalList newNext
90 newNext := RationalList()
91 CALL newNext.insert(element)
92 this.next := newNext
93 this.hasNext := 1
94 }
95 }
96 IF this.hasHead = 0 THEN {
97 this.head := element
98 this.hasHead := 1
99 }

100 }
101

102 METHOD get(INT i) RETURNS OBJ Rational res {
103 IF i < 0 THEN {
104 PRINTLNS "Index out of range!"
105 ERROR
106 }
107 IF i = 0 THEN {
108 IF this.hasHead = 0 THEN {
109 PRINTLNS "Index out of range!"
110 ERROR
111 }
112 IF this.hasHead = 1 THEN {
113 res := this.head
114 }
115 }
116 IF i > 0 THEN {
117 IF this.hasNext = 0 THEN {
118 PRINTLNS "Index out of range!"
119 ERROR
120 }
121 IF this.hasNext = 1 THEN {
122 OBJ RationalList next
123 next := this.next
124 res := next.get(i - 1)
125 }
126 }
127 }
128 ]
129

130 PROCEDURE getPrimegameProgram() RETURNS OBJ RationalList prog {
131 PRINTLNS "If started with input 2, PRIMEGAME computes all prime powers of 2

(among some other numbers which are not powers of 2)."↪→

132 prog := RationalList()
133 CALL prog.insert(Rational(17, 91))
134 CALL prog.insert(Rational(78, 85))
135 CALL prog.insert(Rational(19, 51))
136 CALL prog.insert(Rational(23, 38))
137 CALL prog.insert(Rational(29, 33))
138 CALL prog.insert(Rational(77, 29))
139 CALL prog.insert(Rational(95, 23))
140 CALL prog.insert(Rational(77, 19))
141 CALL prog.insert(Rational(1, 17))
142 CALL prog.insert(Rational(11, 13))
143 CALL prog.insert(Rational(13, 11))
144 CALL prog.insert(Rational(15, 2))
145 CALL prog.insert(Rational(1, 7))
146 CALL prog.insert(Rational(55, 1))
147 }
148

149 PROCEDURE getFibonacciProgram() RETURNS OBJ RationalList prog {
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150 PRINTLNS "The Fibonacci-Program computes the Fibonacci sequence f."
151 PRINTLNS "Given 2 * 5 ^ (n - 1), it computes 2 ^ f(n)."
152 prog := RationalList()
153 CALL prog.insert(Rational(91, 33))
154 CALL prog.insert(Rational(11, 13))
155 CALL prog.insert(Rational(1, 11))
156 CALL prog.insert(Rational(399, 34))
157 CALL prog.insert(Rational(17, 19))
158 CALL prog.insert(Rational(1, 17))
159 CALL prog.insert(Rational(2, 7))
160 CALL prog.insert(Rational(187, 5))
161 CALL prog.insert(Rational(1, 3))
162 }
163

164 PROCEDURE getPolygameProgram() RETURNS OBJ RationalList prog {
165 PRINTLNS "POLYGAME is a universal program - it 'enumerates' all computable

functions using their respective 'catalogue numbers'."↪→

166 PRINTLNS "If c is the catalogue number of computable function f, and f(n) = m:"
167 PRINTLNS "Given the number c * 2 ^ (2 ^ n), POLYGAME computes 2 ^ (2 ^ m)."
168 prog := RationalList()
169 CALL prog.insert(Rational(583, 559))
170 CALL prog.insert(Rational(629, 551))
171 CALL prog.insert(Rational(437, 527))
172 CALL prog.insert(Rational(82, 517))
173 CALL prog.insert(Rational(615, 329))
174 CALL prog.insert(Rational(371, 129))
175 CALL prog.insert(Rational(1, 115))
176 CALL prog.insert(Rational(53, 86))
177 CALL prog.insert(Rational(43, 53))
178 CALL prog.insert(Rational(23, 47))
179 CALL prog.insert(Rational(341, 46))
180 CALL prog.insert(Rational(41, 43))
181 CALL prog.insert(Rational(47, 41))
182 CALL prog.insert(Rational(29, 37))
183 CALL prog.insert(Rational(37, 31))
184 CALL prog.insert(Rational(299, 29))
185 CALL prog.insert(Rational(47, 23))
186 CALL prog.insert(Rational(161, 15))
187 CALL prog.insert(Rational(527, 19))
188 CALL prog.insert(Rational(159, 7))
189 CALL prog.insert(Rational(1, 17))
190 CALL prog.insert(Rational(1, 13))
191 CALL prog.insert(Rational(1, 3))
192 }
193

194 PROCEDURE getCustomProgram() RETURNS OBJ RationalList prog {
195 PRINTLNS "You will be asked to enter each rational number, numerator and

denominator separately."↪→

196 PRINTLNS "All rational numbers must be positive."
197 PRINTLNS "To complete the input, enter a zero denominator."
198 INT programComplete
199 programComplete := 0
200 INT counter
201 counter := 0
202

203 WHILE programComplete = 0 DO {
204 INT den
205 INT num
206

207 PRINTS "Rational number "
208 PRINTI counter
209 PRINTLNS ": "
210 PRINTLNS "Please enter the numerator: "
211 READ num
212 PRINTLNS "Please enter the denominator: "
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213 READ den
214

215 IF den = 0 THEN {
216 programComplete := 1
217 }
218 IF NOT den = 0 THEN {
219 OBJ Rational newrat
220 newrat := Rational(num, den)
221 IF newrat.isPositive() = 0 THEN {
222 PRINTLNS "All rationals must be positive!"
223 ERROR
224 }
225 IF counter = 0 THEN {
226 prog := RationalList()
227 CALL prog.insert(newrat)
228 }
229 IF NOT counter = 0 THEN {
230 CALL prog.insert(newrat)
231 }
232 counter := counter + 1
233 }
234 }
235

236 IF counter < 1 THEN {
237 PRINTLNS "You entered an empty program!"
238 ERROR
239 }
240 }
241 ] DO {
242 OBJ RationalList program
243 INT programChoice
244

245 PRINTLNS "Welcome to the FRACTRAN interpreter."
246 PRINTLNS "Which program do you want to execute?"
247 PRINTLNS "0: PRIMEGAME"
248 PRINTLNS "1: Fibonacci"
249 PRINTLNS "2: POLYGAME"
250 PRINTLNS "3: Enter custom program interactively"
251 READ programChoice
252 IF programChoice < 0 THEN {
253 PRINTLNS "Invalid input!"
254 ERROR
255 }
256 IF programChoice = 0 THEN program := getPrimegameProgram()
257 IF programChoice = 1 THEN program := getFibonacciProgram()
258 IF programChoice = 2 THEN program := getPolygameProgram()
259 IF programChoice = 3 THEN program := getCustomProgram()
260 IF programChoice > 3 THEN {
261 PRINTLNS "Invalid input!"
262 ERROR
263 }
264

265 INT programLength
266 programLength := program.length()
267

268 INT input
269 PRINTS "Input number: "
270 READ input
271

272 PRINTS "Program: "
273 CALL program.print()
274 PRINTLNS ""
275 PRINTS "Input: "
276 PRINTI input
277 PRINTLNS ""
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278 PRINTLNS "Program output: "
279

280 INT currentInput
281 currentInput := input
282 INT currentIndex
283 currentIndex := 0
284

285 WHILE currentIndex < programLength DO {
286 OBJ Rational currentFrac
287 currentFrac := program.get(currentIndex)
288 currentFrac := currentFrac.multiply(currentInput)
289 INT isNatural
290 isNatural := currentFrac.isNatural()
291 IF isNatural = 1 THEN {
292 currentInput := currentFrac.getNumerator() / currentFrac.getDenominator()
293 currentIndex := 0
294 PRINTI currentInput
295 PRINTLNS ""
296 }
297 IF isNatural = 0 THEN {
298 currentIndex := currentIndex + 1
299 }
300 }
301 }

Listing 9.1: Example program fractran.olang

The list implementation could be improved by using the composite pattern introduced in
example 3.10. This allows for simplifying the involved logic due to the distinction between non-
empty and empty lists. In O, this can be represented by defining 3 classes RationalListInterface
(the common interface), RationalList (the non-empty lists) and RationalLeaf (the empty
lists):

1 CLASS RationalListInterface()
2 INIT {
3 PRINTLNS "This class represents an interface and must not be instantiated!"
4 ERROR
5 }
6 [
7 METHOD print() {
8 PRINTLNS "I am an abstract method"
9 ERROR

10 }
11

12 METHOD length() RETURNS INT length {
13 PRINTLNS "I am an abstract method"
14 ERROR
15 }
16

17 METHOD insert(OBJ Rational element) RETURNS OBJ RationalListInterface res {
18 PRINTLNS "I am an abstract method"
19 ERROR
20 }
21

22 METHOD get(INT index) RETURNS OBJ Rational res {
23 PRINTLNS "I am an abstract method"
24 ERROR
25 }
26 ]
27

28 CLASS RationalList(OBJ Rational head)
29 SUBCLASSOF RationalListInterface
30 FIELDS OBJ Rational element
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31 OBJ RationalListInterface next
32 INIT {
33 this.element := head
34 this.next := RationalLeaf()
35 }
36 [
37 METHOD print() {
38 OBJ Rational el
39 el := this.element
40 CALL el.print()
41 PRINTS ", "
42 OBJ RationalListInterface next
43 next := this.next
44 CALL next.print()
45 }
46

47 METHOD length() RETURNS INT len {
48 OBJ RationalListInterface next
49 next := this.next
50 len := 1 + next.length()
51 }
52

53 METHOD insert(OBJ Rational element) RETURNS OBJ RationalList newHead {
54 OBJ RationalListInterface next
55 next := this.next
56 this.next := next.insert(element)
57

58 newHead := this
59 }
60

61 METHOD get(INT i) RETURNS OBJ Rational res {
62 IF i < 0 THEN {
63 PRINTLNS "Index out of range!"
64 ERROR
65 }
66 IF i = 0 THEN {
67 res := this.element
68 }
69 IF i > 0 THEN {
70 OBJ RationalListInterface next
71 next := this.next
72 res := next.get(i - 1)
73 }
74 }
75 ]
76

77 CLASS RationalLeaf()
78 SUBCLASSOF RationalListInterface
79 INIT { PRINTS "" }
80 [
81 METHOD print() {
82 PRINTS ""
83 }
84

85 METHOD length() RETURNS INT len {
86 len := 0
87 }
88

89 METHOD insert(OBJ Rational newel) RETURNS OBJ RationalList newHead {
90 newHead := RationalList(newel)
91 }
92

93 METHOD get(INT i) RETURNS OBJ Rational res {
94 PRINTLNS "Index out of range!"
95 ERROR
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96 }
97 ]

Apart from the minor issue that interfaces can not be represented natively in O, there is a bigger
problem. Independent of the arrangement of the three classes, there is always at least one forward
reference to a class defined later. Due to a shortcoming of the code generator (see chapter 7), only
backward references are allowed, so the provided implementation can not be used for compiling
the classes.
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