
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

MEMORY MANAGEMENT IN
RUST

Principles and Comparison with C
and C++

Claudio Zeeb

Bachelor Thesis

Supervisor Prof. Dr. François Bry
Mentor Dipl.-Ing. Thomas Prokosch

Submission date 07/07/2022



2



Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 07.07.20202 Claudio Zeeb

i



ii



Abstract

Rust is a new general purpose programming language which promises thread and memory
safety without relying on a tracing garbage collector. To achieve this, the language utilizes
a memory management concept called ownership. This concept validates memory accesses
and references through compile time checks. With this approach, Rust is able to offer per-
formance similar to to those of C and C++. The combination of these features makes the
language especially suitable for system programming – a field traditionally dominated by
C and C++.
This thesis describes the memory management concepts of Rust and compares them to
those of C and C++. This is done by providing exemplary code listings to analyze the se-
mantics of the memory management approaches of each language. By further comparing
the memory management of Rust to the traditional approaches of garbage collection and
manual memory allocation, this thesis evaluates the advantages and disadvantages of the
ownership model employed in Rust.

iii



iv



Zusammenfassung

Rust ist eine neue Allzweckprogrammiersprache, die Thread- und Speichersicherheit ver-
spricht, ohne sich dabei auf einen Speicherbereiniger zu verlassen. Um dies zu erreichen,
verwendet die Sprache ein Speicherverwaltungskonzept namens Ownership. Dieses Konzept
validiert Speicherzugriffe und Referenzen durch Überprüfungen während der Übersetzung.
Mit diesem Ansatz ist Rust in der Lage, eine Leistung vergleichbar zu C und C++ zu bieten.
Die Kombination dieser Merkmale macht Rust insbesondere geeignet für die Systempro-
grammierung – eine Domäne, welche traditionell von C und C++ dominiert wird.
Diese Arbeit beschreibt die Speicherverwaltungskonzepte von Rust und vergleicht sie mit
jenen von C und C++. Dies geschieht durch beispielhafte Quelltextausschnitte, um die Se-
mantik der Speicherverwaltungsansätze der genannten Sprachen zu analysieren. Durch
den anschließenden Vergleich der Speicherverwaltung von Rust mit den traditionellen
Ansätzen der Garbage Collection und der manuellen Speicherverwaltung werden in dieser
Arbeit die Vor- und Nachteile des in Rust verwendeten Ownership-Modells bewertet.

v



vi



Acknowledgments

First and foremost I would like to thank Prof. Dr. François Bry for giving me the op-
portunity to write this thesis, thereby allowing me to dive into a new (for me, at least)
programming language and its internals.
I am also extremely grateful for the continued support from my mentor Dipl.-Ing. Thomas
Prokosch. He provided me with suggestions and constructive feedback on many occasions,
inspiring me to challenge myself and dig deeper.
A big thank you also goes to the Rust community, in particular the contributors of the
official Discord server. The server has allowed me to both gain insights by reading past
conversations as well as get answers to my own questions regarding the language.
Finally, I would like to thank my family and friends, who have supported and encouraged
me a great deal during this thesis and my bachelor studies in general.

vii



viii



Contents

1 Introduction 3
1.1 Aim of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Academic research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Blog posts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Official Rust books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Syntax and semantics 7
2.1 Syntax and language features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Variables and values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Functions and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Variable scope and access . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Moving of ownership versus copying values . . . . . . . . . . . . . . . 17
2.2.3 Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Passing ownership across function boundaries . . . . . . . . . . . . . . 19
2.2.5 Ownership in C and C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Borrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Mutable references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 References and mutability in C and C++ . . . . . . . . . . . . . . . . . 23
2.3.3 Dangling references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Validating lifetimes with the borrow checker . . . . . . . . . . . . . . . . 25
2.4.2 Rust code with lifetime annotations . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Lifetime elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 Non-lexical lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Garbage collection in Rust 31
3.1 Automatic memory management . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Tracing garbage collection . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Reference counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Problems with automatic memory management . . . . . . . . . . . . . 32

3.2 Garbage collection in early Rust versions . . . . . . . . . . . . . . . . . . . . . 32
3.3 Garbage collection as a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



x CONTENTS

3.3.1 Motivation for garbage collection in systems programming . . . . . . 33
3.3.2 Rust garbage collection libraries . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 C and C++ garbage collection libraries . . . . . . . . . . . . . . . . . . . 35

3.4 Extending Rust’s memory management through unsafe calls . . . . . . . . . 36
3.5 Rust’s solution to memory management . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Reclaiming memory of non-cyclic data structures . . . . . . . . . . . . 38
3.5.2 Reclaiming memory of cyclic data structures . . . . . . . . . . . . . . . 39

4 Memory management: Rust and C/C++ compared 41
4.1 Movable versus fixed memory locations . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Memory management in asynchronous Rust programming . . . . . . . . . . . 42

5 Conclusion 45

Bibliography 47



List of source code listings

1 Declaring a variable and assigning a value to it . . . . . . . . . . . . . . . . . . 7
2 Declaring a mutable variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Function definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Calculating a value with type Option<i32> . . . . . . . . . . . . . . . . . . . 9
5 Use of tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Use of arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 Creating a vector using new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 Creating a vector using from . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 Adding and removing elements from a Vec . . . . . . . . . . . . . . . . . . . . 11
10 Function definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
11 Function from Listing 10, but with elided return type . . . . . . . . . . . . . . 12
12 Calling the function from Listing 10 . . . . . . . . . . . . . . . . . . . . . . . . 12
13 Definition of a function with multiple parameters . . . . . . . . . . . . . . . . 12
14 Adding a return value to the function from 13 . . . . . . . . . . . . . . . . . . 13
15 Defining a function using generics . . . . . . . . . . . . . . . . . . . . . . . . . 13
16 Using the println! macro to print variable values . . . . . . . . . . . . . . . 14
17 Function with trait bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
18 Variable scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
19 Accessing an uninitialized variable . . . . . . . . . . . . . . . . . . . . . . . . . 17
20 Compiler output generated by compiling Listing 19 . . . . . . . . . . . . . . . 17
21 Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
22 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
23 Cloning values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
24 Passing ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
25 Passing ownership through return values . . . . . . . . . . . . . . . . . . . . . 20
26 Returning ownership and additional return value . . . . . . . . . . . . . . . . 21
27 Computing length with reference to vector . . . . . . . . . . . . . . . . . . . . 22
28 Appending to a String with a mutable reference . . . . . . . . . . . . . . . . 23
29 Attempting to create multiple mutable references . . . . . . . . . . . . . . . . 23
30 Creating a dangling pointer in C . . . . . . . . . . . . . . . . . . . . . . . . . . 24
31 Attempting to create a dangling reference in Rust . . . . . . . . . . . . . . . . 24
32 Creating an invalid reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
33 Error message produced by compiling Listing 32 . . . . . . . . . . . . . . . . . 26
34 Visualizing lifetimes from Listing 32 . . . . . . . . . . . . . . . . . . . . . . . . 26
35 Attempting to create a function without lifetime annotations . . . . . . . . . . 27
36 Expanding the function definition from Listing 35 with lifetime annotations . 27
37 Calling the shorter_vec function . . . . . . . . . . . . . . . . . . . . . . . . . 28
38 Safe code rejected by compiler: Mutable reference assigned to a variable . . . 29

1



2 LIST OF SOURCE CODE LISTINGS

39 Dereferencing a raw pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
40 Defining and calling an unsafe function . . . . . . . . . . . . . . . . . . . . . 37
41 Implementing a Rust malloc-based memory allocator using unsafe code . 37
42 Moving a value in memory by transferring ownership . . . . . . . . . . . . . . 42



CHAPTER 1

Introduction

1.1 Aim of this thesis

Rust has been named the “most loved programming language” for the sixth year in a row
by participants in the annual Stack Overflow Developer Survey [85]. For many, this does
not come as a surprise: As a general purpose language, Rust promises type, thread and
memory safety while giving the programmer control over memory management and sys-
tem resources. It offers a desirable combination of safety, performance and flexibility.
Systems and embedded systems programmers often have to consider memory and pro-
cessing power constraints of their target systems [15]. These systems have traditionally
been developed with C and C++ due to the ability of these languages to directly manage
system resources. This includes manual allocation and deallocation of memory as needed
by the program. While this can be efficient, it is also complicated: Memory errors, such as
use-after-free and double free errors, as well as race conditions can occur. These errors have
the potential to crash programs. The conditions under which they occur can be hard to
reproduce, making them difficult to debug and resolve. Teams at Apple, Microsoft and
Google have discovered that over two thirds of security vulnerabilities in their products
are attributable to memory unsafety, primarily introduced by developers in C and C++
code [20, 38, 53, 86].
Rust aims to avoid these issues through its innovative concept of ownership and the strict
separation of safe and unsafe code. With this approach, Rust guarantees memory safety,
making the errors described above impossible. At the same time, Rust does not compro-
mise its performance to achieve this. Many checks ensuring memory safety are performed
at compile time.
Rust and C/C++ intentionally share the same abstract machine model [52]. This allows
systems programmers to switch to Rust without having to leave behind their intuition and
knowledge on how the language interacts with hardware.
This thesis aims to lay out the principles of memory management in Rust and highlights
how the language achieves memory safety without using a garbage collector. Through-
out this work, the concepts presented are viewed from both perspectives, the one of Rust,
and the one of C and C++. This thesis aims to distinguish itself from other publications
on Rust by giving an in-depth overview of all memory related topics, while assuming no
prior knowledge of the language. This closes a gap in existing publications between blog

3



4 CHAPTER 1. INTRODUCTION

posts and tutorials relating to single topics regarding Rust, and scientific publications lay-
ing out the theoretical foundations for the concepts of memory management, both general
concepts and concepts specific to Rust.

1.2 Related work

Since Rust is a relatively new language (the first version 1.0 of which was released in 2015),
the amount of academic publications covering the language is limited. However, the de-
veloper community around the Rust language is quite active, which leads to many dis-
cussions, blog posts and tutorials being published online. This section aims to give an
overview on both the academic publications as well as categorize the broad landscape of
blog posts and official Rust materials.

1.2.1 Academic research

Many scientific Rust-related articles have been published in the context of the “Principles
of Programming Languages (POPL)” conference and the RustBelt project [21]. With the
more widespread adoption of the language in recent years, additional research has also
appeared in other venues.

Static memory safety before Rust

The concept of memory safety for programs without the need for runtime checks or garbage
collection employed in Rust is not new: A compiler technique to achieve this for a subclass
of C programs was proposed by Dhurjati et al. already in 2003 [20]. The ownership concept
used in Rust is based on substructural typing, as described by Walker in 2005 [19].

Rust and the conference “Principles of Programming Languages”

The development of Rust eagerly considers and contributes to the publications made in the
conference “Principles of Programming Languages” (POPL). The conference has produced
numerous papers on theoretical programming language foundations, some of which have
served as inspiration for the design of the Rust language. Also, many of the developments
in Rust have been published in the proceedings of the conference. In 2017, then Rust core
team member Aaron Turon was invited to give a keynote speech on transitioning the Rust
language from a theoretical concept to a functioning language in practice which described
ownership and traits as Rusts core and most distinguishing features [89].
Work stemming from the development of Rust is being published regularly, such as the
formalization of the borrow checking model by Weiss et al. (2021) [94].

RustBelt

RustBelt is a project started in 2015 with the goal of formally proving the claimed memory
and thread safety of the Rust language and its standard library. Within the scope of the
project, Jung et al. (2017) have developed a formal representation of the Rust language
allowing to prove the safety of a realistic subset of Rust. The model is extensible: New
libraries using unsafe code can be included. The model allows the specification of verifica-
tion conditions for new libraries utilizing unsafe code. When these conditions are met, the
library can be considered a safe language extension [37]. In 2019, Jung et al. have also pro-
posed an aliasing model called Stacked Borrows for Rust, defining aliasing rules for unsafe
code that allow for compiler optimizations while preserving the semantics of the code [36].



1.2. RELATED WORK 5

Additional work has been done by Dang et al. (2019) on extending the previously men-
tioned models to concurrent libraries [18] as well as developing methods to relax the con-
straints placed on mutable aliased state, which is necessary for the implementation of cer-
tain data structures [97].
The RustBelt project has also produced work having implications for other languages than
Rust: Lee et al. (2018) have implemented a new version of the memory model of LLVM
to allow for more optimizations of low-level programs written in C, C++, and Rust (LLVM
is the compiler framework used to build components of a variety of compilers, including
Rust) [44].

Usage of Rust

More practical aspects of the Rust language have also been investigated scientifically. An
experience report on developing the browser engine for Mozilla’s Firefox browser in Rust
has been published by Anderson et al. in 2020 [2]. Evans et al. (2020) evaluated the use of
unsafe code and proposed changes to the compiler to signal to developers that their code
may have unsafe features [24]. Emre et al. (2021) investigated the automatic translation of
C code to Rust code with the goal of improving safety [22].
Xu et al. (2020) studied over 180 real-world Rust common vulnerabilities and exposures
(CVEs) and found that all memory safety bugs required unsafe code, backing up Rusts
claim of memory safety [96].
In 2022, Coblenz et al. found that using the garbage collection library Bronze (which is
discussed in chapter 3 of this thesis) significantly sped up the time subjects took to complete
a programming task. They found ownership, borrowing and lifetimes to be the main areas
users struggled with [17].

Garbage collection and memory management

To be able to compare Rusts approach to memory management to the approach of other
languages, a look at garbage collection is necessary. The concept of garbage collection was
introduced by John McCarthy around 1960 to simplify memory management in the LISP
programming language [48]. Subsequently, Donald Knuth (1968) discussed differences be-
tween reference counting and garbage collection and pointed out limitations of both ap-
proaches in volume 1 of his standard work The Art of Computer Programming [43]. Since
then, a large number of research on a variety of garbage collection approaches have been
published: While listing all of them is beyond the scope of this thesis, the following are
worth mentioning: Wilson et al. (1992) describe different garbage collection techniques for
uniprocessor systems [95], serving as a well organized summary of approaches. In 2004,
Detlefs et al. introduced the Garbage First Garbage Collector [33], a high throughput collec-
tor optimized for multiprocessor systems. It has since served as a reference for concurrent
collectors and has been the default garbage collector of the Java Virtual Machine (JVM) ref-
erence implementation OpenJDK since version 9.
In 2004, Bacon et al. presented their “Unified Theory of Garbage Collection”, which shows
that the two core approaches to automatic memory management – reference counting and
tracing collection – are algorithmic duals of each other, and that all other commonly used
techniques are hybrids of these [5].
Rust does not include a garbage collector for performance reasons, which is why the perfor-
mance of garbage collectors also need to be looked at. Benjamin Zorn published an analysis
of the cost of conservative garbage collection in 1993 [98], Hertz and Berger (2004) aimed
at settling the debate of performance of automatic versus manual memory management.
They found that under certain conditions, garbage collection can outperform manual mem-
ory management however only at a significant memory overhead [30]. The conclusions on



6 CHAPTER 1. INTRODUCTION

the performance of garbage collection diverge considerably and appear to be dependent
on the specific use case indicating that garbage collection is still not a universal solution.

1.2.2 Blog posts

Over the past years, a large number of blog posts on the Rust language have been published
online. Some Rust team members give insight on the development and technical issues,
such as Aria Beingessner pointing out problems with unsafe pointer types [8]. Other core
members have shared their visions of what Rusts use case, its target audience, and even its
marketing strategy should be [31, 39].
Several authors not part of Rust team have written blog posts and tutorials about the lan-
guage as well. Most of them have the goal of explaining a concept or even to solve a specific
problem in Rust. An example of this is Gui Andrade talking about storing unboxed trait
objects [3].
Another category of blog posts commonly found is the comparison to other languages,
often with the aim of introducing Rust to developers with a certain background. Compar-
isons to a variety of languages exist, among those are OCaml [23], C and C++ [23, 91], and
Haskell [56].
Unfortunately, not all blog posts on Rust are completely accurate. Due to the often anony-
mous nature of blogs, it is not always possible to identify the author. Also, as opposed to
the academic research presented above, blog posts are generally not peer-reviewed, though
some blogs provide a feedback mechanism through comment fields. A blog post on the
website of a consultancy comes to the conclusion that “[..] Rust has Garbage Collection,
and a Fast One” [87]. This is – as will be shown in this thesis – not an accurate description
of Rust, which does not have a garbage collector. Another blog post compares execution
speed of a Kotlin and a Rust program, coming to the conclusion that Kotlin is faster than an
optimized Rust program [49]. However, a closer look shows that the methodology is not
sound which is pointed out by users in the comments.

1.2.3 Official Rust books

In addition to the documentation and the source code of the Rust language, the Rust team
publishes and maintains official books online. The most notable one is by Steve Klabnik
and Carol Nichols, titled “The Rust Programming Language” [42]. It was also published in
print and serves as an introduction to Rust, describing aspects of the language [59].
The official Rust reference is available as an online book [73]. More official books are avail-
able digitally on the topics of compiler development, asynchronous programming, unsafe
Rust, and more [61, 78, 79].



CHAPTER 2

Syntax and semantics

2.1 Syntax and language features

This section aims to give an overview of the syntax of Rust. The focus is on concepts that
are used in the following chapters and relevant to the topic of memory management. To
keep examples short, the code listings only show fragments of full programs. In particular,
the main() function is omitted when not needed for the example.

2.1.1 Variables and values

In Rust, values are accessed through variables. A variable is declared using the let key-
word, followed by the name of the variable. The equal sign (=) serves as the assignment
operator. On its right the desired value for the variable is stated. Listing 1 creates a vari-
able named var and assigns the value 42 to it. The semicolon (;) concludes the assignment
statement.

1 let var = 42;

Listing 1: Declaring a variable and assigning a value to it

Variables are immutable by default. Once a value is bound to a variable, it cannot be
changed. In many programs, however, it can be useful to have a variable that is capable of
holding different values over time. To enable this, Rust offers mutable variables. A variable
is declared as mutable by adding the mut keyword as shown in Listing 2.

1 let mut x = true;

Listing 2: Declaring a mutable variable

Listing 2 creates a mutable variable x and assigns the value true to it.

7



8 CHAPTER 2. SYNTAX AND SEMANTICS

2.1.2 Types

Type inference

Rust is statically typed, meaning that the type of a variable has to be known at compile time.
The compiler is able to infer the type of most variables. In Listing 2, even though it was not
explicitly stated, variable x is of type bool, the Boolean type.
It is possible (and sometimes even necessary, as shown later on) to explicitly annotate the
type of a declared variable, as is shown in listing 3.

1 let x: i32 = 21;
2 let y = 42i64;

Listing 3: Function definition

Two different notations for type annotations exist: The type of variable x is specified by
adding a colon (:) after the variable name, followed by the type. Variable y uses a postfix
notation to specify the type, in this case the 64-bit integer type i64.

Scalar types

Scalar types, sometimes called primitive types, are types representing only a single value [59,
p. 36]. In Rust, four scalar types are implemented: Integers, floating-point numbers, Boolean
values, and characters.
The integer and floating-point types are provided in different sizes. Integers exist both
signed and unsigned, with sizes ranging from 8 to 128 bit, as well as with the usize type
having system-dependent size. Two floating point types are provided: f32 and f64 with
32 and 64 bit size, respectively. All basic mathematical operations for number types are
supported: Addition, subtraction, multiplication, division, and the remainder operation.
The character type char serves to represent a single character. Character literals are indi-
cated with opening and closing single quotes ('). Rust’s char type uses 4 bytes of memory.
In comparison, a char in C takes up only one byte in order to be able to represent ASCII-
encoded characters. By using 4 bytes, Rust’s character type is able to represent any Unicode
scalar value. Because of this, symbols of the Chinese or Japanese language, accented char-
acters, and even emojis are valid character values in Rust.

Generic data types

Generic data types are data types which are not fully specified but are represented in parts
or in full by type variables. These type variables may be required to provide certain op-
erations. An example of a generic data type is the Option<T> type, where T is called a
type variable. The type Option<T> is defined with two constructors, Some(T) and None,
which provide the possibility to store a value of type T, or no value, if no value exists. Sim-
ilar to the Maybe a type found in Haskell it can be used as a return type for a function or
computation, where – if the computation fails – no value will be returned. Listing 4 shows
an example use of the type Option<T>.



2.1. SYNTAX AND LANGUAGE FEATURES 9

1 let mut rng = rand::thread_rng();
2 let num: i32 = rng.gen::<i32>();
3

4 let half: Option<i32> =
5 if num % 2 == 0 {
6 Some(num / 2)
7 } else {
8 None
9 };

Listing 4: Calculating a value with type Option<i32>

The first two lines of Listing 4 compute a random integer value which is stored in the
variable num. In line 4, a new variable named half of type Option<i32> is declared. It
is then initialized with the result of a computation: If num is even, it is divided by two, and
the result of this operation is returned, wrapped in the Some constructor of the Option
type. If num is odd, the constructor None is used, no value is being returned.
Other generic types include Result<T, E>, which is used to hold a value or an error, or
the vector type Vec<T>. The vector type is discussed in detail in section 2.1.2.

Tuples and arrays

Tuples and arrays are compound data types. They are used to combine several values into
a single data type.
A tuple serves as a collection of values of different types. It can hold any number of values,
the length, however, is fixed. Tuples are created using parentheses: An opening parenthesis
is followed by a comma-separated list of values, followed by a closing parenthesis. The
individual values can be accessed using a period (.), followed by the index of the element
to be accessed. Alternatively, a tuple can be destructured using pattern matching, breaking
it up into its individual parts. Listing 5 illustrates the use of tuples.

1 let tuple = (42, 'x', true, 12.0);
2 let fortytwo = tuple.0;
3 let (a, b, c, d) = tuple;
4 println!("{}, {}", fortytwo, b);

Listing 5: Use of tuples

In line 1, a variable called tuple is declared and initialized with a tuple made up of
four values of different types. In line 2, the period notation is used to access the first value
of the tuple and assign it to a new variable fortytwo. Line 3 shows an example of destruc-
turing: Four variables a, b , c, and d are declared and initialized with the individual values
of the tuple. Their types are inferred by the compiler. The println! instruction used here
is a macro and will be explained in section 2.1.4. For this example it suffices to know that it
prints the variable’s values to the console. The output of this program is 42, x.
A particularly interesting tuple is the empty tuple (). It is also called the unit type [57].
Only one value – the empty value () – of it exists. Therefore, the type carries no informa-
tion and can be used as a placeholder when no meaningful value exists, for example as a
return value. This will be described in section 2.1.3 [82].

Arrays are another way of storing multiple values in a single variable. The length of an
array is fixed. Arrays are zero-indexed, meaning that the first element of an array has index



10 CHAPTER 2. SYNTAX AND SEMANTICS

0. As opposed to tuples, all values in an array have to be of the same type. To create an
array, the list of values separated by commas, is placed between a pair of square brackets
([]). Elements in an array are accessed using a[i], where a denotes the array, and i
denotes the desired index. Listing 6 shows an exemplary use of arrays.

1 let arr = [4, 8, 15, 16, 23, 42];
2 let x = arr[3];
3 println!("{}", x);

Listing 6: Use of arrays

In Listing 6, an array named arr consisting of six integers is created. In line 2, a new
variable x is created and initialized with the value at index 3 of arr. When executed, this
program prints 16 to the console, as indices of arrays are zero-based.

Vectors

The standard library contains implementations of commonly used data structures each of
which can carry multiple values and offer additional functionality over tuples and arrays,
such as dynamic resizing. These data structures are called collections. The standard library
contains a number of collections. In the scope of this thesis, however, only an understand-
ing of vectors and strings is required.
Arrays can only be used when the amount and size of their contents are known at compile
time, or when a collection of a fixed size is desired. In many programs, though, the number
of elements to store can only be determined at runtime, e.g. when user input is processed.
Rust provides a vector type that is resizable at runtime, allowing the programmer to store a
dynamic number of values in a single variable. This vector type is called Vec<T>. Vectors
are generic types, with T being a type variable. This means that the Vec type is capable of
holding elements of any type T. When referring to a specific vector, the T is replaced by the
type of the elements of that given vector.
An empty vector is created using the new() function provided by the type. Listing 7 shows
how it is used:

1 let v: Vec<i32> = Vec::new();

Listing 7: Creating a vector using new

Two things from Listing 7 stand out: The type annotation in angled brackets (<>), as
well as the double colon (::) in front of the new() function.
The angled brackets are necessary because the compiler cannot infer from the call to new
which type the elements of the vector will be. Hence, explicit type annotation is required
which is placed inside the angled brackets.
The double colon (::) indicates a type-associated function [59, p. 16]. This means that the
function is implemented by the type itself, as opposed to a particular instance of a Vec.
This is similar to static member functions in C++, which also do not require an object of a
class to be instantiated in order to call the method [64].
Similar to new, Vec also provides a from function, which allows the programmer to create
a vector from an array of elements. In this case, the type of the elements can be inferred.
Listing 8 shows the creation of a vector from an integer array.



2.1. SYNTAX AND LANGUAGE FEATURES 11

1 let w = Vec::from([4, 8, 15, 16, 23, 42]);

Listing 8: Creating a vector using from

Vectors can grow: Elements can be added to a Vec by calling its push method which
adds the passed value to the end of the vector. Methods to remove elements exist as well:
The function remove() takes an index as its argument and removes the element at the
given position, moving all following elements to the front. The vector has to be declared
mutable for these modifications to be possible. Listing 9 shows the mutability of vectors:

1 let mut v = Vec::from([4, 8, 15, 16, 23, 42]);
2 v.push(4);
3 v.push(8);
4 v.remove(4);
5 println!("{:?}", v);

Listing 9: Adding and removing elements from a Vec

In line 1, a vector named v is created from an array. The two integers 4 and 8 are pushed
and thereby added to the back of the vector. In line 4, the element at index 4 is removed.
Note that remove does not remove the integer 4, but the element at index 4, in this case
the integer 16. The array is printed to the console in line 5, resulting in the output [4, 8,
15, 16, 42, 4, 8].

String types

The core Rust language comes with the string slice type str. It is an immutable, static
string of UTF-8 encoded characters. In the program code, a value of str is delimited using
double quotes ("). This type lacks flexibility in practice, as the length of a string is often not
known at compile time. The standard library of Rust offers another string type: String.
It can be mutable (provided that the respective variable is mutable) and it is dynamically
resizable, similar to the Vec type. A from function exists for String, allowing the creation
of a String variable from a string slice (str). Appending to a string is done using the
push_str method.

2.1.3 Functions and methods

All executable Rust code must be placed inside functions and methods. They are used as
building blocks to make code more readable, maintainable, and modular. Some program-
ming languages distinguish between routines that return a value (often called functions)
and routines that do not return a value (often called procedures). Rust does not make this
distinction. It does, however, distinguish between functions and methods. Functions can
take parameters as input, and return values to the caller. Methods are functions which are
defined in the context of a data structure introduced by the keywords struct or enum.
They always operate on a specific instance of a data object. The first parameter of a method
is always a reference to the object whose value is being used. That parameter is called
self. Apart from that, methods work exactly like functions.

Function definition

A function definition in Rust begins with the keyword fnwhich is followed by the function
name and a set of parentheses, within which the function parameters are given. Function



12 CHAPTER 2. SYNTAX AND SEMANTICS

parameters are optional, therefore the parentheses may be empty. After the parentheses, an
arrow -> is used to prefix the return type. Curly braces delimit the function body. Listing
10 shows a function definition:

1 fn a_function() -> () {
2 println!("Hello, Rust!");
3 }

Listing 10: Function definition

The function a_function has the return type (), also called the unit type. It is used
here because the function does not have any meaningful value to return to the caller. The
explicit indication that a function’s return type is unit can be elided, as is shown in Listing
11:

1 fn a_function() {
2 println!("Hello, Rust!");
3 }

Listing 11: Function from Listing 10, but with elided return type

Calling functions

A function is called by stating its name, followed by a set of parentheses and a semicolon.
The entry point for a program is the main() function. Listing 12 shows calling the function
defined in Listing 10 from inside the main() function.

1 fn main() {
2 a_function();
3 }

Listing 12: Calling the function from Listing 10

Function parameters are variables in the function signature. When a function is called,
values for these variables are passed to it, and they can be used in the function body. Once
passed, the concrete values are called arguments. The types of the function parameters have
to be declared in the signature: Within the parentheses after the function name, the name
and type of each parameter need to be stated, separated by colons. Multiple parameters
can be defined, their declarations are separated by commas. Listing 13 shows the signature
of a function with two arguments.

1 fn add_int(x: i32, y: i32) -> i32

Listing 13: Definition of a function with multiple parameters

The signature of the function add_int from Listing 13 indicates that the function takes
two arguments of type i32 named x and y, and returns a value of type i32. To understand
how values are returned a look at the body of a function is necessary: The body consists of
a set of statements with an optional expression at the end [59].
A statement represents code that performs an action but does not return a value. Contrary,



2.1. SYNTAX AND LANGUAGE FEATURES 13

an expression is evaluated to a value. Assignments, as seen in Listing 1, are statements.
Calling functions and macros are expressions, as are code blocks. The last expression inside
a code block is evaluated, its result is considered the value of that block, and is returned to
the caller.
Listing 14 completes the function add_int introduced in Listing 13 with a return value.

1 fn add_int(x: i32, y: i32) -> i32 {
2 x + y
3 }

Listing 14: Adding a return value to the function from 13

In line 2 of function add_int, variables x and y are added. This is an expression and
evaluates to a single value which is then returned by the function. Note that line 2 is not
concluded with a semicolon. Adding this semicolon would change the expression to a
statement, therefore not returning the intended value from the function. The semicolon (;)
discards the value returning the unit type () instead.
Another way to return values in Rust is using the return keyword. Explicit returning
follows the syntax return e where e is an expression. The value of this expression will
be returned. Explicit return statements can be placed after statements at any point within
the function body, causing the function to immediately return from that point with the
desired value. Any code following it will not be executed. By convention, explicit return
is used for early returns from functions in cases of errors or unexpected results [9].

Generic types in function signatures

In order to reduce the duplications of code, it is possible to write functions that are capable
of taking arguments of any type. To do this, a generic type parameter replaces the data
types of the arguments or the return value of the function. Additionally, after the function
identifier the type parameter has to be specified inside angled brackets (<>). Listing 15
shows the signature of a function using generic data types:

1 fn largest_element<T>(v: Vec<T>) -> T

Listing 15: Defining a function using generics

The function largest_element from Listing 15 takes a vector containing elements of
an arbitrary type T as its argument and returns a value of the same type T.

2.1.4 Macros

Rust offers a sophisticated macro system. Klabnik (2019) describes macros as ”code that
writes other code” [59]. Macros are a way of providing convenience functionality to the
programmer while hiding complexity. A macro looks similar to a function, but its name
ends with an exclamation mark (!). Macros allow the creation of variadic interfaces. A
variadic interface can take any number of arguments, as opposed to a function, where the
number of arguments is defined through the function signature. An example of a macro
with an arbitrary number of arguments is the println! macro. The first argument passed
to println! is a string literal containing at least one set of curly braces {}. This string is
called a format string. Additional arguments are then used to replace the curly braces in the



14 CHAPTER 2. SYNTAX AND SEMANTICS

format string. The resulting string is then printed to the console. Listing 16 shows the use
of the println! macro:

1 let i = 42;
2 let c = 'x';
3 let s = "Rust";
4

5 println!("The values are {}, {}, and {}.", i, c, s);

Listing 16: Using the println! macro to print variable values

In Listing 16, three variables are declared and initialized with arbitrary values. In line
5, the println! is used to print the value of these variables at desired positions of the
format string passed to the macro. The output of this code is The values are 42, x,
and Rust.

2.1.5 Traits

Most programming languages offer a mechanism to define shared behaviour between types
in order to avoid the repetition of code. In Rust, this mechanism is called traits. It allows
providing a general type signature for the implementing data types. The trait system was
inspired by type classes as found in the Haskell programming language [89]. The discus-
sion of traits focuses on the aspects relevant for understanding memory management in
Rust. A trait abstractly defines common behaviour that all implementing types must pro-
vide. This way, the same methods can be called on different types.
In Rust, traits serve two main purposes. The first one is the grouping of data types by their
functionality. The other purpose is to provide the compiler with additional information for
optimizations. This aspect is especially relevant for traits that can not implemented by the
user, but are usually implemented by the compiler, such as the Copy, Sized, Unpin and
other “marker” traits.
In function signatures, traits serve as type constraints. In a function signature using traits,
no information about the specific type is available, except for the fact that it implements
methods defined by the trait. In Rust, these constraints defined through traits are called
trait bounds. Trait bounds can be used to ensure that arguments of a function have a certain
functionality that is required to execute the function.
Listing 17 shows an example of trait bounds. For this example, consider a trait called
Metadata to exist. It provides a method called meta() that returns a human-readable
string representing the metadata of an object. For example, metadata of a picture could be
the time and location where the picture was taken.

1 fn print_date<T: Metadata>(object: T) {
2 let meta_string = object.meta();
3 // ...
4 }

Listing 17: Function with trait bounds

The example in Listing 17 shows the signature and parts of the body of a function called
print_date. It takes an object of a generic type T that implements the Metadata trait as
its argument. The trait bound is placed in the angle brackets after the declaration of the



2.1. SYNTAX AND LANGUAGE FEATURES 15

type variable T, separated from it by a colon. Through the trait bound the compiler knows
that the object passed must provide an implementation of the method meta() which can
therefore be called in line 2.



16 CHAPTER 2. SYNTAX AND SEMANTICS

2.2 Ownership

Ownership is often described as one of the core principles of Rust [59, 89]. Ownership is
built upon three rules, as specified in the official Rust programming language book [59,
p. 61]:

• Each value in memory is owned by a variable which is called its owner.
• At a given time, every value has exactly one owner.
• If the owner goes out of scope, the value is dropped and its backing memory is re-

leased.
These three rules are checked at compile time. The owner of a value may change during the
execution of the program. This is called moving of ownership. The ownership of a value is
tightly coupled with the scope of its owning variable.

2.2.1 Variable scope and access

The scope of a variable describes a range within the code of a program where its identifier
is valid [59, p. 62]. The scope of a variable in Rust starts with its name declaration and
ends at the end of the declaring block which is characterized with a closing curly brace.
Rust uses lexical scoping, also referred to as static scoping [93]. Brooks et al. (1982) describe
lexical scoping as “ALGOL-style” scoping [13]. Lexical scoping can be checked statically,
i.e. at compile time. Variables can be shadowed, i.e. a variable can have the same name
as a variable declared in the same or an outer scope. An example of shadowing is shown
in Listing 18. Values associated with a shadowed variable cannot be accessed through the
shadowed variable name [90]. Variables declared in outer blocks can however be accessed
from inner blocks by other means [58].
Before a variable goes out of scope, Rust implicitly calls a function called drop with the
variable as its only parameter. The actions required to return the memory allocated to that
variable are implemented in this function. [59]. Apart from freeing memory, drop can also
be used to release other resources such as network connections or files. This approach
of deallocating memory at the end of its lifespan is similar to the Resource Acquisition is
Initialization (RAII) pattern made popular by the programming language C++ [60, 77].
Listing 18 shows how variables can be scoped, shadowed and dropped based on the two
variables x and y. The curly braces in line 1 and 9 are deliberately included in this example
to illustrate the start and the end of the outermost scope.

1 {
2 let x = 42;
3 {
4 let x = 21;
5 let y = 0;
6 }
7 println!("x: {}", x);
8 }

Listing 18: Variable scopes

Variable x comes into scope with its name declaration in line 2 and is valid from thereon.
It is initialized with value 42. In line 4, within a separate code block, x is shadowed, i.e.
a new variable with the same name is declared, and initialized with value 21. This inner
scope ends with the closing curly brace in line 6. Within the entirety of this scope, the value
associated with variable x is 21. At the end of the inner scope, value 21 is dropped. Back
in the outer scope, the name x is still valid and associated with value 42. It can therefore



2.2. OWNERSHIP 17

be used in the println! macro in line 7. Variable x goes out of scope with the end of the
outer scope in line 9.
Variable y is declared and initialized in the inner scope at line 5. This variable is only valid
in this block, so it goes out of scope in line 6 and its value is dropped. Attempting to read
its value after line 6 would result in a compiler error.
For reading the value of a variable, equally important to the variable being in scope is that
it is actually holding a value. This is not the case if it has never been initialized, or if its
value has been moved. These two possibilities shall be illustrated by examples. Listing 19
shows an example of an uninitialized variable.

1 {
2 let x: i32;
3 println!("{}",x); // error
4 }

Listing 19: Accessing an uninitialized variable

error[E0381]: borrow of possibly-uninitialized variable: `x`
--> uninit.rs:3:19
|

3 | println!("{}",x);
| ˆ use of possibly-uninitialized `x`

Listing 20: Compiler output generated by compiling Listing 19

Listing 20 shows the compiler error that arises when trying to compile the code from
Listing 19. The compiler does not allow the use of the uninitialized variables, as accessing
them could lead to undefined behaviour [70]. This way the compiler enforces that any valid
variable to be read has been initialized according to the specific needs of its type prior to
using it.
The second reason why a variable might not have a value associated with it is because its
value has been moved. Move semantics are the topic of the next section.
C and C++ have no builtin way of tracking whether a variable has been initialized and
thus allow to read the values of uninitialized variables possibly resulting in undefined
behaviour.

2.2.2 Moving of ownership versus copying values

Rust differentiates between statically and dynamically sized types. Statically sized types
have a fixed size in the sense that the size is already known at compile time. In contrast,
the size of a dynamically sized type can only be determined at runtime, as it is dependent
on parameters specific to the type such as the length of a string of characters.
As most other languages, Rust has two areas of memory: Stack and heap. Values on the
stack can only be of fixed size. Values on the heap may be of either variable or fixed size.
Storing values on the heap is considered more expensive than storing values on the stack
since in order to allocate memory on the heap the use of the memory allocator of the op-
erating system is necessary. This is why Rust disallows copying data which is of variable
size. However, instead of resorting to the use of pointers, as C and C++ do, Rust has the
concept of moving ownership which means that the value to be moved is disassociated from
its previously owning variable and associated with a new variable.



18 CHAPTER 2. SYNTAX AND SEMANTICS

Listing 21 makes use of the String type to illustrate moving of ownership. The dynam-
ically sized type String is not copied for efficiency reasons, very much like in C. The
approach in C differs from the one in Rust, as Rust does not solely rely upon references but
instead moves ownership of values.

1 let s1 = String::from("Rust");
2 let s2 = s1;
3 println!("{}", s2);
4 println!("{}", s1); // error

Listing 21: Move

1 let x = 42;
2 let y = x;
3 println!("{}", y);
4 println!("{}", x);

Listing 22: Copy

When String s1 is created in line 1 of Listing 21, memory is allocated on the heap.
However, not the entire data structure is stored on the heap: For a variable of the String
type, additional metadata – its length and its capacity – is stored on the stack along with a
pointer to the memory address of the segment allocated on the heap. Figure 2.1 shows the
representation of the String variable s1 with value "Rust" from Listing 21 in memory.
The metadata, along with the pointer to the memory address returned by the allocator are
stored on the stack, as depicted on the left side of the figure. The actual characters making
up the string are stored on the heap (right side of the figure) [81].

on stack
name value
ptr
len 4

capacity 4
s1

on heap
index value
0 'R'
1 'u'
2 's'
3 't'

Figure 2.1: Memory representation of the String s1 from Listing 21

When s1 is assigned to s2 in line 2 of Listing 21, Rust does not copy data, as this is
could potentially be expensive at runtime if the heap data was large. Instead, s2 refers to
the memory location of s1 while s1 is considered unbound from thereon. The Rust com-
piler considers s1 to be no longer accessible after assigning it to s2 [59], as the value of s1
was moved to s2. The motivation behind the move semantics is the prevention of invalid
or dangling references [75].
Listing 22 contains the same statements as Listing 21 but operates on statically sized data.
Hence, the semantics are different: For the integer type i32, both variables x and y can
be used after copying the value of x to y. The reason for this is that pushing values onto
the stack is not considered an allocation, as stack memory is allocated to the process by the
operating system as soon as the process is created [59, p. 62]. As a consequence, values on
the stack can be copied freely without necessitating a call to the memory allocator of the
system.
The compiler determines whether a type can be copied by checking if it implements the
Copy trait. Examples of types implementing the Copy trait are all primitive data types,
such as integers (i32), floating point types such as f64 and the Boolean type bool. It is
not possible for the programmer to implement the Copy trait for an arbitrary type. A user-
defined, compound type can only implement Copy if it is made up solely of Copy types,
i.e. primitive types [69].
A rule of thumb regarding whether a type implements the Copy trait is the size of a pointer:



2.2. OWNERSHIP 19

If the type requires more space than a pointer, it usually does not implement the Copy trait.
If an object takes up less space than a pointer, copying the object can be implemented in
an efficient way, and so the Copy trait usually is implemented for these types. This con-
sideration is part of the design decisions taken by the Rust team on whether a type should
implement the Copy trait.
In future examples integers are used to represent Copy types and strings are used to repre-
sent non-Copy types.

2.2.3 Clone

In some programs it is desirable to have the same value assigned to more than just one
variable. The Rust developers have anticipated this need and therefore provide a func-
tion called clone for most builtin types [68] which do not implement Copy. Listing 23
shows the use of this function: A String variable s1 is declared and initialized. A second
String variable s2 is created, and initialized with a copy of the original string, returned
by the call to s1.clone(). The two strings are stored in different memory areas and are
completely independent from each other.

1 let s1 = String::from("Rust");
2 let s2 = s1.clone();
3 println!("{}", s2);
4 println!("{}", s1);

Listing 23: Cloning values

The above set of statements prints "RustRust" to the console. Since cloning can nega-
tively affect the performance of a program, it is never done implicitly and is always visible
in code with the clone function [35].

2.2.4 Passing ownership across function boundaries

Passing a variable to a function moves ownership into the function. Listing 24 shows how
ownership is transferred through function calls.

1 fn take_ownership(s: String) {
2 println!("{}", s);
3 }
4

5 fn makes_copy(i: i32) {
6 println!("{}", i);
7 }
8

9 fn main() {
10 let s = String::from("Rust");
11 take_ownership(s);
12

13 let x = 5;
14 makes_copy(x);
15 }

Listing 24: Passing ownership



20 CHAPTER 2. SYNTAX AND SEMANTICS

Both the functions take_ownership and makes_copy have only one function param-
eter, an i32 and a String, respectively. They both print the value of the variable to the
console and return nothing.
A variable passed into a function comes into scope the moment the function body is en-
tered, and is valid until the closing brace. At the end of the scope the respective value is
dropped and from thereon unavailable for reading. In the case of the function makes_copy,
a copy of the value assigned to variable x is made and passed to the function when it is
called in line 14 therefore leaving x accessible for reading after the function has been exe-
cuted. Since String does not implement Copy, the function take_ownership does not
create a copy of the value passed to it when it is called in line 11. Ownership is moved, and
therefore the compiler marks variable s as unbound and does not permit read access to it
afterwards.
In a similar manner, ownership can be transferred by using return values. When a function
returns a value, the ownership of that value is then transferred to the caller of the function.
Listing 25 illustrates this:

1 fn gives_ownership() -> String {
2 let s = String::from("Rust");
3 return s
4 }
5

6 fn reverse(s: String) -> String {
7 let reversed = s.chars().rev().collect();
8 reversed
9 }

10

11 fn main() {
12 let string1 = gives_ownership();
13 let string2 = reverse(string1);
14 println!("{}", string2);
15 println!("{}", string1); // error
16 }

Listing 25: Passing ownership through return values

The function gives_ownership takes no arguments and returns a String. In the
body of the function, a String variable is created and subsequently returned. When the
function is called in function main in line 12, the variable string2 takes ownership of
the value of the String returned by the function gives_ownership. It is important to
note that the practice of declaring a variable and subsequently returning it in the following
line is generally not considered to be good Rust style. It is deliberately being used in this
example to make the code clearer.
The function reverse takes a String as its only argument and returns a String with
the characters in reversed order. In the body, the String passed to the function is reversed
by calling s.chars().rev().collect() which simply is a chain of method calls. Its
result is assigned to a new variable named reversed which is subsequently returned. The
function reverse is called in line 13 with the previously initialized String string1. The
return value is assigned to a new variable string2, which takes ownership of the value
returned by the function. Because of the move semantics described above, string1 is con-
sidered unbound after line 13 and can not be accessed afterwards which is why accessing
it in the println! macro in line 15 will result in a compiler error.
Looking at the example in Listing 25 it becomes clear that in order to use a value after a



2.2. OWNERSHIP 21

function takes ownership of it, the function has to pass back ownership by returning the
value. Passing ownership twice clutters the code and becomes cumbersome if a function
needs to change the value of more than one variable. Listing 26 shows how this is achieved
by returning tuples:

1 fn main() {
2 let vector = Vec::from([1, 2, 3, 4]);
3

4 let (returned_vec, computed_len) = compute_length(vector);
5 println!("The length of the vector is {}.", computed_len);
6 }
7

8 fn compute_length<T>(v: Vec<T>) -> (Vec<T>, usize) {
9 let length = v.len();

10 (v, length)
11 }

Listing 26: Returning ownership and additional return value

The function compute_length is being called from the function main which subse-
quently uses its return value in line 5 in order to print the length of the vector to the con-
sole. compute_length takes ownership of the vector, and returns a tuple of the computed
length and the vector itself to ensure the vector is not dropped and can be used afterwards.

2.2.5 Ownership in C and C++

Both C and C++ have no concept similar to ownership. They both require the programmer
to allocate and free memory by hand and allow for freely making copies of values, possibly
leading to bugs [1].



22 CHAPTER 2. SYNTAX AND SEMANTICS

2.3 Borrowing

Rust also offers a mechanism of using values without taking ownership of them. This
mechanism is called borrowing [59, p. 71]. Borrowing augments the ownership model by
introducing references to values. These references are tied to the values themselves and as
such may only exist as long as the values they are referring to. The borrow checker, part of
the Rust compiler, is tasked with validating these references: Every reference is associated
with a lifetime which will be discussed in detail in Chapter 2.4. Until then, lifetimes will be
written as 'a and can be ignored.
Listing 27 modifies the signature of the function compute_length from Listing 26 to ac-
cept a reference to a Vec, denoted by the ampersand (&) in front of the argument type. The
function now only returns the computed length; ownership of the vector remains with the
calling function.

1 fn main() {
2 let vector = Vec::from([1,2,3,4,5,6]);
3 let length = compute_length(&vector);
4 println!("The length of the vector is {}.", length);
5 }
6

7 fn compute_length<'a,T>(v: &'a Vec<T>) -> usize {
8 v.len()
9 }

Listing 27: Computing length with reference to vector

Function compute_length is called in line 3. Instead of passing the vector as the
function argument, a reference to it is passed, indicated by the ampersand (&). Because of
this, the value of vector can be used without taking ownership of it. When variable v goes
out of scope in line 9 its memory is released. Since this variable only held a reference to the
vector, the memory of the vector will not be released. The ownership of vector always
remained with the main function, hence the function compute_length is not required to
give ownership of the value back to the caller.

2.3.1 Mutable references

Just as variables, references are immutable by default: Attempting to modify a borrowed
value results in a compiler error. Rust allows references to be mutable, with one key re-
striction: Only one mutable reference to a particular value is allowed at any time. This
restriction serves to rule out the possibility of data races. A data race occurs when the fol-
lowing three conditions are met [59, p. 72]:

• At least two references access the same memory at the same time.
• At least one of the memory accesses is a write access.
• No synchronization mechanism is in place to manage access to the data.

As soon as one of these conditions is removed, a data race is no longer possible. Data races
can cause undefined behaviour and may be difficult to debug. Rust prevents data races by
not allowing code with multiple mutable references to compile in the first place. Having a
mutable and an immutable reference to a value at the same time is also prohibited by the
compiler.
Listing 28 shows the use of a mutable reference:



2.3. BORROWING 23

1 fn main() {
2 let mut s = String::from("Hello");
3 append_newline(&mut s);
4 }
5

6 fn append_newline<'a>(s: &'a mut String) {
7 s.push_str("\n");
8 }

Listing 28: Appending to a String with a mutable reference

The function append_newline takes a reference to a String, and appends the new-
line character "\n" to it. This is done with the push_str method which is provided by
the String type. In the main function, a mutable string s is created and a reference to it is
passed to the append_newline function.
Creating two mutable references to the same value is not allowed by Rust per the above
rules which is why compiling the code in Listing 29 results in a compiler error:

1 let mut s = String::from("Rust");
2

3 let reference1 = &mut s;
4 let reference2 = &mut s; // error

Listing 29: Attempting to create multiple mutable references

2.3.2 References and mutability in C and C++

Variables and references in C and C++ are mutable by default. Both C and C++ specify a
const keyword serving as a type classifier. A variable that is declared as const cannot be
changed by the programmer after initialization [62].
The C standard does not require compiler implementations to maintain a record of the
number of pointers to an area of memory. Furthermore, by allowing pointer aliasing, i.e.
having multiple pointers pointing to overlapping parts of the same buffer [35, p. 2], the
arbitrary creation of copies, and the use of pointer arithmetic it becomes impossible to
keep track of pointers.
The combination of variables being mutable by default, the lack of stringent rules for the
creation of copies as well as allowing pointer aliasing make C and C++ susceptible to data
races.

2.3.3 Dangling references

Languages with manual memory management such as C and C++ allow the programmer
to create dangling pointers. A dangling pointer is a pointer that references a location in
memory that is no longer valid. This occurs when memory is freed but its corresponding
pointer is not removed. Listing 30 – written in C – creates a dangling pointer. This is
not something one would deliberately attempt, the example serves to show that creating a
dangling pointer in C can be easily done. Such a bug is not prevented by the compiler and
may happen accidentally.



24 CHAPTER 2. SYNTAX AND SEMANTICS

1 char *s1 = malloc(BUF_SIZE);
2 char *s2 = s1;
3

4 free(s1);
5 printf("Value: %d\n", s2); // error, undetected

Listing 30: Creating a dangling pointer in C

In line 1 of Listing 30 a pointer to a character is declared and initialized. The malloc
function, provided by the C standard library, is called to allocate memory. It takes the
number of bytes to allocate as its argument. Here, it is called with the constant BUF_SIZE
which for the sake of this example we assume to be an arbitrary integer > 0. malloc
requests memory from the operating system and returns a pointer to that memory block.
In line 2, a second character pointer is declared, and is initialized with a copy of the pointer
s1. The pointers s1 and s2 now point to the same portion of memory. In line 3, free is
called and releases the memory currently pointed to by s1. Variable s2 still points into
the memory originally allocated in line 1, which has just been returned to the operating
system. Therefore, accessing s2 in line 4 leads to an error when the program is executed.
This error, however, is not detected by the compiler. It can be avoided by, for example by
assigning NULL to s2. However, it is up to the programmer to do so.
In Rust, such errors are not possible, as the example in Listing 31 shows.

1 fn dangling_reference<'a>() -> &'a String {
2 let s = String::from("Rust");
3 &'a s // error
4 }
5

6 let s = dangling_reference();

Listing 31: Attempting to create a dangling reference in Rust

Listing 31 attempts to create a dangling reference by creating a variable with a value and
a subsequent reference to that value. At the end of the scope, the variable is dropped by
regular means but the reference is attempted to be returned from the function. The function
dangling_reference has return type &String, that is a reference to a String. In line
2, a String variable s is created. Returning a reference to it in line 3 fails: Since in line 4, s
goes out of scope its value is dropped. Therefore, the reference to it is invalid afterwards.



2.4. LIFETIMES 25

2.4 Lifetimes

Lifetimes augment references, describing the region of program code where a reference
can be used. Therefore, they are essential for validating references at compile time. When a
value is borrowed, a reference to that value is created. This reference can never be valid for
longer than the value itself. In Rust, the region where a variable is valid is called its scope
as described in section 2.2.1. The scope of a reference is called its lifetime.
Lifetimes are a feature not commonly found in other languages. In particular, neither C
nor C++ have a similar feature (or any other way of verifying the validity of pointers or
references). Due to their unique character, their semantics have been shown to cause pro-
grammers new to Rust problems at the beginning [17].

2.4.1 Validating lifetimes with the borrow checker

In order to guarantee memory safety, the Rust compiler needs to verify that any access to a
reference is valid in the sense that the data it references still exists. If a variable references
a location in memory that has been returned to the operating system, attempting to access
it would result in undefined behaviour. Hence, every reference in Rust is associated with a
lifetime, which indicates for how long a reference is valid. The compiler makes use of these
lifetimes in order to guarantee that all accesses to references in the code are safe. The part
of the compiler responsible for this is called the borrow checker.
Listing 32 – adapted from the official Rust book [59, p. 194] – shows an example of an
invalid reference. Curly braces are added to explicitly show the end of the outer scope.

1 {
2 let r: &i32;
3 {
4 let val = 42;
5 r = &val; // error
6 }
7 println!("{}", r);
8 }

Listing 32: Creating an invalid reference

Line 2 in Listing 32 declares a variable r which can hold a reference to an integer value.
Initially, no value is assigned to this variable. In a new block, a new variable val is declared
and initialized with value 42. In line 5, attempting to assign a reference to val to the
variable r fails. Back in the outer scope, in line 7, the value of r is printed to the console.
The error message gives a hint why this code is rejected:



26 CHAPTER 2. SYNTAX AND SEMANTICS

error[E0597]: `val` does not live long enough
--> invalid_reference.rs:5:17
|

4 | r = &val;
| ˆˆˆˆˆˆ borrowed value does not live long enough

5 | }
| - `val` dropped here while still borrowed

6 | println!("{}", r);
| ----- borrow later used here

Listing 33: Error message produced by compiling Listing 32

The compiler indicates that the “borrowed value does not live long enough”. To aid
understanding this error, the lifetimes of the references are visualized in Listing 34.

1 {
2 let r: &i32; // ----------+--'a
3 { // |
4 let val = 42; // |
5 r = &val; // ----+--'b |
6 } // ----+ |
7 println!("{}", r); // |
8 } // ----------+

Listing 34: Visualizing lifetimes from Listing 32

Listing 34 includes comments to visualize the lifetime of references in a notation used in
Klabnik’s official Rust book [59]. The lifetime of the reference held by r is annotated with
the lifetime identifier 'a, while the lifetime of reference &val is described by 'b. While
these letters seem arbitrarily chosen, it is convention to use 'a, 'b, and so forth as lifetime
specifiers.
The visualization shows the reason why the code was rejected: The scope of r is larger
than the reference to val. With the closing brace in line 5, variable val goes out of scope,
dropping the value. As a consequence, any reference to it cannot be valid afterwards.

2.4.2 Rust code with lifetime annotations

While Listing 32 uses lifetime annotations in comments for the purpose of visualization,
annotating the code directly with lifetimes would not have been valid: Before lifetime iden-
tifiers can be used, they have to be declared. This is done in function signatures with the
same syntax with which trait constraints are expressed. Signatures of functions that take
references as arguments or return references are required to carry lifetime annotations. They
serve to indicate to the compiler how lifetime parameters of references relate to one another.
The following listing attempts to create a function without specifying lifetime parameters
for the references:



2.4. LIFETIMES 27

1 fn shorter_vec<T> (x: &Vec<T>, y: &Vec<T>) -> &Vec<T> {
2 if x.len() < y.len() {
3 x
4 } else {
5 y
6 }
7 }

Listing 35: Attempting to create a function without lifetime annotations

In Listing 35, a function named shorter_vec is defined which takes two references
each of data type Vec<T> and returns a reference to the shorter one of those vectors. The
compiler rejects this function definition. The error message again gives more insight:

this function's return type contains a borrowed value, but the
signature does not say whether it is borrowed from `x` or `y`↪→

Since the execution of this function is dependent on the concrete values passed – partic-
ularly their length – the compiler cannot statically determine which of the two references
will be returned. To make this example work, generic lifetime annotations need to be added
to the function. Lifetime annotations do not change for how long a reference is valid [40].
Lifetimes are used as follows: The called function specifies the relationship of the lifetimes
to each other, i.e. which lifetime must be greater or less, and which lifetimes must be iden-
tical. The lifetime annotations are written in angle brackets after the function name. The
calling function determines the concrete value of the lifetimes of the passed references.
In this respect, lifetime annotations serve as a constraint: The compiler receives additional
information about the relationships between the lifetimes of the different arguments. By
checking whether the lifetimes of the passed arguments match this specification, the bor-
row checker can ensure the validity of the references.
In the case of the shorter_vec function from Listing 35, the relationship of the lifetimes
of the parameters and the return value is as follows: In order to be valid, the reference re-
turned needs to be valid for at least as long as the passed parameters x and y. Therefore, it
suffices to require all three references to have the same generic lifetime. As such, Listing 36
adds the lifetime annotation 'a to all parameter and return types of the function signature.
The function body can remain unaltered.

1 fn shorter_vec<'a, T> (x: &'a Vec<T>, y: &'a Vec<T>) -> &'a Vec<T> {
2 if x.len() < y.len() {
3 x
4 } else {
5 y
6 }
7 }

Listing 36: Expanding the function definition from Listing 35 with lifetime annotations

The lifetime annotation 'a tells the compiler that the function shorter_vec demands
that it is called with reference arguments whose values are valid for at least as long as
the generic lifetime 'a. When concrete references are passed to the function, the generic



28 CHAPTER 2. SYNTAX AND SEMANTICS

lifetime 'a is instantiated as the smaller of the lifetimes of the arguments x and y [59]. In
consequence, as the return value is also annotated with lifetime 'a, the compiler will then
enforce that this returned reference is valid for at least the smaller of the lifetimes of the
arguments. If a function returns a reference, the lifetime parameter of that reference needs
to match the lifetime of at least one of the function parameters.
Listing 37 calls the shorter_vec function of Listing 36 with two references each having a
different lifetime:

1 {
2 let long = &vec![1,2,3,4]; // ---------+'a
3 // |
4 let short = &vec![5,6,7]; // ----+'b |
5 // | |
6 let result = shorter_vec(long, short); // | |
7 println!("{:?}", result); // | |
8 } // ----+----+

Listing 37: Calling the shorter_vec function

In Listing 37 lines 2 and 4, two references to values of type Vec are created. The vectors
are of different lengths. In line 6, shorter_vec is called with these references. The return
value, a reference to the shorter vector, is assigned to a new variable called result and
printed to the console. The output of the program is [5, 6, 7]. The format string of the
println! macro makes use of the character sequence {:?}, which serves a similar pur-
pose as the sequence {} used so far; the differences between these notations are irrelevant
for the understanding of lifetime annotations.
The code is accepted by the compiler, since the lifetime of both vectors from Listing 37
long – as indicated by the lifetime 'a – and short – indicated by 'b is the same. Their
scope ends with the closing brace in line 8.
One special lifetime exists in Rust: The 'static lifetime. It denotes that the reference is
valid for the entire program. It is usually used for the string slice type (str) or for globals,
since their values are hardcoded into the application binary [40].

2.4.3 Lifetime elision

In the early days of Rust, programmers often found themselves using the same lifetime
annotation patterns over and over when writing code that deals with references. These
patterns were deterministic and predictable in nature, which lead the Rust team to extend
the borrow checker in a way that allows programmers to elide specific lifetime annota-
tions [59]. Currently, there are three rules that define when lifetime annotations can be
omitted [40]:

• Each reference in the arguments of a function gets a distinct lifetime parameter.

• If there is exactly one input lifetime, that lifetime is assigned to all elided lifetimes in
the return values of that function.

• If there are multiple input lifetimes, but one of the input references is &self or
&mut self, the lifetime of &self is assigned to all elided output lifetimes.

These rules allow programmers to elide the most commonly found lifetime patterns, there-
fore making Rust code more readable. There is potential for additional lifetime elision
rules to be implemented in the future, in order to require even less explicit lifetime annota-
tions [59].



2.4. LIFETIMES 29

2.4.4 Non-lexical lifetimes

Non-lexical lifetimes are lifetimes that are not based on the lexical scope of a variable but are
instead based on the control-flow graph [47]. By using non-lexical lifetimes, it is possible
to determine through syntactic analysis the range in the program code where a reference is
“live”, in the sense that it is being accessed.
The support for non-lexical lifetimes is a recent addition to the Rust borrow checker. The
concept was introduced in 2018 with Rust version 1.31 [65]. This addition addresses two
problems programmers had to face with lexical scopes: First, the compiler previously re-
jected code that was safe, that is, the borrow checker was too strict. Second, program code
often became unnecessarily cluttered: In order to get the borrow checker to approve of
their programs, programmers were sometimes forced to write more complex code than
what their application logic would have required.
When using lexical lifetimes, the borrow checker requires a reference to be valid until the
end of the lexical scope of the variable holding that reference. In contrast, when using
non-lexical lifetimes, the borrow checker performs additional syntactic analysis to deter-
mine where variables are accessed. If, for example, a mutable reference to a value exists, no
additional mutable references to that value can be created, as described in section 2.3. If,
however, that original mutable reference never accesses the value, it would be safe to allow
the creation of a new mutable reference. In many cases, the range where accesses to a vari-
able occur is smaller than the lexical scope of the referenced variable. Requiring a reference
to only be valid for this reduced source code range allows for more flexible writing of safe
code.
Listing 38 – adapted from the RFC regarding non-lexical lifetimes – illustrates this need for
non-lexical lifetimes [47]. Attempting to compile this code with an old version of the Rust
compiler (versions before version 1.31) results in an error.

1 fn main() {
2 let mut data = vec!['a', 'b', 'c'];
3 let slice = &mut data[..];
4 capitalize(slice);
5 data.push('d'); // error with old compiler
6 }
7

8 fn capitalize(data: &mut [char]) {
9 // ..

10 }

Listing 38: Safe code rejected by compiler: Mutable reference assigned to a variable

In line 2, a mutable vector called data is declared and initialized. In line 3, a mutable
reference to the vector is created and stored in the variable slice. In line 4, this variable
slice is passed to the function capitalize, which takes a mutable reference to a char
array. After the function returns, the reference to data stored in variable slice is still
valid until the scope ends. Finally, in line 5, push() is called in order to append a charac-
ter to the vector data, resulting in a compiler error with the old Rust compiler.
The problem lies in the fact that push() – a method defined in the context of the Vec type
– takes a mutable reference to the object that is called upon, in this case data. Since a mu-
table reference to data already exists which is stored in the variable slice, old compiler
versions reject this code. However, variable slice is never used after line 4. Therefore,
the code is safe to compile. With a modern version of Rust, this example compiles success-
fully because not only take the lexical scope is taken into consideration, but also the data



30 CHAPTER 2. SYNTAX AND SEMANTICS

flow. The example above is just one concise examples of an issue that non-lexical lifetimes
are trying to solve. More problems existed, for example with conditional control flow or
nested functions [47]. Through the introduction of non-lexical lifetimes as the default in
2018, these issues have been mostly solved.



CHAPTER 3

Garbage collection in Rust

3.1 Automatic memory management

Automatic memory management refers to the automatic allocation and reclamation of
memory. Memory that was allocated to the program but is no longer referenced is re-
claimed automatically. This unused memory is called garbage. In academic publications, the
terms “garbage collection” and “automatic memory management” are occasionally used
interchangeably [95]. Automatic memory management, however, is a broader term, which
includes both reference counting and garbage collection. Rust core developer Manish Gore-
gaokar proposed in a blog post [26] to use the term garbage collection to refer to tracing
garbage collection, as this is more aligned with the colloquial use of the term.
In this section, the two main approaches to automatic memory management as well as their
advantages and disadvantages are presented.

3.1.1 Tracing garbage collection

Garbage collection is used to automatically manage memory. Manual memory allocation
as used in C and C++ is error-prone and can lead to critical memory errors [1]. Accord-
ing to Wilson [95], garbage collection is also necessary to allow for full modularization of
programs – using garbage collection abstracts the process of memory allocation and deal-
location away from the programmer, thereby simplifying the program code. It also allows
programming languages to guarantee memory safety, as memory management duties are
fully taken over by the garbage collector.
A tracing garbage collector determines whether a data object is “live” by traversing point-
ers in order to find all data objects that are reachable by the program [95]. A well known
algorithm for tracing garbage collection is called mark and sweep and is divided into two
phases: The marking phase, and the sweeping phase. Every data object is given a mark bit,
which is used to indicate whether this object is reachable. When an object is created this
bit is set to 0 (for false). A non-empty set of root objects is defined (this is implementation
specific but usually includes objects like global and static variables, variables on the stack,
and register variables).
During the marking phase of the garbage collector a graph traversal of the application data
is performed, starting at the roots of each of these data objects: Data objects are considered

31



32 CHAPTER 3. GARBAGE COLLECTION IN RUST

nodes, and every visited node is marked as reachable, i.e. its mark bit is set to 1. When all
reachable objects have been traversed the algorithm moves to the sweeping phase. If more
than one root object exists the marking algorithm is performed for each of them.
In the sweeping phase, the garbage collector checks for each heap-allocated object whether
its mark bit is set to 0 (for unreachable) and releases the memory for those objects.
Tracing garbage collection is usually executed in fixed intervals during the execution of the
program. This leads to pause times for the application as the program is effectively halted
during the garbage collection period [6]. This halting approach is called stop-the-world mark
and sweep [45].

3.1.2 Reference counting

The fundamental idea to reference counting is to keep track of the number of references to
any data object [43]. When no references to an object exist the object is deallocated. There-
fore, every object maintains a reference count field. Whenever a reference to the object is
created, that field is incremented. Similarly, the field is decremented as soon as a reference
is removed. On reaching a zero counter, the object is freed and its memory is returned to
the operating system [34].

3.1.3 Problems with automatic memory management

While automatic memory management provides many advantages over manual memory
management, it is not without issues of its own. Since additional memory and CPU cycles
are used, automatic memory management requires a significant resource overhead com-
pared to manual memory management, thereby making garbage collection unsuitable for
high-performance and embedded applications [20, 95]. In addition to that, use cases ex-
ist where neither reference counting nor tracing garbage collection is suitable. Reference
counting, for example, is unable to handle cyclic data structures like graphs, and is also
not suited for high-throughput applications: Since with every addition or removal of a
reference a counter has to be updated, a large number of writes is necessary [6]. Tracing
garbage collection leads to potentially high pause times for the user application, especially
with large heap sizes. In real-time applications usually implemented in a system language,
such behaviour is typically not acceptable.
In practice, the issues described above make it difficult to pick a universally acceptable so-
lution. A large number of specialized collectors have been developed to solve these issues
for particular use cases. However, Bacon et al. have shown that all subsequent approaches
are hybrids of tracing garbage collection and reference counting [6].

3.2 Garbage collection in early Rust versions

The initial design of Rust – which was announced in 2010 – included a garbage collector.
In 2013, a proposal by a group of Rust developers around Patrick Walton [92] was made to
remove this garbage collector from the language and instead move it to a library. The pro-
posal lists three key reasons why a garbage collector is not necessary in the Rust language:
Lack of familiarity with its semantics, unnecessary complexity, and lack of flexibility.
Along with a reference type with similar semantics to today’s implementation, the initial
versions of Rust included two different pointer types, an owned pointer type, indicated by a
tilde (∼), as well as a managed pointer type, annotated with an @ symbol. Both of these types
were smart pointers meaning they are an abstract data type simulating a pointer, but with
added functionality. In particular, they both deallocated memory when it was no longer in
use.



3.3. GARBAGE COLLECTION AS A LIBRARY 33

The owned pointer type, sometimes called “unique smart pointer”, only allowed a single
reference to a value. In contrast, the managed pointer type allowed several references to a
value and used garbage collection to automatically free memory once all references were
dismissed. According to Patrick Walton, deciding which pointer type to use proved diffi-
cult for many programmers [92]. Over time, it became clear that the owned pointer type
was the prevalent one, and the managed pointer only played a minor role. Walton there-
fore proposed that the managed pointer type @ should be removed from the language. By
having several different pointer and reference types the language also had an unneces-
sary runtime overhead. As it became clear that Rust was suited to do low-level systems
programming and even kernel development, it became a goal to remove Rust’s runtime
environment altogether. In order to be able to compete with C and C++, the performance
level of Rust needs to match the one of C and C++ and reducing unnecessary overhead was
a way to improve performance in Rust.
Implementing a universal garbage collector that handles all possible use cases efficiently is
a difficult task and hinders the flexible use of a language. That said, a small class of applica-
tions exists that works better with tracing garbage collection due to the higher throughput
as well as the handling of cyclic data structures. For other applications, reference counting
is better suited. Additionally, in order to interact with garbage collected languages or op-
erating systems, a flexible memory management is required.
A possible solution to these issues would be to implement several automatic memory man-
agement systems into the core language. However, this would further increase the over-
head and complexity of the language. The other approach – as proposed by Walton – would
be removing garbage collection from the language entirely, and replacing it with functional-
ity that would allow recreating its features as a library. Doing this would also allow users to
create garbage collection libraries tailored to their needs in the future. This idea resonated
strongly in the Rust community [29]. One user noted that he believes that ”garbage collec-
tion has no place in the core definition of any language that targets [...] high-performance
applications” [28]. The proposal to remove garbage collection from the Rust language was
eventually accepted: The first stable version of Rust, version 1.0, did not include a garbage
collector [66].

3.3 Garbage collection as a library

This section aims to give an introduction to selected garbage collection libraries in both Rust
and C++. The general motivation of garbage collection in system programming languages
is highlighted, as well as the individual use cases of specific libraries.

3.3.1 Motivation for garbage collection in systems programming

Using garbage collection in systems programming languages that are focused on perfor-
mance and flexibility may seem counter-intuitive at first. According to Rust core devel-
oper Manish Goregaokar (2021), there are two major motivations to use garbage collection
in systems programming languages: Managing cyclic data structures, and the integration
with (or implementation of) garbage collected languages or systems [26].
Cyclic data structures such as graphs or linked lists cannot be handled by conventional ref-
erence counting mechanisms, as the reference count field can never be decreased to zero,
even if the entire list has become unreachable [14, p. 25]. Both Rust and C++ come with a
reference counting mechanism that can be utilized by the programmer if desired. For cyclic
data structures, however, more sophisticated garbage collection algorithms are required.
In large software systems, interaction with components written in other languages is often
inevitable. These components may have specific requirements for client software in order



34 CHAPTER 3. GARBAGE COLLECTION IN RUST

to use certain functions or Application Programming Interfaces (APIs) of the system [92].
To be able to achieve this, a use-case specific garbage collection library may be necessary to
accomodate the needs of the host system.

3.3.2 Rust garbage collection libraries

All of the garbage collectors listed in this section are open-source software and available
through the Rust package management system cargo. The respective GitHub repositories
are referenced as well.

rust-gc

According to its author Manish Goregaokar, rust-gc [27] is a general purpose mark-
and-sweep garbage collector. In a 2015 blog post, he describes the motivation behind the
rust-gc garbage collector: “In order to implement an interpreter for a garbage collected
language, a garbage collector in Rust would be helpful” [46]. Also, a garbage collector
would simplify handling complicated, dynamic graph data structures.
Since the Rust language was built without a garbage collector, there is no designated lan-
guage support for the detection of root objects on the stack. To avoid scanning the entire
stack for root objects, the rust-gc garbage collector uses an approach comparable to ref-
erence counting in order to track the root objects. The actual collection is based on the
mark-and-sweep approach described above.
rust-gc provides a type called Gc<T>, which enables the user to wrap a type T into a
garbage collected object. The Gc type is designed to provide an interface similar to the one
of the Rc type to the user, but additionally allows mutability [27]. The developers do not
recommend the pervasive use of this collector but instead encourage to only use it when it
is required.
The rust-gc garbage collector currently does not support concurrency [27]. While there
have been efforts to add concurrency support, the corresponding development branch has
been stale since 2018 [51]. Before this, the garbage collector has been receiving continuous
updates.

bacon-rajan-cc

Bacon et al. have developed a cycle collection algorithm that is suitable for concurrent ap-
plications [7]. Nick Fitzgerald implemented a cycle collector called bacon-rajan-cc [25]
based on this algorithm. It was first published in Rust’s package management system
crates.io in 2015 and has received periodical updates ever since.
A key observation regarding garbage cycles is that they can only be created when a ref-
erence count is decremented to a non-zero value, since incrementing a reference counter
cannot create garbage, and decrementing the counter to zero means that the garbage has
already been detected and is being freed [7]. The bacon-rajan-cc makes use of this ob-
servation: Whenever a reference count is decremented to a non-zero value, the object is
added to a list of “potential cycle roots” [26]. This list of potential roots is then traversed:
The collector decrements the reference count of every object it encounters, cleaning up any
object whose reference count is decremented to zero. In another pass, the original reference
count of the elements is restored.
The upside to cycle collectors is that their performance is dependent on the amount of ac-
tual garbage, as opposed to the size of the heap, as is the case with mark-and-sweep tracing
garbage collectors [26].

https://github.com/Manishearth/rust-gc
https://github.com/fitzgen/bacon-rajan-cc


3.3. GARBAGE COLLECTION AS A LIBRARY 35

josephine

josephine [32] is an experimental garbage collection library developed to work with the
likewise experimental Servo browser engine which is being used in Mozilla Firefox. In
particular, it allows Rust data to be attached to JavaScript objects, whereas the JavaScript
execution is then managing the lifetime of the Rust data. References to data that is managed
by JavaScript can then be copied and discarded freely, while the garbage collector cleans
up any unused data.
josephinewas designed specifically to be used with the Servo browser engine, and there-
fore has implementation details very specific to this particular use case. Hence, josephine
has little relevance outside of the Servo project.

Bronze

The Bronze [16] garbage collector serves as an experimental library for language design
research purposes. It was developed by Michael Coblenz in 2020, and has been used as a
tool to conduct studies on the usability costs of Rust’s restrictions [17]. The author has ex-
plicitly stated that the garbage collector is not stable and should not be used in production
systems [88].

All of the libraries listed above serve very specific purposes and should not be considered
as universal garbage collection solutions for the Rust language. All of the libraries listed
above currently lack support for concurrency therefore limiting their potential applications.
While this list highlights only a selection of garbage collection libraries, at the time of writ-
ing, no universally usable garbage collection implementation is universally accepted. A
comprehensive list of garbage collectors with more implementation details is provided in
a blog post by Manish Goregaokar (2021) [26].

3.3.3 C and C++ garbage collection libraries

Since neither C nor C++ come with a builtin garbage collector, libraries to support garbage
collection exist for these languages as well.

Boehm garbage collector

The Boehm garbage collector is a conservative mark-and-sweep garbage collector proposed
by Boehm and Spertus in 2007 [11]. Conservative garbage collection describes the approach
of considering all stack objects to be pointers (thereby increasing the amount of potential
garbage) in the absence of information about the types of elements at runtime [12]. Most
implementations of C and C++ do not provide any runtime pointer information, hence
making this technique necessary [55]. This approach is called conservative, as it does not
use any heuristics and may not always detect all garbage [12].
The Boehm collector serves as a replacement for C’s malloc memory allocator and makes
explicit calls to free optional. It supports both C and C++ and can even be used to add
garbage collection to the runtimes of other languages [10]. It includes alterations to the
naı̈ve mark-and-sweep algorithm to improve the performance.

Oilpan

Oilpan is a mark-and-sweep garbage collector developed by the Chromium project as a
library for the JavaScript engine V8 which is written in C++ [4]. While designed for use

https://github.com/asajeffrey/josephine
https://github.com/mcoblenz/Bronze


36 CHAPTER 3. GARBAGE COLLECTION IN RUST

in combination with V8, the garbage collector can also be used separately, allowing it to
be integrated into other C++ projects as well. Oilpan supports atomic, incremental and
concurrent garbage collection, making it a flexible solution [63]. The project is under active
development is continued to be extended [4].

3.4 Extending Rust’s memory management through unsafe
calls

As described in the last chapter, the Rust language can be augmented with memory man-
agement tools targeting specific use cases. As the access to memory is generally managed
by the operating system, interaction with interfaces provided by the respective operating
system is required to build these tools: In the case of Linux, one might want to use the
memory allocator malloc which is defined in the C standard library libc, or even di-
rectly use system calls to interact with the operating system. However, both the C standard
library and most modern operating systems only provide a C interface [54].
To enable interaction of Rust with C a Foreign Function Interface (FFI) exists that allows
Rust to call functions written in C. However, since C is an inherently unsafe language
in terms of memory management, Rust is unable to uphold its memory safety guaran-
tees which is why Rust requires external function calls to be wrapped in an unsafe code
block [74].
Unsafe code serves as an extension to the Rust programming language. Rust can essen-
tially be seen as the union of two languages: Safe Rust and Unsafe Rust [74]. Safe Rust is
the language that is colloquially meant by “Rust”. While in safe Rust code memory safety
guarantees are enforced by the compiler, these guarantees are not enforced in unsafe Rust
code [59, p. 418]. It becomes the responsibility of the programmer to encapsulate unsafe
code in an API that is safe to use. The Rust standard library makes use of unsafe code
as well but this code has been verified to be safe to use [59]. A programmer making use
of unsafe code essentially tells the compiler that all invariants of the language are upheld
manually.
Common use cases for unsafe Rust are the interaction with operating systems or hard-
ware, low-level performance improvements, or the implementation of data structures and
functions that internally require operations that are not deemed safe [74]. By separating
safe from unsafe code programmers can gain control over low-level implementation de-
tails where needed while maintaining thread and memory safety in all other portions of
the program.
The rules and semantics of unsafe Rust are the same as those of safe Rust while allowing
additional operations which include the dereferencing of raw pointers and calling external
functions [83]. Apart from these additional operations, Rust code has the same semantics
and it is equally checked by the compiler and memory safety rules are enforced.
Unsafe Rust introduces a raw pointer type *T, where T denotes a generic type. Similar to a
C pointer, the raw pointer points to an address in memory. The value at that address can be
accessed using the dereference operator which is also denoted by an asterisk. Raw pointers
can be declared in safe Rust but dereferenced in an unsafe block only. The raw pointer
type allows multiple mutable pointers to the same memory location. Listing 39 shows an
exemplary use of raw pointers:



3.4. EXTENDING RUST’S MEMORY MANAGEMENT THROUGH UNSAFE CALLS 37

1 let mut i = 42;
2 let r = &mut i as *mut i32;
3 unsafe {
4 println!("Value of r is: {}", *r);
5 }

Listing 39: Dereferencing a raw pointer

In line 1, a mutable variable i is declared and initialized with value 42. In line 2, a new
variable r is declared. It is is initialized with a raw pointer of type *mut i32 which is
created by typecasting the mutable reference to &i to the *mut i32 type using the as key-
word. In order to dereference the raw pointer r, an unsafe block is required. Attempting
to dereference the raw pointer outside of such a block results in a compiler error.

If a programmer wants to use any unsafe feature outside of an unsafe block, the func-
tion itself has to be declared as unsafe. An unsafe function can only be called from
within an unsafe block. The following listing declares and uses an unsafe function:

1 unsafe fn unsafe_function() {
2 println!("This is unsafe!");
3 }
4

5 unsafe {
6 unsafe_function();
7 }

Listing 40: Defining and calling an unsafe function

In line 1 of Listing 40, the unsafe modifier is used to declare the function unsafe_ ⌋

function as unsafe. In the function body unsafe features can be used. Note that this func-
tion only prints to the console and does not actually perform any unsafe actions. However,
since the function was declared as unsafe it can only be called from an unsafe block: In
line 4, an unsafe block is entered. In line 5, the function unsafe_function() is then
called. The unsafe block ends with the closing brace in line 6.
Calling an external function such as a C function is generally deemed unsafe and as such
has to wrapped in an unsafe block. The example in Listing 41 shows how the malloc
memory allocator from the C standard library is called in Rust in order to implement an
allocator to be used in Rust:

1 struct MinimalAllocator;
2

3 unsafe impl GlobalAlloc for MinimalAllocator {
4 unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
5 libc::malloc(layout.size()) as *mut u8
6 }
7

8 unsafe fn dealloc(&self, ptr: *mut u8, _layout: Layout) {
9 libc::free(ptr as *mut libc::c_void);

10 }
11 }

Listing 41: Implementing a Rust malloc-based memory allocator using unsafe code



38 CHAPTER 3. GARBAGE COLLECTION IN RUST

In line 1 of Listing 41 a struct named MinimalAllocator is defined. In Rust, a
struct is used to define compound data types, whereby in this case the struct does not
hold any data but is instead used as a marker to allow implementing a trait. In line 3, the
trait GlobalAlloc is implemented on the MinimalAllocator type using the impl: The
trait requires implementations of the methods alloc and dealloc.
In line 4, the method alloc is implemented: It takes a Layout value as its argument. The
Layout value represents a block of memory and consists of the size of the block and its
alignment. The function returns a raw pointer to the allocated memory. In the function
body of alloc the libc crate – used to interact with the C standard library – is used to
call the memory allocator malloc. Since malloc is defined in the C standard library, its
call has to be wrapped in an unsafe function. In line 5, malloc is called with the size of
the Layout object passed to the alloc method as its argument. The result of this call is
typecast to a *mut u8 using the as keyword and returned from the function.
The implementation of dealloc in line 8 takes a raw pointer to a memory segment and
a Layout as its arguments. The raw pointer is passed to the free function from the C
standard library after being typecast to a C void type. This call returns the previously
allocated memory to the operating system.
By implementing the GlobalAlloc trait, MinimalAllocator can be set as the global
memory allocator and is then used for all memory allocations in the program.
This minimal example shows how unsafe features such as raw pointers and external func-
tion calls can be used to implement a new memory allocator. The Foreign Function Inter-
face could also be used to interact with the operating system directly using system calls for
tunability or performance reasons.

3.5 Rust’s solution to memory management

Rust’s solution to memory management can be divided into two categories: The handling
of non-cyclic and cyclic data structures. Memory of non-cyclic data structures is reclaimed
using the Drop function which follows the Resource Acquisition is Initialization (RAII) pat-
tern. The use of drop has already been explained in Chapter 2.2.1 but its implementation
has not been considered so far. The same is true for reference counting which has been
investigated on a very high level in Chapter 3.1.2 but not described in the context of Rust.
These important aspects are the focus of the next two chapters.

3.5.1 Reclaiming memory of non-cyclic data structures

For non-cyclic data structures Rust makes use of the RAII pattern. Introduced in the C++
programming language, the fundamental idea of RAII is that objects own their resources
– including heap memory – and they are solely responsible for managing them [60]. The
memory for an object is allocated when the object is created. As soon as an object goes out
of scope, its destructor is invoked, where all operations required to release the resources of
the object are implemented.
In Rust, this destructor is realized using the Drop trait: Any type implementing the Drop
trait is required to provide an implementation of the function drop(&mut self). This
method is called when an object of this type goes out of scope [72]. An implementation of
drop is provided by Rust for all standard data types, and this function is called recursively
for all fields of compound data types [71] which is why programmers rarely need to imple-
ment the trait themselves.
The drop method is also called in some other use cases where resources need to be freed:
Assignment, for example, calls the destructor of the left-hand side operand if it was previ-
ously initialized [71].



3.5. RUST’S SOLUTION TO MEMORY MANAGEMENT 39

It is not possible for types to implement both the Copy and the Drop trait at the same time.
Types implementing Copy usually do not use heap-allocated memory but are rather stored
on the stack. As stack memory is pre-allocated to the program by the operating when its
process is created and freed when the process exits, no special treatment of values stored
on the stack is possible.

3.5.2 Reclaiming memory of cyclic data structures

The RAII approach has practical limitations: In order to prevent double free errors (an error
where a memory region is freed more than once, leading to undefined behaviour) it is nec-
essary to restrict the management of a memory segment to a single owner. This, however,
limits the data structures that can be implemented: Cyclic data structures cannot be repre-
sented with this restriction in place. To enable the implementation of cyclic data structures,
Rust provides smart pointers. Smart pointers provide an abstraction level from raw pointers
and implement additional features such as metadata or memory management capabilities.
Additionally, some smart pointer types allow for a value to be owned by multiple own-
ers [59, p. 312]. Rust includes several smart pointer types to extend the functionality of the
language and users of external libraries may implement their own. This chapter focuses on
the reference counted smart pointer Rc<T> due to its relevance to memory management.
Rc<T> works as outlined in Chapter 3.1.2. The clone function is used on an Rc<T> object
in order to create a new pointer to the same memory location [80] and to increment the
reference count. It is not possible to manually decrement the reference count as the imple-
mentation of the Drop trait already takes care of decrementing the reference count at the
end of a scope.
Simple reference counting, however, is not sufficient to reclaim memory used by cyclic data
structures. To be able to correctly deallocate memory of cyclic data structures Rust extends
the reference counting algorithm described in Section 3.1.2 by an additional field that keeps
track of weak references. An additional smart pointer type called Weak<T> is added. While
the Rc<T> type allows expressing ownership relationships where more than one owner to
a value exists, the type Weak<T> allows creating a reference that does not express an own-
ership relationship and only exists for the implementation of the data structure [59, p. 341].
A reference counted value now has two fields to keep track of: The number of strong ref-
erences, and the number of weak references. The memory is deallocated once the strong
reference count reaches zero whilst discarding the number of weak references.
By introducing reference counting as a mechanism to automatically reclaim memory for
more complex data structures and providing the necessary tools to even handle cyclic data
structures Rust gives programmers flexibility while maintaining memory safety.
The combination of Drop and Rc<T> enables Rust to make use of static optimizations
wherever possible but also allows for runtime memory management for increased flex-
ibility. Programmers do not have to perform manual memory allocations and dealloca-
tions, thereby reducing the complexity and susceptibility to errors. Rust also offers high
performance by avoiding a runtime tracing garbage collector, yet the possibility to reclaim
memory of cyclic data structures remains.



40 CHAPTER 3. GARBAGE COLLECTION IN RUST



CHAPTER 4

Memory management: Rust and C/C++ compared

This chapter presents the differences in memory management at the system level of the
languages Rust as well as C and C++. While in C and C++, values are tied to a specific
memory location and are only moved if explicitly instructed to do so by the programmer,
values in Rust may move in memory unbeknownst to the programmer. This requires spe-
cial handling in certain use cases.

4.1 Movable versus fixed memory locations

In C and C++, every data object has a fixed location in memory that does not implicitly
change. Pointers are then used to access this memory location. Any number of pointers
to a memory location may be created to enable multiple concurrent accesses to the stored
value; for this to work, however, the target address of the value referenced by the pointers
must not change. C and C++ do not guarantee that a pointer refers to a valid memory
location, the pointer may be be uninitialized (leaving its value indeterminate), could have
been freed, or be NULL. Accessing the memory in any these cases can lead to runtime
errors [1].
Rust is different in this respect: The location of a value in memory may change without
notice. This is closely tied to the concept of moving ownership, as explained in chapter 2.2.2.
When, for example, a function takes ownership of a value (when that value is passed to the
function as an argument), the value may be moved to the stack frame of that function. A
stack frame is a region of memory allocated to a function when it is called. It contains space
for both the function arguments and local variables, as well as additional metadata [41].
Listing 42 shows that moving ownership can result in a value being moved in memory as
well:

41



42 CHAPTER 4. MEMORY MANAGEMENT: RUST AND C/C++ COMPARED

1 fn take_ownership(s: String) {
2 println!("Memory address of s: {:p}", &s);
3 }
4

5 fn main() {
6 let s = String::from("Rust");
7 println!("Memory address of s: {:p}", &s);
8 take_ownership(s);
9 }

Listing 42: Moving a value in memory by transferring ownership

Listing 42 revisits the function take_ownership introduced in Listing 24. The func-
tion takes a String as its argument and was modified to print the memory address of the
String instead of printing its value. Since the String does not implement the Copy trait,
ownership of the argument s is moved when the string is passed to the function. In line
6, within the main function, a String variable s is created. Subsequently, the memory
address of variable s is printed. In line 8, function take_ownership is called with s as
its argument, thereby moving ownership to the function. Running this program results in
two different memory addresses for the same value (the String "Rust") being printed to
the console. This shows that the value was in fact moved in memory.
An objects location in memory may change in non-obvious, complicated ways through sev-
eral layers of function calls and dependent on conditional control flow. Wherever possible,
the compiler will avoid redundant moves for efficiency reasons, however, no guarantees
about the absence of moves are made at compile time [50].

4.2 Memory management in asynchronous Rust program-
ming

In many programs, it is desirable to have more than one task being executed concurrently.
Rust supports concurrency with the asynchronous programming model and the async key-
word. It allows users to run a large amount of tasks in a small number of operating sys-
tem threads, thereby reducing overhead whilst the synchronous programming style can
mostly be maintained [84]. Asynchronous computations are represented by the Future
trait. Futures are polled, advancing the computation as far as possible. In a synchronous
context, a blocking function will block an entire thread. With blocked Futures, however,
control is returned to the thread thereby allowing other operations to be ran [67]. A sim-
ple example of a use case of asynchronous programming is reading data from a socket:
The socket may or may not have data available. When polled, the Future either returns
Pending if no data is available, or Ready(data)where data represents the data received
from the socket.
Problems can arise if an async block makes use of references: If a reference to a field of a
Future exists, and that Future is moved in memory, for example due to the move seman-
tics described above, the referenced field is moved as well, resulting in an invalid reference.
To avoid this, Rust requires a Future to be pinned to a specific memory location. This is
done using the Pin type which wraps pointer types, ensuring that referenced values will
not be moved [76]. For most types, this is not necessary: These types implement a trait
called Unpin indicating to the compiler that they may always be moved in memory, even
when wrapped by the Pin type. Types that cannot be moved because they contain pointers
or references that could otherwise be invalidated contain a marker called !Unpin, indicat-



4.2. MEMORY MANAGEMENT IN ASYNCHRONOUS RUST PROGRAMMING 43

ing to the compiler that these types must never be moved after being pinned [76].
Values can be pinned to both the stack and the heap. Pinning a value on the heap ensures
that it remains reachable at the same memory address for the entirety of its lifetime. Pin-
ning values to the stack is slightly more complicated, as it requires the use of unsafe code
and places the responsibility of maintaining the pin contract on the programmer [76]. Ref-
erences to pinned values on both stack and heap may still be obtained using unsafe.
With the pinning mechanism, Rust ensures that memory safefy guarantees can be upheld
in asynchronous programming.



44 CHAPTER 4. MEMORY MANAGEMENT: RUST AND C/C++ COMPARED



CHAPTER 5

Conclusion

This thesis has laid out the fundamental concepts of memory management in Rust. It also
provided an overview of memory management concepts in general. It has done so by
evaluating the current state of research regarding theoretical foundations of memory man-
agement and garbage collection, followed by a brief introduction to the syntax of the Rust
language. The semantics of Rust’s memory management concepts were illustrated by code
listings, highlighting relevant aspects and allowing for comparisons.
The ownership model allows the Rust language to guarantee memory safety by perform-
ing compile time checks. References to values are validated through borrow checking, pre-
venting dangling references. No tracing garbage collector is included in Rust, although the
language provides a reference counting mechanism to allow the implementation of com-
plex data structures. Additionally, garbage collectors for specific use cases are available as
libraries. Programmers also have the option to choose to elide some of the compile time
checks by declaring unsafe blocks. Doing so adds additional features to the language,
allowing for more low-level access to hardware and operating system resources, however,
it requires the programmer to uphold invariants themselves.
Through the combination of memory safety without tracing garbage collection and access
to low-level resources Rust is especially suited to system programming and constitutes a
real alternative to C and C++.

45



46 CHAPTER 5. CONCLUSION



Bibliography

[1] PERIKLIS AKRITIDIS. Practical memory safety for C. Technical report, University of
Cambridge, Computer Laboratory, 2011. Available from: https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-798.pdf.

[2] BRIAN ANDERSON, LARS BERGSTROM, DAVID HERMAN, JOSH MATTHEWS, KEE-
GAN MCALLISTER, MANISH GOREGAOKAR, JACK MOFFITT, AND SIMON SAPIN.
Experience Report: Developing the Servo Web Browser Engine using Rust.
arXiv:1505.07383 [cs], May 2015. arXiv: 1505.07383. Available from: http://arxiv.
org/abs/1505.07383.

[3] GUI ANDRADE. Storing unboxed trait objects in Rust, December 2018. Available
from: https://guiand.xyz/blog-posts/unboxed-trait-objects.html.

[4] ANTON BIKINEEV, OMER KATZ, AND MICHAEL LIPPAUTZ. Oilpan library · V8,
November 2021. Available from: https://v8.dev/blog/oilpan-library.

[5] DAVID F. BACON, PERRY CHENG, AND V. T. RAJAN. A Unified Theory of Garbage
Collection. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 50–
68, New York, NY, USA, 2004. Association for Computing Machinery. event-place:
Vancouver, BC, Canada. Available from: https://doi.org/10.1145/1028976.
1028982.

[6] DAVID F. BACON, PERRY CHENG, AND V. T. RAJAN. A Unified Theory of Garbage
Collection. SIGPLAN Not., 39(10):50–68, October 2004. Place: New York, NY, USA
Publisher: Association for Computing Machinery. Available from: https://doi.
org/10.1145/1035292.1028982.

[7] DAVID F. BACON AND V. T. RAJAN. Concurrent Cycle Collection in Ref-
erence Counted Systems. In Proceedings of the 15th European Conference on
Object-Oriented Programming, ECOOP ’01, pages 207–235, Berlin, Heidelberg, 2001.
Springer-Verlag. Available from: https://pages.cs.wisc.edu/˜cymen/misc/
interests/Bacon01Concurrent.pdf.

[8] ARIA BEINGESSNER. Rust’s Unsafe Pointer Types Need An Overhaul -
Faultlore, March 2022. Available from: https://gankra.github.io/blah/
fix-rust-pointers.

[9] CHRIS BISCARDI. Why can’t I early return in an if statement in Rust?,
May 2021. Available from: https://www.christopherbiscardi.com/
why-can-t-i-early-return-in-an-if-statement-in-rust.

47

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-798.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-798.pdf
http://arxiv.org/abs/1505.07383
http://arxiv.org/abs/1505.07383
https://guiand.xyz/blog-posts/unboxed-trait-objects.html
https://v8.dev/blog/oilpan-library
https://doi.org/10.1145/1028976.1028982
https://doi.org/10.1145/1028976.1028982
https://doi.org/10.1145/1035292.1028982
https://doi.org/10.1145/1035292.1028982
https://pages.cs.wisc.edu/~cymen/misc/interests/Bacon01Concurrent.pdf
https://pages.cs.wisc.edu/~cymen/misc/interests/Bacon01Concurrent.pdf
https://gankra.github.io/blah/fix-rust-pointers
https://gankra.github.io/blah/fix-rust-pointers
https://www.christopherbiscardi.com/why-can-t-i-early-return-in-an-if-statement-in-rust
https://www.christopherbiscardi.com/why-can-t-i-early-return-in-an-if-statement-in-rust


48 BIBLIOGRAPHY

[10] HANS-J BOEHM. The “Boehm-Demers-Weiser” Conservative Garbage Collec-
tor. Presentation slides, 2004. Available from: https://hboehm.info/gc/
04tutorial.pdf.

[11] HANS-J BOEHM AND MICHAEL SPERTUS. Transparent Programmer-Directed
Garbage Collection for C++. page 29, June 2007. Available from: https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.pdf.

[12] HANS-JUERGEN BOEHM AND MARK WEISER. Garbage collection in an uncooper-
ative environment. Software: Practice and Experience, 18(9):807–820, 1988. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380180902. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380180902.

[13] RODNEY A. BROOKS, RICHARD P. GABRIEL, AND GUY L. STEELE. An Optimizing
Compiler for Lexically Scoped LISP. In Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, SIGPLAN ’82, pages 261–275, New York, NY, USA, 1982. As-
sociation for Computing Machinery. event-place: Boston, Massachusetts, USA. Avail-
able from: https://doi.org/10.1145/800230.807000.

[14] K G CASSIDY. Feasibility of automatic storage reclamation with concurrent program
execution in a LISP environment. Master’s thesis. December 1985. Available from:
https://www.osti.gov/biblio/5792943.

[15] YANG CHANG AND ANDY WELLINGS. Low Memory Overhead Real-Time Garbage
Collection for Java. In Proceedings of the 4th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES ’06, pages 85–94, New York, NY, USA, 2006.
Association for Computing Machinery. event-place: Paris, France. Available from:
https://doi.org/10.1145/1167999.1168014.

[16] MICHAEL COBLENZ. Bronze, November 2020. original-date: 2020-11-22T14:41:32Z.
Available from: https://github.com/mcoblenz/Bronze.

[17] MICHAEL COBLENZ, MICHELLE MAZUREK, AND MICHAEL HICKS. Garbage Col-
lection Makes Rust Easier to Use: A Randomized Controlled Trial of the Bronze
Garbage Collector. arXiv:2110.01098 [cs], February 2022. arXiv: 2110.01098. Available
from: http://arxiv.org/abs/2110.01098.

[18] HOANG-HAI DANG, JACQUES-HENRI JOURDAN, JAN-OLIVER KAISER, AND DEREK
DREYER. RustBelt Meets Relaxed Memory. Proc. ACM Program. Lang., 4(POPL),
December 2019. Place: New York, NY, USA Publisher: Association for Computing
Machinery. Available from: https://doi.org/10.1145/3371102.

[19] DAVID WALKER. Substructural Type Systems. In Advanced Topics in Types and Pro-
gramming Languages., pages 3–43. MIT Press, 2005.

[20] DINAKAR DHURJATI, SUMANT KOWSHIK, VIKRAM ADVE, AND CHRIS LATTNER.
Memory Safety without Runtime Checks or Garbage Collection. SIGPLAN Not.,
38(7):69–80, June 2003. Place: New York, NY, USA Publisher: Association for Comput-
ing Machinery. Available from: https://doi.org/10.1145/780731.780743.

[21] DEREK DREYER. RustBelt, April 2021. Available from: https://plv.mpi-sws.
org/rustbelt/.

[22] MEHMET EMRE, RYAN SCHROEDER, KYLE DEWEY, AND BEN HARDEKOPF. Trans-
lating C to safer Rust. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1–29, October 2021. Available from: https://dl.acm.org/doi/10.
1145/3485498.

https://hboehm.info/gc/04tutorial.pdf
https://hboehm.info/gc/04tutorial.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380180902
https://doi.org/10.1145/800230.807000
https://www.osti.gov/biblio/5792943
https://doi.org/10.1145/1167999.1168014
https://github.com/mcoblenz/Bronze
http://arxiv.org/abs/2110.01098
https://doi.org/10.1145/3371102
https://doi.org/10.1145/780731.780743
https://plv.mpi-sws.org/rustbelt/
https://plv.mpi-sws.org/rustbelt/
https://dl.acm.org/doi/10.1145/3485498
https://dl.acm.org/doi/10.1145/3485498


BIBLIOGRAPHY 49

[23] GUILLAUME ENDIGNOUX. Rust from a C++ and OCaml programmer’s perspec-
tive (Part 2) | Blog | Guillaume Endignoux, 2017. Available from: https://
gendignoux.com/blog/2017/09/29/rust-vs-cpp-ocaml-part2.html.

[24] ANA NORA EVANS, BRADFORD CAMPBELL, AND MARY LOU SOFFA. Is rust used
safely by software developers? In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pages 246–257, Seoul South Korea, June 2020. ACM.
Available from: https://dl.acm.org/doi/10.1145/3377811.3380413.

[25] NICK FITZGERALD. bacon rajan cc, May 2022. original-date: 2015-05-19T07:10:44Z.
Available from: https://github.com/fitzgen/bacon-rajan-cc.

[26] MANISH GOREGAOKAR. A Tour of Safe Tracing GC Designs in Rust - In Pursuit of
Laziness, April 2021. Available from: https://manishearth.github.io/blog/
2021/04/05/a-tour-of-safe-tracing-gc-designs-in-rust/.

[27] MANISH GOREGAOKAR. rust-gc, May 2022. original-date: 2015-05-17T03:31:43Z.
Available from: https://github.com/Manishearth/rust-gc.

[28] HACKERNEWS USER AMBROP7. I’m completely in favor of this. Garbage collection
has no place in the core def... | Hacker News, June 2013. Available from: https:
//news.ycombinator.com/item?id=5814390.

[29] HACKERNEWS USER GRAUE. Removing garbage collection from the Rust lan-
guage, June 2013. Available from: https://news.ycombinator.com/item?id=
5811854.

[30] MATTHEW HERTZ AND EMERY D. BERGER. Automatic vs. Explicit Memory Manage-
ment: Settling the Performance Debate, 2004.

[31] GRAYDON HOARE. graydon2 | Rust is mostly safety, December 2016.
Available from: https://web.archive.org/web/20190502181357/https://
graydon2.dreamwidth.org/247406.html.

[32] ALAN JEFFREY. Josephine: using JavaScript to safely manage the lifetimes of Rust
data, April 2022. original-date: 2017-05-23T15:35:25Z. Available from: https://
github.com/asajeffrey/josephine.

[33] STEFAN JOHANSSON. JEP 248: Make G1 the Default Garbage Collector, February
2015. Available from: http://openjdk.java.net/jeps/248.

[34] RICHARD JONES, ANTONY HOSKING, AND ELIOT MOSS. The Garbage Collection Hand-
book: The Art of Automatic Memory Management. CRC Applied Algorithms and Data
Structures. Chapman and Hall/CRC Press, first edition, August 2011. Available from:
http://gchandbook.org.

[35] RALF JUNG. Understanding and evolving the Rust programming language. PhD thesis,
Universität des Saarlandes, Saarbrücken, 2020. Publisher: Universität des Saarlandes.
Available from: https://publikationen.sulb.uni-saarland.de/handle/
20.500.11880/29647.

[36] RALF JUNG, HOANG-HAI DANG, JEEHOON KANG, AND DEREK DREYER. Stacked
Borrows: An Aliasing Model for Rust. Proc. ACM Program. Lang., 4(POPL), December
2019. Place: New York, NY, USA Publisher: Association for Computing Machinery.
Available from: https://doi.org/10.1145/3371109.

https://gendignoux.com/blog/2017/09/29/rust-vs-cpp-ocaml-part2.html
https://gendignoux.com/blog/2017/09/29/rust-vs-cpp-ocaml-part2.html
https://dl.acm.org/doi/10.1145/3377811.3380413
https://github.com/fitzgen/bacon-rajan-cc
https://manishearth.github.io/blog/2021/04/05/a-tour-of-safe-tracing-gc-designs-in-rust/
https://manishearth.github.io/blog/2021/04/05/a-tour-of-safe-tracing-gc-designs-in-rust/
https://github.com/Manishearth/rust-gc
https://news.ycombinator.com/item?id=5814390
https://news.ycombinator.com/item?id=5814390
https://news.ycombinator.com/item?id=5811854
https://news.ycombinator.com/item?id=5811854
https://web.archive.org/web/20190502181357/https://graydon2.dreamwidth.org/247406.html
https://web.archive.org/web/20190502181357/https://graydon2.dreamwidth.org/247406.html
https://github.com/asajeffrey/josephine
https://github.com/asajeffrey/josephine
http://openjdk.java.net/jeps/248
http://gchandbook.org
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/3371109


50 BIBLIOGRAPHY

[37] RALF JUNG, JACQUES-HENRI JOURDAN, ROBBERT KREBBERS, AND DEREK DREYER.
RustBelt: Securing the Foundations of the Rust Programming Language. Proc. ACM
Program. Lang., 2(POPL), December 2017. Place: New York, NY, USA Publisher: As-
sociation for Computing Machinery. Available from: https://doi.org/10.1145/
3158154.

[38] PAUL KEHRER. Memory Unsafety in Apple’s Operating Systems, July 2019. Avail-
able from: https://langui.sh/2019/07/23/apple-memory-safety/.

[39] STEVE KLABNIK. Rust is more than safety | Next.js Blog Example with Mark-
down, December 2016. Available from: https://steveklabnik.com/writing/
rust-is-more-than-safety.

[40] STEVE KLABNIK AND CAROL NICHOLS. Lifetimes, 2018. Available from:
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/
share/doc/rust/html/book/first-edition/lifetimes.html.

[41] STEVE KLABNIK AND CAROL NICHOLS. The Stack and the Heap, April
2018. Available from: https://web.mit.edu/rust-lang_v1.25/arch/
amd64_ubuntu1404/share/doc/rust/html/book/first-edition/
the-stack-and-the-heap.html.

[42] STEVE KLABNIK AND CAROL NICHOLS. The Rust Programming Language, 2022.
Available from: https://doc.rust-lang.org/book/.

[43] DONALD E. KNUTH. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., third edition, 1997.

[44] JUNEYOUNG LEE, CHUNG-KIL HUR, RALF JUNG, ZHENGYANG LIU, JOHN REGEHR,
AND NUNO P. LOPES. Reconciling high-level optimizations and low-level code in
LLVM. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–28, October
2018. Available from: https://dl.acm.org/doi/10.1145/3276495.

[45] YOSSI LEVANONI AND EREZ PETRANK. An On-the-Fly Reference-Counting Garbage
Collector for Java. ACM Trans. Program. Lang. Syst., 28(1):1–69, January 2006. Place:
New York, NY, USA Publisher: Association for Computing Machinery. Available
from: https://doi.org/10.1145/1111596.1111597.

[46] MANISH GOREGAOKAR. Designing a GC in Rust, September 2015. Avail-
able from: https://manishearth.github.io/blog/2015/09/01/
designing-a-gc-in-rust/.

[47] NIKO MATSAKIS. 2094-nll - The Rust RFC Book, September 2017. Available from:
https://rust-lang.github.io/rfcs/2094-nll.html.

[48] JOHN MCCARTHY. Recursive functions of symbolic expressions and their compu-
tation by machine, Part I. Communications of the ACM, 3(4):184–195, April 1960. Avail-
able from: https://dl.acm.org/doi/10.1145/367177.367199.

[49] DANYAL MH. Java is faster than the optimized Rust program,
February 2022. Available from: https://towardsdev.com/
java-is-faster-than-optimize-rust-program-bd0d1720bab2.

[50] CLÉMENT NERMA. Why do values need to be moved?, February 2021. Available from:
https://users.rust-lang.org/t/why-do-values-need-to-be-moved/
55971/18.

https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://langui.sh/2019/07/23/apple-memory-safety/
https://steveklabnik.com/writing/rust-is-more-than-safety
https://steveklabnik.com/writing/rust-is-more-than-safety
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/lifetimes.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/lifetimes.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/the-stack-and-the-heap.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/the-stack-and-the-heap.html
https://web.mit.edu/rust-lang_v1.25/arch/amd64_ubuntu1404/share/doc/rust/html/book/first-edition/the-stack-and-the-heap.html
https://doc.rust-lang.org/book/
https://dl.acm.org/doi/10.1145/3276495
https://doi.org/10.1145/1111596.1111597
https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://manishearth.github.io/blog/2015/09/01/designing-a-gc-in-rust/
https://rust-lang.github.io/rfcs/2094-nll.html
https://dl.acm.org/doi/10.1145/367177.367199
https://towardsdev.com/java-is-faster-than-optimize-rust-program-bd0d1720bab2
https://towardsdev.com/java-is-faster-than-optimize-rust-program-bd0d1720bab2
https://users.rust-lang.org/t/why-do-values-need-to-be-moved/55971/18
https://users.rust-lang.org/t/why-do-values-need-to-be-moved/55971/18


BIBLIOGRAPHY 51

[51] NIKA LAYZELL. Implement Cgc<T> - a concurrent threadsafe garbage collector
by mystor · Pull Request #6 · Manishearth/rust-gc, September 2018. Available from:
https://github.com/Manishearth/rust-gc/pull/6.

[52] RAPHAEL POSS. Abstract Machine Models - Also: what Rust got par-
ticularly right, February 2022. Available from: https://dr-knz.net/
abstract-machine-models.html.

[53] THE CHROMIUM PROJECT. Chromium security: Memory safety. Accessed: 2022-03-
21. Available from: https://www.chromium.org/Home/chromium-security/
memory-safety/.

[54] LIAM PROVEN. The weird world of non-C operating systems, March
2022. Available from: https://www.theregister.com/2022/03/29/non_c_
operating_systems/.

[55] GUSTAVO RODRIGUEZ-RIVERA. Conservative Garbage Collection for General Mem-
ory Allocators. SIGPLAN Not., 36(1):71–79, October 2000. Place: New York, NY,
USA Publisher: Association for Computing Machinery. Available from: https:
//doi.org/10.1145/362426.362464.

[56] MICHAEL SNOYMAN. Is Rust functional?, October 2018. Available from: https:
//www.fpcomplete.com/blog/2018/10/is-rust-functional/.

[57] RYAN JAMES SPENCER. The Many Uses Of The Empty Tuple. Available from:
https://justanotherdot.com.

[58] PIERRE SPRING. What is lexical scope?, October 2010. Available from: https://
stackoverflow.com/a/2896899.

[59] STEVE KLABNIK AND CAROL NICHOLS. The Rust programming language. No Starch
Press, Inc., San Francisco, CA, 5 edition, 2019.

[60] B. STROUSTRUP. The Design and Evolution of C++. Programming languages/C+.
Addison-Wesley, 1994. Available from: https://books.google.de/books?id=
GvivU9kGInoC.

[61] THE RUST TEAM. Asynchronous Programming in Rust, 2022. Available from:
https://rust-lang.github.io/async-book/.

[62] THE C++ TEAM. const (C++), 2022. Available from: https://docs.microsoft.
com/en-us/cpp/cpp/const-cpp.

[63] THE CHROMIUM PROJECT. Oilpan: C++ Garbage Collection, 2021. Available from:
https://chromium.googlesource.com/v8/v8/+/main/include/cppgc/
README.md.

[64] THE CPPREFERENCE TEAM. static members. Available from: https://en.
cppreference.com/w/cpp/language/static.

[65] THE RUST CORE TEAM. Announcing Rust 1.31 and Rust 2018, December
2018. Available from: https://blog.rust-lang.org/2018/12/06/Rust-1.
31-and-rust-2018.html#non-lexical-lifetimes.

[66] THE RUST TEAM. Announcing Rust 1.0 | Rust Blog, May 2015. Available from:
https://blog.rust-lang.org/2015/05/15/Rust-1.0.html.

https://github.com/Manishearth/rust-gc/pull/6
https://dr-knz.net/abstract-machine-models.html
https://dr-knz.net/abstract-machine-models.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.theregister.com/2022/03/29/non_c_operating_systems/
https://www.theregister.com/2022/03/29/non_c_operating_systems/
https://doi.org/10.1145/362426.362464
https://doi.org/10.1145/362426.362464
https://www.fpcomplete.com/blog/2018/10/is-rust-functional/
https://www.fpcomplete.com/blog/2018/10/is-rust-functional/
https://justanotherdot.com
https://stackoverflow.com/a/2896899
https://stackoverflow.com/a/2896899
https://books.google.de/books?id=GvivU9kGInoC
https://books.google.de/books?id=GvivU9kGInoC
https://rust-lang.github.io/async-book/
https://docs.microsoft.com/en-us/cpp/cpp/const-cpp
https://docs.microsoft.com/en-us/cpp/cpp/const-cpp
https://chromium.googlesource.com/v8/v8/+/main/include/cppgc/README.md
https://chromium.googlesource.com/v8/v8/+/main/include/cppgc/README.md
https://en.cppreference.com/w/cpp/language/static
https://en.cppreference.com/w/cpp/language/static
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html#non-lexical-lifetimes
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html#non-lexical-lifetimes
https://blog.rust-lang.org/2015/05/15/Rust-1.0.html


52 BIBLIOGRAPHY

[67] THE RUST TEAM. async/.await Primer, June 2022. Available from: https:
//rust-lang.github.io/async-book/01_getting_started/04_async_
await_primer.html.

[68] THE RUST TEAM. Clone in std::clone - Rust, 2022. Available from: https://doc.
rust-lang.org/std/clone/trait.Clone.html.

[69] THE RUST TEAM. Copy in std::marker - Rust, 2022. Available from: https://doc.
rust-lang.org/std/marker/trait.Copy.html.

[70] THE RUST TEAM. Declare first - Rust By Example, 2022. Available from:
https://doc.rust-lang.org/rust-by-example/variable_bindings/
declare.html.

[71] THE RUST TEAM. Destructors - The Rust Reference, 2022. Available from: https:
//doc.rust-lang.org/reference/destructors.html.

[72] THE RUST TEAM. Drop in std::ops - Rust, 2022. Available from: https://doc.
rust-lang.org/std/ops/trait.Drop.html.

[73] THE RUST TEAM. Introduction - The Rust Reference, 2022. Available from: https:
//doc.rust-lang.org/reference/.

[74] THE RUST TEAM. Meet Safe and Unsafe - The Rustonomicon, 2022. Available from:
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html.

[75] THE RUST TEAM. Ownership and moves - Rust By Example, 2022. Available from:
https://doc.rust-lang.org/rust-by-example/scope/move.html.

[76] THE RUST TEAM. Pinning, June 2022. Available from: https://rust-lang.
github.io/async-book/04_pinning/01_chapter.html.

[77] THE RUST TEAM. RAII - Rust By Example, 2022. Available from: https://doc.
rust-lang.org/rust-by-example/scope/raii.html.

[78] THE RUST TEAM. The rustc book, 2022. Available from: https://doc.
rust-lang.org/rustc/index.html.

[79] THE RUST TEAM. The Rustonomicon, 2022. Available from: https://doc.
rust-lang.org/nomicon/.

[80] THE RUST TEAM. std::rc - Rust, 2022. Available from: https://doc.rust-lang.
org/stable/std/rc/index.html.

[81] THE RUST TEAM. String in std::string - Rust, 2022. Available from: https://doc.
rust-lang.org/std/string/struct.String.html#representation.

[82] THE RUST TEAM. unit - Rust, 2022. Available from: https://doc.rust-lang.
org/std/primitive.unit.html.

[83] THE RUST TEAM. What Unsafe Can Do - The Rustonomicon, 2022. Available from:
https://doc.rust-lang.org/nomicon/what-unsafe-does.html.

[84] THE RUST TEAM. Why Async?, June 2022. Available from: https://rust-lang.
github.io/async-book/01_getting_started/02_why_async.html.

https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/rust-by-example/variable_bindings/declare.html
https://doc.rust-lang.org/rust-by-example/variable_bindings/declare.html
https://doc.rust-lang.org/reference/destructors.html
https://doc.rust-lang.org/reference/destructors.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/rust-by-example/scope/move.html
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://doc.rust-lang.org/rust-by-example/scope/raii.html
https://doc.rust-lang.org/rust-by-example/scope/raii.html
https://doc.rust-lang.org/rustc/index.html
https://doc.rust-lang.org/rustc/index.html
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/stable/std/rc/index.html
https://doc.rust-lang.org/stable/std/rc/index.html
https://doc.rust-lang.org/std/string/struct.String.html#representation
https://doc.rust-lang.org/std/string/struct.String.html#representation
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/nomicon/what-unsafe-does.html
https://rust-lang.github.io/async-book/01_getting_started/02_why_async.html
https://rust-lang.github.io/async-book/01_getting_started/02_why_async.html


BIBLIOGRAPHY 53

[85] THE STACK OVERFLOW TEAM. Stack Overflow Developer Survey 2021, August
2021. Available from: https://insights.stackoverflow.com/survey/
2021/?utm_source=social-share&utm_medium=social&utm_campaign=
dev-survey-2021.

[86] GAVIN THOMAS. A proactive approach to more secure code – Microsoft Security
Response Center, 2019. Available from: https://msrc-blog.microsoft.com/
2019/07/16/a-proactive-approach-to-more-secure-code/.

[87] TNFINK. Yes, Rust has Garbage Collection, and a Fast One, Octo-
ber 2020. Available from: https://blog.akquinet.de/2020/10/09/
yes-rust-has-garbage-collection-and-a-fast-one/.

[88] TOMÁŠ GAVENČIAK. Multiple mutable references and memory bugs · Issue #
2 · mcoblenz/bronze, October 2021. Available from: https://github.com/
mcoblenz/Bronze.

[89] AARON TURON. Rust: From POPL to Practice (Keynote). SIGPLAN Not., 52(1):2,
January 2017. Place: New York, NY, USA Publisher: Association for Computing Ma-
chinery. Available from: https://doi.org/10.1145/3093333.3011999.

[90] UNISYS CORPORATION. ALGOL Programming Reference Manual, Volume 1:
Basic Implementation, 2017. Available from: https://public.support.
unisys.com/aseries/docs/clearpath-mcp-18.0/86000098-516/
section-000026712.html.

[91] GITHUB USER LOCKA99. Memory Management · A Guide to Porting C
and C++ code to Rust. Available from: https://locka99.gitbooks.io/
a-guide-to-porting-c-to-rust/content/memory_management/.

[92] PATRICK WALTON. Removing Garbage Collection From the Rust Language,
June 2013. Available from: https://pcwalton.github.io/2013/06/02/
removing-garbage-collection-from-the-rust-language.html.

[93] JOSH WATZMAN. scope - Static (Lexical Scoping), March 2014. Available from:
https://stackoverflow.com/a/22395580.

[94] AARON WEISS, OLEK GIERCZAK, DANIEL PATTERSON, AND AMAL AHMED. Oxide:
The Essence of Rust. arXiv:1903.00982 [cs], October 2021. arXiv: 1903.00982. Available
from: http://arxiv.org/abs/1903.00982.

[95] PAUL R. WILSON. Uniprocessor garbage collection techniques. In YVES BEKKERS
AND JACQUES COHEN, editors, Memory Management, pages 1–42, Berlin, Heidelberg,
1992. Springer Berlin Heidelberg.

[96] HUI XU, ZHUANGBIN CHEN, MINGSHEN SUN, YANGFAN ZHOU, AND MICHAEL R.
LYU. Memory-Safety Challenge Considered Solved? An In-Depth Study with All
Rust CVEs. ACM Trans. Softw. Eng. Methodol., 31(1), September 2021. Place: New
York, NY, USA Publisher: Association for Computing Machinery. Available from:
https://doi.org/10.1145/3466642.

[97] JOSHUA YANOVSKI, HOANG-HAI DANG, RALF JUNG, AND DEREK DREYER. Ghost-
Cell: Separating Permissions from Data in Rust. Proc. ACM Program. Lang., 5(ICFP),
August 2021. Place: New York, NY, USA Publisher: Association for Computing Ma-
chinery. Available from: https://doi.org/10.1145/3473597.

[98] BENJAMIN ZORN. The Measured Cost of Conservative Garbage Collection. Software
- Practice and Experience, 23, July 1993.

https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://blog.akquinet.de/2020/10/09/yes-rust-has-garbage-collection-and-a-fast-one/
https://blog.akquinet.de/2020/10/09/yes-rust-has-garbage-collection-and-a-fast-one/
https://github.com/mcoblenz/Bronze
https://github.com/mcoblenz/Bronze
https://doi.org/10.1145/3093333.3011999
https://public.support.unisys.com/aseries/docs/clearpath-mcp-18.0/86000098-516/section-000026712.html
https://public.support.unisys.com/aseries/docs/clearpath-mcp-18.0/86000098-516/section-000026712.html
https://public.support.unisys.com/aseries/docs/clearpath-mcp-18.0/86000098-516/section-000026712.html
https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/memory_management/
https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/memory_management/
https://pcwalton.github.io/2013/06/02/removing-garbage-collection-from-the-rust-language.html
https://pcwalton.github.io/2013/06/02/removing-garbage-collection-from-the-rust-language.html
https://stackoverflow.com/a/22395580
http://arxiv.org/abs/1903.00982
https://doi.org/10.1145/3466642
https://doi.org/10.1145/3473597

	Introduction
	Aim of this thesis
	Related work
	Academic research
	Blog posts
	Official Rust books


	Syntax and semantics
	Syntax and language features
	Variables and values
	Types
	Functions and methods
	Macros
	Traits

	Ownership
	Variable scope and access
	Moving of ownership versus copying values
	Clone
	Passing ownership across function boundaries
	Ownership in C and C++

	Borrowing
	Mutable references
	References and mutability in C and C++
	Dangling references

	Lifetimes
	Validating lifetimes with the borrow checker
	Rust code with lifetime annotations
	Lifetime elision
	Non-lexical lifetimes


	Garbage collection in Rust
	Automatic memory management
	Tracing garbage collection
	Reference counting
	Problems with automatic memory management

	Garbage collection in early Rust versions
	Garbage collection as a library
	Motivation for garbage collection in systems programming
	Rust garbage collection libraries
	C and C++ garbage collection libraries

	Extending Rust's memory management through rust`unsafe` calls
	Rust's solution to memory management
	Reclaiming memory of non-cyclic data structures
	Reclaiming memory of cyclic data structures


	Memory management: Rust and C/C++ compared
	Movable versus fixed memory locations
	Memory management in asynchronous Rust programming

	Conclusion
	Bibliography

