
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

IMPROVING AN
ANNOTATION-BASED

ARTWORK SEARCH ENGINE
THROUGH WORD

EMBEDDINGS

Alexander Maslew

Bachelorarbeit

2

Aufgabensteller Prof. Dr. François Bry
Betreuer Prof. Dr. François Bry,

Martin Bogner

Abgabe am 2020-10-16

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 2020-10-16 Alexander Maslew

i

ii

Abstract

The Artigo Project collects annotations for artworks and has a search function that can
currently search for artworks using these collected annotations. The current search en-
gine works on an exact-match basis, which means that only artworks annotated with the
same annotations as searched are returned in the search result. The goal of this thesis is to
improve the search results by also showing semantically relevant artworks, which do not
match the exact search keyword. To achieve this word embeddings are used.

Word embedding is a very powerful mechanism that can be used for mostly all word
comparison problems. It is an innovative way to enhance search results and has the po-
tential to be improved further in the future. Its technique is to map words to word vectors
which represent the meaning of the words. These vectors form a vector space, which can
be used to define the similarity of the artworks. With this information, the search results
can be sorted correspondingly. First, a big vector space has to be produced, which includes
embeddings of words that a user will possibly type into the search field. Three existing
methods for creating word embeddings are Glove, Word2Vec, and fastText. In the next
step with each of these methods, for all artworks, a corresponding vector has to be cal-
culated and put into the existing vector space. For this calculation, a custom algorithm is
created that uses currently existing artwork annotations and a normalization method. Fi-
nally, the vector space needs to be searched for results. For searching, there are existing
solutions available, that mostly work on the Approximate Nearest Neighbors principle.
Annoy from Spotify, NGT from Yahoo and NMSLIB are examples of such solutions. These
libraries are optimized for speed and search for points in word embeddings that are close to
a given query point. After a comparison between the existing methods and algorithms, for
the implementation, a custom Python search server is implemented which uses the vector
space based search engine solution named Annoy and a corpus that has been trained with
Word2Vec. Further modifications to the existing frontend and backend required to make
it work are described. The result is a search engine in which users profit from improved
search results and a greater chance to find what they are looking for.

iii

iv

Zusammenfassung

Das Artigo-Projekt sammelt Annotationen zu Kunstwerken und verfügt über eine Such-
funktion, mit der derzeit anhand dieser gesammelten Annotationen nach Kunstwerken
gesucht werden kann. Die aktuelle Suchmaschine arbeitet auf einer Exakt-Match-Basis,
was bedeutet, dass nur Kunstwerke, die mit exakt den gleichen Annotationen wie die
gesuchten Kunstwerke annotiert sind, im Suchergebnis zurückgegeben werden. Das Ziel
dieser Arbeit ist, die Suchergebnisse zu verbessern, indem auch semantisch relevante Kunst-
werke angezeigt werden, die nicht mit dem exakten Suchbegriff annotiert sind. Um dies
zu erreichen, werden Worteinbettungen (Word embeddings) verwendet.

Worteinbettungen sind ein sehr mächtiger Mechanismus, der für die meisten Wortver-
gleichsprobleme verwendet wird. Es ist ein innovativer Weg zur Verbesserung der Such-
ergebnisse und hat das Potenzial, in Zukunft noch weiter verbessert zu werden. Seine
Technik besteht darin, Wörter auf Wortvektoren abzubilden, die die Bedeutung der Wörter
repräsentieren. Diese Vektoren bilden einen Vektorraum, der dazu verwendet werden
kann, die Relevanz eines Kunstwerks für ein anderes Kunstwerk zu definieren. Damit
können dann die Suchergebnisse entsprechend sortiert werden. Dazu muss zuerst ein
großer Vektorraum erzeugt werden, der Einbettungen von einem großen Teil der Wörter
enthält, die ein Benutzer möglicherweise in das Suchfeld eingibt. Drei existierende Metho-
den zur Erzeugung von Vektorräumen sind Glove, Word2Vec und fastText. Im nächsten
Schritt wird für jedes Kunstwerk ein entsprechender Vektor berechnet, der die gleiche
Form wie die Word embedding Vektoren hat damit man später beide vergleichen kann. Für
diese Berechnung wird ein neuer Algorithmus erstellt, der aktuell existierende Kunstwerk-
Annotationen und eine Methode zur Normalisierung verwendet. Abschließend muss der
Vektorraum nach Ergebnissen durchsucht werden. Für die Suche gibt es bereits existierende
Lösungen, die eine gute Performanz erzielen und meist nach dem Prinzip des Approxi-
mate Nearest Neighbors arbeiten. Annoy von Spotify, NGT von Yahoo und NMSLIB sind
Beispiele für solche Lösungen. Diese Bibliotheken suchen nach Punkten in Vektorräumen,
die nahe an einem bestimmten Abfragepunkt liegen. Für die Implementierung wird ein
Python-Suchserver implementiert, der Annoy und einen mit Word2Vec trainierten Kor-
pus verwendet. Weitere Modifikationen am bestehenden Frontend und Backend, die er-
forderlich sind, damit alles funktioniert, sind beschrieben. Das Ergebnis ist eine Suchmas-
chine, bei der die Benutzer von verbesserten Ergebnissen und einer größeren Chance, das
Gesuchte zu finden, profitieren.

v

vi

Acknowledgments

First of all, I want to thank Prof. François Bry for his supervision and for the opportunity
to work on this topic at the chair for Programming and Modeling Languages. I also want
to thank my mentor M.Sc Martin Bogner, who provided me with new ideas and guided me
throughout this thesis. Meetings with him every week helped me point this bachelor thesis
in the right direction. Finally, I want to thank my friends and family who supported me
and participated in the evaluation part of this work.

vii

viii

Contents

1 Introduction 1

2 Related Work 3
2.1 Word embeddings . 3
2.2 Word embedding Generators . 3

2.2.1 Word2Vec . 3
2.2.2 GloVe . 5
2.2.3 fastText . 6

2.3 Vector space search engines . 6
2.3.1 Existing solutions . 6
2.3.2 Distance functions . 7

2.4 React . 8
2.5 Node.js . 9

3 Concept 11
3.1 Idea . 11

3.1.1 Choice of existing solutions . 12
3.2 Design . 12

3.2.1 React Frontend Search Interface . 13

4 Implementation 15
4.1 Front-end . 15
4.2 Back-end . 16
4.3 Generation of word embeddings . 17

4.3.1 Selecting a suitable corpus . 17
4.3.2 Preparing corpus . 17
4.3.3 Training corpus . 17

4.4 Comparison between Word2Vec, GloVe and fastText 18
4.4.1 Resources and time needed to train corpus 18
4.4.2 Result evaluation . 19

4.5 Generation of artwork embeddings . 22
4.6 Vector space search engine . 23

4.6.1 Comparison between Annoy, NGT, and NMSLIB 23
4.6.2 Required files . 24

4.7 Python search server . 24
4.7.1 Requirements . 25
4.7.2 Data-structure for storing words . 25

ix

x CONTENTS

4.7.3 Search result quality evaluation . 26

5 Conclusion and Future Work 29
5.1 Conclusion . 29
5.2 Future Work . 29

5.2.1 Limiting factors . 29
5.2.2 In-depth analysis of word embedding generators 29
5.2.3 Intelligent search interface with improved query language 30
5.2.4 Feedback loop . 30
5.2.5 Updating artwork embeddings . 33

Bibliography 35

CHAPTER 1

Introduction

The ARTigo Project collects annotations for digitally saved artwork reproductions using
several games, in which players describe artworks with annotations (also known as tags or
keywords) to them. Such games are often referred to as Games with a Purpose (GWAP).
Their goal is to get artwork tags and they achieve this by motivating players to play the
games. ARTigo’s collection mostly contains artworks made by European artists in the time
period starting at the end of the 18th century and ending at the beginning of the 20th cen-
tury.

ARTigo’s goal is to have a semantic artwork search engine, which can find artwork-
images using annotations, collected with GWAP. Currently, ARTigo has a search engine
that works on an exact-match basis, which means that only artworks can be found, which
really are annotated with the searched annotation. It is based on the search engine platform
Apache Lucene/Solr, which also powers the search and navigation features of many of the
world’s largest internet sites [27].

Search engines are a specialized type of software for retrieving information stored on a
computer system or network [39]. Generally the user (searcher) makes a query for content
that meets a certain criterion (usually one that contains certain words and phrases), which
results is a list of points that meet, in whole or in part, the requested criterion. Search
engines are the most visible Information Retrieval (IR) systems.

However, ARTigo’s current search engine has several limitations, that lead to limited
results. Currently, similar images with related annotations, which are most likely relevant
can not be recognized as such. Additionally, when the user searches for words, that have
never been used as annotations on artworks, no results can be found.

For example, if we have two images, the first one annotated once with ”tree” and the
second also tagged once, but with ”forest”. When the user now searches for ”tree”, only the
first image will be found, because a connection between ”tree” and ”forest” is not known
to the search engine.

This bachelor thesis reports on adding such connections between all ARTigo artworks
using a deep learning technique named word embeddings and existing artwork informa-
tion like annotations, artist name, etc. This improves the current search engine by adding
the ability to also find semantically similar artworks.

This thesis starts with a representation of the related work in the field of word embed-
dings and their search engines. Then a concept of the vector space based search engine is
elaborated and its implementation is described. Finally, suggestions for further research

1

2 CHAPTER 1. INTRODUCTION

and additional technical details required for the implementation and maintenance are pro-
vided.

CHAPTER 2

Related Work

2.1 Word embeddings

The technique of mapping a word to a vector that represents its semantic meaning is called
word embedding. In Natural Language Processing (NLP), an embedding refers to a vector
that represents the meaning of a word. The embeddings usually have high dimensional-
ity, meaning each embedding is made out of a vector that contains hundreds or in some
cases even thousands of scalars. A vector is a one-dimensional sequence of numbers (of-
ten called scalars) that describes how much of something there is. Inside the vector space,
semantically related words are represented by similar embeddings and vice-versa. Also,
depending on the properties of the underlying algorithm used to create the word embed-
dings, mathematical operations like addition and subtraction can be applied and this ability
can be used in finding relationships between vectors.

2.2 Word embedding Generators

Word embeddings can be generated using existing methods. Three well-established algo-
rithms used for generating word embeddings are Word2Vec, GloVe, and FastText, which
will be discussed in the following:

2.2.1 Word2Vec

Word2Vec was created and published by a team of researchers at Google in 2013 and has
since become a popular method to generate word embeddings. Word2Vec translates words
into vectors and its model is predictive. It uses neuronal networks to train the vectors and
for assigning words to vectors Word2Vec uses the word context. With this approach words
that occur in similar contexts will have similar embeddings.

For example, if we have the following two sentences:
The kid said he would grow up to be superman.
The child said he would grow up to be superman.

3

4 CHAPTER 2. RELATED WORK

The words kid and child will have similar word vectors due to a similar context. When iter-
ating through a large enough corpus a lot of sentences will have the words kid replaceable
with child. It is also possible to capture different degrees of word similarity. Calculations
like ”Brother” + ”Woman” - ”Man” can produce a result vector that is located closest to the
vector of ”Sister” [19].

Word2Vec offers two important model architectures. The first one is Continuous bag of
words (CBOW) and the second is Skip-Gram.

In CBOW the output is the target word (jumps) and is predicted from the context:

Figure 2.1: CBOW method.

In Skip-Gram the outputs are the context words and they are predicted from the target
word (jumps)

Figure 2.2: Skip-Gram method.

CBOW is superior to Skip-Gram in evaluating frequent words, but Skip-Gram evaluates
rare words more precisely than CBOW [42]. A good evaluation of rare words is crucial for
many use cases and for this reason the Skip-Gram variant of Word2Vec is more commonly
used. However, Skip-Gram is only favorable when working with a large Corpus and is
slower compared to CBOW.

Important parameters for the training are content-window size and number of vector
dimensions. The content-window determines how many words before and after the target
word will be included in the target word context. Every additional vector dimension al-
lows more space to save word details.

The accuracy of Word2Vec can be improved by:

2.2. WORD EMBEDDING GENERATORS 5

• Choice of model architecture
For large corpus and higher dimensions - slower Skip-Gram
For a small corpus - faster CBOW

• Increasing the training dataset size

• Increasing the number of vector dimensions. Typically set between 100 and 1,000.

• Increasing the windows size. The recommended value is 10 for Skip-Gram and 5 for
CBOW. [42]

2.2.2 GloVe

GloVe stands for Global Vectors for Word Representation and was created at the Univer-
sity of Stanford. GloVe’s approach for creating word vectors is different from Word2Vec.
Instead of capturing co-occurrence one window at a time (like Word2Vec), GloVe tries to
capture overall statistical counts of how often co-occurrence appears for the whole corpus.
To achieve this GloVe’s model is count-based and instead of neural networks, it uses a
co-occurrence Matrix [31].

GloVe is easier to parallelize than Word2Vec, because of it’s count-based approach and
this improves the ability to train over big data. But at the same time GloVe consumes a
considerably higher amount of system memory while training, due to its co-occurrence
matrix.

The GloVe co-occurrence matrix is as long and as wide as the vocabulary size. It con-
tains only numeric values equal to or greater than zero and is used to calculate vectors.
Each time words occur together within a specified window-size in the corpus they count
as related and their corresponding entry in the co-occurrence matrix is incremented. The
window-size works just like in Word2Vec. It specifies how many words before and after a
target word count as related.

If for example, we have a window size of 3, the corpus ”this is a GloVe matrix test” and
one iteration over the corpus, a co-occurrence matrix could look similar to this:

this is a GloVe matrix test
this 0 1 0 0 0 0
is 1 0 1 0 0 0
a 0 1 0 1 0 0

GloVe 0 0 1 0 1 0
matrix 0 0 0 1 0 1

test 0 0 0 0 1 0

Table 2.1: GloVe co-occurrence matrix

With every iteration through the corpus, modifications to the co-occurrence matrix and the
accuracy are done. After the last iteration finished calculating, the co-occurrence matrix
is used to calculate final result vectors which are then saved to a file before the GloVe
algorithm is halted.

According to test results from the creators of GloVe, the recommended amount of it-
erations depends on the corpus size and is usually between 15 to 25. The recommended
content-window size is 10. Important parameters for achieving better accuracy are the
number of dimensions, iterations over the corpus, and content-window size [31].

Also, according to the authors of GloVe, in a comparison between Word2Vec and GloVe
using the same corpus, vocabulary, window size, and training time, GloVe consistently
outperformed Word2Vec. It achieved better results faster and obtained the best results
irrespective of speed [31].

6 CHAPTER 2. RELATED WORK

2.2.3 fastText

FastText was created by Facebook’s AI Research lab in 2015 and it is maintained by them
since. It is based on Word2Vec but has several improvements not present in Word2Vec and
GloVe. The main improvement of fastText is that it improves word embeddings by en-
riching the word vectors with subword information. Instead of learning vectors for words
directly, fastText represents every word as an n-gram of characters. For example, the word
”artificial” with n=3, would result in (ar, art, rti, ifi, fic, ici, ial, al). This should help with the
representation of words that include suffixes or prefixes, especially for large vocabularies
with many rare words [3].

After the n-grams have been calculated modified algorithms are available for training
of the word embeddings (which add support for word n-grams to CBOW and Skip-Gram).

2.3 Vector space search engines

After a vector space containing all artwork identifiers is successfully generated and a vector
that corresponds to the user search input is fetched from existing word embeddings, the
search for related artworks can finally begin.

To find artworks near to the input vector of a search query, a method for comparing
existing vectors to a target vector is necessary. Methods that fulfill this goal are distance
functions. Depending on the exact function used they either measure the distance or angle
between two vectors to determine their similarity. The output of a distance function is
usually a number between 0 and 1, where values closer to one are more similar.

Vector space search engines are using distance functions and are usually doing nearest
neighbor searches. They are quite complex because they can handle large volumes of data
in high-dimensional vector spaces and at the same time aim to be as efficient and consistent
with the results as possible.

2.3.1 Existing solutions

For searching in vector spaces, there are many existing libraries available. The most used
and well-known library is Annoy. But according to most openly available benchmarks in
multiple scenarios, two other libraries named NGT and NMSLIB should be slightly faster
than Annoy [21]. The best performing library currently available, according to Facebook AI
Research, is Facebook’s Faiss algorithm using the optional GPU-based implementation [7].
Annoy, NGT, and NMSLIB are based on Approximate Nearest Neighbors (ANN) search.
Faiss can use both Fixed (which searches for all points within a given fixed distance from
a specified point) and ANN search. But to keep the implementation for ARTigo simple we
will focus on CPU-based approaches only.

Annoy is created and maintained by Spotify and used by them internally for music recom-
mendations. In comparison to other vector space search engines and according to Github,
Annoy currently has the largest community with over 1.000 Github Repositories that de-
pend on it. One advantage that sets it apart from others is that it uses static files as indexes,
which are loaded into memory using “mmap” and can also be shared across multiple pro-
cesses, which improves scalability.

Annoy uses Tree-based Indexing, which means that the entire search space is recur-
sively divided into hierarchical subspaces so that the search space forms a tree structure
[36]. Given a search query, annoy efficiently finds the subspaces by descending from the
root node to the leaf nodes in the tree structure and then obtains its search results by scan-
ning only neighbors belonging to the subspaces [5].

2.3. VECTOR SPACE SEARCH ENGINES 7

The following distance functions are supported: angular, euclidean, manhattan, cosine,
hamming, and dot (inner) product.

NGT stands for Neighborhood Graph and Tree for Indexing High-dimensional Data. It
has been created by Yahoo Japan.

NGT’s indexing method is Graph-based and uses a neighborhood graph, where every
node is connected to its, calculated by distance functions, nearest neighbors. Given a search
query, NGT retrieves the first nearest neighbor and then uses it to recursively lookup the
next nearest neighbor until the requested amount of results is reached. The exact algorithm
used by NGT is the so-called ANNG (approximate k-nearest neighbors) [36].

Supported distance functions are euclidean, angular, cosine, manhattan, hamming, and
jaccard.

NMSLIB stands for Non-Metric Space Library. It was created by Leonid Boytsov and Bi-
legsaikhan Naidan and has recently gained popularity. In particular, it has become a part
of Amazon Elasticsearch Service [24]. The search algorithm used is Hierarchical Navigable
Small World graphs (HNSW) [18], which according to benchmarks, is one of the leading
methods for approximate neighbor searches in terms of speed. HNSW is fully graph-based
and incrementally builds a multi-layer structure consisting of a hierarchical set of proximity
graphs (layers), that create nested subsets of the stored elements [18].

NMSLIB also comes with a query server, which depending on the project, might be
useful. Supported distance functions are euclidean and cosine. According to the official
NMSLIB Github page [24], more distances should be available, however, an inspection
revealed that they are currently not fully supported.

2.3.2 Distance functions

Vector space search engines use distance functions to determine the similarity between two
vectors. Euclidean, angular, cosine, and manhattan distance functions are often already
implemented and available to choose from. Choosing the right distance function is very
important because it can drastically change the search results. Distance functions can be
categorized with Lp norms, where p is a value greater than zero. Lp norms are a kind of
measure of the size of a mathematical object [33].

In high-dimensional space the data becomes sparse, and traditional indexing & algo-
rithmic techniques fail from an efficiency and/or effectiveness perspective [10]. The reason
behind this is the phenomenon called the curse of dimensionality, which arises in high di-
mensional space and causes the ratio between the nearest and farthest points to approach
1:1. This results in a complete inability to distinct some points, which ultimately leads to
poor results [2]. The curse of dimensionality phenomenon is more noticeable for distance
functions with a higher p number and since word embeddings are usually stored with high
dimensionality, choosing a Lp space with a low p number is crucial.

Another important factor when working with high dimension data is that the distance
measurement between two points should be more accurate when the angle between the
two points is used for measurement, rather than to measure the distance between the two
points in a straight line [23]. For this reason, the euclidean distance (also known as L2

norm), should perform worse when comparing two sparse vectors in high dimensional
space than for example cosine distance or manhattan distance (also known as L1 norm).

Formulas used to measure the distance between two vectors X and Y with k dimensions:

• Euclidean distance:
√

∑
k
i=1(xi− yi)2

8 CHAPTER 2. RELATED WORK

• Cosine distance: 1− sim(A,B), where cosine similarity: sim(A,B) = cos(θ) = A·B
|A|·|B| and

θ is the angle between the vectors A and B. As the cosine distance between the vectors
increases, the cosine similarity, or the amount of similarity decreases, and vice versa.
Thus, vectors closer to each other are more similar than vectors that are far away from
each other [22].

• Manhattan distance: ∑
k
i=1 |xi− yi|. The sum of (absolute) differences of the vectors.

• Angular distance: cos−1 ·(cosine similarity)
π

. A problem with cosine similarity is that when
the angle between two vectors is small, the cosine function delivers results very close
to 1 and some precision can be lost. Angular distance yields more different similarity
values for an angle close to 1 [4].

The following graphs illustrate measuring vectors in a two-dimensional space:

Figure 2.3: Distance functions.

2.4 React

React (or React.js) is an open-source JavaScript library for building user interfaces and was
initially released by Facebook’s web development team in 2013. Today React is one of the
best choices for building modern web applications, because it has a slim and easy to use
API, an ecosystem with many existing frameworks and extensions, and a great community.
Developers using React profit from the convenient JSX syntax and the declarative style of
programming, which results in less code.

JSX syntax
The JSX syntax is an extension of the JavaScript language and allows the writing of HTML
code directly into JavaScript [32] without any additional methods. It converts HTML tags
into react elements, which are later used for rendering [12]. The JSX syntax makes it easier
and more convenient to write React applications, but it is possible to use React without it
[13].

DOM rendering engine
Elements describe what we see on screen and are the smallest building blocks in React. The
Document Object Model (DOM) or “real DOM” is a programming interface for HTML and

2.5. NODE.JS 9

XML documents. It provides the structural representation of all nodes in an HTML docu-
ment in a tree structure and a way for JavaScript to interact with every node [20]. To make
changes to the user interface in a browser, developers have to edit the browser’s DOM.
But editing the DOM frequently can result in a significant impact on performance. For this
reason, React uses a virtual DOM, which is an abstraction of the real HTML DOM. The
virtual DOM is lightweight and improves the performance significantly because it ensures
that only the minimum of required operations on the real DOM is made by calculating the
best possible way to make these changes [16]. For the calculation first, a new virtual DOM
is created and compared to the existing one. Then the best possible edit is calculated and
the minimal changes are made to the real DOM.

2.5 Node.js

Node.js is a software platform built on Google Chrome’s V8 JavaScript run-time and it uses
an event-driven, non-blocking input-output model, which enables it to facilitate several
requests at the same time. This improves scalability and makes Node.js ideal for real-time
data-intensive applications. Since Node.js is a run-time environment, it can be used for both
front-end and back-end development [15]. The use of JavaScript brings several benefits to
the developers:

• The JavaScript language is naturally asynchronous, which means that each operation
is only started after the preceding one is completed. This adds the ability to execute
another process while waiting for the current one to complete.

• A huge base of web developers have already used the JavaScript language at some
point on the front-end and are familiar with it.

• Developers can share code between the front-end and back-end since JavaScript is
also widely used for front-end development.

• Native support for JavaScript Object Notation (JSON), which is a very popular lightweight
data-interchange format. JSON is easy for humans to read and write [17].

Node Package Manager
The free Node Package Manager (npm) is the default package manager for Node.js and
has recently become the center of JavaScript code sharing. It offers a lot of ready-made
solutions developers can easily add to and use in Node.js. Currently, there are more than
one million packages published in npm, which makes it the largest software registry in
the world [25]. It is important to note that packages are usually not deleted from npm
and because of that some are outdated or not maintained anymore and unusable with the
current version of Node.js. A study from 2019 showed that 61% of packages did not publish
a release in the last 12 months [37]. Also, the registry can contain low quality, insecure, or
malicious packages [29]. But still, they are plenty of good up-to-date packages to choose
from.

10 CHAPTER 2. RELATED WORK

CHAPTER 3

Concept

3.1 Idea

The idea is to improve ARTigo’s current search engine by implementing a completely new
solution, based on word and artwork embeddings.

Currently, the ARTigo search engine works on an exact-match basis, which means that
it can find artworks, which have been annotated with exactly the same search term. It can
not find artworks with similar but not the same annotations or in other words, artworks
that have not been annotated with the exact search term. This bachelor thesis addresses
this limitation and presents a solution using word embeddings in which users will profit
from an overall better search experience with improved results and if they are searching
for something specific - a greater chance to find what they are looking for. The use of word
embeddings makes sense for the ARTigo search engine because each artwork and user
search input can be represented by a vector and existing approximate nearest neighbor
solutions can be used to compare these vectors and find matching artworks quickly.

The first step is to generate vectors for a large collection of words (word embeddings),
which will provide a wide variety of words, that a user could possibly type into the search
field and a corresponding vector for every word that represents the words meaning. The
process of generating word embeddings is called training and uses specialized methods
that require a corpus, which is a text containing a large collection of words or sentences.
There are two ways that come in mind for choosing a corpus for training purposes. The
first option is to use existing artwork annotations and the second approach is to use a
large collection of sentences which for example can be acquired from the Internet using a
Wikipedia or Twitter dump. It is important to have a good distinction between different
words so that the search engine can work properly. To achieve this the corpus size needs
to be large enough because the accuracy of words depends on the corpus size. A larger
collection of words / sentences typically results in higher accuracy and improved distinc-
tion of fundamentally different words. To estimate the meaning of each word with high
accuracy, as many as possible distinct words in the same context are required. This means
that a larger corpus with an extensive vocabulary will almost always achieve higher word
accuracy. Another important factor is that the user has no limitations on what to search and
therefore it is crucial to have a large enough vocabulary to increase the chance of finding a
vector that corresponds to the requested search term in the word embeddings file. Also, a

11

12 CHAPTER 3. CONCEPT

large enough vocabulary is crucial for defining more semantically similar words.
The use of existing ARTigo artwork tags to create a corpus may not be a good choice,

because the current amount of unique annotations is only about 317 thousand which is
considered not enough in natural language processing and a lot of them are used only once,
which would make it impossible to define a context to calculate their meaning. On the other
hand, a Wikipedia corpus for example has a vocabulary size in the millions and since each
word is almost always contained in a sentence, a good enough context is typically given.
Therefore word embeddings in this bachelor thesis will be created using an external corpus.

3.1.1 Choice of existing solutions

Since the process of generating word embeddings is quite complex (see section 2.2 of this
thesis), implementing a new solution from scratch is not worth it and a choice of three
existing methods Word2Vec, GloVe, and fastText has been made.

Word2Vec has been chosen because it is the most popular and known method. GloVe
was chosen because its model is fundamentally different than Word2Vec and according to
the creators of GloVe in a comparison between Word2Vec and GloVe it should be outper-
forming Word2Vec. And finally, the choice for fastText is made, because it is a modified
version of Word2Vec with a slightly different approach and several, according to the au-
thors, improvements.

Word embeddings are required for the ability to map a user search input to a vector. But
creating a vector from an artwork is different because it is not just a simple word. The idea
is to create a custom algorithm for use with the ARTigo artworks, which utilizes a combi-
nation of existing artwork annotations, word embeddings, and normalization techniques
to build artwork embeddings.

Finally, a vector that corresponds to the user search input is fetched from the word
embeddings and used to find matching vectors from the artwork embeddings using the
in section 2.3 of this thesis, discussed methods Annoy, NGT, and NMSLIB for searching
through word embeddings. The choice for Annoy was made because just like Word2Vec
it is the most well-known and popular method in its category. NGT was chosen because
its indexing approach differs from Annoy. And finally, NMSLIB was chosen, because ac-
cording to benchmarks it should be one of the leading methods for approximate nearest
neighbor searches in terms of speed.

Since all discussed methods just like most natural language processing programs use
the programming language Python for implementation a connection between the exist-
ing ARTigo Node.js backend server and Python is required. The communication can be
achieved using a simple command-line interface (CLI) or a socket communication. How-
ever, the use of a CLI is not a good option, because a CLI would load a Python script once
and then terminate it after a result is received. This means that for every request all the
required data (word embedding indexes, artwork embedding indexes, etc) would have to
be loaded into memory before result artworks can be found and returned which results in
a very long response time. The use of a socket communication can fix this problem because
it allows Python to load all required files into memory once and then wait for a socket re-
quest to fulfill. There are many existing socket communication libraries available and the
choice of ZeroMQ has been made because it is well-known, open-source, and offers simple
implementation for both Node.js and Python.

3.2 Design

The current ARTigo website was initially created back in 2012 using the Extensible Hy-
pertext Markup Language (XHTML), which is an extended version of the widely used

3.2. DESIGN 13

Hypertext Markup Language (HTML). Back then it was a suitable solution, but today the
web framework React is state of the art for building user interfaces or UI components. The
new interface implemented in this bachelor thesis does not aim for great design and is
mostly built for proof of concept. Therefore most HTML and CSS code responsible for the
design is taken from the current ARTigo website and applied to the new React frontend
implementation.

3.2.1 React Frontend Search Interface

The search bar is located at the top right corner and is available while navigating through
all pages on the ARTigo website. When the user types a search term into the search bar and
clicks the search button a new page is loaded. It includes a list of search results and every
result is a table with three columns. On the left, it has a counter for how often an Image
was annotated with the requested search term. In the middle, the corresponding image is
displayed. And on the right side of the image additional information about the artwork is
displayed, including the artist, title, location, and creation date.

Figure 3.1: Search results page

It also includes a detail page that shows up after clicking on an Image. The detail page
shows a larger image of the corresponding artwork, that fills the whole page. To the right
of the image more additional information is displayed, including all annotations of the art-
work, which can be used to understand why the shown artwork was selected by the search
engine.

14 CHAPTER 3. CONCEPT

Figure 3.2: Detailed search results page

CHAPTER 4

Implementation

4.1 Front-end

The front-end is implemented using React which is a well-known open-source JavaScript
library for building user interfaces made by Facebook and community [26]. React has been
chosen because the combination of React and Node.js (back-end solution) is proven to be a
very solid [38] and because the current development implementation of ARTigo (which is
not yet available online) uses React for its front-end.

The implementation consists of the following parts:

• Search-header object with a field and button which is permanently visible on every
page. This is achieved by adding the object to the always visible main page which
also includes the content and other navigation panels. It looks like this:

• Search Page responsible for receiving data from the back-end and once received for
the rendering of the search results.

• Detail Page for additional Information with a larger image just for one selected art-
work. The required data is fetched with a SQL query.

Search results are retrieved from the back-end as a list of objects. Every object represents
an artwork and contains further unique properties, which are rendered for display using
two classes.

15

16 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Front-end classes Search and SearchRow.

To generate HTML code from JavaScript, which a browser can understand React uses a
technique called rendering [14], which was further described in section 2.4 of this bachelor
thesis. The results from the back-end are rendered in the Search page (Search.js class) where
rendering is completed by using the SearchRow.js helper class, which renders every search
result-row individually.

4.2 Back-end

The back-end is implemented using Node.js, which is an open-source, cross-platform, JavaScript
run-time environment that executes JavaScript code using Google Chrome’s V8 engine out-
side a web browser [8]. Node.js is a very convenient solution for many web-developers be-
cause most of them are already familiar with the JavaScript programming language, which
is frequently used for front-end development. Also, the currently existing ARTigo project
already implements Node.js for the back-end. Node.js was further described in section 2.5
of this thesis.

Figure 4.2: Communication between the back-end, front-end, search server and database.

The main back-end component is responsible for the communication between the front-
end and the search server. For the transmission among front-end and back-end existing
Node.js socket is used and for the transmission between back-end and search server, a
high-performance asynchronous messaging library called Zero-MQ [28] is used.

Zero-MQ was chosen because it is industry-leading, lightweight, and available for both
Node.js and Python, which means that the same library can be used for both back-end and

4.3. GENERATION OF WORD EMBEDDINGS 17

search-server components. When the user starts a new search:

1. Input gets forwarded to the Python search server via the back-end.

2. Artworks IDs are received at the back-end and the database is queried for additional
artwork details like title, location, date, etc.

3. Final results including image URL’s are transmitted to the React front-end for display.

4.3 Generation of word embeddings

To generate Word embeddings first a corpus is created and then trained using the three
in chapter 2.2 discussed methods Word2Vec, GloVe, and fastText. Finally, in the next sec-
tion, all resulting word embeddings are compared and the best suitable one for ARTigo is
chosen.

4.3.1 Selecting a suitable corpus

A corpus can be created using different types of text data, like for example crawling ran-
dom websites or downloading a large number of posts from social networking sites. It is
also important to have a large enough corpus, since the accuracy of Word2Vec, GloVe and
fastText increases with the corpus growth [34].

Wikipedia dumps are used frequently in Natural Language Processing because they
contain a large variety of different words from easy to complex and contain very little
to none grammatical or other writing errors compared to for example a Twitter corpus.
Also, Wikipedia offers the ability to download huge dumps of data containing millions of
articles, available for a wide variety of languages and thematically, since Wikipedia is an
encyclopedia, it spans over a wide arrange of topics, just like ARTigo artworks do. For these
reasons, a Wikipedia corpus should be very suitable for an artwork-based search engine.

4.3.2 Preparing corpus

The downloaded Wikipedia dump can not be used directly to train a vector-space, be-
cause it is stored as a compressed XML-file and contains information like identifiers, page
numbers, and other Wikipedia-related Information that is embedded in the file with XML-
Syntax. After extracting the downloaded dump, it needs to be prepared by cleaning and
then pre-processing it. This means removing all Wikipedia markups, remove punctuation,
dates, numbers, etc. and finally writing one sentence per line to a single text file. Addi-
tionally, since ARTigo annotations are all stored uppercased, to improve compatibility all
words need to be uppercased too. This will for example remove duplicate words like “car”
and “Car”, that have no use in ARTigo, by replacing them both with “CAR”.

To prepare the Wikipedia dump existing methods are available. One option is to use
different tools for cleaning and pre-processing. For example wiki-extractor for cleaning
and a library like Microsoft’s BlingFire tokenizer for pre-processing. But a more revised
option would be to use just one tool, that is specifically designed to create a corpus from
the Wikipedia dump. A preferred choice for creating a Wikipedia based corpus is the topic
modeling library named Gensim because it includes a class made just for this task and is
proven to work very reliably by many users.

4.3.3 Training corpus

As explained in the related work section of this thesis, methods for generating word embed-
dings are quite complex. A well-known existing solution, that is proven to work reliably,

18 CHAPTER 4. IMPLEMENTATION

would be more viable, than creating a new one from scratch. Detailed instructions on how
to train word embeddings can be found in the appendix section of this thesis.

4.4 Comparison between Word2Vec, GloVe and fastText

All performance measurements have been taken on a Google cloud instance with 8x AMD
EPYC 7B12 CPUs, 64 Gigabytes of system memory, and SSD-based storage.

4.4.1 Resources and time needed to train corpus

The Wikipedia corpus in the German language with a vocabulary size of 2.15 million
(unique words) generated with Gensim resulted in a file size of 7.28 GB. Training word
embeddings on that corpus for 300 dimensions using recommended hyper-parameters for
all methods (apart from the additional test of 15 epochs for Word2Vec & fastText) required
the following:

Figure 4.3: Memory usage while training with Word2Vec, GloVe, and fastText.

4.4. COMPARISON BETWEEN WORD2VEC, GLOVE AND FASTTEXT 19

Figure 4.4: Required time for training with Word2Vec, GloVe, and fastText.

The result word embeddings file is around 6.1 GB in size and contains the same amount
of 2.15 million words (also known as vocabulary size) for every method tested. Another
important note is the high memory usage of GloVe (see Figure 4.3), which would require
additional swap space, if trained on a machine with not enough memory. Swap usage
would result in a significant increase in training time, due to additional I/O operations.

4.4.2 Result evaluation

To evaluate the generated word embeddings, features are visualized using Principal Com-
ponent Analysis (PCA), which is a method that reduces the number of dimensions in a high
dimensional vector space but keeps main features (principal components). PCA is proba-
bly the most popular multivariate statistical technique and it is used by almost all scientific
disciplines [1]. A method like PCA is used because it is not possible for humans to visual-
ize 300 dimensions, that were created while training the corpus. With PCA, the dimensions
were reduced to just two and then plotted using a python library called “matploblib”. The
following visualizations were created by using word embeddings, that have been trained
using a German Wikipedia corpus. Recommended values for Word2Vec (Skip-Gram with
5 iterations), fastText (Skip-Gram with 5 iterations), and GloVe (25 iterations)are used. On
the left side are visualizations for currencies, in the middle for capitals, and on the right for
genders.

20 CHAPTER 4. IMPLEMENTATION

Figure 4.5: PCA visualizations for Word2Vec.

Figure 4.6: PCA visualizations for fastText.

Figure 4.7: PCA visualizations for GloVe.

All three methods clearly portray a connection, but it is difficult to decide which one is
better by just looking at these visualizations.

The next approach is to search for neighbors of common words and compare them.
This can also be achieved with PCA, but libraries based on approximate nearest neighbors
will not provide a good visialization, because they are only approximate and the different

4.4. COMPARISON BETWEEN WORD2VEC, GLOVE AND FASTTEXT 21

distance functions would have to be evaluated as-well. This means that every request can
yield slightly different results, which is not optimal when comparing the algorithms with
PCA. For this reason a fixed approach is needed and since good performance is not neces-
sary for visualization, the Gensim model can be used which includes a function for fixed
neighbors search that corresponds to the word-analogy and distance scripts in the origi-
nal Word2Vec implementation [9]. The following graphs visualize the nearest neighbors
of Word2Vec, fastText and GloVe using PCA for the three German words “Auto”, “Com-
puter” and “Wetter”.

Figure 4.8: PCA visualizations for Word2Vec neighbors.

Figure 4.9: PCA visualizations for fastText neighbors.

22 CHAPTER 4. IMPLEMENTATION

Figure 4.10: PCA visualizations for GloVe neighbors.

From the above visualizations, it can be postulated that Word2Vec and fastText select often
synonyms as nearest neighbors while GloVe is more likely to select specifiers as nearest
neighbors (e.g. adjectives which are often used to describe the queried word).

4.5 Generation of artwork embeddings

Algorithms like Word2Vec, Glove or fastText can not be directly applied to ARTigo art-
works, because they are not just simple words from a corpus.

To get around this problem first a vector space from words (word embeddings) has to
be generated and then a suitable vector for each artwork has to be calculated that will cor-
respond to a perfect representation of the artwork among side all existing word vectors
inside the vector space. Current artwork annotations can be used to retrieve vectors from
the newly created word embeddings. After this the retrieved vectors will get converted to
one vector, that represents the artwork, using mathematical operations and normalization.

The implementation consists of a python script with the following three steps:

• First annotations are fetched from PostgreSQL Database using a suitable query that
only counts annotations that occur three or more times. The counting is used to avoid
adding not sufficiently validated annotations to the process that were for example
added by new users or by mistake.

• Second the program goes through every artwork and counts the occurrence of every
unique annotation and the total amount of annotations for every artwork. Using that
data the importance or weight of every annotation is calculated by using the sim-
ple term frequency formula, which essentially divides the count of every annotation
occurrence by the total sum of annotations.

• Finally existing word embeddings for every annotation are fetched and dimensions
are calculated by adding the retrieved vectors multiplied by their corresponding
weight together. This step is also called normalization, which ensures that artworks
with fewer annotations are just as equally important as artworks with more tags. Ev-
ery resulting vector represents an artwork and all of them are written to a file.

4.6. VECTOR SPACE SEARCH ENGINE 23

4.6 Vector space search engine

Since vector space search engines are quite complex (see section 2.3 of this thesis), the use
of a well-known existing solution, which is proven to work reliably, is more viable, than to
create a new one from scratch. Many existing libraries are available for this task. Three of
them are compared by speed and accuracy.

4.6.1 Comparison between Annoy, NGT, and NMSLIB

Using 100 distinct search keywords the time period starting from the request and ending
with a reply from the search server, was measured using the python time module. The
amount of nearest neighbors requested was 100 and to ensure accurate measurements, a
delay of 1 second was added after each reply. The used word embeddings have 300 dimen-
sions and are created with Word2Vec using a Wikipedia corpus.

NGT performed significantly worse than Annoy and NMSLIB, with an average re-
sponse time of 40 milliseconds (using angular distance). Even using the, in theory, faster
cosine distance, NGT was not able to come close to the others in terms of performance. With
a measured worst-case delay of close to 100 milliseconds, it could result in a noticeable (by
the user) delay in delivering search results and is therefore not an acceptable solution. The
reason could be the graph-based indexing used by NGT internally and in that case, a lower
requested amount of nearest neighbors would likely improve the performance.

NMSLIB performed almost as well as Annoy, with an average response time of 1.7 mil-
liseconds. But, because of nonavailability was measured with cosine, instead of angular
distance. A comparison of both NGT methods tested can be used as a performance refer-
ence between angular and cosine distances.

Finally, Annoy consistently outperformed the others with an average response time of
just 1.5 milliseconds and is therefore the clear winner in terms of performance for the tested
word embeddings. Time measurements in seconds are the following:

Figure 4.11: Vector search engine performance.

Additionally, Annoy has a function that can search for an existing vector in its index. By

24 CHAPTER 4. IMPLEMENTATION

creating an additional index for the word embeddings this function can then be used to find
the necessary vector instead of loading the large word embeddings file into memory. This
approach (by using a second index) lowered the system memory usage for Annoy from
8.94GB to just 1.96GB without a measurable performance difference. The reason behind
this is the efficient storage method of Annoy’s indexes.

The final implementation choice is Annoy, because it has the lowest response time, re-
duced the memory necessity, and can be implemented with Angular distance which in
return should deliver the preferred search results. Thanks to a very good documentation
Annoy was also easier to implement than NGT and NMSLIB.

4.6.2 Required files

Since the artwork identifies contained in the ARTigo database are not ordered, an artwork
vocabulary has to be created that will map the saved artwork embeddings from section 4.5
to a real ARTigo artwork id’s. It is required because the indexes of the vector space search
engines do not support un-ordered identifiers or identifiers with a larger gap in between
them. The artwork vocabulary is generated with a simple python script that loops through
the existing artworks in the database and creates a new artwork-vocab file. When the server
is running, this additional file is loaded into memory to ensure optimal performance.

4.7 Python search server

When the user searches for artworks a request with the search input is sent to the Node.js
back-end and from there transmitted to the Python search server using a socket commu-
nication library called ZeroMQ, which was discussed in the back-end section (4.2) of this
thesis.

Figure 4.12: Connection between the Node.js back-end and the Python search server.

After the Python search server receives the request, it uses a vector space based search
engine (see section 4.6 of this thesis) to locate the closest matching artworks and then sends
their Identifiers back to the back-end.

A daemon-based approach (server running separately from back-end) was chosen be-
cause the search process requires additional files that have to be loaded into memory, before
a search can be processed, which requires some time to load (usually a couple seconds).
Therefore direct command-line calls (CLI) from the back-end are not an option. The re-
quired files are:

• Artwork embeddings index for the vector space search engine.

• The word embeddings file or only for Annoy: second index for word embeddings
which lowers memory usage.

4.7. PYTHON SEARCH SERVER 25

• Artwork vocabulary (as described in section 4.6.2 of this thesis).

• A data structure containing the word vocabulary among identifiers for each word.
Used to retrieve a vector that corresponds to the search term more efficiently (dis-
cussed in section 4.7.2 of this thesis).

4.7.1 Requirements

The user has the ability to type in any word he wants in the search field and after the search
server receives the user input, it needs to look up a corresponding word vector from the
word embeddings file. But since this file is very large, just iterating over it until the word is
found, is not an option, because in the worst-case scenario every word has to be compared
and the performance impact would be significant.

To fix this problem, first a vocabulary file, containing all words, but without the vectors
is created from the word embeddings file. Then a suitable data-structure is needed that
can save all words from the vocabulary, with their indexes (which correspond to the line
number of the word embeddings file, that contains the word) and has an efficient search
function.

4.7.2 Data-structure for storing words

Data-structures that can fulfill these requirements are binary trees because they can drasti-
cally reduce the comparisons needed to find the index of a word. After the index has been
found, the vector can be retrieved immediately. Depending on the vector space search en-
gine, from an additional index, or if not possible - directly from the word embeddings file.
Binary trees fall into two categories - balanced and unbalanced.

An example of a not balanced tree structure is the easy to implement and popular
binary-search-tree (BST) and an example for a balanced tree is the AVL tree (named af-
ter its inventors Adelson-Velsky and Landis). An unbalanced tree can have any height, in
the best-case O(logn), and in the worst-case O(n) [40]. Balanced trees on the other hand
have almost always the same height of right and left subtrees, which means that the height
is O(logn), even in the worst-case [41]. Since the search time in any tree depends on its
height, the balanced AVL trees are definitely better performing in terms of search time
when compared to BST trees. For this reason, the implementation chosen is an AVL tree.

AVL tree improvement
The use of an AVL tree for searching through the whole word vocabulary for a requested
word requires an average time 0.07 milliseconds while iterating through the whole word
embeddings file can result in a worst-case time requirement of more than 100 milliseconds
(if the last word in the vocabulary is the requested search term). Both measured with the
python time library for taking the mean of 100 requests.

Pickle
To achieve faster start-up times of the search server, a method for saving and later loading
the AVL tree from storage is needed. For python, the module Pickle, which is included in
the standard library is suitable. The pickle module implements binary protocols for serial-
izing and de-serializing a Python object structure. “Pickling” is the process of converting
a Python object hierarchy into a byte stream, and “unpickling” is the inverse operation.
Pickle greatly improved the start-up time of the Python search server from over a minute
to just a couple of seconds.

26 CHAPTER 4. IMPLEMENTATION

Updating of existing artwork embeddings
ARTigo annotations are constantly updated using the GWAP games with new tags added
to artworks every day. The search engine implemented in this bachelor thesis can be up-
dated in a set period of time to persistently improve the search accuracy. For this, a Python
script was created that loops over all artworks and then replaces the existing artwork em-
beddings. Implementation details were discussed in section 4.5 of this bachelor thesis.

4.7.3 Search result quality evaluation

Choosing words used for evaluation
To evaluate the quality we will look at results for search queries that have been often, rarely
and never used as annotations. The following steps are required for the evaluation:

First, a simple SQL-Query over the ARTigo data-set is used with the two columns:
annotation-word and count-of-times-annotated. The query also filters out words anno-
tated less than 3 times (to avoid adding not suitable annotations that were for example
added by new users or by mistake) and annotations for languages other than German. The
results are 55792 records and the most common word was annotated 109314 times.

If we calculate the sum of our SQL-Query count-of-times-annotated column and then
divide it by the total number of records (55792) we get the average amount, that a word has
been used across all artworks, which is 161. Choosing words from the records, that have
been used exactly 161 times across all artworks, should be a good enough estimation for
often used words. For rarely used words, choosing any with an annotation-count of not
more than 3 should be suitable.

Finally, for choosing never used words, since the goal of word embeddings is to capture
the semantic meaning of words, it makes sense to look at currently existing annotations
and choose similar words that are semantically related to the existing annotations but are
actually never used as an annotation for ARTigo artworks.

Evaluation using test persons
The choice for a vector space search engine is hard to make with just using PCA or by
searching for nearest neighbors for selected search queries. For this reason, a much better
approach is to use test persons (voters) which will decide for a method, they find delivered
the best artwork results for each query. For the preliminary evaluation, 10 participants
and 10 pre-defined search queries are used. So in total 100 search results are examined
by the test persons and evaluated. For Word2Vec and fastText the Skip-Gram and CBOW
algorithms were trained with both 5 and 15 iterations. GloVe was tested with 15 and 25
iterations. All methods were trained using the same Wikipedia corpus and for every gen-
erated word embeddings file corresponding artwork-embeddings were created using the
same algorithm which was specified in section 4.5 of this bachelor thesis.

According to the test participants, the use of 15 iterations for Word2Vec and fastText
with both CBOW and Skip-Gram brought very poor results. Even for words that often
appear as annotations like for example the German word “Baum” it delivered just a few
matches. It could be due to overfitting. 25 GloVe iterations, on the other hand, resulted
in more desired results, compared to 15 iterations but the observation was made, that
GloVe delivered fewer matches for rare occurring words like for example the German word
“Flugzeug”. Very good results were obtained by Word2Vec using 5 epochs, GloVe with 25
iterations, and fastText with 5 epochs. But mostly all voters choose for Word2Vec using
Skip-Gram and 5 iterations because in their opinion it delivered a better connection be-
tween synonyms which turned out to be an important factor (see Figure 4.13). Therefore
Word2Vec using Skip-Gram and 5 iterations is the final implementation choice.

4.7. PYTHON SEARCH SERVER 27

Figure 4.13: Amount of votes for vector space search engines.

For illustration purposes, we will look at a comparison between the best and worst-performing
algorithms according to the test participants. On Figure 4.14 it can be seen that the best per-
forming search engine (on the right side) returned more viable artworks.

Figure 4.14: On the left side search results for Word2Vec using Skip-Gram with 5 iterations.
On the right side search results for GloVe using 15 iterations. Both for the same query.

28 CHAPTER 4. IMPLEMENTATION

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

The search engine based on word embeddings implemented in this bachelor thesis def-
initely improved the existing search engine. Thanks to its large vocabulary size of 2.15
million words pretty much all words that come in mind are found in the word embed-
dings. Around 675 times more than all distinct annotations in the ARTigo data-set com-
bined. Also, if a word embedding is found, the whole collection of artworks are always
guaranteed to be available as results, because for every artwork all other artworks can be
found with the nearest neighbors search. Performance is great with an average response
time of just 1.5 milliseconds (see section 4.4 and 4.6.1 of this thesis) for fetching 100 artwork
results.

Users experience a search engine with enriched results that seems to understand their
request thanks to the semantic connection of words.

5.2 Future Work

5.2.1 Limiting factors

The work reported in this bachelor thesis depends on annotations of artworks so far pro-
vided which have to exist on the artworks because they are required for the algorithm
that generates artwork embeddings. Without the annotations, it is currently not possible
to generate artwork embeddings. Thus artworks without enough annotations cannot be
provided with artwork embeddings, which is a problem in the development of a search
engine. New methods for adding more annotations would certainly further improve the
vector space based search engine implemented in this bachelor thesis.

5.2.2 In-depth analysis of word embedding generators

The generators used to create word embeddings in this bachelor thesis have many more
options and configurations available that could not be all analyzed within the scope of
this thesis. For the Wikipedia corpus used, Word2Vec’s negative-sampling, GloVe’s X-max

29

30 CHAPTER 5. CONCLUSION AND FUTURE WORK

value, fastText’s length of word-N-grams, and the content-window-size for all three meth-
ods, are examples of additional properties, that could affect word embedding accuracy. For
this bachelor thesis only recommended or default values were used. These can be further
in-depth examined.

5.2.3 Intelligent search interface with improved query language

The search interface implemented in this bachelor thesis can only search for one word at a
time and is mostly for proof of concept. It could be further improved by adding the abil-
ity to search for more than one term. Additionally, support for custom weights could be
added so that the importance of each searched term can be adjusted by the user. An ability
to exclude artworks tagged with a specified word or an ability to specify which annota-
tions must be included are more examples. Functionalities like these were implemented
in existing search engines like for example elastic-search [6] or Apache Lucene/SOLR [35].
The query language supported by the Python search server implemented in this bachelor
thesis could be extended by adding such additional functionalities which in return would
deliver an improved search experience for the user.

5.2.4 Feedback loop

A feedback loop is a circuit that feeds back some of the output to the input of the same
system. Feedback loops can be used to improve the Python search engine implemented
in this bachelor thesis. Information about which artworks were clicked by the user for a
given search query can be saved and later used to adjust the order of search results for the
corresponding query. The idea is to enhance the search results order for the next queries
with the same search terms by memorizing which results the user preferred.

Google uses a feedback loop technique to rank search results accordingly but no details
about it are publicly available. The order of search results returned by Google is based, in
part, on a priority rank system called ”PageRank” [30]. Over the years Google has added
many other secret criteria for determining the ranking of resulting pages. Exact implemen-
tation details are kept a secret to avoid difficulties created by scammers and help Google
maintain an edge over its competitors globally [11].

Appendix

Before starting, the current ARTigo repository can be found on: https://gitlab.pms.
ifi.lmu.de/bognerm/artigo_ng

Clone the project and go through the existing Readme file to set it up completely.

Obtaining word embeddings
Word embeddings can be obtained by either downloading existing pre-trained ones or by
training a corpus.

Pre-trained word embeddings for the German language can be downloaded from https:
//fasttext.cc/docs/en/crawl-vectors.html.

For creating word embeddings from scratch, Wikipedia dumps with German articles
can be downloaded from https://dumps.wikimedia.org/backup-index.html, by
searching for ”dewiki”. After this the dump can be prepared using the python script
make wiki corpus.py, which is included in the ARTigo repository, like this:
python3 make wiki corpus.py <wikipedia dump file> <corpus file>

Training word embeddings
To build Word2Vec, GloVe and fastText, generally a modern Mac OS or Linux distribution
and a compiler with good C++11 support is required (g++-4.7.2 or newer) or (clang-3.3 or
newer).

Training with Word2Vec
The original implementation of Word2Vec from 2013, can be downloaded from the follow-
ing GitHub Page: https://github.com/dav/word2vec.

Preparation:
After downloading, the program has to be compiled first by running make inside the src
folder. This will generate word2vec executable located in the bin folder.

Recommended Parameters:
It is recommended to use a window size of 10 and 5 iterations. For a Wikipedia corpus, it
is recommended to choose a size of 300 dimensions.

31

https://gitlab.pms.ifi.lmu.de/bognerm/artigo_ng
https://gitlab.pms.ifi.lmu.de/bognerm/artigo_ng
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://dumps.wikimedia.org/backup-index.html
https://github.com/dav/word2vec

32 CHAPTER 5. CONCLUSION AND FUTURE WORK

Additional Parameters:
For choosing between Skip-Gram and CBOW the parameter: -cbow (value) is used, 0 is for
Skip-Gram and 1 is for CBOW.

To achieve maximum performance the number of threads have to match with the CPU
threads available.

Start training:
From the bin folder execute the following command

./word2vec -train corpus-location -output word-embeddings-location
-size 300 -window 10 -cbow 0 -threads 16 -iter 5

Training with GloVe
GloVe can be downloaded from the official GloVe Github repository: https://github.
com/stanfordnlp/GloVe.

Recommended Parameters:
It is recommended to use 15 - 25 iterations with a window size of 15 and a X-Max value of
100. For a Wikipedia corpus, it is recommended to choose a size of 300 dimensions.

Start training:
To start training the included demo.sh script can be used, which first compiles GloVe using
make, and then starts the training process.

Training with fastText
FastText can be downloaded from the official Facebook-Research GitHub repository: https:
//github.com/facebookresearch/fastText/.

Preparation:
After downloading, fastText has to be compiled first by running make inside the main
folder. This will generate the fastText executable located in the same folder.

Recommended Parameters:
It is recommended to use 5 iterations and for a Wikipedia corpus it is recommended to
choose a size of 300 dimensions.

Additional Parameters:
To select Skip-Gram choose the parameter: skipgram, and for CBOW the parameter: cbow

Start training:
From the main folder execute the following command

./fasttext skipgram -input corpus-location -output
word-embeddings-location -dim 300 -epoch 5 -thread 16

Starting the Python server server
Python version 3 is required and all additional packages can be installed using pip3. To
start the Python search server the following packages are needed:

https://github.com/stanfordnlp/GloVe
https://github.com/stanfordnlp/GloVe
https://github.com/facebookresearch/fastText/
https://github.com/facebookresearch/fastText/

5.2. FUTURE WORK 33

• zeromq for communication with Node.js

• annoy for searching through the artwork embeddings

Requirements for first start-up:

• The package psycopg2 used for communication with the PostgreSQL Database.

• Open zeromq server.py and specify the path of word embeddings file.

• Generate additional files by running the script generate required files.py once.

• Generate artwork index by running build artwork index.py once.

To start the server, simply run zeromq server.py. If all required files, including the in-
dex, were successfully loaded, a message indicating the running status will appear.

To stop the server, simply terminate the python process.

5.2.5 Updating artwork embeddings

To update artwork embeddings (when new annotations are available in the database):

• Stop the python search server, if running.

• Run script update artwork vectors.py once.

• Start the python search server.

34 CHAPTER 5. CONCLUSION AND FUTURE WORK

Bibliography

[1] Hervé Abdi and Lynne J Williams, Principal component analysis, Wiley interdisciplinary
reviews: computational statistics 2 (2010), no. 4, 433–459.

[2] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim, On the surprising be-
havior of distance metrics in high dimensional space, International conference on database
theory, Springer, 2001, pp. 420–434.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov, Enriching word
vectors with subword information, Transactions of the Association for Computational
Linguistics 5 (2017), 135–146.

[4] Jonghyun Choi, Hyunjong Cho, Jungsuk Kwac, and Larry S Davis, Toward sparse
coding on cosine distance, 2014 22nd International Conference on Pattern Recognition,
IEEE, 2014, pp. 4423–4428.

[5] Erik Bernhardsson (creator of Annoy), Youtube talk on: Approximate nearest neighbors
and vector models, introduction to annoy, https://www.youtube.com/watch?v=qkccylw0ehu,
Uploaded 13 October, 2015.

[6] Manda Sai Divya and Shiv Kumar Goyal, Elasticsearch: An advanced and quick search
technique to handle voluminous data, Compusoft 2 (2013), no. 6, page 171–171.

[7] Readme.md document from official Facebook AI Research Github Repository Website,
https://github.com/facebookresearch/faiss, Retrieved 10 July 2020.

[8] Readme.md document from official Node.js Github Repository Website,
https://github.com/nodejs/node, Retrieved 4 September 2020.

[9] Official documentation Website of Gensim KeyedVectors model, https://bit.ly/35wqkoc,
Retrieved 21 September 2020.

[10] Pedro Domingos, A few useful things to know about machine learning, Communications
of the ACM 55 (2012), no. 10.

[11] WIRED Exclusive: How Google’s Algorithm Rules the Web, https://bit.ly/302m9yi, Feb.
22, 2010.

[12] Introducing JSX Page from the React.js official Documentation Website,
https://reactjs.org/docs/introducing-jsx.html, Retrieved 27 September 2020.

[13] React Without JSX Page from the React.js official Documentation Website,
https://reactjs.org/docs/react-without-jsx.html, Retrieved 27 September 2020.

35

36 BIBLIOGRAPHY

[14] Rendering Page from the React.js official Documentation Website,
https://reactjs.org/docs/rendering-elements.html, Retrieved 27 September 2020.

[15] Is Node.js frontend or backend? Why Node Js Is Best Option for Back-end
Development?, https://www.technoexponent.com/blog/is-node-js-frontend-or-backend-why-
node-js-is-best-option-for-back-end-development/, Retrieved 28 September 2020.

[16] What is the Virtual DOM? Hey React, https://medium.com/coffee-and-codes/hey-react-
what-is-the-virtual-dom-466ec333bf9a, Retrieved 27 September 2020.

[17] official JSON Website Introducing JSON, https://www.json.org/json-en.html, Retrieved
28 September 2020.

[18] Yury A. Malkov and D. A. Yashunin, Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs, CoRR abs/1603.09320 (2016).

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, Efficient estimation of word
representations in vector space, 2013.

[20] Mozilla Developer Network, Introduction to the dom, https://mzl.la/2g3xmgw, Retrieved
27 September 2020.

[21] Homepage of Ann-benchmarks Website, http://ann-benchmarks.com/, Retrieved 1 Au-
gust 2020.

[22] Different Types of Distance Metrics used in Machine Learning, https://bit.ly/3i58mjt,
Retrieved 5 September 2020.

[23] Chris Emmery (MSc Human Aspects of Information Technology), Blog post about eu-
clidean vs. cosine distance, https://cmry.github.io/notes/euclidean-v-cosine, Tilburg Univer-
sity (March 25, 2017).

[24] Official Github Repository of NMSLIB, https://github.com/nmslib/nmslib, Retrieved 5
September 2020.

[25] Homepage of offical npm Website, https://www.npmjs.com/, Retrieved 28 September
2020.

[26] Homepage of React.js official Website, https://reactjs.org/, Retrieved 4 September 2020.

[27] Apache Lucene/Solr official Website, https://lucene.apache.org/solr/, Retrieved 8 Septe-
ber 2020.

[28] ZeroMQ official Website, https://zeromq.org/, Retrieved 6 September 2020.

[29] A. Ojamaa and K. Düüna, Assessing the security of node.js platform, 2012 International
Conference for Internet Technology and Secured Transactions, 2012, pp. 348–355.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd, The pagerank cita-
tion ranking: Bringing order to the web., Tech. report, Stanford InfoLab, 1999.

[31] Jeffrey Pennington, Richard Socher, and Christopher Manning, GloVe: Global vectors
for word representation, Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (Doha, Qatar), Association for Computational
Linguistics, October 2014.

[32] the worlds largest web developer site React JSX Tutorial from w3schools.com,
https://bit.ly/2htcxeg, Retrieved 27 September 2020.

BIBLIOGRAPHY 37

[33] Andersen M.S. Ang Research Report: The LP Norm of Vector,
https://www.eee.hku.hk/ msang/vectorlpnorm.pdf, Eletricial And Electornic Engineer-
ing (EEE) Department at the University of Hong Kong (February 25, 2013).

[34] Seyed Mahdi Rezaeinia, Ali Ghodsi, and Rouhollah Rahmani, Improving the accuracy
of pre-trained word embeddings for sentiment analysis, arXiv preprint arXiv:1711.08609
(2017).

[35] David Smiley, Eric Pugh, Kranti Parisa, and Matt Mitchell, Apache solr enterprise search
server, Packt Publishing Ltd, 2015.

[36] Kohei Sugawara, Hayato Kobayashi, and Masajiro Iwasaki, On approximately searching
for similar word embeddings, Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2016, pp. 2265–2275.

[37] Liran Tal, How much do we really know about how packages behave on the npm registry?,
blog post on snyk.io, https://snyk.io/blog/how-much-do-we-really-know-about-how-packages-
behave-on-the-npm-registry/, April 22, 2019.

[38] Top 10 Reasons to use Node.js as a Back-end in the combination of React.js
as front end, https://medium.com/devtechtoday/full-stack-web-application-using-react-js-
and-node-js-39c570b88d1e, Retrieved 5 September 2020.

[39] Ellen M. Voorhees, Natural language processing and information retrieval, Information Ex-
traction: Towards Scalable, Adaptable Systems (Berlin, Heidelberg), Springer-Verlag,
1999, p. 32–48.

[40] Wikipedia, Binary search tree, https://bit.ly/3kt5yua, Retrieved 20 September 2020.

[41] Wikipedia, Avl tree, https://bit.ly/2gcfate, Retrieved 21 September 2020.

[42] Google Code Archive word2vec, https://code.google.com/archive/p/word2vec/, Retrieved
9 July 2020.

	Introduction
	Related Work
	Word embeddings
	Word embedding Generators
	Word2Vec
	GloVe
	fastText

	Vector space search engines
	Existing solutions
	Distance functions

	React
	Node.js

	Concept
	Idea
	Choice of existing solutions

	Design
	React Frontend Search Interface

	Implementation
	Front-end
	Back-end
	Generation of word embeddings
	Selecting a suitable corpus
	Preparing corpus
	Training corpus

	Comparison between Word2Vec, GloVe and fastText
	Resources and time needed to train corpus
	Result evaluation

	Generation of artwork embeddings
	Vector space search engine
	Comparison between Annoy, NGT, and NMSLIB
	Required files

	Python search server
	Requirements
	Data-structure for storing words
	Search result quality evaluation

	Conclusion and Future Work
	Conclusion
	Future Work
	Limiting factors
	In-depth analysis of word embedding generators
	Intelligent search interface with improved query language
	Feedback loop
	Updating artwork embeddings

	Bibliography

