
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

INTELLIGENT TASK
MANAGEMENT AND

VISUALISATION

Timo Peter Emanuel Erdelt

Masterarbeit
Betreuer Prof. Dr. François Bry
Mentor Dr. Niels Heller

Abgabe am 18.02.2022

2

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 18.02.2022 Timo Peter Emanuel Erdelt

i

ii

Abstract

Nowadays, Kanban board-based software solutions are used by millions of teams and in-
dividuals for managing and visualising projects and their corresponding tasks.
In commonly used Kanban board implementations, a board consists of multiple vertical
lists of tasks arranged in one horizontal list. As deeper nesting is not intended, the visual-
isation’s expressiveness is limited for more complex projects. Also, current Kanban board-
based applications lack quantified information regarding the project’s progress which sup-
port project scheduling.
This work presents the prototype of a board-based task management software that allows
arranging tasks in arbitrarily nested horizontal or vertical lists to address these issues. Fur-
thermore, a symbolic intelligence that creates proposals for scheduling tasks under given
temporal constraints is implemented to support users in planning their projects.
The novel features of the prototype were evaluated in a user study with 13 participants.
In the study, participants preferred and created project visualisations with a significantly
greater nesting depth than the current standard. The evaluation indicates that removing
the bound of nesting depth can improve the visualisation of projects in board-based tools.
Furthermore, the participants’ manual scheduling would have resulted in a significantly
later project finish date with more due dates missed than the scheduling proposed by the
symbolic intelligence. Lastly, the evaluation has also shown the symbolic intelligence to be
welcomed and perceived positively. These findings indicate, that the symbolic intelligence
can support users in scheduling their projects. Overall the evaluation shows the potential
of the new approaches presented in this work to improve current Kanban board-based task
management implementations.

iii

iv

Zusammenfassung

Kanban-Board-basierte Softwarelösungen helfen heutzutage Millionen von Teams und Ein-
zelpersonen bei der Verwaltung und Visualisierung von Projekten und den dazugehörigen
Aufgaben.
In gängigen Implementierungen besteht ein Board aus einer horizontalen Liste, welche ver-
tikale Listen mit Aufgaben nebeneinander anordnet. Da eine tiefere Verschachtelung nicht
vorgesehen ist, ist die Aussagekraft der Visualisierung für komplexe Projekte begrenzt.
Außerdem fehlt es bestehenden Implementierungen an quantitativen Informationen über
den Fortschritt eines Projekts, welche für die Projektplanung relevant sind.
Mit dem Ziel die Visualisierung zu verbessern, erlaubt es der für diese Arbeit entwick-
elte Prototyp einer Board-basierten Aufgabenverwaltungs-Software, Aufgaben in beliebig
verschachtelten horizontalen oder vertikalen Listen anzuordnen. Um Nutzerinnen und
Nutzer bei der zeitlichen Planung von Projekten zu unterstützen, wurde zudem eine sym-
bolische Intelligenz implementiert, welche Vorschläge für die Planung von Aufgaben unter
zuvor konfigurierten zeitlichen Einschränkungen erstellt und hilft, den Stand des Projekts
besser einzuschätzen.
Die neuartigen Konzepte des Prototypen wurden mithilfe einer Studie mit 13 Teilnehmen-
den evaluiert. In der Studie bevorzugten und erstellten die Teilnehmenden Projektvisual-
isierungen mit einer signifikant größeren Verschachtelungstiefe als der derzeitige Standard.
Die Ergebnisse deuten darauf hin, dass die Aufhebung der Beschränkung der Verschachte-
lungstiefe die Visualisierung von Projekten in Board-basierten Softwarelösungen verbes-
sern kann. Des Weiteren führte die manuelle Aufgabenplanung der Teilnehmenden im
Vergleich zur von der symbolischen Intelligenz vorgeschlagenen Planung zu einem sig-
nifikant späteren Projektabschlusszeitpunkt sowie mehr verpassten Fälligkeitsdaten. Die
Implementierung der symbolischen Intelligenz wurde zudem begrüßt und positiv wahrge-
nommen. Diese Ergebnisse deuten daher darauf hin, dass die symbolische Intelligenz die
zeitliche Planung von Projekten unterstützen kann.
Insgesamt zeigt die Auswertung, dass die in dieser Arbeit vorgeschlagenen Ansätze das
Potential haben, derzeitige Kanban-Board-basierten Aufgabenmanagement-Implementie-
rungen zu verbessern.

v

vi

Acknowledgments

I would like to thank Professor Dr. François Bry for offering me the opportunity to write
my thesis at his chair. Also, I would like to thank him for his much appreciated support
throughout the long process of developing the prototype and writing this thesis. Our reg-
ular meetings and discussions motivated me and helped me generate and reflect on the
ideas presented in this work.

Furthermore, I would like to thank Dr. Niels Heller for providing the thesis project’s initial
idea and motivation and for his great support and feedback throughout the process, which
enabled me to realise the project and write the thesis.

Lastly, I would like to thank all participants of my user study and those who supported
me through feedback and advice in developing the prototype and improving my writing.

vii

viii

Contents

1 Introduction 1

2 Related Work 5
2.1 From Lean to Agile . 5

2.1.1 Lean approach . 5
2.1.2 Agile software development . 6

2.2 Kanban . 6
2.2.1 Kanban method . 6
2.2.2 Kanban board . 6
2.2.3 Kanban vs. Scrum . 7
2.2.4 Benefits and adoption in software development 7
2.2.5 Kanban in other fields . 8
2.2.6 Challenges and areas of improvement 9

2.3 Virtual Kanban board implementations . 10
2.3.1 Prototype implementations . 10
2.3.2 Consumer products . 10
2.3.3 Improvement of existing tools . 12

2.4 Data-driven estimation of agile software projects 12
2.4.1 Effort estimation . 12
2.4.2 Lead time estimation . 13

3 Concept 15
3.1 Goals . 15
3.2 Ideation and development process . 16
3.3 Features of the prototype . 16

3.3.1 User and workspace . 16
3.3.2 Elements . 17
3.3.3 Resources . 20
3.3.4 Events . 20
3.3.5 Recommendations: Symbolic intelligence 21

3.4 Design and user experience . 21

4 Implementation 23
4.1 Architectural Overview . 23
4.2 Server . 24

4.2.1 Technology stack . 24
4.2.2 Data model . 24

ix

x CONTENTS

4.2.3 Rest API . 24
4.2.4 Symbolic intelligence . 24

4.2.4.1 Constraint solver . 24
4.2.4.2 Data preparation, assumptions and calculations 28

4.3 Web application: Technology stack . 29

5 Evaluation 31
5.1 Methodology . 31

5.1.1 Study design . 31
5.1.2 Procedure . 31

5.1.2.1 Intro . 31
5.1.2.2 Part 1 - Arbitrarily nested lists 32
5.1.2.3 Part 2 - Symbolic intelligence 33
5.1.2.4 Outro . 33

5.2 Participants . 36
5.3 Limitations . 36
5.4 Measurements . 36

5.4.1 Quantitative measures . 36
5.4.2 Qualitative measures . 37

5.5 Data analysis and results . 38
5.5.1 Quantitative data . 38

5.5.1.1 Part 1 - Arbitrarily nested lists 38
5.5.1.2 Part 2 - Symbolic Intelligence 42
5.5.1.3 General usability . 47

5.5.2 Qualitative data . 48
5.5.2.1 Questions . 48
5.5.2.2 Observation . 49

6 Discussion and future work 51
6.1 Discussion of the user study results . 51

6.1.1 Unbounded nesting . 51
6.1.2 Symbolic intelligence . 52
6.1.3 General usability . 53
6.1.4 Outlook . 54

6.2 Areas of improvement for the prototype . 55
6.2.1 Unbounded nesting . 55

6.2.1.1 Kanban method context . 55
6.2.1.2 Visualisation of unbounded nesting 55
6.2.1.3 Moving elements in nested situations 56

6.2.2 Scheduling feature . 56
6.2.2.1 Visualisation of the scheduling result 57
6.2.2.2 Constraint solver enhancements 57
6.2.2.3 Support through data-driven techniques 58
6.2.2.4 Scheduling everywhere . 58

6.2.3 General usability . 59
6.2.4 Additional features . 59

6.3 Use cases . 60
6.3.1 Agile software development . 60
6.3.2 Studying at a university . 60
6.3.3 Laboratory work organisation . 61

7 Conclusion 63

CONTENTS xi

Appendix 65

Bibliography 71

xii CONTENTS

CHAPTER 1

Introduction

In the complex, fast-moving, and digitised world of the 21st-century, people have to shift
their attention between different areas of their life constantly. Being able to self-organise
projects in areas like work, studying or one’s personal life plays a key part in improving
productivity and relieving stress at the same time. While this is already important for
individuals, big companies competitiveness heavily depends on effective workflow man-
agement. In the 1940s, the so-called Lean approach got introduced in the Japanese car
manufacturing industry to optimise business processes and eliminate waste [39]. One of
the tools to execute the Lean approach in practice was the Kanban system, a just-in-time
scheduling system invented at Toyota [28]. Nowadays, Lean thinking is applied in many
global industries and is also considered the origin for the evolution of modern agile soft-
ware development methodologies such as the Kanban method [9]. Based on the original
Kanban system, the Kanban method aims to "visualise the workflow", "limit the work in
progress", "measure and manage the flow", and "improve collaboratively" [3]. The Kan-
ban board, which is the tool to execute these principles in practice, can be implemented
physically using post-its on a wall or virtually using collaborative software [15]. It con-
sists of multiple columns that represent different stages of a workflow. In the example of
software development these columns contain tasks which can be moved to the respective
column matching the state they are currently in (e.g. open, in progress, done) [15]. If tasks
are assigned to team members, the assignee is visually indicated. The board allows visu-
ally conceiving the current state and progress of the development, balancing the workload
between team members effectively, minimising the work in progress, and identifying bot-
tlenecks [15]. In recent years many different software solutions offering Kanban boards
such as Trello [56] or Atlassian Jira [54] have emerged. Having millions of users [82] these
tools are nowadays not only used for software development, but all kinds of fields and are
helping teams and individuals manage their projects [6].
In the Kanban method, the Kanban board is the central place to store information about
a project and process. However, the effectiveness of the visualisation can still be im-
proved [6]. When taking a closer look at a Kanban board in the context of general project
management, it is noticeable that its visualisation capabilities are limited because no nest-
ing of columns is intended. As projects and workflows come in different shapes and com-
plexities, the board might not represent these different layers. Software solutions like Jira
added features like Epics or sub-tasks to overcome this problem. However, the variety of
features creates complexity and steep learning curves when using these tools [43]. Remov-

1

2 CHAPTER 1. INTRODUCTION

ing the limitation of the current board → column → task hierarchy could be an approach
that allows visualising different layers without compromising simplicity.
When it comes to the Kanban principle of measuring and managing the flow, the Kanban
board is still lacking the capability of providing quantified information about the progress
of a project, which is essential for decision making [10, 5]. While software solutions like
Jira offer graphical approaches such as burndown charts, currently, project-controlling and
planning are still mostly done using additional tools like spreadsheets [40]. A prediction
system could potentially enhance Kanban board-based tools by directly supporting project
scheduling [40].
This work aims to improve current Kanban board-based implementations focusing on the
visualisation capabilities and quantified information about a project’s progress. Neverthe-
less, simplicity in using the software should be maintained. Therefore, this work presents
the concept for a board-based task management software that allows arbitrary nesting of
elements and features an intelligent recommendation system that supports users in project
scheduling. Based on this concept, a prototype application was developed. The concept
and usability of the prototype were then evaluated in a user study.

Software prototype The prototype developed for this work aims to remove a bound in a
Kanban board regarding the nesting of elements. As in existing implementations, users
should be able to use two types of lists: Horizontal lists named Boards and vertical lists
named Lists. Boards and Lists can contain an indefinite number of child elements, either
Boards or Lists again or the third element type, Items. All elements can be arranged arbi-
trarily nested, with Items being the only type of element that can not contain child elements.
During the refinement of a project’s tasks, it is not unusual that a task formerly represented
by an item appears to be rather a list of tasks. Therefore it should be possible to convert all
elements to all other types of elements. In the above example, the Item could be converted
to a List containing the newly refined sub-tasks.
Besides a title and description, resources of different types can be attached to elements.
The types implemented for the prototype are Textual (e.g. a label), Numeric (e.g. a price), a
User (e.g. the assignee for the task) and Temporal (e.g. start date, due date, duration). De-
pending on the type of project, especially Temporal resources are constraints that strongly
influence the order in which tasks should be processed. The assumption that users can
have a hard time finding this processing order for bigger projects motivated the idea of a
symbolic intelligence that proposes a scheduling order based on given constraints. While
the prototype focuses on the Temporal constraints, the design of the symbolic intelligence
allows it to be easily adjustable to other types of constraints such as priority. Ideally, the
intelligent feature should support users in finding the currently important tasks without
violating the project’s different (Temporal) constraints and estimate if the current planning
is realistic and manageable or needs adjustments.

User study In order to evaluate the concept of the software prototype, a user study with
13 participants was conducted. Due to implementing arbitrarily nested lists in Kanban
boards being a novel approach, it was not clear how users would rate this approach from
a usability point of view, if and how they would use the nesting capabilities and its effect
on the visualisation of projects. The first part of the user study focused on these research
questions. Users had to create an arrangement representing an example project. Addition-
ally, they had to compare it to three different example arrangements of the same project.
Participants created example arrangements with a mean maximum nesting depth of 3.08.
Furthermore, the participants overall favoured arrangements of the project with a mean
maximum nesting depth of 3.77. The values differed significantly from a standard Kanban
Board’s nesting depth of 2. The results indicate that unbounded nesting can improve the
visualisation of projects.

3

The second part of the study focused on the intelligent recommendation feature. Partic-
ipants were confronted with two different example projects and instructed to plan them
manually. After each manual planning, they triggered the automatic scheduling. The
users’ manual planning results were compared to the planning created by the symbolic
intelligence. Furthermore, the users’ attitudes towards such an intelligent feature were
evaluated using qualitative questions. The evaluation shows that while the users’ manual
planning for a small project with five tasks was close to the optimal planning, it differed
significantly from the optimal planning in a project with ten tasks, leading to significantly
later finish dates and more missed due dates. Finally, the users described the proposal to
be helpful, easy to perceive and did not feel patronised by it. Therefore, the evaluation
indicates the potential of the symbolic intelligence to support the scheduling of projects.

Contribution This work describes the concept and implementation of a Kanban board-
based web application, featuring unbounded nesting for boards, columns and tasks and a
symbolic intelligence proposing an optimal task scheduling order. The novel concepts of
the prototype were evaluated in a user study. The evaluation indicates that while some im-
provements are still required, the new features can improve current Kanban board-based
task management implementations in terms of visualising projects and providing quanti-
fied information about a project’s progress to support scheduling of projects without com-
promising the simplicity of a small overall feature set.

Overview In the following, chapter 2 gives an overview of related work and existing board-
based software solutions. In 3 the concepts of the prototype are explained. Subsequently,
in chapter 4 a deeper look into the implementation details of the application is taken. The
presentation of the user study and its results in chapter 5, is followed by a discussion of the
evaluation results in chapter 6, where also an outlook into future work and an explanation
of potential use cases is provided. Finally, in chapter 7 the work is concluded.

4 CHAPTER 1. INTRODUCTION

CHAPTER 2

Related Work

This chapter supplies relevant background information for this work. Therefore, a brief
overview of related work and an analysis of some of the existing tools and solutions are
given.

2.1 From Lean to Agile

2.1.1 Lean approach

The management of complex projects such as the development of new products is challeng-
ing and faces many uncertainties. Even if the requirements are known in the beginning,
they may change over time, and it is difficult to allow for all possible details and errors in
the process [38]. Quickly adapting to new developments in a dynamic world of businesses
and technologies can bring advantages over competitors. Furthermore, to stay competitive,
business processes have to be optimised.
In order to cope with these challenges, the so-called Lean approach has been introduced in
the Japanese car manufacturing industry in the late 1940s by the industrial engineer Taiichi
Ōno at Toyota [39]. The fundamental principle of Lean thinking was to eliminate waste in
order to improve the success of the business [52, 39].

MANUFACTURING DISTRIBUTION

consumption

kanban table

red
zone

if red zone reached, then production

(e.g. reconstitution of the consumption)

Figure 2.1: Example of a Kanban system for
manufacturing and distribution [84].

One of the tools invented by Ōno to execute
Lean thinking in praxis is Kanban [28]. At
Toyota, it acted as a just-in-time schedul-
ing system for the distribution and produc-
tion of products. In contrary to a push
system, where products and their parts are
produced based on a preliminary schedule,
potentially generating waste and consum-
ing space when they are not needed, Kan-
ban is a pull system [28]. In a pull system,
new items are only produced once items in
the stock are to be distributed, and parts of
a production line are only replenished once the next station in the line has consumed the

5

6 CHAPTER 2. RELATED WORK

previously supplied parts [28]. Kanban is a Japanese word for signboard or billboard and
describes little physical cards used to implement the pull system. Once a part was con-
sumed by a station in the production line, a card was sent to the previous station, triggering
the consumed part’s reconstitution. Figure 2.1 shows an example for an implementation of
a Kanban system in manufacturing and distribution.

2.1.2 Agile software development

In the last decades, when traditional, inflexible software development methods such as
the waterfall method [42] did not meet the reality of the industry anymore, lean thinking
and its tools got applied to software development in the form of so-called agile software
development (ASD) [26]. In "Lean software development: an agile toolkit", Poppendieck et
al. describe seven lean principles and how they can be translated to software development.
The principles consist of "eliminate waste", "amplify learning", "decide as late as possible",
"deliver as fast as possible", "empower the team", "build integrity in", and "see the whole".
In 2001, 17 renowned software developers published the "Manifesto for Agile Software
Development" [12], defining philosophies and principles of ASD. Based on these principles,
different methodologies and practices such as Scrum, Extreme Programming and Feature-
Driven Development [1, 31] got developed.

2.2 Kanban

2.2.1 Kanban method

The ASD methodology Scrum is considered the origin of the evolution of the Kanban
method. In the early 2000s, the software team lead David J. Anderson was looking for
a systematic way in his ASD team to achieve a sustainable pace of work and minimise the
resistance to process changes [9]. These goals motivated him to use a pull system. In 2004
he implemented the first virtual Kanban system for software development at Microsoft [9].
Encouraged by the positive results of this pull system implementation, he developed the
Kanban Method in the following years when working with a small team at Corbis. In 2010,
he published the results in the book "Kanban: Successful evolutionary change for your
technology business" [9]. The principles of the Kanban method are described as "visualise
the workflow", "limit work in progress", "measure and manage flow", "make process poli-
cies explicit", and "improve collaboratively" [3]. Kanban as a method for managing agile
projects and how to apply it in practice is also described by Brechner in 2015 [15].

2.2.2 Kanban board

Backlog In progress (3) In review Done

Task

Task

Task

Task Task

Task

Task

Task Task Task

Figure 2.2: Kanban board with a work in
progress (WIP) limit for the column "In
progress".

The core tool to execute the Kanban method’s
principles in practice is the Kanban board.
Based on the original idea, it uses visual cards
representing work items and columns repre-
senting the stages of the process. The Kan-
ban board can be implemented physically using
post-its on a wall or virtually using collabora-
tive software. An example of a Kanban board
can be found in figure 2.2. The first column of
the board usually contains the backlog of open
tasks. Once requiring new work, team mem-
bers pull new tasks out of the backlog, which

2.2. KANBAN 7

leads to a continuous flow and minimises idle times. In order to limit the work in progress
(WIP), a maximum number of tasks is defined for certain columns. The visualisation of
the workflow allows identifying bottlenecks and measuring the team’s performance. The
resistance to adjusting the process is low as stages can always be changed. Furthermore,
by adding new tasks to the backlog and prioritising it accordingly, new requirements by
stakeholders can be fulfilled quickly [15].

2.2.3 Kanban vs. Scrum

Some of the publications presented in the following sections discuss the Kanban method
compared to the Scrum method. Also, the Kanban board is mentioned in the context of
Scrum. In order to make these comparisons more understandable, a short explanation of
the differences between the two methods is given in the following.
Scrum got developed in the early 90s by Sutherland and Schwaber, who also signed the
"Manifesto for Agile Software Development" [12], and is, therefore, older than the Kanban
method [80]. Considered to be the origin of the Kanban method, it shares most of its prin-
ciples. However, the process is different.
Scrum is based on short time intervals (for example, two weeks), known as Sprints. At the
beginning of the Sprint, the tasks to be accomplished during the Sprint are planned. Within
a Sprint, these tasks should not change. The goal of a Sprint is to deliver a functional piece
of software. Parts of Scrum are predefined roles of team members like the Scrum master
and regular meetings with predefined purposes, like the Sprint review. With the help of
these tools, feedback loops are created that help react to customer needs and improve the
team’s workflow. Table 2.1 shows a comparison of Scrum’s and Kanban’s key traits.
Originally, a board was not a part of Scrum as described by its inventors [80]. However,
commonly, a Scrum board is used to manage the Sprint backlog, which contains the tasks
for a Sprint. The Scrum board works in the same way as the Kanban method’s board with
the difference that the Scrum board gets reset every Sprint, whereas the Kanban method’s
board does not get reset and therefore contains all tasks of the backlog [25]. While both
boards try to limit the work in progress in Scrum, this is done indirectly by limiting the
number of tasks per Sprint. In Kanban, on the other hand, this is done directly by limit-
ing the number of tasks in certain columns [25]. Finally, Kanban stresses visually focused
information and communication, whereas Scrum emphasises verbal information and com-
munication [10].

Scrum Kanban

Cadence Regular fixed length sprints (i.e., 2 weeks) Continuous flow

Release methodology At the end of each sprint Continuous delivery

Roles Product owner, scrum master, development team No required roles

Key metrics Velocity Lead time, cycle time, WIP

Change philosophy Teams should not make changes during the sprint. Change can happen at any time

Table 2.1: Comparison of Scrum and Kanban [77].

2.2.4 Benefits and adoption in software development

In recent years, multiple researchers studied the benefits of the Kanban method for soft-
ware development. Besides empirical studies based on experience reports and question-
naires, systematic mapping studies summarising prior work were published. Generally,

8 CHAPTER 2. RELATED WORK

reported benefits of the Kanban include increased motivation of team members [3], im-
proved communication within a team and between stakeholders [46], improved customer
satisfaction [3, 46] and facilitating a better workflow [2]. The visualisation through the Kan-
ban Board allows a better understanding of the development process [3, 2] and increases
knowledge sharing [37].
Also, research has been conducted comparing the Kanban method to other agile meth-
ods. In 2015 Lei et al. surveyed 35 employees comparing Scrum and Kanban through six
predefined factors relevant for software development [27]. Although both methods led
to successful software projects, the results suggest that Kanban has advantages in project
scheduling. A reason for this advantage could be Kanban’s higher flexibility compared to
Scrum, as changes can be made at any point of the development process [10].

While the phase of the adoption is still early, Kanban is seeing a rise in popularity in re-
cent years, and studies indicate a possible shift of agile development teams from Scrum to
Kanban [2, 48]. Alaideros et al. even argue in their 2021 paper that the Kanban Method is
currently the best among other agile software development methods [6]. Other researchers
like Aurisch et al. argue that factors within teams should be considered for deciding
whether Scrum, Kanban or even ScrumBan (a mix of both Kanban and Scrum) fits the
best for them [10]. Finally, most recent studies conclude that because of the developments
being relatively recent, more empirical research has to be conducted to study the adoption
in more detail [6, 48].

One inside form of numbers is supplied by the 15th edition of the annual state of agile re-
port published by the company Digital.ai in July 2021 (published by CollabNet VersionOne
in previous years) [57]. The results are based on 1,382 completed online survey responses
collected from individuals working at companies across a broad range of industries. It
reports that 94% of the companies use agile methods, with 86% of the companies using
these methods in the area of software development. Kanban practices are used in 61% of
the companies, with Kanban boards being the most popular agile planning tool with 77%.
However, when being asked which agile methodology the companies follow most closely
at the team level, Scrum is first with 66% followed by ScrumBan (a mix of both Kanban and
Scrum) with 9%, and Kanban with only 6%. [57]. The numbers indicate that while Scrum, as
the older of both methods, is still dominant, many companies nowadays integrate Kanban
practices into their Scrum. The popularity of the Kanban board is also confirmed through
a study conducted with 14 CEOs of early-stage software startups published in 2019 [49].
Here, the Kanban board was among the most used agile practices.

2.2.5 Kanban in other fields

Originally developed for the manufacturing industry, Kanban and other agile methods
were successfully adapted for the application in the software development industry. How-
ever, this section shows that the usefulness of Kanban and its board is not limited to that
field. According to the 15th state of agile report by Digital.ai, the adoption of agile method-
ologies, tools and processes by non-IT lines of business doubled since the previous re-
port [57]. The big increase in adoption in the last year is reasoned through the pandemic’s
impact on work culture. The areas with highest adoption besides software development
(86%) and IT (63%) were operations (29%), marketing (17%), security (17%) and human
resources (16%) [57].
However, also outside of companies, Kanban can be applied. An excerpt of publications
studying other application areas is presented in the following. In the 2011 book "Personal
Kanban", Benson et al. explain how to use the Kanban board and method for organising
ones personal life [13]. Bass et al. suggested Kanban principles and the Kanban board as

2.2. KANBAN 9

a support for writing academic publications [11]. In 2019, Hidalgo et al. studied the adop-
tion of the agile method Scrum for a distributed research initiative of 17 researchers [23]. In
order to visualise the workflows, the web-based project management software Trello was
used, which offers virtual Kanban boards. Data was collected through interviews and sta-
tistical analysis of the software’s activity data. The virtual Kanban board was perceived
as practical and aligned with the need to specify, visualise and assign tasks of scientific
work. Reportedly, it was easy to get an overview of the work and work assignments [23].
However, some researchers found it hard to adapt to the new methodology. As a result,
not everyone contributed to maintaining the Kanban board to the same extent, which led
to a sometimes outdated state of the board [23].
Saltz et al. compared different agile methods for the application in data science projects
and found the Kanban method to be the most effective one [44].
Fitriawati et al. successfully applied the Kanban method for designing an information sys-
tem for kindergarten learning evaluation [21].
Santirojanakul et al. applied a virtual Kanban board in the context of sports science and
found that it supports overcoming collaboration and communication challenges for sports
scientists, executives, staff, and sports associations [47].
Matthies et al. conducted a study with 18 students, in which they applied agile methods to
a university capstone course [30]. The subject of the course was to develop a collaborative
software project in small teams with the target of learning agile methodology hands one.
The course design applied Scrum in the first weeks and then shifted to Kanban in the later
phase of the project, once the students were familiar with the Scrum practices. A survey
conducted at the end of the course showed overwhelmingly positive students’ reactions
regarding the integration of Kanban into the course. The analysis of development data
collected during the course further indicated the student’s successful adoption of the new
methodology [30].

2.2.6 Challenges and areas of improvement

As seen in the previous chapters applying the Kanban method to manage projects in dif-
ferent fields can have substantial benefits [2]. However, also problems and challenges were
identified by researchers.
First of all, while being relatively simple, the Kanban method does not guarantee success [3,
2]. Regardless, its simplicity makes it efficient when being combined by other tools [53].
Furthermore, compared to Scrum, which has a well-documented process framework, no
such framework is currently available for Kanban [2]. Additionally, due to being relatively
new, training and specialised skills are still lacking [4]. These factors lead to adoption prob-
lems, as already seen in the previous chapter [3, 2]. A key factor in overcoming these adop-
tion problems can be an increased application and education at academic institutions [6].
Other criticism concerns the Kanban board as the central place to store all information
about the process. The mentioned lack of a supporting framework and proper training
can lead to the Kanban board being overcomplicated by the method’s practicioners [10].
Furthermore, while one advantage of the Kanban method is limiting the work in progress
in certain stages directly, it is hard to determine the optimal number for these WIP limits,
which is crucial in order to avoid schedule delays [5, 18]. Additionally, while quantified
information about a project’s progress is essential for decision making [18], the Kanban
board has problems in providing this information [10, 6]. Therefore integrations with other
methods such as Earned Value Analysis (EVA), a project management technique for mea-
suring project performance and progress, got proposed [36]. Other commonly used graph-
ical approaches like cumulative flow diagrams provide visualisation but lack quantitative
information [5]. Alaideros et al. conclude that features of progress tracking in a Kanban

10 CHAPTER 2. RELATED WORK

board should consist of real-time updates, showing schedule deviations, providing quan-
tified information and a progress status [5]. Research should be conducted in order to find
approaches to improve the visualisation of the Kanban board to that regard [6].

2.3 Virtual Kanban board implementations

This work focuses on the implementation of a virtual Kanban board. Therefore, this section
gives a brief overview of existing implementations for scientific publications and consumer
products.

2.3.1 Prototype implementations

Nakazawa et al. developed and evaluated multiple virtual Kanban board prototypes to im-
prove existing implementations. One of their publications studied a board prototype fea-
turing horizontal separated units to show tasks assigned to each developer within a team.
In a controlled experiment conducted with ten students, the prototype was compared to
existing tools [33]. The results indicate that dividing a board into meaningful horizontal
units can allow perceiving relevant information faster. Building upon the previous proto-
type, further work consisted of a prototype that, besides the horizontally separated units,
additionally allowed configuring and setting work in process limits for each of the devel-
opers [34]. The prototype was used to manage a student project with ten developers and
evaluated via questionnaires. While generally the tool was rated positively in terms of vi-
sualisation, reportedly the functionality to limit the work in process per developer led to
improved task assignement [34]. In another work, Nakazawa et al. developed a prototype
that tried to combine the advantages of a physical Kanban board as a place to gather and
discuss project details, with the advantages of a digital Kanban board [32]. It featured a
virtual Kanban board shown on a large screen and allowed modifying the state of the board
using smartphone gestures. Saltz et al. also developed a Kanban board prototype that tried
to improve the understanding of the individual contribution of a team member by visual-
ising the work done per team member per week [45]. This visualisation was perceived as
helpful and easy to understand in a case study. Finally, in order better visualise the progress
of a project, Alaideros et al. developed a prototype tool for progress monitoring [7].

2.3.2 Consumer products

Many companies offer virtual Kanban board implementations for different use cases and
extend them with various features. The following describes four of these tools in more de-
tail. All presented applications are web-based; Atlassian Jira, Trello and Asana also provide
mobile applications.

Atlassian Jira Atlassian Jira [54] was the most recommended agile software in the 15th
state of agile report with 81% [57]. Jira is targeted at companies and businesses that already
perform or want to adopt agile practices. The agile methods Scrum and Kanban are actively
supported through features. Scrum boards, Kanban boards (with the option to limit work
in progress), road mapping and different visualisation and reporting capabilities like Sprint
reports or burndown charts are offered. Jira is feature-heavy, but the variety of features
and concepts make it potentially hard to learn and adopt [43]. A screenshot of an example
board can be seen in figure 2.3a. The typical board → column → task hierarchy is extended
through concepts like Epics allowing the combination of multiple tasks into a body of work
and sub-tasks allowing the split-up of tasks into smaller portions of work. Sub-tasks can
be viewed directly on the board via a sub-task view.

2.3. VIRTUAL KANBAN BOARD IMPLEMENTATIONS 11

(a) Atlassian Jira [54]. (b) Trello [56].

(c) GitHub Projects [70].

(d) Asana [62].

Figure 2.3: Virtual Kanban board implementations.

Trello Being first released in 2011 Trello [56, 24] got acquired by Atlassian in 2017 [88]. It
is one of the most popular implementations of Kanban boards, having self-reported 50 mil-
lion users in 2019 [82]. Trello targets individuals and teams that want to use the advantages
of a Kanban board for organising and planning their projects. Figure 2.3b shows a Kanban
board in Trello. As Trello focuses on the board as its main tool, it is more lightweight and
easier to learn than Jira. Nevertheless, recently added new features consist of automa-
tion and different views like a calendar or assignment view. To conform with the Kanban
method, the number of tasks per column can be limited. Trello offers the typical board →
column → task hierarchy; however, checklists can be added to tasks to represent sub-tasks.
Furthermore, different resources like dates, images or tags can be attached to tasks.

Asana Originally released in 2012 [85], Asana [62] now has more than 30 million regis-
tered users according to their 2021 Form 10-K report [61]. Asana is a general work manage-
ment platform targeted at teams to organise, track, and manage their work. For this pur-
pose, it offers many different features and concepts. Besides timelines, calendars, reports,
forms and automation, it also features Kanban boards. While not being directly designed
for agile methods, Asana claims to support Scrum and Kanban. However, as of January
2022, no task limits per column can be set. Like Jira and Trello, Asana extends the typical
board → column → task hierarchy by offering sub-tasks that can be added to tasks. Figure
2.3d shows an example board.

GitHub Projects GitHub Projects [70] is part of GitHub [69], a source code hosting service
based on the version control system git. GitHub got acquired by Microsoft in 2018 and
is the largest source code hosting service as of November 2021 [86]. It targets software

12 CHAPTER 2. RELATED WORK

developers who want to manage their software projects in the same place as their code
repositories. GitHub Projects allows managing the project related issues in a Kanban board,
as seen in figure 2.3c, with the typical board → column → task hierarchy. Alternatively,
in the recently released new version of GitHub Projects, a board can also be viewed in
a table view. Furthermore, it features rule-based automation to transfer tasks to certain
stages on certain events automatically. Overall it is considerably more lightweight than its
competitors mentioned above.

2.3.3 Improvement of existing tools

Prior studies examined the usage of existing virtual Kanban board implementations in
practice. Some of these studies are discussed in the following. The findings mostly corre-
spond to the areas of improvement reported in section 2.2.6. Saad et al. conducted a focus
group study with ten software developers examining the developer’s experience (DX) of
virtual Kanban board tools [43]. As the main issue, scope understanding was identified,
which describes difficulties in understanding the tasks and vision of a project due to the
lack of features within the tool to visualise information and project steps. It was followed
by project needs, which describe the lack of features that could support developers in their
daily work. The third most reported issue regarded complexity, which describes problems
in the usage of the tools due to being too complex and too hard to learn [43]. Another
study was conducted by Raith et al., who conducted semi-structured interviews with five
agile coaches working at five different projects with a total of 30 Scrum and five Kanban
teams [40]. Among the reported potentials for improvement was a more detailed visuali-
sation of project progress and forecasting to support project-controlling, which is currently
mostly done using additional tools like spreadsheet applications. The forecast could consist
of a prediction of whether a project can be done in time or not [40].

2.4 Data-driven estimation of agile software projects

As seen in the previous section, one way of improving Kanban boards is providing quanti-
fied information concerning a project’s progress. As part of this, estimating a project based
on its progress could be valuable. Therefore, a brief overview of data-driven estimation
techniques in agile software projects is given in this section.

Estimating the effort and duration of a software project or certain tasks within the project is
a key factor in software management [50]. Unrealistic estimates threaten the project’s suc-
cess, and inaccurate estimates can lead to misallocation of resources [8]. One way to obtain
valuable project estimation is consolating experts. However, in recent years, research has
been conducted to find data-driven effort estimation techniques based on historical data of
a project [50, 8]

2.4.1 Effort estimation

The most frequently used metric for describing the effort in software development are story
points [8]. Story points are numeric values attached to user stories or tasks in the backlog
and describe the relative volume of work for that item [29]. The leading technique practised
by Scrum and Kanban teams to determine the number of story points for a task is known
as planning poker [29]. Based on the story points, a team’s velocity can be calculated,
specifying the number of story points completed per time unit [20]. However, factors like
the experience of team members and external pressure limit the quality of the story point

2.4. DATA-DRIVEN ESTIMATION OF AGILE SOFTWARE PROJECTS 13

estimates [8]. Hence, one direction of research focuses on finding methods to automati-
cally estimate the effort of user stories or tasks within an agile project. Different techniques
and algorithms like decision trees, Bayesian networks, support vector machines or neural
networks have been studied [8]. One example is Choetkiertikul et al., who proposed a
deep learning model based on long short-term memory and recurrent highway network
to estimate story points [17]. The model utilises the title and description of a user story
as input. Besides the textual definition of a task, a systematic literature review by Alsaadi
et al. identified four independent characteristics previously been used as data sources for
the estimation of user stories [8]. These consisted of personal factors, like experience and
developer skills, product factors, like priority and complexity, process factors concerning
specification quality and estimation factors, such as story points estimated through plan-
ning poker.

2.4.2 Lead time estimation

Another research direction focuses on determining the actual lead time based on the tasks’
or user storys’ effort. The lead time is defined as the time elapsed between adding a task
to the backlog and its completion. Story points and velocity are not the only factors in-
fluencing a task’s lead time. When looking at the Kanban method, the lead time is also
impacted by other factors like the task’s priority and the frequency of backlog changes [51].
One approach to account for all these factors is an influence diagram, as proposed by We-
flen et al. in 2022 [51]. It consists of a Bayesian Network with nodes representing the
lead time factors. Initially, the nodes in the network have to be weighted, which was done
through the collection of data of a Kanban team [51]. Alternatively, parts of the data could
be substituted using approaches described in section 2.4.1. The influence diagram yields
probabilities for certain lead times as an output. The researchers concluded that these prob-
abilities could help Kanban teams in communicating to stakeholders and support decision
making [51].

14 CHAPTER 2. RELATED WORK

CHAPTER 3

Concept

This work aimed to implement and evaluate a Kanban board-based task management ap-
plication prototype with unbounded nesting capabilities and an intelligent recommenda-
tion feature. Building on the findings of chapter 2, this chapter describes the concept of the
prototype and explains relevant design decisions.

3.1 Goals

1. Everything is a list As seen in chapter 2, Kanban board-based task management ap-
plications generally make three elements available to the user: Boards, Lists and Items.
These elements are the base components that help users organise and visualise their tasks
and workflow and should therefore be available in the application. However, while distin-
guishing between those elements is important for the user, this distinction is not necessary
from a technical point of view. Intuitively, a Board is just a list of child elements arranged
horizontally. In a List, child elements are arranged vertically. Moreover, an Item is a list
that does not contain child elements. In order to display the elements correctly to the user,

• a list containing nothing can be displayed as an Item.

• a list containing only Items can be displayed as a List.

• a list containing Lists (which contain Items) can be displayed as a Board.

Therefore, to model the prototype application, the goal was to abstract the three elements
into a single entity, a list.

2. Unbounded nesting As seen in the previous chapter, the Kanban method utilises the
Kanban board as its main tool to visualise a project. However, related work also identified
room for improvement regarding this visualisation. Notably, all existing implementations
of a Kanban board consist of the typical Board → List → Item hierarchy. This hierarchy
limits the expressiveness and flexibility of the visualisation capabilities for different scopes,
levels of detail and hierarchies within projects. Therefore, the second goal was to remove
this bound of a Kanban board to improve its visualisation capabilities. In the prototype,

15

16 CHAPTER 3. CONCEPT

it should be possible that Boards and Lists can contain Boards, Lists and Items as sub-
elements. Furthermore, it should be possible to arrange them to an unlimited depth. Re-
moving these bounds is a novel approach; therefore, user experience and design challenges
are expected. Some of the challenges for usability with unbounded nesting are examined
in the following.

3. Intelligent (scheduling) recommendations As a third goal for the application, quanti-
fied information about a project’s progress should be provided through intelligent recom-
mendations to support users in project scheduling. Furthermore, it might be beneficial if
the recommendations are self-explanatory and unobtrusive. Motivated by the findings of
chapter 2, the idea for a symbolic intelligence came from the assumption that for humans,
it is hard to plan with different (temporal) constraints in complex projects. While it is easy
to set temporal goals within projects and guess how long a single task will take, it is hard
to estimate when the project will finish. Also, sometimes it might be possible to reach an
earlier finish date if the order of the tasks is optimised. Therefore, the intelligent scheduling
feature proposes a task order that minimises the overall project timespan and the number
of missed due dates. This recommendation can be used to evaluate the current project plan.

3.2 Ideation and development process

This section gives a brief overview of the prototype’s ideation and development process.
Based on the first two goals explained in the previous section, an initial prototype con-
sisting of an unbounded nested structure and the base features was built. After that, dur-
ing the ideation process for the implementation of the recommendation feature, existing
boards’ data from GitHub Projects and Trello was fetched via publicly available APIs [55,
71]. For potentially using this real-life data for the intelligent recommendation feature’s
evaluation, logic was implemented to adapt this data into the application’s data model.
Also, the fetched data was plotted in different ways to find a direction for the intelligent
recommendation feature. The visualisation provided interesting insights and generated
ideas, which could be used for a recommendation feature system based on statistics or ma-
chine learning. Some of these ideas are discussed in more detail in chapter 6. However,
a more practical approach independent of large data sets was finally chosen for the proto-
type. The approach focuses on a symbolic intelligence based on a constraint solver to find
the best order of tasks and evaluate the current temporal planning. As a preparation for the
symbolic intelligence’s implementation, the resource concept was added, which provided
the basis for the constraints used by the symbolic intelligence.

3.3 Features of the prototype

The following provides a deeper look into the prototype’s features.

3.3.1 User and workspace

While being very important for a consumer product, registering, managing and authenti-
cating different users was not the focus of this prototype. However, a simple page is avail-
able where different users can be created. These "users" provide separate workspaces that
were used to present the different tasks of the study (see chapter 5). Selecting one of these
users opens the main application featuring a user’s workspace. When first selecting a user,
an empty workspace is shown. New elements created inside the workspace are arranged
vertically below each other. The workspace can be considered the root element, which can

3.3. FEATURES OF THE PROTOTYPE 17

not be changed but acts the same way as a List or Board element. Its child elements can be
repositioned, and further down elements can be moved up to the root.

3.3.2 Elements

In the prototype version evaluated in the user study, each element type is marked with a
different colour (blue for Board, red for Lists and white for Items). An elements type is
also indicated in textual form at the top of the element. Each element has a title and an
optional description. For Item elements, resources can be configured (see section 3.3.3). An
arrangement for a standard Kanban board is depicted in figure 3.1.
In order to perform relevant actions for the element, multiple buttons on the right upper
corner of an element are available. Icons and tooltips indicate the action type. The ac-
tions include adding new child elements, modifying the element, converting the element,
moving the element and deleting it.

Figure 3.1: View of a workspace featuring the arrangement of a standard Kanban board.

Nested arrangement When nesting multiple elements, parent elements automatically ad-
apt their size to fit larger child elements. When elements grow bigger than the screen width,
they get scrollable. An example of an arrangement with unbounded nesting can be found in
figure 3.2. In existing implementations, elements are often coded with similar colours like
white and light grey. However, when experimenting with this in the development phase
of the prototype, the UI seemed to get cluttered for deeper nesting situations, and elements
could hardly be distinguished. Therefore, the elements were colour-coded in widely differ-
ent colours to distinguish them even in deeper nesting situations.

Creating elements New elements can be added to every Board and List element or the
root of the application by clicking the plus icon (). Figure 3.3a shows the modal, where
the element’s details like the desired type, title, and description must be entered. If the new
element is a Board or a List, the user can create child elements for the new element in the
modal.

Modifying elements The pen icon () allows editing the details of an element. Figure
3.3b shows the corresponding modal, where the element’s updated details must be entered.

18 CHAPTER 3. CONCEPT

Figure 3.2: View of a workspace featuring an arrangement with unbounded nesting.

(a) Interface for creating an element.

(b) Interface for modifying an element.

Figure 3.3: Interfaces for creating and modifying elements.

Deleting elements The bin icon () allows deleting an element. As this is a destructive
action that can not be undone, it must be confirmed by the user. If the element contains
child elements, these will be deleted as well.

3.3. FEATURES OF THE PROTOTYPE 19

Repositioning elements The application allows repositioning elements within their par-
ent using drag and drop as seen in figure 3.4a. Drag and drop should be considered an
important feature, being an intuitive and natural way of ordering elements and gives the
user a feeling of control by simulating elements as real-life objects. It is also implemented
for existing Kanban board-based implementations as described in section 2.3.2.

Moving elements to new parents: When it comes to moving elements from one parent
element to another (for example, an Item from one List to another List), in existing im-
plementations described in section 2.3.2, this likewise is done using drag and drop, like
repositioning. However, Drag and Drop presents a challenge when dragging an element
from one level to another in a deeper nested scenario. While experimenting with this, as
different target areas overlap, it was hard to determine the correct target for the Drop, not
only for the user but also from a technical point of view. Therefore, element locations result-
ing from a Drag and Drop interaction often did not match the user’s expectation. Finally,
it was decided to limit Drag and Drop capabilities such that elements can only be dragged
to parents on the same level. Moving elements to a different level in the application is
implemented through a "move" button (). As seen in figure 3.4b after clicking it, all po-
tential locations for the element are highlighted, and the users can select where they want
to move the element. Evaluating this approach was an important part of the user study
and is further discussed in chapter 5.

(a) Repositioning an element using Drag and
Drop.

(b) Moving an element to another level.

Figure 3.4: Drag and Drop interaction and moving of elements.

Converting elements Generally, it is natural that the true scope is often unknown when
planning a task or project. When working on it, small tasks can rather turn out to be a list
of multiple tasks or vice versa. In a task managing application, this would require restruc-
turing. As a goal of the concept was to remove limitations, the user should be supported in
performing this kind of restructuring. Therefore, an element can be converted to any other
type of element. The conversion can be done by clicking the respective button marking the
desired element type (, ,). Conversions of elements result in the following:

• Board ↔ List: View changes from horizontal to vertical and vice versa, colour changes,
all children are preserved.

20 CHAPTER 3. CONCEPT

• Board/List → Item: The titles of direct child elements are preserved as bullet points
(marked with −) written into the description of the new item. As deeper sub-elements
will be lost with this conversion, it has to be confirmed by the user.

• Item → Board/List: If the description of the items contains bullet points marked with
−, these will be added to the converted element as child Items.

3.3.3 Resources

Figure 3.5: Item element with the temporal
resources start date, due date and duration,
one numeric resource, two textual resources
and a user resource.

The Item element can have more properties
in existing implementations described in
section 2.3.2 than just a title and a descrip-
tion. For example, labels can be added, a
user assigned, or a date configured. These
properties were generalised as so-called re-
sources. Four types of resources applicable
for various use cases were implemented.
The types are explained in the following.
Resources can be configured during the
creation and modification of Items as seen
in figure 3.3b. Figure 3.5 shows an exam-
ple for an Item with all available types of
resources configured.

• Numeric: Consists of a text label and a number value.

• Textual: Consists of a text label and an optional text value.

• User: Consists of one of the existing users (see 3.3.1), which can be selected from a
dropdown menu.

• Temporal: Consists of three optional fields:

– Start date: Defines the date and time at which a task can be started at the earliest.
Can be entered or selected using a date picker.

– Due date: Defines the date and time at which a task is due. Can be entered or
selected using a date picker.

– Duration: Defines the expected duration for the task. The selection is imple-
mented using a dropdown menu with predefined values between 5 minutes and
10 hours. Predefined values are sufficient for estimation and easier to enter. The
maximum value was set to 10 hours to encourage splitting longer tasks into sub-
tasks.

3.3.4 Events

Recording a history of a user’s actions was required to enable certain calculations within
the intelligent recommendation feature, like determining a task’s time in progress. There-
fore, every time an action is performed, it is written into an event log. This approach is
similar to existing implementations like Trello or GitHub Projects, as the structure of their
public APIs indicates.

3.4. DESIGN AND USER EXPERIENCE 21

3.3.5 Recommendations: Symbolic intelligence

A symbolic intelligence providing recommendations is implemented to support users in
scheduling their projects. Its purpose is to find the optimal order of tasks within the project
and evaluate due dates by comparing them to the calculated finish dates. The three tem-
poral resources defined in 3.3.3 were used as constraints for this planning. The scheduling
result consists of a recommendation for a task execution order and an estimation for the
project’s finish date.

The scheduling can be triggered by clicking the clock icon () on any Board in the work-
space that has at least two sub-Lists or Boards. As explained in more detail in section 4.2.4.2
this limitation was added in order to determine which tasks are relevant for the schedul-
ing. Then, the best order for the tasks within the Board is calculated, which takes about five
seconds. The spinning clock indicates that the calculation is still ongoing. The result of a
scheduling calculation can be seen in figure 3.6. Every task that is considered to be open or
in progress is marked with an indicator showing its optimal position in the execution order.
A green colour indicates that the due date can be reached using the proposed order. A red
colour indicates that the due date can not be reached. Sub-tasks are considered in an aggre-
gated form (explained in more detail in section 4.2.4.2). The Board also gets indicated with
a field showing the total remaining duration for the project. Hovering over any indicator
reveals further information like the calculated start date, finish date, and remaining dura-
tion. Furthermore, besides the projects start and finish date, the tooltip for the Board also
reveals the work schedule used for the calculation. The work schedule is not configurable
directly in the UI in the prototype but can be configured in the database. It is described in
more detail in section 4.2.4.2.

3.4 Design and user experience

The design and user experience of the prototype are oriented at existing implementations
described in section 2.3.2. While not being the main focus of this work, an iterative design
process loosely following the Double Diamond model [35] was applied by showing differ-
ent evolution stages of the prototype to a small group of people. Their feedback influenced
design decisions such as the colour selection, tooltips, moving of elements, and the presen-
tation of the recommendations. The evaluation of the prototype’s usability is described in
chapter 5.

22 CHAPTER 3. CONCEPT

Figure 3.6: Scheduling result for the Board "Tasks of the week".

CHAPTER 4

Implementation

This chapter describes the implementation details of the prototype based on the concept
presented in the previous chapter.

4.1 Architectural Overview

Figure 4.1 presents an overview of the application’s architecture. A server-client archi-
tecture was chosen with a frontend providing a user interface and a backend holding the
business logic and performing relevant computations. The parts of the application are de-
scribed in more detail in the following.

Server

HTTP Request HTTP Response

Figure 4.1: Architecture of the prototype.

23

24 CHAPTER 4. IMPLEMENTATION

4.2 Server

4.2.1 Technology stack

The application’s backend is written in the Scala programming language [76], which is a
strongly typed multi-paradigm language that compiles to Java byte code and runs on the
Java virtual machine. It allows object-oriented as well as functional programming. The
backend was designed as a RESTful API, with the advantage that different frontends, like
a web application or mobile applications, can communicate with it via HTTP requests. In
order to build the API, the Scala library Akka HTTP [63] was utilised, which provides
a toolkit for building HTTP servers. The backend stores all application-related data in
a PostgreSQL database [59]. In order to read from and write to this database, the Scala
library Slick [78] was used, which allows writing SQL-Queries as typed Scala code. As Scala
compiles to Java byte code, it also allows accessing Java libraries. Therefore the Java library
OptaPlanner [60] was utilised to build the constraint solver for the symbolic intelligence.

4.2.2 Data model

As seen in chapter 3 the state of the application consists of different elements called Board,
List and Item, which can be arranged in an arbitrarily nested way. This state can be seen
as a hierarchical tree with nodes representing elements and vertices representing nest-
ing relations. The tree was modelled in the backend using an adjacency list data struc-
ture. The entire class diagram can be seen in figure 4.2 A node is represented by the class
WorkflowList with a property parentId that references its parent node, being the

element where the workflow list is nested inside. If the workflow list is not nested inside
another element, the parentId equals null. Furthermore, the property listType spec-
ifies whether the workflow list should be displayed as a Board, List or Item to the user. The
property position stores the order in which children are arranged inside a parent. It is
updated once the position changes. The adjacency list structure allows updating individ-
ual nodes without changing the whole tree. Furthermore, it allows storing the state in the
relational PostgreSQL database.
Because of the technologies used (see section 4.3), it was more practical to handle the full
tree rather than individual nodes in the frontend. Therefore, when the client fetches the
state, the backend builds the full tree and returns it as nested lists.

4.2.3 Rest API

The backend offers HTTP endpoints that allow clients to retrieve and manipulate the ap-
plication’s state and trigger the symbolic intelligence. A list of all relevant endpoints can
be found in table 4.1. The payloads and responses of endpoints are transferred using the
JSON data format. Because the application was built as a proof of concept, no proper au-
thentication is performed. However, all requests to /workflowlist require the user’s
UUID as an Authorisation header and return the HTTP error 401 Unauthorised if the
UUID is not valid or the user is not marked as active.

4.2.4 Symbolic intelligence

4.2.4.1 Constraint solver

The goal of the task scheduling algorithm consists of finding the optimal order of a list of
tasks such that firstly the number of missed due dates, and secondly, the final task’s finish
date is minimised. This problem is called the scheduling problem in the following. Solving

4.2. SERVER 25

Work�owList

id: Long
apiId: String
title: String
description: Option[String]
parentId: Option[Long]
position: Long
listType: Work�owListType
ownerApiId: Option[String]
createdAt: LocalDateTime
updatedAt: LocalDateTime

Figure 4.2: UML class diagram of the backend.

Method URL Description

GET /user Retrieve all users.

GET /user/{uuid} Retrieve a single user by given UUID.

POST /user Create a new user.

GET /workflowlist Retrieve all workflow lists.

POST /workflowlist Create a new workflow list.

DELETE /workflowlist Delete a workflow list.

PUT /workflowlist/{uuid} Update a workflow list.

PUT /workflowlist/{uuid}/resource Update the resources of a workflow list.

PUT /workflowlist/{uuid}/type Convert a workflow list to a new type.

PUT /workflowlist/{uuid}/position Change the position of a workflow list within its parent.

PUT /workflowlist/{uuid}/parent Move a workflow list to a new parent.

GET /workflowlist/{uuid}/scheduling Retrieve a scheduling proposal from the symbolic intelligence.

Table 4.1: HTTP endpoints of the backend.

the scheduling problem in reasonable runtime showed to be no trivial task. Initially, the
problem was solved using a brute-force algorithm. Here, the number of due dates missed
and the total finish date is calculated for every possible order of tasks. The best solution is
obtained by sorting all evaluation results by due dates missed and total finish date ascend-

26 CHAPTER 4. IMPLEMENTATION

ing and taking the first element of that list. However, as the number of permutations for
a list of n tasks is n!, the complexity for such an approach is factorial (at least O(n!)), even
without considering the sorting algorithm. Therefore, the brute force algorithm quickly
leads to runtimes that are not acceptable for larger numbers of tasks. In practice, the pro-
totype implementation of the brute force algorithm exceeded the default HTTP request
time-out of 20 seconds for ten tasks. Solutions resulting from different algorithms, such
as sorting the tasks by their due dates or duration, are far from optimal. Therefore the
scheduling problem arguably could be considered NP-complete or NP-hard. However,
finding the optimal solution is not required for the application’s use-case. Solutions that
are close to optimal would already be beneficial. Finally, close to optimal solutions for the
scheduling problem in reasonable runtime were accomplished using constraint solving al-
gorithms. Constraint programming is a paradigm where constraints that describe desired
outcomes are defined rather than describing every execution step. The Java library Opta-
Planner [60] was used and integrated into the Scala codebase to implement the constraint
solving algorithm. OptaPlanner is an embeddable constraint satisfaction engine specifi-
cally designed to optimise planning problems, such as the scheduling problem.

Task

@PlanningEntity

startDate
dueDate
duration
startedAt
finishedAt

Shadow variables

startedAt =
max(startDate,
previousTaskOrAssignee
.finishedAt)

finishedAt =
startedAt + duration

nextTask = inverse of
previousTaskOrAssignee

TaskSchedule

@PlanningSolution

@PlanningEntityCollectionProperty

previousTaskOrAssignee

@PlanningVariable

TaskOrAssignee

Assignee

0..1

1

nextTask

*

*

@ProblemFactCollectionProperty

Figure 4.3: Class diagram for the OptaPlanner implementation to solve the scheduling
problem.

Model In order to solve a problem using OptaPlanner, two main things are important.
First, the problem has to be modelled using different entities offered by OptaPlanner. For
this purpose, classes and variables are annotated using Java annotations. Figure 4.3 shows
the resulting class diagram for the scheduling problem. One important part is the planning
entity, a class representing the object, which will change during planning. The class has to
be annotated with @PlanningEntity . For the scheduling problem, the planning entity
was defined to be a Task . The planning entity class needs to have one or more defin-
ing properties. The Task class has one required defining property (the duration) and
two optional defining properties (startDate and dueDate). In addition to the defin-
ing properties, the planning entity class needs to have one or more planning variables,
which will be reassigned by the OptaPlanner engine with different planning facts during
planning. The planning variables have to be annotated with @PlanningVariable . A

4.2. SERVER 27

chained planning variable pattern is applied for the scheduling problem by using the previ-
ous task as a planning variable. The chain then represents the order of the tasks. However,
no previous task is available for the first task of the order. As nullable planning variables
are not supported for chained planning variables, the abstract class TaskOrAssignee

is used as a planning fact instead of the Task class. The classes Task and Assignee
inherit from the abstract class. For the first task in the chain,
the previousTaskOrAssignee is represented by an Assignee marking the chain’s
anchor. The abstract class TaskOrAssignee contains a so-called inverse shadow vari-
able nextTask , which references the task holding the TaskOrAssignee as a
previousTaskOrAssignee . Shadow variables are updated every time a planning en-

tity changes. Two more shadow variables are used to represent the time at which a task
gets started in the current planning (startedAt) and the time at which a task gets fin-
ished (finishedAt). The shadow variable startedAt is calculated as the most recent
time out of the start date of the current task and the finish date of the previous task. The
shadow variable finishDate is calculated as startedAt plus the task’s duration.
Another important part is the planning solution, annotated by @PlanningSolution . It
wraps all planning entities used for planning and all assignees (in the scheduling problem
case, always just one assignee) into a single data set. The TaskSchedule class represents
the planning solution for the scheduling problem. The list of planning entities (here, list of
tasks) is annotated by @PlanningEntityCollectionProperty . As the assignees do
not change during planning (they are always just the chain’s anchor), they are annotated as
problem facts by @PlanningFactCollectionProperty . As a third defining property
for the planning solution, a score annotated by @PlanningScore has to be defined. The
score is calculated during the planning and used to compare different planning solutions.
It is described in more detail in the following.

Constraints and score In addition to the model for the planning problem, constraints
have to be defined. The OptaPlanner engine calculates the score of a planning solution
needed to determine the best solution based on these constraints. An overview of the
constraints used for the scheduling problem can be found in table 4.2. Three constraints
levels are used for the scheduling problem: hard, medium, and soft constraints. Hard
constraints are constraints that must not be broken; otherwise, the solution will not be
feasible. Medium and soft constraints are constraints that should ideally not be broken.
The HardMediumSoftScore class was used to represent the score of a solution, which
results in score-values such as -1hard/-1medium/-100soft . A hard score of < 0 sig-
nifies an infeasible solution. The higher the medium and soft scores are, the better the
solution meets its constraints. A solution with a higher medium score is always preferred
over a lower medium score, regardless of the soft-score value. For the scheduling problem,
the start date is used as a hard constraint to ensure the definition of the start date as de-
scribed in section 3.3.3; it is not possible to start a task before its start date. For each task
in the solution started before its start date, the hard score is penalised (decremented) by
1. Furthermore, the number of missed due dates should be minimised for the scheduling
problem. This requirement is implemented by using a medium constraint that penalises
the medium score by 1 for every task in the planning solution with a finish date after the
task’s due date.
The second metric indicating a good order of tasks is a minimised project finish date. It is
implemented through a soft constraint penalising the soft score with the squared timespan
of the project in minutes. The span was calculated as the time difference between the start-
ing date of the calculation (considered the project’s starting date) to the finish date of the

28 CHAPTER 4. IMPLEMENTATION

final task in minutes. The square of the timespan was used to give this constraint greater
weight than the other soft constraints described in the following. Besides the two main
features that define a good task order, fine-tuning constraints are added, which comes into
play when two solutions are otherwise rated with an identically score. One part of this
fine-tuning concerns tasks that are already in progress. It makes sense that these should be
finished before starting new tasks. The constraint is applied similarly to the overall finish
date constraint. For every task in progress, the soft score is penalised with the timespan in
minutes until the task’s completion. Thereby, solutions that place these tasks earlier in the
order get higher scores. Likewise, a constraint is added to ensure that tasks that can not be
finished within their due date still finish as close to the due date as possible. Without such
constraint, tasks can also be moved to the end of the execution. However, it is arguably
better to finish a task with a one-hour than a multi-hour delay, if possible. Therefore, for
every task with a missed due date, the soft score is penalised with the timespan in minutes
between the due date and the task’s finish date.

Constraint type Goal Impact on score

hard Tasks can not be started before their start date. HardScore−1
for every task where task.startedAt < task.startDate

medium Minimise number of missed due dates. MediumScore−1
for every task where task.finishedAt > task.dueDate

soft Minimise project timespan SoftScore− (∆(startingDate,project.finishDate))2

soft Prioritise tasks in progress. SoftScore− (∆(startingDate, task.finishDate))
for every task where column = inProgress

soft Minimise exceedance time of missed due dates. SoftScore− (∆(task.dueDate, task.finishDate))
for every task where task.finishedAt > task.dueDate

Table 4.2: Constraints used for the constraint solver.

Configuration The configuration of the OptaPlanner engine requires setting a time limit
for the search for solutions. This time was set to 5 seconds, a reasonable waiting time for
the user, which resulted in very good solutions during testing.

4.2.4.2 Data preparation, assumptions and calculations

In order to create a list of tasks used as a scheduling problem, some assumptions and trans-
formations have to be made.

Definition of open, done and tasks in progress The scheduling possibility was limited to
workflow lists with at least two sub-elements being Boards or Lists to determine the stages
open, in progress and done, . The first sub-element is always considered as containing tasks
that are open, the last sub-element is considered as containing tasks that are done. If the
workflow list for which the scheduling gets triggered contains three or more sub-elements,
all elements between the first and the last elements are considered as elements that are
holding tasks in progress.

Aggregation of subtasks Elements are converted to Task entities in preparation for the
constraint solving. Considered for the scheduling problem are all elements that are open
and in progress. However, this might also include nested elements. As the constraint solver
implementation works with a flat list of tasks, nested elements are aggregated into a single
task entity. The sum of all durations is used as the new duration, the latest of all start dates
as the new start date and the earliest of all due dates as the new due date for the task.

4.3. WEB APPLICATION: TECHNOLOGY STACK 29

Consideration of a work schedule As users normally only work on projects during busi-
ness times, predictions for a project’s finish date must be tied to a work schedule. The work
schedule consists of a list of weekdays on which the user works and the hours at which the
work starts and ends. The work schedule is stored in a database table to be configurable.
A more detailed schedule configuration might be required for a consumer product, but the
working days and start and end hours are sufficient for the prototype. As the work sched-
ule is used for calculations in multiple parts of the application, a WorkScheduleUtil
was implemented that can handle each combination of two of the three properties starting
date, finish date and duration and calculate the missing property respectively in compli-
ance with the work schedule. For example, the work schedule could be configured as
Monday to Friday from 9 am to 5 pm. Consequently, the calculated finish date for a task
that starts on Monday at 11 am and takes 8 hours is Tuesday at 11 am.

Calculation of remaining duration For open tasks, the remaining duration is the duration
configured by the user. If no duration is defined, the duration is assumed to be 0 minutes.
For tasks in progress the assumed remaining duration is reduced by the time they already
are in progress. This time is determined by finding the latest event that signifies the task
being moved from the open stage into the in progress stage. The remaining duration is
calculated as the difference in minutes between the event’s timestamp and the current time,
using the WorkScheduleUtil mentioned in the previous section.

Calculation of startedAt and finishedAt based on work schedule Whenever the
constraint solver assigns a new planning variable, the shadow variables startedAt and
finishedAt have to be calculated. Therefore, the WorkScheduleUtil is used to be

compliant with the work schedule. As already mentioned above, for startedAt the
latest out of the task’s start date and the previous task’s finish date (finishedAt) is
used. If the resulting date does not lie within the work schedule, the next possible date
within the work schedule (e.g. the next day at the start of the working hours) is chosen.
finishedAt is calculated by adding the assumed remaining duration to startedAt

considering only timeslots within the work schedule.

4.3 Web application: Technology stack

The client of the prototype consists of a web application that runs in any modern web
browser. It is written in TypeScript [73], a typed programming language that builds on
JavaScript. The application was build using the framework Next.js [83], which is based on
React [64], a component-based JavaScript library for building user interfaces, Babel [68], a
JavaScript compiler that enables backwards compatibility for source code and Webpack [66],
a JavaScript module bundler and code splitter. Next.js allows an easy set-up and configu-
ration of the application and enables optimisation possibilities such as prerendering to im-
prove page load times. In order to build the design of the user interface, Tailwind CSS [67]
was integrated, a utility-first CSS framework that allows styling elements directly in the
HTML markup by providing predefined classes.

30 CHAPTER 4. IMPLEMENTATION

CHAPTER 5

Evaluation

A user study was conducted to examine the application of the prototype in practice. The
user study aimed to evaluate the concepts and usability of the prototype and identify areas
of improvement for future iterations. The characteristics, study design and results of the
user study are described in this chapter.

5.1 Methodology

5.1.1 Study design

The user study was conducted as a within-subjects study in a controlled laboratory envi-
ronment, guided and observed by the study supervisor. Thereby, data was collected in
a mixture of attitudinal and behavioural approaches. Furthermore, qualitative and quan-
titative feedback was collected with questionnaires. The study took 45 to 60 minutes to
complete. It consisted of four different tasks split into two different parts. Most of the
tasks were followed by a questionnaire with task-specific questions. Elements in the soft-
ware represented the tasks. For each task, a new workspace was used (see section 3.3.1).
Participants were allowed to ask questions throughout the study.

5.1.2 Procedure

Table 5.1 presents an overview of the study’s procedure. The following explains the study’s
parts in detail.

5.1.2.1 Intro

During the introduction phase of the study, Questionnaire 1 had to be completed, which
included general questions regarding demography and prior experience with board-based
tools. An exploration phase followed to give the participants an overview feature-wise
and familiarise themselves with the interface. The exploration included creating, modify-
ing, reordering, moving and converting elements. While the participants were in control

31

32 CHAPTER 5. EVALUATION

Phase Name Description Time limit

Intro Questionnaire 1 Questions concerning demography and prior experience with board based tools -

Exploration Guided exploration of software

Part 1 Task 1.1 Create custom arrangement for predefined tasks of example project 10min

Ext. NASA-TLX Concerning Task 1.1

Questionnaire 2 Concerning Task 1.1

Task 1.2 Select favourite arrangement out of three example arrangements and personal
arrangement created in Task 1.1 5min

Questionnaire 3 Concerning Task 1.2

Part 2 Task 2.1 Manually schedule 5 tasks with 8h total duration, 3 due dates, 1 start date 3min

Task 2.2 Manually schedule 10 tasks with 40h total duration, 4 due dates, 3 start dates 6min

Questionnaire 4 Concerning Task 2.1 & Task 2.2

Outro Questionnaire 5 General questions about software use

Table 5.1: Study procedure.

and encouraged to experiment with the interface, the study supervisor guided them to en-
sure they did not miss important functionality. Also, relevant concepts were explained if
participants were not familiar with board-based tools and the Kanban method.

5.1.2.2 Part 1 - Arbitrarily nested lists

Figure 5.1: Example project of Task 1.1.

The first part of the study aimed to
evaluate to which extent users use the
possibility to arrange elements with un-
bounded nesting. Therefore, in Task 1.1
users were instructed to imagine a project
consisting of the application for a fund-
ing. The application included a con-
cept for a restaurant and a presenta-
tion. A Kanban board with a "ToDo"-
list contained 14 predefined tasks pre-
sented as Items. Task 1.1 is depicted
in figure 5.1. Participants had 10 min-
utes to arrange the project’s tasks in a
any way they preferred for working on
that project. They were allowed to use
all of the features they learned about
in the exploration phase. After finish-
ing Task 1.1 the participants filled out
a extended version of the NASA-TLX
questionnaire (described in more detail
in section 5.4.1) followed by Question-
naire 2 containing Task 1.1 specific ques-
tions.

The following Task 1.2 presented three dif-
ferent boards containing three different
possible arrangements for the project of
Task 1.1. The arrangements are displayed in

5.1. METHODOLOGY 33

figure 5.2. The main difference between the arrangements is the maximum nesting depth
starting from the standard depth of 2 (Board A, displayed in figure 5.2a) to a maximum
nesting depth of 5 (Board C, shown in figure 5.2c). Board C additionally uses not only
Lists in a nested way but also Boards. The participants were instructed to look at the ar-
rangements for a maximum of 5 minutes and then fill out Questionnaire 3 to answer which
of the representations they liked the most. Furthermore, they were asked to compare this
representation to their personal solution and select an overall favourite representation.

5.1.2.3 Part 2 - Symbolic intelligence

The second part of the study focused on the symbolic intelligence of the software in the
form of the scheduling feature. The full description of Task 2 can be found in figure 5.3.
Task 2.1 depicted in 5.3a presented a total of 5 Items representing tasks. While all items had
temporal resources in the form of an estimated duration attached, three items additionally
had either start date and due date or both configured. The total duration of the tasks was
8 hours and would therefore span the project over one day in the best-case scenario. Also,
some constraints were given. The current time was assumed to be Monday, 1 November
2021, 10:00 am, and the work schedule consisted of working Monday to Friday between
10:00 am and 06:00 pm. Furthermore, only one task could be processed simultaneously,
and splitting tasks was not allowed. It was reassured that participants correctly under-
stood the temporal constraints: start date, due date, and duration.

The objective was to estimate an execution order of the tasks to finish the project as early
as possible while minimising the number of missed due dates. The order was created by
reordering the tasks in the "ToDo"-list. Participants also estimated the project’s finish date
and how many due dates they would miss with their execution order and wrote that esti-
mation into the "Estimation" Item. The time limit for the estimation was 3 minutes. After
the manual planning, the participants triggered the scheduling feature provided by the
prototype, perceived the result, and compared it to their manual planning. Subsequently,
Task 2.2, which is presented in figure 5.3b followed. While the objective and procedure of
this task were equivalent to Task 2.1, this time, the board consisted of a total of 10 Items
representing tasks, thus making the planning significantly harder. The total duration of
these items was configured to 40 hours, which made them span over five days in a best-
case scenario. The time limit for the estimation was 6 minutes. After Task 2.1 and Task 2.2
the participants filled out Questionnaire 4 which contained questions related to these tasks.

5.1.2.4 Outro

Questionnaire 5 was the final objective to complete. It included questions regarding the ap-
plication’s usability throughout all tasks, and participants gave general feedback. Through-
out all questionnaires, whenever questions with free text answers occurred, the participants
were encouraged to think a load, which allowed the study supervisor to understand better
their answers and ask follow-up questions if necessary.

34 CHAPTER 5. EVALUATION

(a) Board A, max. depth = 2, deepest nesting ar-
rangement: Board → List → Item. (b) Board B, max. depth = 3, deepest nesting ar-

rangement: Board → List → List → Item.

(c) Board C, max. depth = 5, deepest nesting arrangement: Board → List → List → Board → List →
Item.

Figure 5.2: Example arrangements presented in Task 1.2.

5.1. METHODOLOGY 35

(a) Less complex project of Task 2.1.

(b) More complex project of Task 2.2.

Figure 5.3: Task 2 with the objective to estimate two different sized projects.

36 CHAPTER 5. EVALUATION

5.2 Participants

Thirteen participants (two female) were recruited for this study. Their median age was 27,
with ages ranging from 25 to 30. All participants had normal vision or corrected to normal
vision. All participants had the academic background of an Abitur (German equivalent of
"A Levels"), with 12 participants having completed a university degree. Ten participants
(77%) had used board based tools before, while three participants (23%) did not have prior
experience with board-based tools. The ten participants that had used board based tools
before rated their prior experience with board based tools with 5.9 on average (on a scale
from 1 to 10). When being asked which tools they had used before, they mentioned Trello
(n = 8, [56]), Atlassian Jira (n = 4, [54]), Asana (n = 1, [62]), Microsoft Teams (n = 1, [72]),
Miro (n = 1, [74]), Notion (n = 1, [75]) and YouTrack (n = 1, [65]). Five participants use
board based tools during weekdays, three participants use them once a week, and two
participants once a month. When asked in which areas board-based tools are used, they
answered work (n = 10), school or university (n = 4), personal projects (n = 2), and other
areas (n = 2).

5.3 Limitations

Sample size and demography Due to the circumstances of this work, only a small num-
ber of participants was recruited. Thereby, the expressiveness of the statistical evaluation
is limited. Also, the study can not be considered representative and does not reflect the
demography of Germany as all participants came from an academic background.

Study design In the study, participants spend little time with the software. As the con-
cept of having arbitrarily nested lists is novel, it might take more time to get used to it.
Moreover, the software is designed to manage long-term projects. However, the study pro-
vides little insight into long-term usage, as the tasks only concerned initial project planning
phases. Finally, while participants were encouraged to imagine real-life problems, the con-
trolled environment limits the study’s expressiveness for real-life application.

5.4 Measurements

5.4.1 Quantitative measures

Task completion time During Task 1.1, Task 2.1 and Task 2.2 the time it took the partici-
pants to complete the tasks was measured manually.

Extended NASA-TLX An extended version of the NASA-TLX [22] was utilised to mea-
sure workload, sense of control and creativity support of Task 1.1. It firstly consists of the
Task-Load Index (TLX) from NASA [22], which measures the perceived workload experi-
enced by the participants during the task. Additionally, the sense of control scale by Dong
et al. [19] measures the perceived control during the task. In order to be consistent with
the scale of the NASA-TLX, its original 6 point rating scale was adapted to a 20-point rat-
ing scale as in the NASA-TLX. Lastly, the Creativity Support Index by Cherry et al. [16]
measures how well an application supports the creativity of the users. It was limited to the
dimensions of exploration, motivation and enjoyment.

5.4. MEASUREMENTS 37

Likert-type questions Likert-type questions that can be answered using five response
alternatives (strongly disagree, disagree, neutral, agree, strongly agree) were used to gather
more implicit quantitative data about how users perceived Task 1.1, Task 2.1, Task 2.2 and
the software in general [14].

Number of actions The number of actions performed by the users during Task 1.1 was
measured to gather insights into how users with different experience levels are using the
application. As described in chapter 3, these actions were automatically stored in the
database.

Maximum nesting depth The maximum nesting depth of the personal arrangement cre-
ated by the users in Task 1.1 was measured by counting the nesting level from the root level
to the deepest nested element. In a standard Kanban board, an Item is nested into a List,
which is nested into a Board, which results in a total of two nesting operations. Conse-
quently, the maximum nesting depth for a standard Kanban board is 2.

Task scheduling estimation The following measures were collected to evaluate the man-
ual scheduling created by participants in Task 2.1 and Task 2.2 :

• Estimated best execution order of the tasks created by the participants: The order of
the tasks in the "ToDo" list, with the first Item in the list being the first task to be
processed and so forth.

• Estimated finish date of the project when executing the tasks in the estimated order:
The participants entered their answers in the "Estimation" Item.

• Estimated number of due dates missed when executing the tasks in the estimated
order: The participants entered their answers in the "Estimation" Item.

5.4.2 Qualitative measures

Several open-ended questions (see table 5.2) were used across the questionnaires to gather
qualitative data about how the participants used the application. Moreover, the partici-
pants were observed during the study and noticeable events, like certain behaviours, were
recorded.

38 CHAPTER 5. EVALUATION

5.5 Data analysis and results

In the following, the results of the user study are presented. R, a programming language
for statistical computing and graphics, was used for most of the data analysis as well as the
creation of the figures [81].

5.5.1 Quantitative data

5.5.1.1 Part 1 - Arbitrarily nested lists

Time required On average it took the participants 07:27 minutes to complete Task 1.1. The
maximum allowed time was 10 minutes.

Actions Figure 5.4 shows the mean of number of actions performed by the participants
in order to create their personal arrangement in Task 1.1. The mean of all actions performed
by the participants was 38±13.24. The most used action was MOVE (mean= 18.62±7.38)
followed by REORDER (mean = 9.08 ± 6.29) and CONVERT (mean= 4.15 ± 4.00). One
participant discovered the resources functionality and used it to configure three temporal
resources. The mean number of actions was also grouped by prior experience with board
based tools. For participants without prior experience the mean of total actions was lower
(32.00±13.00, n= 3) than the mean for participants with prior experience (39.50±13.48, n=
10). When looking at the specific actions, participants without prior experience had a lower
mean in MOVE actions (14.33±4.93, n = 3 vs. 19.90±7.69, n = 10), CREATE actions (0.67±
1.15, n = 3 vs. 5.00± 3.68, n = 10). On the other, no prior experience resulted in a higher
mean for REORDER actions (10.33± 4.51, n = 3 vs. 8.70± 6.90, n = 10) and CONVERT
actions (5.33±6.11, n = 3 vs. 3.80±3.61, n = 10).
The unpaired two-samples t-test and the unpaired two-samples Wilcoxon test were used
depending on the normal distribution of the data to validate the statistical significance
of the differences between prior experience and no prior experience. However, only the
difference in medians of the CREATE action showed to be significant with p < .05. This
might be related to the small sample size (n = 3) of participants without prior experience.

0

20

40

Total MOVE REORDER CONVERT CREATE UPDATE DELETE UPDATE
RESOURCES

Action type

A
c
ti
o
n
s

Have you used board based tools before? no (n=3) yes (n=10) combined (n=13)

Figure 5.4: Average number of actions by action type by prior experience.

5.5. DATA ANALYSIS AND RESULTS 39

Extended NASA-TLX Figure 5.5 depicts the results of the extended NASA-TLX question-
naire. In order to unify the scales of the extended NASA-TLX regarding workload, sense
of control, and creativity support, the scale of the workload was adjusted to 0-100 from
0-600 and the scale of creativity support to 0-100 from 0-300. Figure 5.5 shows the results of
the extended NASA-TLX questionnaire about Task 1.1. On average, the participants rated
the workload intensity during the task at 40.64±9.30. Furthermore, the participants rated
the sense of control during the task at 75.77±21.78. Finally, they classified their subjective
perception of creativity support at 73.72±15.13.

40.64

75.77
73.72

0

20

40

60

80

100

Workload Sense of control Creativity Support Index

M
e
a
n

Figure 5.5: Results of Extended NASA-TLX (n = 13).

Likert-type questions Figure 5.6 depicts the result of the three Likert-type questions about
Task 1.1. 100% of the participants agreed or strongly agreed that they understood the task’s
objective. Also, 100% felt supported by the software in the process of visualising the project.
Finally, 85% agreed or strongly agreed that the result they created matched their mental im-
age of the project, while 15% neither agreed nor disagreed.

0%

0%

0%

100%

100%

85%

0%

0%

15%

The arrangement I
created matches my
mental image of the

project.

The software supported
me visualizing the

project.

I understood what my
task was about.

100 50 0 50 100

Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.6: Likert-type questions about Task 1.1 (n = 13).

40 CHAPTER 5. EVALUATION

Maximum nesting depth Figure 5.7a depicts the maximum nesting depths of the per-
sonal arrangements created in Task 1.1. It can be seen that participants created one arrange-
ment with a maximum depth of 5, three arrangements with a maximum depth of 4, five
arrangements with a maximum depth of 3 and four arrangements with a maximum depth
of 2. Figure 5.7b represents which arrangement the participants favoured among the three
examples presented in Task 1.2. Six people (46.2%) favoured Board C, which had a max-
imum nesting depth of 5. Five participants (38.5%) preferred Board B with a maximum
depth of 3. Two people (15.4%) preferred Board A with a standard nesting depth of 2.
When looking at the overall favourite board of the participants as shown in figure 5.7c, two
participants (15.4%) preferred their personal solution created in Task 1.1 over the example
arrangements.

Max. depth = 5 (Personal), 7.7%

Max. depth = 4 (Personal), 23.1%

Max. depth = 3 (Personal), 38.5%

Max. depth = 2 (Personal), 30.8%

(a) Personal arrangements created in Task 1.1.

Max. depth = 5 (Board C), 46.2%

Max. depth = 3 (Board B), 38.5%

Max. depth = 2 (Board A), 15.4%

(b) Favoured board among examples of Task 1.2.

Max. depth = 5 (Board C), 46.2%

Max. depth = 4 (Personal), 7.7%

Max. depth = 3 (Board B), 23.1%

Max. depth = 2 (Personal), 7.7%

Max. depth = 2 (Board A), 15.4%

(c) Favoured board among examples of Task 1.2 and arrangements created in Task 1.1.

Figure 5.7: Occurrences of maximum nesting depths among participant’s personal and
favoured arrangements (n = 13).

Figure 5.8 displays a comparison of the standard nesting depth of 2 to the maximum nest-
ing depth of the personal arrangements (mean= 3.08 ± 0.95, median=3), the maximum
depth of the favoured example arrangement (mean= 3.77±1.24, median=3) and the maxi-
mum depth of the overall favoured arrangement including examples and personal arrange-
ment (mean= 3.77±1.30, median=4).
The personal nesting depths were normally distributed, as assessed by Shapiro-Wilk’s test
(p > .05) and a Normal Q-Q plot. Also, there were no outliers in the data, as assessed by
inspection of a boxplot. The one-sample t-test shows that the mean of the personal nest-
ing depths was significantly greater than the standard nesting depth of 2 (t(12) = 4.0698,
p = .0007771).
For the favoured example arrangement and the favourite overall, the nesting depths were
not normally distributed, as assessed by Shapiro-Wilk’s test (p < .05). Therefore, a one-
sample Wilcoxon signed-rank test was performed for each case. It shows that the medians
of 3 resp. 4 were significantly greater than the standard nesting depth of 2 with p < .05.

5.5. DATA ANALYSIS AND RESULTS 41

2

3.08

3.77 3.77

0

1

2

3

4

5

Standard Personal Favourite of proposed Favourite overall

Arrangement

M
a

x
im

u
m

 n
e

s
ti
n

g
 d

e
p

th

Figure 5.8: Maximum nesting depth by arrangement (n = 13).

42 CHAPTER 5. EVALUATION

5.5.1.2 Part 2 - Symbolic Intelligence

Time required The average time it took the participants to finish their estimation was
02:22 minutes for Task 2.1 (maximum time: 3:00 minutes) and 05:41 minutes for task Task
2.2 (maximum time: 6:00 minutes).

Scheduling performance Two error types were defined to evaluate the participant’s man-
ual scheduling performance.

• The assessment error is defined as the delta between the estimation of the partici-
pants and the evaluation of their manually created task execution order. This evalua-
tion, calculated by the backend, consists of the finish date and the number of missed
due dates of that order.
The assessment error for the finish date is defined as

Eassessment(Fe,Fr) = |∆w(Fe,Fr)| (5.1)

where Fe = estimated finish date, Fr = resulting finish date, ∆w = difference in work-
ing hours.
An assessment error of 0 implies that a participant correctly estimated the resulting
finish date of their manual order. An assessment error of 4 signifies that a partici-
pant’s estimation of the finish date differed by four working hours from the finish
date of their order. ∆w describes the difference within the given work schedule. For
the given work schedule of working Monday to Friday from 10am to 6pm the assess-
ment error is calculated exemplary: Eassessment =(2021-11-01-18:00,2021-11-02-14:00)=
4h

The assessment error for the missed due dates is defined as

Eassessment(De,Dr) = |∆(De,Dr)| (5.2)

where De = estimated missed due dates, Dr = resulting missed due dates.
An assessment error of 0 means that the participant correctly estimated the number
of missed due dates that resulted from their manual order. An assessment error of 1
means that the participant’s estimation of missed due dates differed by one due date
from the number of missed due dates that their order caused.

• For the true error the evaluation of the participants manual order was compared with
the evaluation of an optimal order.
The true error for the finish date is defined as

Etrue(Fr,Fo) = |∆w(Fe,Fr)| (5.3)

where Fr = resulting finish date, Fo = optimal finish date, ∆w = difference in working
hours.
A true error of 0 implies that the participants order led to the earliest possible finish
date.

The true error for the missed due dates is defined as

Etrue(Dr,Do) = |∆(De,Dr)| (5.4)

where De = resulting missed due dates, Dr = optimal missed due dates.
A true error of 0 signifies that the participants order led to the minimum possible
number of missed due dates.

5.5. DATA ANALYSIS AND RESULTS 43

Finish date The error of the finish date in working hours can be found in figure 5.9. Figure
5.10 displays the occurrences for the estimated and resulting finish dates as well as the
optimal finish date. Each line in a non-horizontal direction indicates an assessment error
> 0 for the participant.

0.12

8.15

0.15

5.54

0

5

10

15

20

25

Assessment error True error

Error type

W
o

rk
in

g
 h

o
u

rs

Task 2.1

Task 2.2

Figure 5.9: Error in working hours by task by error type (n = 13).

2021−11−01 17:00:00

2021−11−01 19:00:00

2021−11−01 21:00:00

2021−11−01 23:00:00

2021−11−02 01:00:00

2021−11−02 03:00:00

2021−11−02 05:00:00

2021−11−02 07:00:00

2021−11−02 09:00:00

2021−11−02 11:00:00

Estimated finish date Resulting finish date

F
in

is
h
 d

a
te

(a) Task 2.1.

2021−11−04 12:00:00

2021−11−04 20:00:00

2021−11−05 04:00:00

2021−11−05 12:00:00

2021−11−05 20:00:00

2021−11−06 04:00:00

2021−11−06 12:00:00

2021−11−06 20:00:00

2021−11−07 04:00:00

2021−11−07 12:00:00

2021−11−07 20:00:00

2021−11−08 04:00:00

2021−11−08 12:00:00

2021−11−08 20:00:00

2021−11−09 04:00:00

2021−11−09 12:00:00

2021−11−09 20:00:00

2021−11−10 04:00:00

2021−11−10 12:00:00

Estimated finish date Resulting finish date

F
in

is
h
 d

a
te

(b) Task 2.2.

Figure 5.10: Paired scatter plot showing the occurrences of the estimated and resulting fin-
ish date (n = 13). The dotted line indicates the optimal finish date. The black line indicates
the median.

Assessment error In the less complex Task 2.1 eleven participants estimated the finish
date of their manual planning order correctly. The number led to a mean assessment error

44 CHAPTER 5. EVALUATION

of 0.12± 0.35 working hours. In the more demanding Task 2.2 two participants estimated
the finish date of their manual planning order correctly. This number resulted in a higher
mean assessment error of 8.15±7.50 working hours.
Statistical tests were performed to validate the statistical significance of the assessment
error. Dates were converted to numeric values for the tests. The absolute difference (not
in working hours) between the estimated and resulting finish dates of Task 2.1 and Task
2.2 was not normally distributed, as assessed by Shapiro-Wilk’s test (p < .05). Therefore, a
paired samples Wilcoxon test was performed. It shows, that in Task 2.1 the median of the
estimated finish dates (2021-11-01-18:00:00) didn’t deviate significantly from the median of
the resulting finish dates (2021-11-01-18:00:00) (p > .05). However, in Task 2.1 the median of
the estimated finish dates (2021-11-05-18:00:00) was significantly smaller than the median
of the resulting finish dates (2021-11-08-16:00:00) (p < .05).

True error In the less complex Task 2.1 ten participants created an order that led to the
optimal finish date, which was 2021-11-01 18:00:00. This number led to a mean true error
of 0.15± 0.32 working hours. In the more demanding Task 2.2 three participants created
an order that led to the optimal finish date, which was 2021-11-05 18:00:00. This number
resulted in a higher mean true error of 5.54±4.99 working hours.
Statistical tests were performed to validate the statistical significance of the true error. Dates
were converted to numeric values for the tests. The resulting finish dates of Task 2.1 and
Task 2.2 were not normally distributed, as assessed by Shapiro-Wilk’s test (p < .05). There-
fore, a one-sample Wilcoxon signed-rank test was performed. It shows that in Task 2.1
the median 2021-11-01-18:00:00 did not deviate significantly from the optimal finish date
2021-11-01-18:00:00 (p > .05). However, in Task 2.1 the median 2021-11-08-16:00:00 was sig-
nificantly greater than the optimal finish date 2021-11-05-18:00:00 (p < .05).

Missed due dates The error in missed due dates can be found in figure 5.11. The oc-
currences for estimated and the resulting number of missed dates as well as the optimal
number of missed due dates are depicted in figure 5.12. Each line in a non-horizontal di-
rection indicates an assessment error > 0 for the participant.

0.31

1.46

0.38

0.77

0

1

2

3

Assessment error True error

Error type

M
is

s
e

d
 d

u
e

 d
a

te
s

Task 2.1

Task 2.2

Figure 5.11: Error in missed due dates by task by error type (n = 13).

5.5. DATA ANALYSIS AND RESULTS 45

0

1

Estimated missed due
dates

Resulting missed due
dates

M
is

s
e
d
 d

u
e
 d

a
te

s

(a) Task 2.1.

0

1

2

3

4

Estimated missed due
dates

Resulting missed due
dates

M
is

s
e
d
 d

u
e
 d

a
te

s

(b) Task 2.2.

Figure 5.12: Paired scatter plot showing the occurrences of the estimated and resulting
missed due dates (n = 13). The dotted line indicates the optimal number of missed due
dates. The black line indicates the median.

Assessment error In the less demanding Task 2.1 nine participants estimated the num-
ber of missed due dates of their manual planning order correctly. This number resulted in
a mean assessment error of 0.31± 0.48. In the more complex Task 2.2 three participants
estimated the number of missed due dates of their manual planning order correctly. This
number resulted in a higher mean assessment error of 1.46±1.05 missed due dates.
As for the finish date, statistical tests were performed to validate the statistical significance
of the assessment error. The absolute difference between the estimated and the resulting
missed due dates in Task 2.1 was not normally distributed, as assessed by Shapiro-Wilk’s
test (p < .05). Therefore, a paired samples Wilcoxon test was performed. It shows that
in Task 2.1 the median of the estimated missed due dates (0) did not deviate significantly
(p > .05) from the median of the resulting missed due dates (0). In Task 2.1 the differ-
ence between the estimated and the resulting missed due dates was normally distributed
as assessed by Shapiro-Wilk’s test (p > .05) and a Normal Q-Q plot. Also, there were no
outliers in the data as assessed by the inspection of a boxplot. Therefore paired samples
t-test was performed. It shows that in Task 1.2 the mean of the estimated missed due
dates (1.62) was significantly smaller than the mean of the resulting missed due dates (2.77)
(t(12) =−2.9608, p = .005952).

True error In the less demanding Task 2.1 eight participants created an order that led
to the optimal number of 0 missed due dates. This number resulted in a mean true error
of 0.38±0.51 missed due dates. In the more complex Task 2.2 four participants created an
order that led to the optimal number of 2 missed due dates. This number resulted in a
higher mean true error of 0.77±0.60 missed due dates.
Statistical tests were performed to validate the statistical significance of the true error. The
resulting missed due dates of Task 2.1 and Task 2.2 were not normally distributed, as as-
sessed by Shapiro-Wilk’s test (p < .05). Therefore, a one-sample Wilcoxon signed-rank
test was performed. It shows, that in Task 2.1 the median of 0 didn’t deviate significantly
(p > .05) from the optimal 0 due dates missed. However, in Task 2.1 the median 3 was
significantly greater (p < .05) than the optimal 2 due dates missed.

Order of tasks Figure 5.13 displays the similarity of the task execution order that was
created by the participants to the proposed and the closest optimal order. As a similarity

46 CHAPTER 5. EVALUATION

measure, the Gestalt Pattern Matching Algorithm developed 1983 by Ratcliff and Ober-
shelp [41] was used, which returns a similarity value 0≤ S≤ 1. 0 signifies 0% similarity, and
1 implies 100% similarity. The Python implementation difflib.SequenceMatchers
[58] was utilised to calculate the similarity.

0.71

0.38

0.89
0.87

0.2

0.4

0.6

0.8

1.0

to proposed order to closest optimal order

Similarity of manual order

S
im

ila
ri

ty
 m

e
a

s
u

re

Task 2.1

Task 2.2

Figure 5.13: Comparison of similarity of estimated execution order grouped by task (n =
13).

In the less complex Task 2.1 eight participants created an optimal order. The mean similar-
ity of the order that the participants created to the order they got proposed was 0.71±0.18.
The mean similarity to the closest optimal order was 0.89±0.16. The lower similarity to the
proposed order can be explained by the fact that there were four possible optimal orders
from which one the algorithm randomly proposes, so the probability for getting an optimal
matching order was only 1

4 .

In the more demanding Task 2.2 one participant created an optimal order. The mean similar-
ity of the order that the participants created to the order they got proposed was 0.38±0.18.
The mean similarity to the closest optimal order was 0.87±0.06. In total, there were 48960
optimal orders. Therefore, the probability of getting a proposed order that matches the
created order was very low. However, with that many optimal orders, it was very likely to
create an order that matches one of these optimal orders by 80% or 90%, which results in a
high similarity value to the closest optimal order.

Acceptance of intelligence Figure 5.14 depicts the result of the seven Likert-type ques-
tions about Task 2.1 and Task 2.2. 92% of the participants disagreed or strongly disagreed
that they felt patronised by the scheduling system. 69% agreed or strongly agreed that
they found the proposed order easy to perceive. 77% found the proposed order intelligible.
92% trusted the proposal to be better than their manual order. Also, 92% find an automatic
planning feature like this helpful. 69% would use a planning feature like this. Finally, 92%
agreed or strongly agreed to be generally open to intelligent features in software like this if
their privacy was guaranteed.

5.5. DATA ANALYSIS AND RESULTS 47

0%

8%

8%

8%

8%

23%

92%

92%

92%

92%

77%

69%

69%

0%

8%

0%

0%

15%

23%

8%

8%

If my privacy is guaranteed,
I am generally open to
intelligent features in a

software like this.

It is likely that I would use
an automatic planning feature

like this.

I would find an automatic
planning feature like this to

be helpful.

I trust the proposal to be
better than my manual

planning.

I find the proposal
intelligable.

I find the proposal easy to
perceive.

I feel patronized by the
software making the planning

for me.

100 50 0 50 100

Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.14: Likert-type questions about Task 2 (n = 13).

5.5.1.3 General usability

Figure 5.15 shows the result of the three Likert-type questions in the final questionnaire,
which contained questions about the software as a whole. 92% of the participants agreed or
strongly agreed that they found the software interface easy to understand. 85% understood
the features of the software. Finally, 100% liked the possibility to arrange elements in an
arbitrarily nested way.

0%

0%

0%

100%

92%

85%

0%

8%

15%

I liked the possibility
to arrange elements
(boards, lists, items)

in an arbitrarily nested
way.

The features of the
software were clear to
me. I understand what
can be done using the

features.

I found the interface of
the software easy to

understand.

100 50 0 50 100

Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.15: Likert-type questions after finishing all tasks (n = 13).

48 CHAPTER 5. EVALUATION

5.5.2 Qualitative data

5.5.2.1 Questions

Table 5.2 gives an overview of the qualitative questions asked throughout the study.

Qualitative questions

Q01 Part 1 Which feature(s) helped the most in achieving your task?

Q02 Part 1 Why did you select Board X as your favourite?

Q03 Part 1 Why did or did you not favour your personal arrangement over the examples?

Q04 Part 2 Do you have any specific intelligent feature for this application in mind that you would like to have?

Q05 Part 2 Do you have any general comments regarding the planning feature?

Q06 General What did you like when using the software?

Q07 General What didn’t you like when using the software?

Q08 General Would you use a software like this in the future?
If yes, what would you use it for and in which part of your life? If no, why not?

Q09 General Are there any features you were missing or things I should add or improve?

Q10 General Do you have any general feedback?

Table 5.2: Overview of the qualitative questions throughout the questionnaires.

Part 1 For question Q01 participants stated that the features that helped them the most in
creating their personal arrangement in Task 1.1 were arbitrary nesting (n = 4), the different
types of elements, Board, List and Item (n = 3), converting elements (n = 2), moving ele-
ments (n = 2), reordering elements (n = 1) and having a Kanban board (n = 1). For question
Q02 participants, who selected Board A, explained it as being the simplest arrangement
(n = 2). Also, they stated that they did not know how to handle nested lists in a Kanban
board, as moving lists of tasks from Todo into Doing would not make sense to them (n = 1).
Participants who favoured Board B justified it with being a good balance between simplic-
ity and complexity (n = 2), having advantages over traditional Kanban board nesting while
being clear enough (n = 2) and being similar to their personal solution (n = 2). Finally,
participants who have chosen Board C described it as the best presentation of the project
(n= 4) and saw it as clear and easy to understand (n= 2). In question Q03 participants, who
favoured their personal arrangement over the presented arrangements explained, that their
personal solution made more sense to them.

Part 2 Questions Q04 and Q05 concerned the symbolic intelligence of part 2. Participants
stated that they would like to have the possibility of adding more constraints like priorities
or dependencies between tasks (n = 8). Furthermore, participants stated they would like
to have an option to improve visualisation of the temporal constraints, which could con-
sist of a timeline or calendar view (n = 4). Also, they would like a better presentation of
the proposed order (n = 3), for example, prominently highlighting the next task, a better
visual comparison between the current order and proposed order or the option to accept
the proposed order automatically. n = 2 participants stated that they would like to have
push notifications on start dates or due dates. Other proposals mentioned n = 1 times were

5.5. DATA ANALYSIS AND RESULTS 49

automatic cleanup for old tasks, automatic splitting of tasks into sub-tasks, integration into
calendar apps and location-aware tasks (n = 1).

General For question Q06, n = 6 participants stated that they liked the scheduling fea-
ture. Furthermore, concerning the usability, participants answered that they enjoyed the
interface (n = 5), they stated that the features were clear and easy to understand (n = 4),
they liked the possibility to drag and drop elements (n = 3) and emphasised the good us-
ability (n = 2). Regarding the task visualisation aspect of the software, they highlighted
the (arbitrary) nesting (n = 3) and stated that the software is very customisable and allows
building your own system (n = 3). Besides, they liked the visualisation capabilities (n = 2)
and the Kanban method (n = 1).
For Q07, n = 8 participants stated that they did not like the restriction of the drag and drop
functionality, requiring the use of the move button in certain situations. Furthermore, they
did not like modifying the title or description of an element by clicking the modify button
instead of directly clicking the element (n = 4). From a visual point of view, participants
criticised that nested elements are hard to distinguish because of the similar colours, which
makes the interface cluttered (n = 4). In addition, for n = 2 participants, the items were too
small, causing a hard to read interface. Besides, criticism with n = 1 mentions regarded
that converting boards or lists to items can cause data loss, splitting tasks was not possible
in Task 2.1 and Task 2.2 and a calendar might be the more useful tool for scheduling tasks.
Finally, n = 1 participants commented that sometimes it is beneficial if software forces a
way of organising instead of giving total freedom to the user.
As for Q08, all participants stated that they would generally use the software (n = 13). Ar-
eas of application consisted of work (n= 5), household organisation (n= 2), private projects
(n = 2), the scheduling as addition to a calendar (n = 2), collaborative working (n = 1),
studying (n = 1), working at a laboratory (n = 1) and research (n = 1).
As for Q09 participants answered that they would like to see an improved design of the
software (n = 3), more resources to items like attachments (n = 2), allow checkboxes in de-
scriptions (n = 2), the possibility to hide child elements of boards and show them via zoom
or collapsing (n = 2), configurable colours of elements (n = 1), collaborative boards (n = 1)
and a progress bar showing the progress within a Kanban board. An additional interest-
ing idea consisted of abstracting the Kanban method from the Board/List structure into a
different data structure such as labels and making it a separate view that can be turned on
and off (n = 1).
Answers for Q10 did not provide any important insights not mentioned in the previous
answers.

5.5.2.2 Observation

While observing the participants during the study, it was noted that almost all participants
initially tried to move elements to different levels via drag and drop, although the separate
move button was explained in the exploration phase. When noticing drag and drop is
not possible in some situations, many participants fell started using the move button for
every move situation, even if drag and drop would have been possible for some of these.
Also, multiple participants tried to modify an element by clicking the description or title
before realising they had to use the modify button. Another interesting observation during
manual scheduling in Task 2.1 and Task 2.1 was that participants had different approaches to
coping with the situation when they noticed they could not reach a task’s due date. While
most participants still tried to plan the tasks to finish as closely as possible to the due date,
some moved the tasks to the end rather than trying to accomplish other tasks instead.

50 CHAPTER 5. EVALUATION

CHAPTER 6

Discussion and future work

This chapter discusses the results of the user study and their implications. Furthermore,
areas of improvement for the concept and prototype implementation are suggested. Finally,
three possible use cases are explained.

6.1 Discussion of the user study results

In the following, the results presented in the previous chapter are discussed.

6.1.1 Unbounded nesting

The first part of the study focused on unbounded nesting of elements in a Kanban board.
The goal was to examine to which extent users would use the feature and how it impacts
the software’s capabilities to visualise a project.

One of the collected metrics regards the maximum nesting depth of participants’ arrange-
ments created during the study. A mean maximum depth of 3.08 was observed, signifi-
cantly differing from the standard nesting depth of 2. However, arguably the maximum
nesting depth is influenced by several factors.
Firstly, some factors might have positively impacted the participants to use deeper nesting.
Consisting of a Kanban board having Items in the first column, the task already started
with a nesting depth of 2. Therefore, reduced nesting depths were not expected, and out-
coming depths would potentially be ≥ 2. The initial state of the board and the objective of
the task, which specifically mentioned the possibility of using actions such as moving and
converting elements, might have influenced the participants to use the nesting functional-
ity more thoroughly. Also, the participants were testing a prototype with the unbounded
nesting as a novelty, which they were told about in the exploration phase, which might
have encouraged them to use nesting. Finally, another factor concerns the example project
itself, which contained hierarchical features. It consisted of general tasks like "Create busi-
ness plan" and detailed tasks like "Read how to create a business plan", logically a sub-task.
On the other hand, factors that might negatively have impacted the participants in using
deeper nesting was the novelty of the approach, and the short time they spent using the
application. Nevertheless, the difference to the standard nesting depth consisted of at least

51

52 CHAPTER 6. DISCUSSION AND FUTURE WORK

one full level for the project. More complex projects with more tasks and hierarchical struc-
ture might benefit from unbounded nesting even more.

As an additional metric, example arrangements were presented, and participants selected
their favourite arrangement. The overall favoured arrangements (including the example
and personal arrangements) had a mean maximum nesting depth of 3.77. The difference to
the standard nesting depth is significant and consists of close to two levels. Board C (shown
in figure 5.2c) with a maximum nesting depth of 5 was favoured the most (n = 6). It has to
be pointed out that it was the only arrangement featuring a board within a board, hence
supplying visual separation through colours. Notably, only two participants favoured their
arrangement over the example arrangements. Overall, the mean maximum nesting depth
of the favoured arrangement was higher than the mean maximum nesting depth of the per-
sonal arrangements. This result supports the assumption that the maximum nesting depth
was negatively impacted in Task 1.1 through factors like lack of experience with the feature.

Finally, feedback was gathered through Likert-type questions regarding the visualisation
process and visualisation. However, these traits were not examined using multiple Likert-
type questions composed into a Likert scale as recommended in related work [14]. There-
fore no clear statements can be made, and a bias for answering the single Likert-type ques-
tions can not be ruled out. The results still indicate a trend. All participants agreed or
strongly agreed that the software supported them in visualising the project; 11 out of 13
agreed that the resulting arrangement matches their mental image of the project. The un-
bounded nesting was also perceived as the most helpful feature for achieving the first task,
as named via qualitative feedback in section 5.5.2. Besides that, the software’s most liked
aspects included the visualisation and the flexibility in building a custom system. On the
other hand, the software’s disliked aspects included concerns regarding cluttered interface
for deeper nesting scenarios, as elements were perceived hard to distinguish. This issue is
addressed in section 6.2 where areas of improvement are discussed.

Overall, unbounded nesting was perceived positively, and the results indicate a positive
impact of unbounded nesting on the software’s visualisation capabilities. However, the
study only examined an initial planning phase of a project. No conclusion can be drawn
regarding longer periods of time when working with the unbounded nesting and applying
it to the Kanban pull-system. For example, as mentioned by a participant, it is unclear how
sub-elements can be moved to in progress without moving their parent elements to the same
column. A possible solution is outlined in section 6.2.

6.1.2 Symbolic intelligence

The second part of the study focused on the recommendation feature represented through
the symbolic intelligence module. The goal was to examine how well users perform in
estimating different sized projects’ temporal constraints and optimal task orders based on
these constraints. Furthermore, the users’ attitudes towards the recommendation feature
in the prototype were examined.

The users’ estimation capabilities of tasks that are defined by three features, start date,
due date and duration, were evaluated for a less complex (five tasks with eight hours to-
tal duration, three due dates, one start date) and a more complex project (ten tasks with
40 hours total duration, four due dates, three start dates). The objective was to propose a
task order such that the earliest finish date and the minimal number of due dates missed is
reached. Additionally, the participants estimated when the project finishes and how many
due dates are missed by using the task execution order. The participants’ estimations were

6.1. DISCUSSION OF THE USER STUDY RESULTS 53

close to correct for the less complex project, both for the finish date and the number of due
dates missed. Also, most of the participants proposed an optimal order of tasks. For the
more complex project, however, most participants did not correctly estimate the finish date
and the number of due dates missed for their order. On average, the finish date was un-
derestimated by a full workday of 8 hours. Likewise, the participants underestimated the
number of missed due dates by 1.5 on average. The orders created by the participants were
also relatively far from optimal. On average, their orders resulted in finish dates 5 hours
later than the optimal finish date. Similarly, 0.77 due dates more were missed were missed
than with the optimal order.
Several factors might have impacted the quality of the users’ estimations. Firstly, the ob-
jective of estimating a project under the given circumstances was artificial. Although the
concepts of the start date, due date, and the task’s constraints were explained to the partici-
pants beforehand, a lack of understanding might have negatively impacted the estimation.
Moreover, the logical order of the tasks was not taken into account to determine the best
order. Although the participants were told to propose the best order to reach the earliest
finish date and minimise the number of due dates, it can not be ruled out that a potential
logical order of tasks impacted their decisions. In summary, participants estimated the less
complex project accurately, while the estimation of the more complex project differed sub-
stantially. The estimation of the second project came directly after the first, so the impact
of understanding issues should have been smaller there. While the more complex project
consisted of 10 tasks, real-life projects might even be significantly more complex. There-
fore, accurately estimating these projects is potentially even harder for users.
Overall, the results support the recommendation feature’s initial motivation; it is hard for
humans to estimate temporal constraints in bigger projects. It also stresses the potential
of the symbolic intelligence in supporting project scheduling, especially if more than just
temporal constraints are considered, which was the most demanded feature named by par-
ticipants as qualitative feedback (see section 5.5.2).

The users’ attitude towards the symbolic intelligence was evaluated through Likert-type
questions. The Likert-type questions are affected by the same limitation as in section 6.1.1.
Nevertheless, the results give indications, which are supported by the participants’ qual-
itative feedback. 12 out of 13 participants agreed to trust the proposal to be better than
their planning and found it helpful. Also, 12 participants did not feel patronised by the
intelligence. These results indicate acceptance of the symbolic intelligence and a support-
ing character of the feature in terms of project planning. However, only 69% agreed that
they would use the feature. Qualitative feedback and observation indicate the participant’s
concern that not all projects are defined through temporal constraints, thus limiting the use
case. Also, the expressiveness of the intelligence is limited if the elements and its temporal
resources are not maintained correctly, which presents a substantial effort and might not be
the case for smaller projects. Although participants generally agreed to find the recommen-
dations intelligible and easy to perceive, slightly lower numbers of 77% and 69% indicate
that the visual presentation of the recommendations can still be improved. Potential im-
provements for the symbolic intelligence, partly based on the participant’s feedback, are
discussed in section 6.2.2.

6.1.3 General usability

Evaluating the usability and user experience of the prototype was another goal of the study.
Besides observation, usability was measured through various metrics. These will be dis-
cussed in the following.

54 CHAPTER 6. DISCUSSION AND FUTURE WORK

Number of actions Generally, while creating the visualisation for the project in the first
task, participants without prior experience with board-based tools performed fewer ac-
tions than participants with prior experience. This observation is not a surprise; arguably,
if takes some time to get used to board-based tools. However, the difference was not sig-
nificant, possibly partly because of a small dataset of only three participants without prior
experience. Nevertheless, the metric could be an indicator regarding the user’s experience
with board-based tools.

Extended NASA-TLX The measures of the extended NASA-TLX are of a subjective mat-
ter. Without creating comparability by performing multiple measures throughout the study,
their expressiveness is limited. However, generally high control and creativity support
scale values are desired. The workload within the first task was recorded at the medium of
the scale (mean 40.64), indicating a not too complicated task. Means of sense of control and
creativity support were observed on the upper third of the scale (75.77 and 73.72).

Feedback and observation Most insights regarding usability are given through quanti-
tative and qualitative feedback and observation. The Likert-type questions are affected by
the same limitation as described in 6.1.1. Nevertheless, the results indicate an easy to per-
ceive interface and easy to understand features. These indications are supported through
qualitative feedback. Here, the software’s liked aspects in terms of usability include the in-
terface and easy to understand features. Besides that, the drag and drop functionality was
highlighted positively. On the other hand, the drag and drop functionality’s restriction
was also disliked when using the software. As described in section 3.3.2, when moving el-
ements to different levels, the move button had to be used, leading to two different actions
required for the same outcome. Results of the study show that this was perceived as unin-
tuitive and caused frustration when trying to find the correct action to use. Furthermore,
using the move button required two additional clicks, thus slowing down the process. A
second usability problem revealed by qualitative feedback and observation concerns the
modification of elements, for which the modify button had to be clicked. Users intuitively
wanted to edit the element’s details in place. These two flaws should be addressed in fu-
ture iterations of the prototype as described in section 6.2.

Overall the usability of the prototype was perceived positively, and areas of improvement
were identified. It has to be stated that the study’s expressiveness for long-term usability
is limited. However, the study’s goal was to evaluate the initial concept of the prototype
and evaluate the usability in a more general manner. In the sense of an iterative design
process, more studies examining usability more thoroughly should be conducted towards
a consumer product.

6.1.4 Outlook

As mentioned above, the study’s goal was to evaluate the initial concepts of the prototype
and was limited in resources. It was conducted as a within-subject study. As a next step,
after addressing the issues discussed in the section above, a future study should focus on
the long-time use. Also, between-subjects study design should be considered to evaluate
unbounded nesting of elements in direct comparison to standard nesting. An opportu-
nity could be software development related projects in university courses like prior studies
showed [30]. The potential positive effects of unbounded nesting should be studied more
thoroughly. For this purpose, the same prototype but without unbounded nesting could
be used in a control group. The initial user study evaluated the concept of the symbolic
intelligence and found it to be promising. Future studies should also examine potential

6.2. AREAS OF IMPROVEMENT FOR THE PROTOTYPE 55

positive effects on managing and scheduling projects in more detail. A control group could
use the software without the intelligent feature, relying on manual planning. Generally,
more participants should be recruited to raise the statistical expressiveness of the results.

6.2 Areas of improvement for the prototype

In the previous section, the evaluation results of the prototype were discussed, and prob-
lems were identified. Based on these findings, areas of improvement are derived and de-
scribed in the following.

6.2.1 Unbounded nesting

6.2.1.1 Kanban method context

As seen in the previous section, unbounded nesting could provide advantages in visualis-
ing a project. However, as noted by a participant, it is unclear how to use the unbounded
nesting in the Kanban method context when pulling items into the next column of a Kan-
ban board. When a nested element is being moved into the next column, the relation to
its former parent element and the visualisation of this hierarchy is lost. One of the partici-
pants suggested an approach to cope with this in the qualitative feedback section. Instead
of representing stages within a Kanban board using List elements, Kanban could also be
part of the resource concept (see section 3.3.3). The Kanban resource should be configurable
and consist of the project’s stages. Assigned to an element, it denotes the element’s current
stage. The view can be switched to a Kanban view showing the elements in their respective
stages. In contrast to the current implementation, this Kanban view is provided automati-
cally. If a sub-element’s stage differs from its parent elements’ stages, the hierarchy to the
parents could still be visually indicated; for example, by showing the parent elements in
the sub-element’s stage with reduced opacity and minimal details.

6.2.1.2 Visualisation of unbounded nesting

While the unbounded nesting was perceived positively in the user study and could im-
prove the visualisation of projects, feedback indicates that displaying the unbounded nest-
ing can also clutter the interface. Based on the participant’s feedback, two potential im-
provements for displaying unbounded nesting were identified. One feedback regarded the
colouring of elements. The prototype uses different colours for different element types, but,
for example, all Board elements are coloured blue. However, this can make the interface
cluttered if too many elements of the same type are nested. Therefore, different approaches
in colour coding elements should be investigated. One way could be colour coding el-
ements by their level. An example of such a colour-coding can be found in figure 6.1a.
A gradient ranging from almost black to almost white is used, getting lighter for deeper
nested elements. The approach might allow to easier perceive elements within the same
level. Element types could still be perceived through the handle of an element.
Another way to avoid clutter when displaying the unbounded nesting could be to hide
deeper nested elements. In the study, participants proposed two approaches for hiding
elements. One technique consists of zoomable interface, showing deeper nested structure
only when zooming in. Another option regards collapsible elements and showing child
elements only if an element is unfolded.

56 CHAPTER 6. DISCUSSION AND FUTURE WORK

6.2.1.3 Moving elements in nested situations

Currently, moving elements to different locations must be executed using two different ac-
tions, drag and drop or the move button based on the situation. As seen in section 6.1.3, this
approach proved to be unintuitive, and participants demanded the possibility to use drag
and drop in every move situation. Therefore, efforts should be made to realise unrestricted
drag and drop. One of the problems regarding unrestricted drag and drop identified in
the conceptional phase (see chapter 3) was indicating the new position of an element. Cur-
rently, when dragging elements over other elements, these elements are moved to the side,
indicating the new position of the element. Therefore, in deeper nested situations with big
elements, elements moving in different directions are confusing. Another way to indicate
possible new positions could be by adding a visual indication, as done in the recent version
of GitHub Projects [70] (also see section 2.3.2). Figure 6.1b shows a drag and drop interac-
tion in GitHub Projects. The visual indicator could be more practical in a nested context,
avoiding moving elements to the side. It would be shown on the destination where the
dragged element is currently dragged over. Another problem regarding unrestricted drag
and drop was faced in the implementation phase of the prototype, as the utilised drag and
drop library did not support it correctly. This issue could be solved using a different drag
and drop library such as SortableJS [79].

(a) Elements colour coded by level.

(b) Indication of the new position in GitHub
Projects during drag and drop.

Figure 6.1: Areas of improvement for unbounded nesting.

6.2.2 Scheduling feature

This section discusses potential improvements concerning the scheduling feature repre-
sented through the symbolic intelligence. Some of the ideas are motivated by feedback
gathered in the user study and findings of chapter 2.

6.2. AREAS OF IMPROVEMENT FOR THE PROTOTYPE 57

6.2.2.1 Visualisation of the scheduling result

One of the areas of improvement identified by the study results concerns the visualisation
of the scheduling result.

Timeline view One proposed feature for improving the visualisation was a timeline or
calendar view. Currently, the scheduling result is presented through annotating the ele-
ments with the position in the execution order as seen in figure 3.6. The temporal details
(when a task starts or finishes) are only revealed after hovering over the indication. The
timeline view would allow perceiving the temporal details and the execution order of the
scheduling at a glance.

Evaluation of the current backlog order Further feedback regarded the existing back-
log order (usually the first column of the Kanban board). In the backlog, tasks are often
arranged in a prioritised form. Accordingly, its order presents the manually planned ex-
ecution sequence. Evaluating this order against the proposed order and visualising the
result might make comparing both plannings easier. Furthermore, one of the participants
demanded the option to accept the proposed order and reorder the backlog accordingly.

Coping with a range of optimal solutions In the prototype, the constraint solver im-
plementation can find an optimal or close-to-optimal solution for the scheduling problem.
However, this could include hundreds or even thousands of possible outcoming solutions
depending on the problem. Hence, even if the current order of the backlog is already an
optimal solution, a different solution might be proposed, potentially confusing the user.
This problem could be avoided by calculating the finish date and the number of due dates
missed for the current backlog order and comparing this with the proposed solution. If
the current order’s characteristics are equal or better than the proposed order, this could be
indicated to the user, and no different order is proposed.

General improvements Generally, regarding participants’ feedback, the visual presenta-
tion of the result could be improved. For example, the next task could be highlighted more
prominently.

6.2.2.2 Constraint solver enhancements

Other feedback gathered in the study concerned the strategy used by the constraint solver
to find a solution. Potential improvements are discussed in the following.

Additional constraints The most proposed improvement for the symbolic intelligence
through participants’ qualitative feedback was adding more constraints that influence the
proposed order. Additional constraints can consider additional aspects within a project
for the scheduling, thus improving the scheduling’s accuracy. New constraints can be im-
plementable with small effort due to the nature of the constraint solver implementation.
Currently, only temporal constraints are used. Other constraints could include the prior-
ity of the tasks (derived from resources or the current order of the backlog), dependencies
between tasks, WIP limits or other numerical and textual resources.

Support for multiple team members Currently, the implementation of the prototype pro-
poses the task order under the assumption that only one team member works on the project
(only one task is processed at a time). In the future, it should be possible to calculate pro-
posals for multiple team members as well. As described in chapter 4 this requires only

58 CHAPTER 6. DISCUSSION AND FUTURE WORK

small adjustments, as the current implementation of the constraint solver already incorpo-
rates the concept of multiple users.

Configurabiltiy The symbolic intelligence could also be made more configurable. Firstly,
the work schedule, team members working on a project and WIP limits should be ad-
justable. Also, different strategies and settings for the constraint solver might be selectable.
For example, a strategy to cope with due dates that are impossible to fulfil could either
move these tasks to the end of the execution sequence or complete them as close to the due
dates as possible. Also, users might configure that completing many short tasks is favoured
over completing fewer long tasks.

6.2.2.3 Support through data-driven techniques

The current prediction system is solely based on a constraint solver, which finds the opti-
mal task order based on the temporal resources configured by the user beforehand. The
informative value of the scheduling result is limited if the resources are not configured or
maintained correctly. The accuracy of the scheduling system could be supported through
data-driven techniques based on historical project data. Ideas for applying data-driven
techniques will be discussed in the following.

Adjust prediction with historical bias One way of improving the prediction might be
utilising data of projects’ finish dates in the past and how long tasks usually took. Tasks
processing durations might have been regularly longer or shorter than the duration esti-
mated by a user beforehand. This information can be used as a factor for calculating the
finish date in future estimations. For example, if tasks generally took 20% longer to fin-
ish in the past, the assumed duration for calculating the finish date for future tasks can be
multiplied by 1.2.

Automatic duration estimation The duration assumed for a task during planning has
to be entered manually by the user, making the scheduling result heavily dependent on
the accuracy of the user’s estimation. As an approach to reduce this dependency, data-
driven techniques could be used to calculate the duration automatically. For example, if
story points are attached to a task, the velocity of a team or user could be calculated and
used to derive the duration of that task. Also, techniques presented in section 2.4 might be
promising, such as the deep learning model proposed by Choetkiertikul et al. [17].

Support constraint solver through other approaches Another possibility to enhance the
results of the estimation system could be combining it with other approaches, such as the
influence diagram proposed by Weflen et al. [51]. The data for weighing the nodes in the
diagram could be collected automatically during usage of the application.

6.2.2.4 Scheduling everywhere

Currently, the scheduling can only be triggered on boards containing at least two List sub-
elements. This limitation was added as two is the logical minimum of stages within a Kan-
ban board. However, when adapting Kanban as a resource, as discussed in section 6.2.1.1,
this limitation could be removed, allowing to trigger the scheduling for every element in
the workspace that contains sub-elements.

6.2. AREAS OF IMPROVEMENT FOR THE PROTOTYPE 59

6.2.3 General usability

The usability of the prototype could still be improved. As seen in section 6.1.3 the most im-
portant improvement besides the enhancement of the drag and drop functionality regards
the modification of elements. Intuitively this should be possible by clicking the parts of the
element that are subject to change, for example, its title.

6.2.4 Additional features

Part of the initial concept of the prototype was to develop an application with essential fea-
tures. However, important features are still missing for a consumer product. Also, features
were demanded by the study’s participants. Some of the features will be discussed in the
following.

User management and shared boards While different users are available and users can
be assigned to tasks using the User resources, no proper user management or shared boards
are available. For a consumer product, it should be possible to create user accounts pro-
tected by passwords and work collaboratively on workspaces as a team.

WIP limits In order to conform with the Kanban method, it should be possible to config-
ure WIP limits for certain stages.

Searching and filtering elements Another useful feature could be searching and filtering
the workspace or composing queries. Such a query could be:
"Show all elements with a duration longer than 5 hours."

Additional resources and improved description One feature proposed by participants of
the user study is adding additional resources such as images or attachments. Also, it could
be helpful to offer formatting capabilities inside the description of an element. A way to
achieve this could be integrating the markup language Markdown [87].

Recurring tasks Potential use cases such as studying or laboratory work (see sections
6.3.2 and 6.3.3) include weekly recurring tasks. These could be supported through function-
ality that automatically adds elements to the backlog, for example, every week. Another
option could be functionality for duplicating elements and their sub-elements or creating
templates.

Different recommendation systems Currently, the recommendation system consists only
of the scheduling system offered by symbolic intelligence. Other types of recommendations
could enhance the management of projects even more. Recommendations could be based
on statistical data about projects. In the conceptional phase of this work, data of publicly
available boards from the public APIs of Trello and GitHub projects was fetched and ex-
amined. Although insights of this exploration were not used for the final prototype, which
utilised a symbolic intelligence, they could be investigated more in the future. Some inter-
esting ideas for recommendations are presented in the following. In order to evaluate these
approaches, larger datasets are required, which could consist of publicly available data and
data collected in future studies using our prototype.

• Information on how parent elements are filled and emptied with sub-elements, and
how elements move through the stages of a Kanban process:

60 CHAPTER 6. DISCUSSION AND FUTURE WORK

– Which parent element is just growing but never shrinking?

– When are specific parent elements filling, when shrinking?

– In which stage of the process do elements get stuck?

→ Information could be used to help identify bottlenecks.

• Information on how elements are created, modified and converted:

– When do elements get created?

– What is the probability that an element will be converted to another type of
element?

– Which elements have a large description that also contains bullet points?

→ Information could be used for recommending conversions of elements.

6.3 Use cases

As seen in section 2.2.5 the application of the Kanban method is not limited to a specific
field. Likewise, the prototype was conceptualised to support a broad range of real-life use
cases. The following section selects three examples of potential use cases and explains them
briefly.

6.3.1 Agile software development

Agile software development presents the standard use case of a Kanban board-based tool.
Here, the enhancements of our prototype might be useful. The stages of a software devel-
opment project’s process can be represented using the Kanban method and its board. The
unbounded nesting could be used to better visualise different hierarchies in the project,
showing larger project scopes and sub-tasks and thus giving a better overview of the project.
The symbolic intelligence could be used as a forecasting system for evaluating project dead-
lines. Also, if not clear which features should be developed first to reach all deadlines, the
task order proposition might be useful.

6.3.2 Studying at a university

A semester at a university usually consists of attending multiple courses with different
exercises, deadlines and exams. It presents an ideal opportunity to be managed using our
Kanban board-based application. Different ways of representing a semester are imaginable
and supported through the application’s flexible nesting capabilities. For example, it could
be represented using a single Kanban board with the standard stages, open, in progress, and
done. Courses could be represented using Lists containing sub-Lists for the different types
within the course, such as weekly exercises, full-semester projects and exams. Each of these
Lists can then contain Items representing weekly exercise sheets. Temporal resources can
represent temporal constraints of exercise sheets like start date and a due date. For weekly
tasks, a recurring task feature as explained in section 6.2.4 might be useful. Another way
of representing the semester can be multiple Kanban boards representing different types of
tasks such as weekly exercises and exams. The stages of these boards could then be more
detailed and include, for example, exercise sheet in correction and exercise sheet graded. The
symbolic intelligence could assist in managing a week with different due dates for different
exercises. Applying it in the context of a longer timespan, such as a whole semester or the
exam phase, could indicate if too many courses are taken and if succeeding in finishing all
these courses is realistic.

6.3. USE CASES 61

6.3.3 Laboratory work organisation

Organising work in a laboratory, such as analysing COVID-19 PCR test samples, can be an-
other potential use case. A week or longer timespan could be represented through a single
Kanban board or multiple Kanban boards representing different work areas. A week in the
laboratory consists of many tasks with predefined time periods. Certain tasks depend on
start dates, such as the new samples arriving or a colleague coming to work at a specific
time. For others, due dates are relevant, such as probes or reports that must be delivered to
other departments until a certain time. In such a scenario, especially the scheduling system
could be useful. It could help find an order of tasks to meet all temporal constraints and
give an overview of whether the different tasks are still on time. As many tasks are repeated
regularly, a helpful addition could be the recurring tasks feature described in section 6.2.4.

62 CHAPTER 6. DISCUSSION AND FUTURE WORK

CHAPTER 7

Conclusion

This work presented a Kanban board-based web application prototype featuring unboun-
ded nesting of Boards, Lists and Items. Furthermore, a recommendation system to support
the scheduling of projects has been implemented using a symbolic intelligence based on a
constraint solver. Based on pre-configured temporal constraints, the symbolic intelligence
proposes a task order for finishing a project as early as possible and minimising the number
of missed due dates. The prototype and its concepts were evaluated in a user study with 13
participants. For visualising an example project, participants used a mean maximum nest-
ing depth of 3.08 and favoured arrangements with a mean maximum nesting depth of 3.77.
Both values were significantly greater than the current standard depth of 2. Furthermore,
participants perceived unbounded nesting positively. The results indicate that unbounded
nesting can be a useful enhancement of Kanban board-based tools for visualising projects.
Furthermore, in an example project with ten tasks, the participant’s manually planned task
execution order would have led to a significantly later project finish date with more due
dates missed than the execution order proposed by the symbolic intelligence. Also, partici-
pants perceived the symbolic intelligence positively and welcomed the feature. The results
indicate that users have problems correctly estimating the temporal constraints of larger
projects. Therefore, the symbolic intelligence can support project scheduling in Kanban
board-based tools. Overall, the usability of the prototype was also perceived positively.
Additionally, the user study revealed areas of improvement for the prototype regarding
unbounded nesting, symbolic intelligence and usability. These should be addressed in fu-
ture iterations of the prototype. The study focused on initially evaluating the concepts of
the prototype. Therefore, the result’s expressiveness regarding long time use is limited. For
unbounded nesting, only the visualisation of a project was examined. Future work should
investigate the application of unbounded nesting during long time use and when work-
ing with the Kanban method. Data-driven approaches for the recommendation system
should be further investigated to improve its expressiveness and reduce its dependency on
prior user input. This work investigated novel approaches for Kanban board-based tools
and validated their potential. The concepts and prototype implementation presented in
this work can be used for future Kanban board-based implementations and further inves-
tigations of the novel approaches. Finally, unbounded nesting and a symbolic intelligence
were introduced to improve board-based tools without comprising simplicity. Therefore,
this work makes a small contribution to helping people manage their tasks and projects in
different application areas.

63

64 CHAPTER 7. CONCLUSION

Appendix

Source code

Backend

• https://github.com/tmrdlt/masterthesis-khipu

• Backend of the prototype written in the Scala Programming Language.

Frontend

• https://github.com/tmrdlt/masterthesis-khipu-frontend

• Frontend of the prototype written in TypeScript.

Evaluation and visualisation

• https://github.com/tmrdlt/masterthesis-evaluation

• Statistic evaluation and visualisation of the user study results using R.

• Additional calculations using Python and JavaScript.

• Architechture and class diagram of prototype.

65

https://github.com/tmrdlt/masterthesis-khipu
https://github.com/tmrdlt/masterthesis-khipu-frontend
https://github.com/tmrdlt/masterthesis-evaluation

66 Appendix

Extended NASA-TLX questionnaire

67

Quantitative user study data (1)

Intro Task 1.1
Participant ID Age Have you used board-based tools before? Prior experience Duration Total events CONVERT CREATE DELETE MOVE REORDER UPDATE UPDATE_RESOURCES Max depth personal
2 27 yes 6 04:40 40 5 8 1 19 4 3 0 4
3 28 yes 7 09:50 51 2 7 2 24 14 2 0 3
4 28 yes 7 04:56 31 2 0 2 14 11 2 0 2
5 27 yes 7 09:50 35 5 10 1 19 0 0 0 2
6 28 no 08:41 24 0 2 0 12 6 4 0 2
7 25 yes 3 09:43 51 13 3 0 28 7 0 0 2
8 26 yes 6 06:01 22 3 0 0 9 9 0 1 3
9 30 yes 2 07:39 46 0 4 0 18 24 0 0 3
10 27 yes 7 09:08 64 3 10 4 36 9 0 2 4
11 26 yes 7 05:09 23 4 3 0 15 1 0 0 3
12 29 no 09:29 47 12 0 0 20 15 0 0 5
13 27 yes 7 05:50 32 1 5 0 17 8 1 0 4
14 28 no 06:00 25 4 0 0 11 10 0 0 3

Task 1.1: Extended NASA-TLX
Participant ID Mental Demand Physical Demand Temporal Demand Performance Effort Frustration Control Exploration Motivation Enjoyment Workload Sense of control Creativity Support Index
2 60 5 5 60 35 5 85 60 35 25 27,5 85 40
3 30 20 30 70 50 15 90 80 65 65 33,33333333 90 70
4 75 15 20 80 35 30 80 90 85 80 37,5 80 85
5 80 35 80 65 75 15 50 75 80 75 55,83333333 50 76,66666667
6 75 50 30 25 55 70 20 15 70 70 39,16666667 20 51,66666667
7 70 25 15 80 40 10 90 90 90 80 38,33333333 90 86,66666667
8 65 15 25 90 15 5 95 80 70 75 35 95 75
9 65 25 5 90 25 5 85 95 70 90 35 85 85
10 75 65 45 75 50 20 75 95 95 90 51,66666667 75 93,33333333
11 50 70 60 65 30 25 70 85 70 70 45,83333333 70 75
12 80 50 80 35 70 85 60 75 45 70 52,5 60 63,33333333
13 70 35 60 70 55 35 100 80 70 60 48,33333333 100 70
14 40 10 15 80 25 20 85 80 90 90 28,33333333 85 86,66666667

Task 1.2
Participant ID Max depth preferred Better than personal solution? Max depth overall
2 2 yes 2
3 5 yes 5
4 3 no 2
5 3 yes 3
6 5 yes 5
7 3 yes 3
8 2 yes 2
9 5 yes 5
10 3 no 4
11 5 yes 5
12 3 yes 3
13 5 yes 5
14 5 yes 5

68
A

ppendix
Quantitative user study data (2)

Task 2.1
Participant ID Duration Finish date est Finish date real Diff h est vs real Diff h real vs opt Failed dues est Failed dues real Diff dues est vs real Diff dues real vs opt Order diff to prop Order diff to opt
2 03:00 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
3 03:00 01.11.2021 18:00 01.11.2021 18:00 0 0 0 1 1 1 0,8 0,8
4 01:30 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
5 03:00 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
6 03:00 01.11.2021 18:00 02.11.2021 11:00 1 1 0 1 1 1 0,6 0,8
7 03:00 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
8 03:00 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
9 01:50 01.11.2021 16:30 01.11.2021 18:00 0 0 0 1 1 1 0,6 0,8
10 01:58 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
11 01:26 02.11.2021 10:30 02.11.2021 10:30 0 0,5 0 1 1 1 0,6 0,6
12 01:50 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
13 01:10 01.11.2021 18:00 01.11.2021 18:00 0 0 0 0 0 0 0,8 1
14 03:00 01.11.2021 18:00 02.11.2021 10:30 0,5 0,5 1 1 0 1 0,2 0,6

Task 2.2
Participant ID Duration Finish date est Finish date real Diff h est vs real Diff h real vs opt Failed dues est Failed dues real Diff dues est vs real Diff dues real vs opt Order diff to prop Order diff to opt
2 06:00 05.11.2021 12:00 08.11.2021 16:00 12 6 2 2 0 0 0,4 0,9
3 06:00 05.11.2021 18:00 08.11.2021 16:00 6 6 0 3 3 1 0,3 0,9
4 05:28 04.11.2021 12:00 09.11.2021 12:00 24 10 2 2 0 0 0,2 0,8
5 06:00 04.11.2021 18:00 09.11.2021 11:00 17 9 1 3 2 1 0,5 0,8
6 05:21 05.11.2021 18:00 08.11.2021 16:00 6 6 1 3 2 1 0,3 0,9
7 06:00 05.11.2021 17:00 05.11.2021 18:00 1 0 1 3 2 1 0,7 0,9
8 06:00 06.11.2021 10:00 10.11.2021 12:00 18 18 1 3 2 1 0,4 0,8
9 06:00 05.11.2021 18:00 05.11.2021 18:00 0 0 1 4 3 2 0,3 0,8
10 05:37 05.11.2021 18:00 08.11.2021 13:00 3 3 2 2 0 0 0,5 0,9
11 04:33 08.11.2021 16:00 08.11.2021 16:00 8 6 2 3 1 1 0,3 0,9
12 05:30 05.11.2021 15:00 08.11.2021 12:00 5 2 1 3 2 1 0,3 0,8
13 05:30 05.11.2021 18:00 05.11.2021 18:00 0 0 3 2 1 0 0,4 1
14 06:00 05.11.2021 18:00 08.11.2021 16:00 6 6 4 3 1 1 0,3 0,9

Likert-type questions
Task 1.1 Task 2 Outro

Participant ID LTQ01 LTQ02 LTQ03 LTQ04 LTQ05 LTQ06 LTQ07 LTQ08 LTQ09 LTQ10 LTQ11 LTQ12 LTQ13
2 5 5 4 1 5 5 5 5 2 5 5 5 5
3 5 4 4 1 3 2 4 4 5 5 4 4 5
4 5 5 5 1 3 4 4 5 5 5 5 5 5
5 5 5 4 1 5 5 5 5 4 5 4 4 5
6 4 4 4 3 3 4 5 3 3 2 3 3 5
7 5 5 4 1 4 5 4 5 4 4 5 4 5
8 5 4 5 1 2 3 1 4 2 4 5 5 4
9 5 5 5 1 5 5 5 5 5 5 5 5 5
10 4 4 4 1 4 3 5 5 4 5 4 4 5
11 5 4 3 1 4 5 4 5 4 5 4 3 5
12 4 4 3 2 4 5 4 5 2 4 4 5 5
13 5 5 4 1 5 5 4 5 4 5 4 4 5
14 5 5 4 1 4 5 5 5 5 5 5 5 4

69

Quantitative user study data (3)

Code Part Text

LTQ01 Task 1.1 I understood what my task was about.

LTQ02 Task 1.1 The software supported me visualizing the project.

LTQ03 Task 1.1 The arrangement I created matches my mental image of the project.

LTQ04 Task 2 I feel patronized by the software making the planning for me.

LTQ05 Task 2 I find the proposal easy to perceive.

LTQ06 Task 2 I find the proposal intelligable.

LTQ07 Task 2 I trust the proposal to be better than my manual planning.

LTQ08 Task 2 I would find an automatic planning feature like this to be helpful.

LTQ09 Task 2 It is likely that I would use an automatic planning feature like this.

LTQ10 Task 2 If my privacy is guaranteed, I am generally open to intelligent features in a software like this.

LTQ11 Outro I found the interface of the software easy to understand.

LTQ12 Outro The features of the software were clear to me. I understand what can be done usingthe features.

LTQ13 Outro I liked the possibility to arrange elements (boards, lists, items) in an arbitrarily nested way.

70 Appendix

Content of attached ZIP file

References

[1] Pekka Abrahamsson, ed. Agile software development methods: review and analysis. eng.
VTT publications 478. Espoo, Finnland: VTT, 2002. ISBN: 9789513860097.

[2] Muhammad Ovais Ahmad, Denis Dennehy, Kieran Conboy, and Markku Oivo.
“Kanban in software engineering: A systematic mapping study”. en. In: Journal of
Systems and Software 137 (Mar. 2018), pp. 96–113. ISSN: 01641212.
DOI: 10.1016/j.jss.2017.11.045.

[3] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo. “Kanban in Software
Development: A Systematic Literature Review”. In: Proceedings of the 2013 39th Eu-
romicro Conference on Software Engineering and Advanced Applications. SEAA ’13. USA:
IEEE Computer Society, 2013, pp. 9–16. ISBN: 9780769550916.
DOI: 10.1109/SEAA.2013.28.

[4] Muhammad Ovais Ahmad, Jouni Markkula, Markku Oivo, and Pasi Kuvaja. “Usage
of Kanban in Software Companies An empirical study on motivation, benefits and
challenges”. en. In: (2014).
DOI: 10.13140/2.1.5145.1849.

[5] Hamzah Alaidaros, Mazni Omar, and Rohaida Romli. “Towards an improved soft-
ware project monitoring task model of Agile Kanban method”. en. In: International
Journal of Supply Chain Management (IJSCM) 7.3 (June 2018), pp. 118–125. ISSN: 2050-
7399.
URL: https://web.archive.org/web/20220216085957/http://ojs.
excelingtech.co.uk/index.php/IJSCM/article/view/2250
(visited on 02/16/2022).

[6] Hamzah Alaidaros, Mazni Omar, and Rohaida Romli. “The state of the art of agile
kanban method: challenges and opportunities”. In: Independent Journal of Management
& Production 12.8 (Dec. 2021), pp. 2535–2550. ISSN: 2236-269X, 2236-269X.
DOI: 10.14807/ijmp.v12i8.1482.

[7] Hamzah Alaidaros, Mazni Omar, Rohaida Romli, and Adnan Hussein. “The De-
velopment and Evaluation of A Progress Monitoring Prototype Tool for Software
Project Management”. In: 2019 First International Conference of Intelligent Comput-
ing and Engineering (ICOICE). Hadhramout, Yemen: IEEE, Dec. 2019, pp. 1–9. ISBN:
9781728144870.
DOI: 10.1109/ICOICE48418.2019.9035146.

[8] Bashaer Alsaadi and Kawther Saeedi. “Data-driven effort estimation techniques of
agile user stories: a systematic literature review”. en. In: Artificial Intelligence Review
(Jan. 2022). ISSN: 0269-2821, 1573-7462.
DOI: 10.1007/s10462-021-10132-x.

71

https://doi.org/10.1016/j.jss.2017.11.045
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.13140/2.1.5145.1849
https://web.archive.org/web/20220216085957/http://ojs.excelingtech.co.uk/index.php/IJSCM/article/view/2250
https://web.archive.org/web/20220216085957/http://ojs.excelingtech.co.uk/index.php/IJSCM/article/view/2250
https://doi.org/10.14807/ijmp.v12i8.1482
https://doi.org/10.1109/ICOICE48418.2019.9035146
https://doi.org/10.1007/s10462-021-10132-x

72 REFERENCES

[9] David J. Anderson. Kanban: successful evolutionary change for your technology business.
eng. Sequim, Washington, USA: Blue Hole Press, 2010. ISBN: 9780984521401.

[10] Renae Aurisch, Mohiuddin Ahmed, and Abu Barkat. “An outlook at Agile method-
ologies for the independent games developer”. en. In: International Journal of Comput-
ers and Applications 43.8 (Sept. 2021), pp. 812–818. ISSN: 1206-212X, 1925-7074.
DOI: 10.1080/1206212X.2019.1621463.

[11] Julian M. Bass. “Improving writing processes using lean and Kanban”. en. In: Learned
Publishing 29.4 (2016), pp. 307–310. ISSN: 1741-4857.
DOI: 10.1002/leap.1045.

[12] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Marick Brian, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Suther-
land, and Dave Thomas. “Manifesto for Agile Software Development”. In: (2001).
URL: https : / / web . archive . org / web / 20220216090044 / https : / /
agilemanifesto.org/
(visited on 02/16/2022).

[13] Jim Benson and Tonianne De Maria Barry. Personal Kanban: mapping work, navigat-
ing life. eng. First edition. Seattle, Washington, USA: Modus Cooperandi Press, 2011.
ISBN: 9781453802267.

[14] Harry N Boone and Deborah A Boone. “Analyzing likert data”. In: Journal of extension
50.2 (2012), pp. 1–5.
URL: https : / / web . archive . org / web / 20220216090136 / https : / /
archives.joe.org/joe/2012april/tt2.php
(visited on 02/16/2022).

[15] Eric Brechner and James Waletzky. Agile project management with Kanban. Best prac-
tices. OCLC: ocn906825505. Redmond, Washington, USA: Microsoft Press, 2015. ISBN:
9780735698956.

[16] Erin Cherry and Celine Latulipe. “Quantifying the Creativity Support of Digital Tools
through the Creativity Support Index”. In: ACM Transactions on Computer-Human In-
teraction 21.4 (June 2014), 21:1–21:25. ISSN: 1073-0516.
DOI: 10.1145/2617588.

[17] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose,
and Tim Menzies. “A Deep Learning Model for Estimating Story Points”. In: IEEE
Transactions on Software Engineering 45.7 (July 2019), pp. 637–656. ISSN: 0098-5589,
1939-3520, 2326-3881.
DOI: 10.1109/TSE.2018.2792473.

[18] Denis Dennehy and Kieran Conboy. “Identifying Challenges and a Research Agenda
for Flow in Software Project Management”. en. In: Project Management Journal 49.6
(Dec. 2018), pp. 103–118. ISSN: 8756-9728, 1938-9507.
DOI: 10.1177/8756972818800559.

[19] Mia Y. Dong, Kristian Sandberg, Bo M. Bibby, Michael N. Pedersen, and Morten
Overgaard. “The development of a sense of control scale”. In: Frontiers in Psychology
6 (2015), p. 1733. ISSN: 1664-1078.
DOI: 10.3389/fpsyg.2015.01733.

[20] Scott Downey and Jeff Sutherland. “Scrum Metrics for Hyperproductive Teams: How
They Fly like Fighter Aircraft”. In: Proceedings of the 2013 46th Hawaii International
Conference on System Sciences. HICSS ’13. USA: IEEE Computer Society, Jan. 2013,
pp. 4870–4878. ISBN: 9780769548920.
DOI: 10.1109/HICSS.2013.471.

https://doi.org/10.1080/1206212X.2019.1621463
https://doi.org/10.1002/leap.1045
https://web.archive.org/web/20220216090044/https://agilemanifesto.org/
https://web.archive.org/web/20220216090044/https://agilemanifesto.org/
https://web.archive.org/web/20220216090136/https://archives.joe.org/joe/2012april/tt2.php
https://web.archive.org/web/20220216090136/https://archives.joe.org/joe/2012april/tt2.php
https://doi.org/10.1145/2617588
https://doi.org/10.1109/TSE.2018.2792473
https://doi.org/10.1177/8756972818800559
https://doi.org/10.3389/fpsyg.2015.01733
https://doi.org/10.1109/HICSS.2013.471

REFERENCES 73

[21] M Fitriawati and R H Lestari. “Design of the Information System for Kindergarten
Learning Evaluation used Kanban Methodology”. In: IOP Conference Series: Materials
Science and Engineering 662.2 (Nov. 2019), p. 022025. ISSN: 1757-8981, 1757-899X.
DOI: 10.1088/1757-899X/662/2/022025.

[22] Sandra G. Hart. “Nasa-Task Load Index (NASA-TLX); 20 Years Later”. en. In: Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50.9 (Oct. 2006),
pp. 904–908. ISSN: 2169-5067.
DOI: 10.1177/154193120605000909.

[23] Enric Senabre Hidalgo. “Adapting the scrum framework for agile project manage-
ment in science: case study of a distributed research initiative”. en. In: Heliyon 5.3
(Mar. 2019), e01447. ISSN: 24058440.
DOI: 10.1016/j.heliyon.2019.e01447.

[24] Heather A. Johnson. “Trello”. In: Journal of the Medical Library Association : JMLA 105.2
(Apr. 2017), pp. 209–211. ISSN: 1536-5050.
DOI: 10.5195/jmla.2016.49.

[25] Henrik Kniberg and Mattias Skarin. Kanban and Scrum: making the most of both. eng.
InfoQ enterprise software development series. C4Media, 2010. ISBN: 9780557138326.
URL: https://web.archive.org/web/20220216090220/https://www.
infoq.com/minibooks/kanban-scrum-minibook/
(visited on 02/16/2022).

[26] C. Larman and V.R. Basili. “Iterative and incremental developments. a brief history”.
In: Computer 36.6 (June 2003), pp. 47–56. ISSN: 0018-9162.
DOI: 10.1109/MC.2003.1204375.

[27] Howard Lei, Farnaz Ganjeizadeh, Pradeep Kumar Jayachandran, and Pinar Ozcan.
“A statistical analysis of the effects of Scrum and Kanban on software develop-
ment projects”. en. In: Robotics and Computer-Integrated Manufacturing 43 (Feb. 2017),
pp. 59–67. ISSN: 07365845.
DOI: 10.1016/j.rcim.2015.12.001.

[28] Jeffrey K Liker. The Toyota way: 14 management principles from the world’s greatest man-
ufacturer. New York, USA: McGraw-Hill Education, 2004. ISBN: 9780071392310.

[29] Viljan Mahnič and Tomaž Hovelja. “On using planning poker for estimating user
stories”. en. In: Journal of Systems and Software 85.9 (Sept. 2012), pp. 2086–2095. ISSN:
01641212.
DOI: 10.1016/j.jss.2012.04.005.

[30] Christoph Matthies. “Scrum2kanban: integrating kanban and scrum in a univer-
sity software engineering capstone course”. en. In: Proceedings of the 2nd Interna-
tional Workshop on Software Engineering Education for Millennials. Gothenburg Sweden:
ACM, June 2018, pp. 48–55. ISBN: 9781450357500.
DOI: 10.1145/3194779.3194784.

[31] Subhas Misra, Vinod Kumar, Uma Kumar, Kamel Fantazy, and Mahmud Akhter.
“Agile software development practices: evolution, principles, and criticisms”. en. In:
International Journal of Quality & Reliability Management 29.9 (Oct. 2012), pp. 972–980.
ISSN: 0265-671X.
DOI: 10.1108/02656711211272863.

[32] Shun Nakazawa, Kazuki Komatsu, Tetsuo Tanaka, and Kazunori Matsumoto. “De-
velopment and Evaluation of Large-Screen Digital Kanban with Smartphone Oper-
ation”. In: 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-
AAI). Hamamatsu: IEEE, July 2017, pp. 295–300. ISBN: 9781538606216.
DOI: 10.1109/IIAI-AAI.2017.151.

https://doi.org/10.1088/1757-899X/662/2/022025
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/j.heliyon.2019.e01447
https://doi.org/10.5195/jmla.2016.49
https://web.archive.org/web/20220216090220/https://www.infoq.com/minibooks/kanban-scrum-minibook/
https://web.archive.org/web/20220216090220/https://www.infoq.com/minibooks/kanban-scrum-minibook/
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1016/j.rcim.2015.12.001
https://doi.org/10.1016/j.jss.2012.04.005
https://doi.org/10.1145/3194779.3194784
https://doi.org/10.1108/02656711211272863
https://doi.org/10.1109/IIAI-AAI.2017.151

74 REFERENCES

[33] Shun Nakazawa and Tetsuo Tanaka. “Prototype of Kanban Tool and Preliminary
Evaluation of Visualizing Method for Task Assignment”. In: 2015 International Con-
ference on Computer Application Technologies. Matsue, Japan: IEEE Computer Society,
Aug. 2015, pp. 48–49.
DOI: 10.1109/CCATS.2015.21.

[34] Shun Nakazawa and Tetsuo Tanaka. “Development and Application of Kanban Tool
Visualizing the Work in Progress”. In: 2016 5th IIAI International Congress on Advanced
Applied Informatics (IIAI-AAI). Kumamoto, Japan: IEEE, July 2016, pp. 908–913. ISBN:
9781467389853.
DOI: 10.1109/IIAI-AAI.2016.156.

[35] Donald A. Norman. The design of everyday things. Revised and expanded edition. New
York, New York: Basic Books, 2013. ISBN: 9780465050659.

[36] Hong Yeow Ong, Chen Wang, and Nurshuhada Zainon. “Integrated Earned Value
Gantt Chart (EV-Gantt) Tool for Project Portfolio Planning and Monitoring Opti-
mization”. en. In: Engineering Management Journal 28.1 (Jan. 2016), pp. 39–53. ISSN:
1042-9247, 2377-0643.
DOI: 10.1080/10429247.2015.1135033.

[37] Julia Paredes, Craig Anslow, and Frank Maurer. “Information Visualization for Agile
Software Development”. In: Proceedings of the 2014 Second IEEE Working Conference on
Software Visualization. VISSOFT ’14. USA: IEEE Computer Society, 2014, pp. 157–166.
ISBN: 9781479961504.
DOI: 10.1109/VISSOFT.2014.32.

[38] David L. Parnas and Paul C. Clements. “A rational design process: How and why to
fake it”. en. In: Formal Methods and Software Development. Ed. by G. Goos, J. Hartmanis,
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli,
G. Seegmüller, H. Stoer, N. Wirth, Hartmut Ehrig, Christiane Floyd, Maurice Nivat,
and James Thatcher. Vol. 186. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985,
pp. 80–100.
DOI: 10.1007/3-540-15199-0_6.

[39] Mary Poppendieck and Tom Poppendieck. Lean software development: an agile toolkit.
The agile software development series. Boston, Massachusetts, USA: Addison-Wes-
ley, 2003. ISBN: 9780321150783.

[40] Florian Raith, Ingo Richter, and Robert Lindermeier. “How Project-management-
tools are used in Agile Practice: Benefits, Drawbacks and Potentials”. en. In: Proceed-
ings of the 21st International Database Engineering & Applications Symposium on - IDEAS
2017. Bristol, United Kingdom: ACM Press, 2017, pp. 30–39. ISBN: 9781450352208.
DOI: 10.1145/3105831.3105865.

[41] John W. Ratclif and David Metzener. Pattern Matching: the Gestalt Approach. July 1988.
URL: https://web.archive.org/web/20200209031652/https://www.
drdobbs.com/database/pattern-matching-the-gestalt-approach/
184407970?pgno=5
(visited on 02/09/2020).

[42] W. W. Royce. “Managing the development of large software systems: concepts and
techniques”. In: Proceedings of the 9th international conference on Software Engineering.
ICSE ’87. Washington, DC, USA: IEEE Computer Society Press, Mar. 1987, pp. 328–
338. ISBN: 9780897912167.
DOI: 10.5555/41765.41801.

https://doi.org/10.1109/CCATS.2015.21
https://doi.org/10.1109/IIAI-AAI.2016.156
https://doi.org/10.1080/10429247.2015.1135033
https://doi.org/10.1109/VISSOFT.2014.32
https://doi.org/10.1007/3-540-15199-0_6
https://doi.org/10.1145/3105831.3105865
https://web.archive.org/web/20200209031652/https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
https://web.archive.org/web/20200209031652/https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
https://web.archive.org/web/20200209031652/https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5
https://doi.org/10.5555/41765.41801

REFERENCES 75

[43] Jullia Saad, Priscila Portela Costa, Alexandre Alvaro, and Luciana A. M. Zaina. “De-
velopers experience (DX) in ALM software tools: an investigation on virtual kanban
boards”. In: Proceedings of the 34th Brazilian Symposium on Software Engineering. SBES
’20. Natal, Brazil: Association for Computing Machinery, Oct. 2020, pp. 167–172. ISBN:
9781450387538.
DOI: 10.1145/3422392.3422475.

[44] Jeffrey Saltz, Ivan Shamshurin, and Kevin Crowston. “Comparing Data Science Proj-
ect Management Methodologies via a Controlled Experiment”. In: 2017.
DOI: 10.24251/HICSS.2017.120.

[45] Jeffrey S. Saltz. “Visualizing Kanban Work: Towards an Individual Contributor
View”. In: AMCIS 2019 Proceedings (July 2019).
URL: https://web.archive.org/web/20220216085836/https://aisel.
aisnet.org/amcis2019/it_project_mgmt/it_project_mgmt/7/
(visited on 02/16/2022).

[46] Mahrukh Sameen Mirza and Soma Datta. “Strengths and Weakness of Traditional
and Agile Processes - A Systematic Review”. In: Journal of Software 14.5 (May 2019),
pp. 209–219. ISSN: 1796217X.
DOI: 10.17706/jsw.14.5.209-219.

[47] Sirikorn Santirojanakul. “The development of sports science knowledge manage-
ment systems through CommonKADS and digital Kanban board”. In: 2018 IEEE
Symposium on Computer Applications & Industrial Electronics (ISCAIE). Penang: IEEE,
Apr. 2018, pp. 119–124. ISBN: 9781538635278.
DOI: 10.1109/ISCAIE.2018.8405455.

[48] Saad Shafiq, Irum Inayat, and Muhammad Abbas. “Communication Patterns of
Kanban Teams and Their Impact on Iteration Performance and Quality”. In: 2019
45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
Kallithea-Chalkidiki, Greece: IEEE, Aug. 2019, pp. 164–168. ISBN: 9781728134215.
DOI: 10.1109/SEAA.2019.00033.

[49] Renata Souza, Larissa Rocha, Franklin Silva, and Ivan Machado. “Investigating Ag-
ile Practices in Software Startups”. en. In: Proceedings of the XXXIII Brazilian Sympo-
sium on Software Engineering. Salvador Brazil: ACM, Sept. 2019, pp. 317–321. ISBN:
9781450376518.
DOI: 10.1145/3350768.3350786.

[50] Adam Trendowicz and Ross Jeffery. Software project effort estimation: foundations and
best practice guidelines for success. eng. Cham, Switzerland: Springer, 2014. ISBN: 978-
3319036298.
DOI: 10.1007/978-3-319-03629-8.

[51] Eric Weflen, Cameron A. MacKenzie, and Iris V. Rivero. “An influence diagram ap-
proach to automating lead time estimation in Agile Kanban project management”.
en. In: Expert Systems with Applications 187 (Jan. 2022), p. 115866. ISSN: 0957-4174.
DOI: 10.1016/j.eswa.2021.115866.

[52] J P Womack and D T Jones. “Lean Thinking—Banish Waste and Create Wealth in
your Corporation”. en. In: Journal of the Operational Research Society 48.11 (Nov. 1997),
pp. 1148–1148. ISSN: 0160-5682, 1476-9360.
DOI: 10.1057/palgrave.jors.2600967.

[53] Wael Zayat and Ozlem Senvar. “Framework Study for Agile Software Development
Via Scrum and Kanban”. en. In: International Journal of Innovation and Technology Man-
agement 17.04 (June 2020), p. 2030002. ISSN: 0219-8770, 1793-6950.
DOI: 10.1142/S0219877020300025.

https://doi.org/10.1145/3422392.3422475
https://doi.org/10.24251/HICSS.2017.120
https://web.archive.org/web/20220216085836/https://aisel.aisnet.org/amcis2019/it_project_mgmt/it_project_mgmt/7/
https://web.archive.org/web/20220216085836/https://aisel.aisnet.org/amcis2019/it_project_mgmt/it_project_mgmt/7/
https://doi.org/10.17706/jsw.14.5.209-219
https://doi.org/10.1109/ISCAIE.2018.8405455
https://doi.org/10.1109/SEAA.2019.00033
https://doi.org/10.1145/3350768.3350786
https://doi.org/10.1007/978-3-319-03629-8
https://doi.org/10.1016/j.eswa.2021.115866
https://doi.org/10.1057/palgrave.jors.2600967
https://doi.org/10.1142/S0219877020300025

76 REFERENCES

Web References

[54] Atlassian. Jira Software.
URL: https://web.archive.org/web/20220216084334/https://www.
atlassian.com/software/jira
(visited on 02/16/2022).

[55] Atlassian. The Trello REST API.
URL: https : / / web . archive . org / web / 20220216083006 / https : / /
developer.atlassian.com/cloud/trello/rest/api-group-actions/
(visited on 02/16/2022).

[56] Atlassian. Trello.
URL: https://web.archive.org/web/20220216085110/https://trello.
com/home
(visited on 02/16/2022).

[57] Digital.ai. 15th State Of Agile Report. July 2021.
URL: https : / / web . archive . org / web / 20220216084141 / https : / /
digital.ai/resource-center/analyst-reports/state-of-agile-
report
(visited on 02/16/2022).

[58] Python Software Foundation. difflib — Helpers for computing deltas.
URL: https://web.archive.org/web/20220216084722/https://docs.
python.org/3/library/difflib.html
(visited on 02/16/2022).

[59] PostgreSQL Global Development Group. PostgreSQL.
URL: https://web.archive.org/web/20220216084654/https://www.
postgresql.org/
(visited on 02/16/2022).

[60] Red Hat. OptaPlanner.
URL: https://web.archive.org/web/20220216084606/https://www.
optaplanner.org/
(visited on 02/16/2022).

[61] Asana Inc. 10-K anual report.
URL: https : / / web . archive . org / web / 20220216090841 / https : / /
d18rn0p25nwr6d.cloudfront.net/CIK-0001477720/38df8983-89d8-
458e-8b75-601bddbb9361.pdf
(visited on 02/16/2022).

77

https://web.archive.org/web/20220216084334/https://www.atlassian.com/software/jira
https://web.archive.org/web/20220216084334/https://www.atlassian.com/software/jira
https://web.archive.org/web/20220216083006/https://developer.atlassian.com/cloud/trello/rest/api-group-actions/
https://web.archive.org/web/20220216083006/https://developer.atlassian.com/cloud/trello/rest/api-group-actions/
https://web.archive.org/web/20220216085110/https://trello.com/home
https://web.archive.org/web/20220216085110/https://trello.com/home
https://web.archive.org/web/20220216084141/https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://web.archive.org/web/20220216084141/https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://web.archive.org/web/20220216084141/https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://web.archive.org/web/20220216084722/https://docs.python.org/3/library/difflib.html
https://web.archive.org/web/20220216084722/https://docs.python.org/3/library/difflib.html
https://web.archive.org/web/20220216084654/https://www.postgresql.org/
https://web.archive.org/web/20220216084654/https://www.postgresql.org/
https://web.archive.org/web/20220216084606/https://www.optaplanner.org/
https://web.archive.org/web/20220216084606/https://www.optaplanner.org/
https://web.archive.org/web/20220216090841/https://d18rn0p25nwr6d.cloudfront.net/CIK-0001477720/38df8983-89d8-458e-8b75-601bddbb9361.pdf
https://web.archive.org/web/20220216090841/https://d18rn0p25nwr6d.cloudfront.net/CIK-0001477720/38df8983-89d8-458e-8b75-601bddbb9361.pdf
https://web.archive.org/web/20220216090841/https://d18rn0p25nwr6d.cloudfront.net/CIK-0001477720/38df8983-89d8-458e-8b75-601bddbb9361.pdf

78 WEB REFERENCES

[62] Asana Inc. Asana.
URL: https://web.archive.org/web/20220216083915/https://asana.
com/
(visited on 02/16/2022).

[63] Lightbend Inc. Akka HTTP.
URL: https://web.archive.org/web/20220216083824/https://doc.
akka.io/docs/akka-http/current/
(visited on 02/16/2022).

[64] Meta Platforms Inc. React.
URL: https : / / web . archive . org / web / 20220216084816 / https : / /
reactjs.org/
(visited on 02/16/2022).

[65] JetBrains. YouTrack.
URL: https://web.archive.org/web/20220216085711/https://www.
jetbrains.com/youtrack/
(visited on 02/16/2022).

[66] Tobias Koppers. Webpack.
URL: https : / / web . archive . org / web / 20220216085158 / https : / /
webpack.js.org/
(visited on 02/16/2022).

[67] Tailwind Labs. Tailwind CSS.
URL: https : / / web . archive . org / web / 20220216085044 / https : / /
tailwindcss.com/
(visited on 02/16/2022).

[68] Sebastian McKenzie. Babel.
URL: https : / / web . archive . org / web / 20220216084032 / https : / /
babeljs.io/
(visited on 02/16/2022).

[69] Microsoft. GitHub.
URL: https://web.archive.org/web/20220216084224/https://github.
com/
(visited on 02/16/2022).

[70] Microsoft. GitHub Projects.
URL: https://web.archive.org/web/20220216084300/https://github.
com/features/issues
(visited on 02/16/2022).

[71] Microsoft. GitHub REST API.
URL: https://web.archive.org/web/20220216083217/https://docs.
github.com/en/rest
(visited on 02/16/2022).

[72] Microsoft. Microsoft Teams.
URL: https://web.archive.org/web/20220216084405/https://www.
microsoft.com/en-gb/microsoft-teams/group-chat-software
(visited on 02/16/2022).

[73] Microsoft. TypeScript.
URL: https://web.archive.org/web/20220216085131/https://www.
typescriptlang.org/
(visited on 02/16/2022).

https://web.archive.org/web/20220216083915/https://asana.com/
https://web.archive.org/web/20220216083915/https://asana.com/
https://web.archive.org/web/20220216083824/https://doc.akka.io/docs/akka-http/current/
https://web.archive.org/web/20220216083824/https://doc.akka.io/docs/akka-http/current/
https://web.archive.org/web/20220216084816/https://reactjs.org/
https://web.archive.org/web/20220216084816/https://reactjs.org/
https://web.archive.org/web/20220216085711/https://www.jetbrains.com/youtrack/
https://web.archive.org/web/20220216085711/https://www.jetbrains.com/youtrack/
https://web.archive.org/web/20220216085158/https://webpack.js.org/
https://web.archive.org/web/20220216085158/https://webpack.js.org/
https://web.archive.org/web/20220216085044/https://tailwindcss.com/
https://web.archive.org/web/20220216085044/https://tailwindcss.com/
https://web.archive.org/web/20220216084032/https://babeljs.io/
https://web.archive.org/web/20220216084032/https://babeljs.io/
https://web.archive.org/web/20220216084224/https://github.com/
https://web.archive.org/web/20220216084224/https://github.com/
https://web.archive.org/web/20220216084300/https://github.com/features/issues
https://web.archive.org/web/20220216084300/https://github.com/features/issues
https://web.archive.org/web/20220216083217/https://docs.github.com/en/rest
https://web.archive.org/web/20220216083217/https://docs.github.com/en/rest
https://web.archive.org/web/20220216084405/https://www.microsoft.com/en-gb/microsoft-teams/group-chat-software
https://web.archive.org/web/20220216084405/https://www.microsoft.com/en-gb/microsoft-teams/group-chat-software
https://web.archive.org/web/20220216085131/https://www.typescriptlang.org/
https://web.archive.org/web/20220216085131/https://www.typescriptlang.org/

WEB REFERENCES 79

[74] Miro. Miro.
URL: https://web.archive.org/web/20220216084436/https://miro.
com/
(visited on 02/16/2022).

[75] Notion. Notion.
URL: https://web.archive.org/web/20220216084535/https://www.
notion.so/
(visited on 02/16/2022).

[76] Martin Odersky. Scala Programming Language.
URL: https://web.archive.org/web/20220216084847/https://www.
scala-lang.org/
(visited on 02/16/2022).

[77] Max Rehkopf and Atlassian. Kanban vs. scrum: which agile are you?
URL: https://web.archive.org/web/20220202091611/https://www.
atlassian.com/agile/kanban/kanban-vs-scrum
(visited on 02/02/2022).

[78] Slick. Slick.
URL: https://web.archive.org/web/20220216084943/https://scala-
slick.org/
(visited on 02/16/2022).

[79] SortableJS. SortableJS.
URL: https : / / web . archive . org / web / 20220216085018 / https : / /
sortablejs.github.io/Sortable/
(visited on 02/16/2022).

[80] Jeff Sutherland and Ken Schwaber. Scrum Guide. 2010.
URL: https : / / web . archive . org / web / 20220216084919 / https : / /
scrumguides.org/scrum-guide.html
(visited on 02/16/2022).

[81] R Core Team. R: A Language and Environment for Statistical Computing.
URL: https://web.archive.org/web/20220216084751/https://www.r-
project.org/
(visited on 02/16/2022).

[82] VentureBeat. Trello reaches 50 million users, introduces new automation and template fea-
tures. 2019.
URL: https : / / web . archive . org / web / 20210627145704 / https : / /
venturebeat.com/2019/10/30/trello-reaches-50-million-users-
introduces-new-automation-and-template-features/
(visited on 06/27/2021).

[83] Vercel. Next.js.
URL: https://web.archive.org/web/20220216084503/https://nextjs.
org/
(visited on 02/16/2022).

[84] Jean-Baptiste Waldner and Jbarta. Kanban_principles.svg.
URL: https : / / web . archive . org / web / 20220216085425 / https : / /
commons.wikimedia.org/wiki/File:Kanban_principles.svg
(visited on 02/16/2022).

https://web.archive.org/web/20220216084436/https://miro.com/
https://web.archive.org/web/20220216084436/https://miro.com/
https://web.archive.org/web/20220216084535/https://www.notion.so/
https://web.archive.org/web/20220216084535/https://www.notion.so/
https://web.archive.org/web/20220216084847/https://www.scala-lang.org/
https://web.archive.org/web/20220216084847/https://www.scala-lang.org/
https://web.archive.org/web/20220202091611/https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://web.archive.org/web/20220202091611/https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://web.archive.org/web/20220216084943/https://scala-slick.org/
https://web.archive.org/web/20220216084943/https://scala-slick.org/
https://web.archive.org/web/20220216085018/https://sortablejs.github.io/Sortable/
https://web.archive.org/web/20220216085018/https://sortablejs.github.io/Sortable/
https://web.archive.org/web/20220216084919/https://scrumguides.org/scrum-guide.html
https://web.archive.org/web/20220216084919/https://scrumguides.org/scrum-guide.html
https://web.archive.org/web/20220216084751/https://www.r-project.org/
https://web.archive.org/web/20220216084751/https://www.r-project.org/
https://web.archive.org/web/20210627145704/https://venturebeat.com/2019/10/30/trello-reaches-50-million-users-introduces-new-automation-and-template-features/
https://web.archive.org/web/20210627145704/https://venturebeat.com/2019/10/30/trello-reaches-50-million-users-introduces-new-automation-and-template-features/
https://web.archive.org/web/20210627145704/https://venturebeat.com/2019/10/30/trello-reaches-50-million-users-introduces-new-automation-and-template-features/
https://web.archive.org/web/20220216084503/https://nextjs.org/
https://web.archive.org/web/20220216084503/https://nextjs.org/
https://web.archive.org/web/20220216085425/https://commons.wikimedia.org/wiki/File:Kanban_principles.svg
https://web.archive.org/web/20220216085425/https://commons.wikimedia.org/wiki/File:Kanban_principles.svg

80 WEB REFERENCES

[85] Wikipedia. Asana (software).
URL: https://web.archive.org/web/20220216085235/https://en.
wikipedia.org/wiki/Asana_%28software%29
(visited on 02/16/2022).

[86] Wikipedia. GitHub.
URL: https://web.archive.org/web/20220216085322/https://de.
wikipedia.org/wiki/GitHub
(visited on 02/16/2022).

[87] Wikipedia. Markdown.
URL: https://web.archive.org/web/20220216085533/https://en.
wikipedia.org/wiki/Markdown
(visited on 02/16/2022).

[88] Wikipedia. Trello.
URL: https://web.archive.org/web/20220216085641/https://en.
wikipedia.org/wiki/Trello
(visited on 02/16/2022).

https://web.archive.org/web/20220216085235/https://en.wikipedia.org/wiki/Asana_%28software%29
https://web.archive.org/web/20220216085235/https://en.wikipedia.org/wiki/Asana_%28software%29
https://web.archive.org/web/20220216085322/https://de.wikipedia.org/wiki/GitHub
https://web.archive.org/web/20220216085322/https://de.wikipedia.org/wiki/GitHub
https://web.archive.org/web/20220216085533/https://en.wikipedia.org/wiki/Markdown
https://web.archive.org/web/20220216085533/https://en.wikipedia.org/wiki/Markdown
https://web.archive.org/web/20220216085641/https://en.wikipedia.org/wiki/Trello
https://web.archive.org/web/20220216085641/https://en.wikipedia.org/wiki/Trello

	Introduction
	Related Work
	From Lean to Agile
	Lean approach
	Agile software development

	Kanban
	Kanban method
	Kanban board
	Kanban vs. Scrum
	Benefits and adoption in software development
	Kanban in other fields
	Challenges and areas of improvement

	Virtual Kanban board implementations
	Prototype implementations
	Consumer products
	Improvement of existing tools

	Data-driven estimation of agile software projects
	Effort estimation
	Lead time estimation

	Concept
	Goals
	Ideation and development process
	Features of the prototype
	User and workspace
	Elements
	Resources
	Events
	Recommendations: Symbolic intelligence

	Design and user experience

	Implementation
	Architectural Overview
	Server
	Technology stack
	Data model
	Rest API
	Symbolic intelligence
	Constraint solver
	Data preparation, assumptions and calculations

	Web application: Technology stack

	Evaluation
	Methodology
	Study design
	Procedure
	Intro
	Part 1 - Arbitrarily nested lists
	Part 2 - Symbolic intelligence
	Outro

	Participants
	Limitations
	Measurements
	Quantitative measures
	Qualitative measures

	Data analysis and results
	Quantitative data
	Part 1 - Arbitrarily nested lists
	Part 2 - Symbolic Intelligence
	General usability

	Qualitative data
	Questions
	Observation

	Discussion and future work
	Discussion of the user study results
	Unbounded nesting
	Symbolic intelligence
	General usability
	Outlook

	Areas of improvement for the prototype
	Unbounded nesting
	Kanban method context
	Visualisation of unbounded nesting
	Moving elements in nested situations

	Scheduling feature
	Visualisation of the scheduling result
	Constraint solver enhancements
	Support through data-driven techniques
	Scheduling everywhere

	General usability
	Additional features

	Use cases
	Agile software development
	Studying at a university
	Laboratory work organisation

	Conclusion
	Appendix
	Bibliography

