INSTITUT FUR INFORMATIK

der Ludwig-Maximilians-Universitdt Miinchen

PREDICTING THE LEARNING
BEHAVIOUR OF STUDENTS
FROM THEIR WEEKLY WORK
ASSIGNMENTS

Steven Dostert

Master Thesis

Aufgabensteller Prof. Dr. Francois Bry
Betreuer Prof. Dr. Frangois Bry,
Niels Heller

Abgabe am 06. August 2017

Erklarung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstandig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

Miinchen, den 06. August 2017 Steven Dostert

ii

Abstract

Although weekly assignments provide a good opportunity for Students to test their abil-
ities and to deepen their knowledge, students tend to skip assignments within a course.
This harms the learning of students and makes it difficult for professors and tutors to teach
students in the best possible way and thus to prepare them optimally for their future pro-
fessional life.

There are multiple reasons why students skip assignments. Two major groups of such
reasons are discussed in this thesis: On the one hand students’ personal characteristics, on
the other hand the students’ behaviour (work out or skip an assignment) with previous as-
signments. In a past course prior to this work, students’ submissions have been classified
based on the the students’ behaviour or on their performances. In this thesis, the classifi-
cation is described and a statistical model is presented that fits to it. This model is used to
predict students’ future behaviour (work out or skip an assignment) based on parts of the
classified data. Then, these predictions are validated with other data (not used in building
the predictor). The predictions could be used to make the students more conscious of the
risks associated with skipping assignments and thus to incite them not to skip assignments.

The statistical model used for building the afore-mentioned predictor is a Hidden Mar-
kov Model. It fits well the two previously mentioned major groups of behaviours since it
considers the students’ recent behaviours when predicting and it includes personal charac-
teristics (expressed by the model’s hidden states). This thesis provides an evaluation of the
predictor which shows that the Hidden Markov Model provides good results for prediction
of the skipping behaviour.

Moreover, a large part of this thesis is concerned with the implementation of a modular
framework making it possible to cover similar use cases. To this aim, the implementation
has been designed to be completely independent from the type of data gathered (like as-
signments’ classifications), the statistical model applied and the predicted behaviour. By
implementing the described use case using this framework and by integrating it into an
existing system, the usage and its modular expandability is demonstrated.

iii

iv

Zusammenfassung

Obwohl wéchentliche Ubungsaufgaben Studenten eine gute Moglichkeit bieten, ihre Fahig-
keiten zu testen und ihr Wissen zu vertiefen, neigen sie hdufig dazu die Aufgaben eines
Kurses nicht mehr abzugeben. Dies schadet den Studenten beim Lernen und erschwert
den Professoren und Tutoren die Studenten bestmoglich auszubilden und sie somit opti-
mal auf ihr spéteres Berufsleben vorzubereiten.

Es gibt mehrere Griinde, weshalb Studenten Ubungsaufgaben nicht mehr abgeben.
Zwei Hauptgruppen fiir solche Griinde werden in dieser Thesis betrachtet: Zum einen per-
sonliche Eigenschaften der Studenten zum anderen das Verhalten (bearbeitet Ubungsauf-
gabe, oder gibt diese nicht ab) bei vorherigen Aufgaben. In einem vergangenen Kurs im
Vorfeld dieser Arbeit wurden die Abgaben von Studenten basierend auf ihrem Verhalten
beziehungsweise ihrer Leistungen klassifiziert. In dieser Arbeit wird diese Klassifizierung
erldutert und ein statistisches Modell vorgestellt, welches zu dieser Klassifizierung passt.
Das Modell wird dazu genutzt das Verhalten (bearbeitet Ubungsaufgabe, oder gibt diese
nicht ab) der Studenten basierend auf Teilen der klassifizierten Daten vorherzusagen. Diese
Vorhersagen werden dann anhand der tibrigen (nicht zum Erstellen des Pradiktor genutz-
ten) Daten validiert. Die Vorhersagen kénnten dazu genutzt werden, dem Studenten das
Risiko des “nicht Abgebens” bewusst zu machen und ihn somit dazu anzutreiben, die Auf-
gaben zukiinftig abzugeben.

Das statistische Modell, welches gewdhlt wurde, um den zuvor erwédhnten Pradiktor
zu erstellen, ist das Hidden Markov Model. Es passt gut zu den zwei zuvor genannten
Verhaltens-Hauptgruppen, da es das vorherige Verhalten der Studenten beriicksichtigt und
deren personliche Eigenschaften abbildet (ausgedriickt durch die versteckten Zustande des
Modells). Diese Arbeit liefert eine Evaluation des Préadiktors, bei der gezeigt wird, dass das
Hidden Markov Model gute Resultate fiir die Vorhersage des “nicht Abgebens” liefert.

Auflerdem beschiftigt sich ein grofSer Teil dieser Arbeit mit der Implementierung eines
modularen Frameworks, welches es ermoglicht, dhnliche Anwendungsfille abzubilden.
Aus diesem Grund ist das Framework so konstruiert, dass es komplett unabhingig von
der Art der gesammelten Daten (z.B. Aufgabenklassifizierung), des angewandten statis-
tischen Modells und dem vorherzusagenden Verhalten ist. Die Nutzung sowie die mod-
ulare Erweiterbarkeit des Frameworks wird durch die Umsetzung des beschriebenen An-

v

vi

wendungsfalls und durch die Integration in ein bestehendes System demonstriert.

Acknowledgments

First and foremost, I would like to thank Prof. Dr. Frangois Bry for the opportunity to
write this master thesis at the Teaching and Research Unit Programming and Modelling
Languages. Furthermore for the remarks, suggestions and the feedback he provided on
the way to this thesis.

I want to express my deep gratitude to my advisor Niels Heller for suggesting and
introducing me to this topic and for providing the data set used in this thesis. I am thankful
for his constant support, his encouragement and his guidance during the development of
my work. He helped me whenever I needed support and contributed a lot of useful ideas.

Also, I would like to thank Melina Kellner for her moral support and for proof-reading
the thesis. Last, but not least, special thanks to my family for providing general support
throughout my years of study.

vii

viii

Contents

Introduction 1
1.1 Motivation L e 1
12 Approach. e 3
Related Work 7
Classification 11
3.1 DataCollection 11
3.2 Training DataSelection 13
Statistical Models 17
41 RelativeFrequency o 17
42 MarkovModels 18
421 MarkovChain. e 18
422 Hidden MarkovModel L .. 20
Technical Implementation 25
5.1 Prediction Framework o 26
51.1 Observation and PredictionTags 26
5.1.2 PredictionUnit 28
513 BehaviourLog 33
514 Prediction UnitFactory 33
52 Integration e 35
521 ServerStartUp 36
5.2.2 History and Behaviour Log Integration 36
5.2.3 Client-Server Communication 38
5.3 Framework Extension 40
54 Summary 41

ix

X CONTENTS
6 User Interface 43
6.1 Students’ BehaviourTable 43

6.2 ViewControl. 44

6.3 Behaviour LogControl 45

6.4 Behaviour LogSelection 45

7 Evaluation 47
71 Method 47
7.1.1 Metrics for Measuring Prediction Performance 48

7.1.2 Cross-Validation, 50

713 EvaluationAspectso oL 51

72 Results 51
72.1 TagIndependent Evaluation 51

722 TagDependent Evaluation 52

7.2.3 Classification Evaluation. 53

7.3 DiscussSion 54

8 Conclusion 57

Bibliography 61

CHAPTER 1

Introduction

1.1 Motivation

A university course often consists of weekly lectures and weekly tutorials in which the
lectures’ contents are clarified as well as techniques and methods learned in the lectures
are applied. To be prepared for the next tutorial the students often receive homework
assignments which should be completed. These assignments should be submitted by the
students before the expiration of a deadline and may be corrected by tutors.

W SUBMITTED SKIPPED

100%

o

N

]
||
||
||

N

]
||
-
||
|

BN
|
o
|
|
|
|
||

o N

Assignments

Figure 1.1: Skipping /Submitting behaviour distribution of 82 randomly
selected students in an introductory course in Theoretical Computer Science
(TCS). The data was provided by research assistant Niels Heller from the
Ludwig-Maximilian University of Munich.

2 CHAPTER 1. INTRODUCTION

During a course many students tend to skip or unduly delay their homework assign-
ments. Figure 1.1 shows the relative frequency distribution of the students” submission
behaviour of an finished introductory course in Theoretical Computer Science. The data
was collected during the summer semester in 2016 at the Ludwig-Maximilian University of
Munich. In the 12 week long course 11 optional assignments were handed out. By provid-
ing a near-faultless submission the students were rewarded with so-called “bonus points”
boosting their final examination’s marks. Additionally they received comments on their
submissions pointing to the errors they made. While the amount of students who submit
an assignment is relatively high (about 80%) at the beginning of the course, it decreased
over time almost linearly to 25%.

Skipping an assignment doesn’t necessarily mean that a student stops attending the
course. It is also possible that he just stopped submitting his solutions when he realized
that the feedback of the tutors does not help him in his learning. This on the other hand
is very unlikely if the submissions yield bonus points. However the skipping could also
imply that the student stopped learning for this course during the current semester. Which
in turn leads to last minute learning in the last days before an exam. This so called “cram-
ming” might be thought by many students to be a possible way to pass an examination.
Selyukh (2007) and McIntyre and Munson (2008) have observed that, at some universi-
ties, students can pass examinations through cramming and “still achieve good grades”.
However, these authors also note that cramming has a negative effect on future retention:
“Generally, cramming puts information in the short-term storage area of the brain, whereas
long-term studying places it in the long-term memory.” To avoid students’ cramming it is
important to keep them engaged, since universities (or professors) have the goal to teach
students in the best possible way for their later professional life.

Besides the fact that it is also a waste of time for the students and the tutors to start
with a course just to stop learning on it after a few weeks, there is another reason why it is
important to prevent the students from skipping the assignments. An assignment is likely
to a test for the student even if it is optional and not graded. As described by Roediger
and Karpicke (2006, p. 249 ff.), “If students are tested on material and successfully recall
or recognize it, they will remember it better in the future than if they had not been tested”.
This means that we can archive a “powerful positive effect on future retention” by testing
students. It bears mentioning that Roediger and Karpicke have shown that this positive
effect applies “even without feedback”. Anyway if the submissions are corrected by tutors,
a convenient feedback is given to the students on their submissions” performances which
they can use to assess themselves.

But what could be potential explanations for the students” skipping behaviour? Per-
sonal characteristics like loss of motivation or time constraints are possible reasons. It is
easily conceivable that the students’ motivation shrinks with bad results in earlier assign-
ments. Additionally the chance to gain the bonus points become smaller which reinforces
this negative characteristic. A bad result in an earlier assignment may also indicates a gap
in knowledge. This knowledge gap can only be closed by relearning some course material
(or even specific fundamentals) which is very time-consuming and leads to procrastina-
tion. The relearning is especially necessary for courses where understanding later chapters

1.2. APPROACH 3

depends on having understood earlier chapters. Through this additional effort and delay
the student may tend to skip.

All these explanations indicate a dependency between the behaviour on earlier assign-
ments and the future behaviour. Therefore it is necessary to get the reason for the previous
behaviour. In practice it is almost impossible to detect all influences that cause students
to skip their assignments as it would require the teachers (e.g. tutors) to gather personal
information from the students. But for detecting growing knowledge gaps gathering the
important information is possible for tutors without much extra work by analysing the
students’” submission. Since each submission will be assessed, either by a tutor or auto-
matically, the assignments can be tagged based on the mistakes the student made. So the
mentioned recent behaviour of a student can, in part, be represented by a series of tags
where each tag represents the behaviour in a submission. A possible behaviour classifica-
tion per submission could be: “no error”, “error”, “insufficient knowledge” and “skipped”.
This categorisation is focusing the skipping behaviour of a student. All these states are rea-
sonable, because they are well-known in the teaching routine. “No error” and “error” is an
acceptable behaviour since they imply that the student has dealt with the subject, whereas
“insufficient knowledge” as well as “skipped” indicate a bad behaviour which should be
prevented. “Insufficient knowledge” can also be seen as gap in knowledge. It has to be said
that a categorisation which is given by human beings is always a subjective assessment. A
more detailed look at this states is shown in chapter 3.

Based on this it is possible to assume that the behaviour on previous assignments can
be used to predict the students’ future behaviour. To be more precise the tagged data of
the past can be used to predict the next tag the student will receive. This prediction can be
delivered to students as part of a weekly feedback that would either keep their motivation
high or incite them to provide the additional weekly work necessarily for getting better
success predictions in the future. If the student stays focused, the decrease of submits
(figure 1.1) could be prevented.

Qrala ‘ Acelmnmant 1 ‘ Accinnmant 2 | ‘ Accinnmant y

FSK ‘ Accinnmant 1 | Accianmant 2 Accinnmant x

TCS Assignment 1 | Assignment 2 Assignment x
§S52016 28.04.2016 05.05.2016 07.07.2016

error skipped
no error ... InsKnowledge

no error no error

Figure 1.2: Example representation of tag histories.

1.2 Approach

The tagged submission of a student is called the fag sequence. In the further work all tag
sequences of one closed course are named tag history. It can be represented as a table where

4 CHAPTER 1. INTRODUCTION

the rows are the different students and the columns are the assignments of the course. An
entry is the behaviour of a student in an assignment as visualized in figure 1.2. Such a tag
history can be represented by a statistical model. To predict the students’ future behaviour
this statistical model is used to make predictions based on the students’ recent behaviour.
Therefore submissions of all students of already closed courses need to be tagged, so that
they act as training data for this model.

While rows in the tag history are completed behaviour sequences of students, the per-
sonal recent behaviour sequence describes the tagged submissions of one student during a
running course. Figure 1.3 shows such a sequence as a graphical representation. Based on
a trained statistical model and the students’ personal recent behaviour sequence the probabili-
ties for the different states in the next step can be calculated.

Running
Course

insufficient P
Knowledge error skipped error [

Figure 1.3: Example representation of a personal recent behaviour sequence until
assignment 4. Assignment 5 is not available yet and should be predicted.

Besides predicting the skipping behaviour of a student, other use cases can be imag-
ined, where a prediction should be made. So could, for example, the mark the student will
receive in the exam be predicted based on the submission behaviour. Or, the day of the
students’ submission might be interesting for the tutors, so that they schedule their assess-
ment. In these use cases the classifications are different. Therefore a prediction framework has
been implemented which is extendable for further use cases. Within this framework predic-
tion units take care of the statistical model that makes the predictions. To be independent of
the statistical model and the type of tags the prediction unit is designed modular. To pre-
dict the future behaviour during a running course the framework has been integrated into
an existing application. This application is a current research project of the Teaching and
Research Unit Programming and Modelling Languages at the Ludwig-Maximilian Univer-
sity of Munich — called Backstage 2. It is a redevelopment and extension of the previous
platform Backstage'. Additionally an user interface has been realised that can be used by
tutors.

Once a prediction for a student is made, it has to be interpreted by tutors, who should
decide how this information is used. It may then be used to inform the student about his
possible behaviour to affect him on an early stage. This process is called feedforward. It
is similar to the more familiar process feedback in which the past behaviour is analysed to
improve the future (Basso and Olivetti Belardinelli, 2006, p. 73 ff.). Feedforward instead
tries to have an influence on the receiver by showing him the possible future behaviour
(“learning from the future” Dowrick (2012, p. 215)). This works through the strictly inter-
connection between feedforward and a kind of self-regulation — the so-called homeostasis.
Homeostasis is “the ability of a system to regulate its internal environment in order to main-

1http: //www.en.pms.ifi.lmu.de/research/backchannels/index.html and
http://backstage.pms.ifi.lmu.de/

http://www.en.pms.ifi.lmu.de/research/backchannels/index.html
http://backstage.pms.ifi.lmu.de/

1.2. APPROACH 5

tain a steady state. When a deviation from a stable state occurs, an automatic adjustment
process starts with the aim of restoring the initial equilibrium.” (Basso and Olivetti Belar-
dinelli, 2006, p. 75). Basso and Olivetti Belardinelli say feedforward “is a process adjusting
behaviour in a continuative way”. For example, feedforward could incentivise students to
overcome a tendency to skip assignments. Here the predicted skipping behaviour acts as
“perturbation” which “must be eliminated in order to achieve a desired goal” (Basso and
Olivetti Belardinelli, 2006). Also a positive stimulus could be sent to the student to keep
him motivated if the prediction turns out positive. This method may be even more impor-
tant, since most of the students are motivated at the beginning of a course as described in
section 1.1. Using this start motivation it could solve the problem of decreasing submits.
For this purpose a prediction should be made once an assignment has been tagged.

At first other papers, which bother related topics, are treated in this work (chapter 2).
How the classification was done and how the different tags are assessed is shown in chap-
ter 3. Furthermore this chapter describes why the training data selection is important for
predicting the students’ behaviour. In chapter 4 different statistical models are discussed
and described which are or might be used to predict the students behaviour. The main
focus of this chapter relies on the Hidden Markov Model that was used for the predic-
tions. chapter 5 explains the core of this work, the technical implementation of an pre-
diction framework. It describes on the one hand the design of this framework and on the
other hand the integration in an existing application. How tutors or teachers can enter
the assessed students’ current behaviour in this application to predict the students’ future
behaviour is shown in chapter 6 by explaining the implemented user interface. The pre-
dictions of two statistical models are evaluated based on different evaluation aspects in
chapter 7. The work is summarised and a conclusion is given in chapter 8. Furthermore
this chapter gives an prospect how the predictions could be used in the future to affect the
students’ behaviour.

CHAPTER 1. INTRODUCTION

CHAPTER 2

Related Work

Predicting students’ behaviour is an up-to-date topic in the educational environment which
involves different aspects and approaches. There are a lot of studies focussing on a multi-
tude of aspects regarding this topic. Since this work considers skipping, which is a kind of
dropout, studies with such a focus are analysed.

Predicting the students” dropout does not only concern traditional universities, also
the e-learning environment is affected since these so called Massive Open Online Courses
(MOOCs) became more and more popular. MOOCs have one advantage over university
courses regarding collecting data, but also the disadvantage to keep the students motivated
as said by Halawa et al. (2014, p. 7): “While MOOCs offer educational data on a new
scale, many educators have been alarmed by their high dropout rates”. Also Balakrishnan
(2013, chapter 1) observes a “significant problem, since virtually anyone can register for
the course and the consequences for failing a course are minimal. This results in a large
number of students enrolling in the course without ever participating once it begins, as well
as students continuing to drop out at virtually every point during the course”. The benefit
of MOOC:s is that the operators can easily gain data since each activity is done online by
which they can log the students behaviour at any time. For example they can track activities
about when and how often students watch a lecture or work on an assignment.

Due to this benefit — and also as consequence of the disadvantage — there are two
groups of people which have a special interest in the topic e-learning. On the one hand the
operators of these platforms since they want to keep their users active, on the other hand
researchers since they benefit from the amount of data. Therefore studies in this field often
rest on MOOC:s instead of traditional universities (e.g Balakrishnan (2013), Halawa et al.
(2014) and Qiu et al. (2016)).

There are two sorts of dropout predictions which base on different time periods. On one
side dropout predictions focusing the complete duration of study, on the other predictions
of a specific course which means that only one semester is involved. Aulck et al. (2016) and

7

8 CHAPTER 2. RELATED WORK

Obsivac et al. (2012) try to predict if a student will finish one’s degree. Ameri et al. (2016)
try the same and additionally predict when the dropout will happen. In contrast Ahadi
et al. (2015) and Yadav et al. (2012) are concerning with students” exam performance in a
running semester.

Depending on the desired predictions that should be made and the time frame that is
analysed, the data which is collected for classification is different. The predictions can be
based on multiple features. A feature describes an observable activity or characteristic of
students. Three main data classification groups can be extracted:

Students’ behaviour and performance This group includes observable activities of a stu-
dent (like attendance or the required time for a class test), or an assessed version of these ac-
tivities (exam marks, submission performance, etc.). Yadav et al. (2012) use “students’ past
performance data [...] to predict the students’ performance”. The past performance data
they use includes among others previous semester marks, class test grade and attendance.
Ahadi et al. (2015) analysed an “introductory programming course organized at the Uni-
versity of Helsinki” (Ahadi et al., 2015, section 3.2). To assess the students’ programming
performance they automatically gathered information using a special programming envi-
ronment: “For each student that consented to having their programming process recorded,
every key-press and related information such as time and assignment details was stored”
(Ahadi et al., 2015, section 3.2).

Personal characteristics The group personal characteristics contain information given to
a student by nature (e.g. gender, race, age) or influences which may affect the students
in the given situation (like number of courses attending during a semester or foreknowl-
edge from previous education). They can either be gathered by personal interviews or are
already given by an existing system. Besides the programming performance Ahadi et al.
(2015) have also gathered personal characteristics of students like gender, age and their
study programme. Personal characteristics are used for predicting the students’” behaviour
by further studies. Aulck et al. (2016) for example collect additional data like race or previ-
ous schooling.

Social characteristics and activities A further group is social characteristics and activi-
ties like circle of friends or social (media) activities. These activities have been collected
by Obsivac et al. (2012). Besides the two previously described groups they have analysed

the students’ social behaviour including “explicitly expressed friendship”, “mutual e-mail
conversation” and “visited personal pages”.

The treated studies often compare different machine learning algorithms to receive the
best possible predictions regarding the considered use case. For that reason they often use
existing machine learning software (e.g. Weka Knowledge Explorer') which offers multiple
algorithms.

1Weka: Data Mining Software in Java. Available at http://www.cs.waikato.ac.nz/~ml/weka/

http://www.cs.waikato.ac.nz/~ml/weka/

For example Yadav et al. (2012) compare different decision tree algorithms like ID3,
C4.5 and CART using Weka. By doing this they received an accuracy of about 50 — 60% for
the three algorithms when predicting the students” end semester mark based on the past
performance.

Ahadi et al. (2015) also examined multiple decision tree algorithms (e.g. J48, Random
Forest) as well as rule learners (e.g. PART) and Bayesian classifiers (Naive Bayes, Bayesian
Network). As mentioned before, they used different features out of the classification groups
students” performance and personal characteristics to predict the final grade. Ahadi et al.
received the best accuracy using the Random Forest algorithm with more than 85% on a
given test set. By evaluating a separate semester they only received an accuracy of 71% —
80%.

Obsivac et al. (2012) tested similar machine learning algorithm types including but not
limited to decision tree (J48), lazy learner (IB1), rule learner (PART) and Bayesian classifier
(Naive Bayes). They have evaluated the influence of their social behaviour classification.
By doing this Obsivac et al. have shown that the social behaviour classification can increase
their previous dropout predictions accuracy for all algorithms. The best results have been
gained using PART (without social behaviour features: 82%; including: 93%).

Compared to this work the treated studies focusing on selecting the best performing
features as well as the best algorithm which match their given use case. In this work the
classification scheme has already been defined and a suitable statistical model is searched.
The focus rather relies on implementing an adaptable and extendable framework which
can be applied on different use cases.

10

CHAPTER 2. RELATED WORK

CHAPTER 3

Classification

There are different kinds of tagging to predict the future behaviour of a student. The tagged
data is separated into two groups. On the one hand the observations which are the tags of the
observed behaviour of a student and on the other hand the predictions which describe a fu-
ture behaviour. Predictions can either be in the same set of tags as the observations (consistent
set) or a completely different set. To predict the students’ skipping behaviour with respect to
work assignments a consistent set of error tags is used in this thesis. A possible example for
different sets is the prediction of the examination mark based on the behaviour in work as-
signments. In section 3.1 the classification of data to predict the behaviour regarding work
assignments is explained more precisely. Reasons why the selection of the correct training
data is important and depends on different criteria is explained in section 3.2. The data
used in this chapter were provided by research assistant Niels Heller from the Ludwig-
Maximilian University of Munich. Yet there is no published version where the data is
presented but there will be one in the future.

3.1 Data Collection

An introductory course in Theoretical Computer Science at the Ludwig-Maximilian Uni-
versity of Munich was used to collect data of the students’ behaviour. In this course there
were eleven optional assignments. Each of these assignments had a different number of
exercises. While the course started with 345 participants, 82 were randomly selected. For
the submissions of these 82 students a special record was made. Each exercise was tagged
with comments and assigned to the student who received these comments. Comments
which were assigned repeatedly were for example “good” and “missing” for the obvious
reasons. Other typical comments were common misconceptions of an exercise, with which
missing knowledge could be connected. All comments were summarized per assignment
and linked to the student. Thereby each submission of the 82 students could be tagged by

11

=

H O W 0 J o U b W N -

12 CHAPTER 3. CLASSIFICATION

one of the following tags:

Skipped This tag is assigned if the student had not even submitted the assignment or if a
bulk of exercises received the comment “missing”.

No error Obviously a submission is tagged as “no error” if all exercises were handed in
without any mistakes.

Insufficient knowledge If a students’ mistake of an exercise is judged as “insufficient know-
ledge” by the correcting person, the assignment is marked with this tag. It is related
to the previously mentioned knowledge gaps.

Error By process of elimination a submission is said to exhibit an “error” if none of the
other tags can be applied.

To detect “insufficient knowledge” the exercises should be prepared carefully in the first
place. This means that typical mistakes should be gathered (e.g. from earlier courses) for
each exercise. By doing this, the corrector knows what he has to look for.

For example a programming assignment could come with a unit test where some results
automatically reveal insufficient knowledge. To be more precise assuming the following
simple programming assignment: “Write a function which calculates the sum of 6 and 4,
divided by 2!”. Evidently the correct answer would be 5. Whereas the result 8 acts as
an indicator for insufficient knowledge, since it perhaps implies a conceptional misunder-
standing of parentheses (listing 3.1). It has to be said that it is only an assumption that the
reason for such a result is insufficient knowledge and not only a simple mistake. So could a
forgotten return either mean a careless mistake or insufficient knowledge about functions.
Anyway if the unit test detects one of these predefined wrong answers, the exercise could
be marked as “insufficient knowledge” instantly. Of course the correct answer could be
verified by a unit test and automatically tag the exercise as “no error” as well. In this way
the assessment of the submissions can be automated or at least accelerated.

correct
def divide():
return (6 + 4) / 2 # output: 5

incorrect
def divide():
return 6 + 4 / 2 # output: 8

incorrect
def divide():

6 +4 /2 # return missing
Listing 3.1: Correct and incorrect divide function implementations in python
While “skipped” is of special interest since we want to prevent the student from skip-

ping the assignments, “insufficient knowledge” is very important as well, because the re-
garding learner would have to go over the course material once more while the course itself

3.2. TRAINING DATA SELECTION 13

[V e o I T T T T T T s e

so% — I ———— I —— A —— A —— A —— - —— . —

30%

20% \ // \\ | | [| | |
N % R N
10% | S S
. N - . — - j
o% L -J .7.7\—;l
2 3 4 5 6 7 8 9 10 1

¥ NO ERROR ERROR M INSUFFICIENT KNOWLEDGE SKIPPED

Figure 3.1: Tagged data distribution of an introductory course in Theoretical
Computer Science

continues. The category “insufficient knowledge” may be related to Radatz (1979) “Errors
Due to Deficient Mastery of Prerequisite Skills, Facts, and Concepts”. Which in turn refers
to the earlier mentioned knowledge gaps.

In the further work the 82 tagged submissions of the course in Theoretical Computer
Science act as training- and also as test-set. How this is done is shown in chapter 7. The
relative frequency distribution of the courses’ tagged data is shown in figure 3.1.

3.2 Training Data Selection

As seen in figure 1.1, more students tend to skip assignments as time goes on. Statistics of
other courses confirm this trend. Figure 3.2, 3.3 and 3.4 show the submission behaviour of
three additional courses in different semesters. The growth of skipping is visible in all of
these statistics.

Compared to figure 1.1 there are fewer submissions right from the beginning of the
course. This could have different reasons. On one side there are different kinds of how
the data was collected. While the data of the introductory course in Theoretical Computer
Science of chapter 1 was collected by randomly selecting some students, the data of the
three statistics in this chapter include all students of the course. This does not necessarily
have to be a reason for the differences between the statistics, but it could be one. Further-
more could a delayed registration of some students to the course - e.g. a few days before
the exam begins - be an explanation for these differences. Such a behaviour leads to an
equalisation of data.

The small number of submissions in the course “Logik und Diskrete Stukturen” (eng.:
Logic And Discrete Structures) in summer semester 2015 may be expounded through the
fact that there was no bonus point system for the exam, while “Formale Sprachen und
Komplexitidt” (eng.: Formal Languages And Complexity) in summer semester 2015 and
2016 had this. A combination of all three courses is shown in figure 3.5. It clarifies the
decrease of submissions over the semester period.

14 CHAPTER 3. CLASSIFICATION

All these statistics point out that it is important to select training data which fits the
course. This means, if one attempts to make predictions based on training data, the train-
ing data should be taken from courses with similar properties and educational approaches.
Possible selection criteria are number of assignments, course (e.g. earlier semesters), pro-
fessor of the course and bonus point system. For these reasons it is important that the
software implementation provides a way to select different training data. Moreover the
data should be exchangeable in the running system to evaluate various types of training
data for different courses.

Formale Sprachen und Komplexitat (FSK)
Summer semester 2015

WSUBMITTED SKIPPED

100%

Assignments

Figure 3.2: Skipping/Submitting behaviour distribution of 272 students in
“Formale Sprachen und Komplexitidt” (FSK) in summer semester 2015 (SS15)
at the Ludwig-Maximilian University of Munich. By submitting a
near-faultless solution the students could gain bonus points for the exam.

Formale Sprachen und Komplexitat (FSK)
Summer semester 2016

" SUBMITTED SKIPPED

100% [1
90% 1
80% |
70% |

60% —

Assignments

Figure 3.3: Skipping/Submitting behaviour distribution of 616 students in
“Formale Sprachen und Komplexitidt” (FSK) in summer semester 2016 (SS16)
at the Ludwig-Maximilian University of Munich. By submitting a
near-faultless solution the students could gain bonus points for the exam.

3.2. TRAINING DATA SELECTION

Logik und Diskrete Strukturen (LDS)
Summer semester 2015

®SUBMITTED SKIPPED

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

0%

Assignments

Figure 3.4: Skipping/Submitting behaviour distribution of 290 students in
“Logik und Diskrete Stukturen” (LDS) in summer semester 2015 (5515) at the
Ludwig-Maximilian University of Munich. The assignments were optional
and without the possibility of bonus points for the exam.

Combination of LDS SS15, FSK SS15 and FSK SS16
W SUBMITTED * SKIPPED

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

0%

Assignments

Figure 3.5: Combined statistic of “Logik und Diskrete Stukturen” in summer
semester 2015 and “Formale Sprachen und Komplexitdt” in summer semester
2015 and 2016.

16

CHAPTER 3. CLASSIFICATION

CHAPTER 4

Statistical Models

There are different statistical models which can be used to predict the behaviour of students
based on the tagged data. An appropriate prediction model should provide answers to the
following questions:

(1) How to train a model given a tag history?

(2) How to determine the probability of the next possible state (with respect to the
students’ personal recent behaviour sequence)?

(3) How to represent students’ personal characteristics, like motivation or time con-
straints?

First a deeper look at two models, which were implemented in the context of this thesis, is
given at first. In section 4.1 a relative frequency estimation is discussed and in section 4.2
is shown why a Hidden Markov Model better fits to the addressed problem. All follow-
ing applications of the considered models are based on the tag history of the introductory
course in Theoretical Computer Science described in chapter 3.

4.1 Relative Frequency

The relative frequency estimation offers a plain statistical model where the occurrence of
each tag in the tag histories is counted based on the assignment. To get a distribution this
count is divided by the quantity of students. So for each assignment a distribution of given
tags is computed. If more than one tag history is used as training data, the tables are simply
concatenated. Figure 4.1 shows an example with two tag histories.

Even if this model with its simple structure addresses two of our three main problems
((1) and (2)), it is very unspecific. The students’ personal recent behaviour sequence has no
impact of the predicted next tag which means each student receives the same prediction for

17

18 CHAPTER 4. STATISTICAL MODELS

TCS | Assignment1 | Assignment 2 Assignment 11

SS2015 | 29042015 | 06052015 | = | 01.07.2015

L o

no error error

no error ins. knowledge ...

TCS Assignment 1 | Assignment 2
SS2016 28.04.2016 05.05.2016

Relative
Frequency

0.31 012 ...
0.30 0.43 ... 0.

0.21 0.30 ... 0.

Figure 4.1: Conversion of two exemplary histories into a relative frequency
distribution. The two tag histories are concatenated.

a specific assignment. Moreover personal characteristics are not represented. To take these
points into account another statistical model should be used.

4.2 Markov Models

Figure 4.2: Visualisation of the trained Markov Chain based on the Theoretical
Computer Science course introduced in chapter 3.

4.2.1 Markov Chain

To express the personal recent behaviour sequence a Markov Chain can be used as described
by Rabiner (1989, Section II.). The Markov Model describes a set of states. In our partic-
ular use case the states are the observed tags “no error” (S;), “error” (S,), “insufficient
knowledge” (S3) and “skipped” (S4). A set of probabilities is associated with each state
to represent the transitions between them as seen in figure 4.2. To a specific time, in our
case when a new submission is assessed, “the system undergoes a change of state”. The
transition probabilities of such a model are defined by the Matrix A:

4.2. MARKOV MODELS 19

0.30 0.42 0.10 0.18
A= (0 = 0.11 051 0.11 027 @1
VY1010 040 025 0.25 '

0.02 0.13 0.04 0.81

The Markov Chain is trained by counting the transitions between a state and its fol-
lowing state. This count is normalized by the outgoing transitions per state. Table 4.1
visualises this procedure based on the “error” state. So for example the normalized value
for the transition “error” to “skipping” is calculated by ;2 ~ 0.27.

e “ g7’ £ V4 Yy V4 l/insu.’ﬁCient rz : : V4
Transition: “error” to ... error no error B skipping
knowledge
Transition count 31 139 31 73
T 't' f “y 14
ransitions from “error 314139431 473 — 274
to any other state
Transition distribution 0.11 0.51 0.11 0.27

Table 4.1: Example of how the Markov Chain matrix is trained.
Representation of the “error” state transitions.

”voou /A7

Given a sequence of states “insufficient knowledge”, “error”, “skipped”, “error” and the
exemplary model, the probability can be calculated:

P(O|Model) = P[S3,S,S84,52|Model]
= P[S3] - P[S2|S3] - P[S4]S2] - P[S2S4]
=73 -a32 024442
= (0.25)(0.4)(0.27)(0.04)

=0,00108 (4.2)

Where O and 7; are defined as
0 =83,52,84,52

Since a way to express tagged sequences is found, the origin of the trained model (1)
and the personal characteristics (3) are still unaddressed. Anyway personal characteristics
are affecting the student and can not be observed for each one in the given situation, e.g. the
loss of motivation. Like Rabiner says “there is often some physical significance attached to
the states or to sets of states of the model” (Rabiner, II. B.). In our special use case there are
two personal characteristic states. Either the student is active or inactive, where inactive —
for example — means different things like a lack of motivation to solve the assignments or
time-dependent problems which lead to an unduly delay.

20 CHAPTER 4. STATISTICAL MODELS

(hidden)
states

emissions

observations

Figure 4.3: Initial Hidden Markov Model with two different hidden states and
four observations.

4.2.2 Hidden Markov Model

For this reason we need an additional “underlying stochastic process that is not observable”
but can be specified by the observable states (Rabiner, II. A.). These kinds of models are
called Hidden Markov Model (HMM). Unlike the Markov Chain, the respective observable
state is determined by a non-observable (hidden) state as shown in figure 4.3. This means
that the probability to end up in a specific observable state depends on the current hidden
state. Like it is demonstrated in Figure 4.4 there are two transitions once the state changes.
First the models hidden state changes depending on the transition probabilities and second
the observation is defined by the emission probabilities. This implies that the probability of
an observation only depends on the last hidden state rather than on all previous hidden
states, since this calculation of all permutations of states "is computationally unfeasible"
(Rabiner, p. 262).

e ©

Figure 4.4: Transitions of an Hidden Markov Model. The current (hidden)
state determines the next observation.

That HMM seems to be a fitting model for predicting students” dropout is also described
by Balakrishnan (2013): “HMMs prove a suitable choice since the hidden state can model

4.2. MARKOV MODELS 21

latent characteristics of the student that influence their will to persevere, and we can then
infer these from their observable interactions [...]. Furthermore, an HMM [...] allows us
to infer a student’s behavior in the next time step based on their previous state and their
currently observable actions.”

The first problem of interest is how to train a HMM depending on the tag histories.
In general the HMM is characterised by two lists of states and three probability distribu-
tion sets as seen in figure 4.3. To predict the behaviour of students with respect to work
assignments, these characteristics are defined as follows:

(Hidden) states S Like mentioned before the hidden states describe the personal char-
acteristics of a student. As it is impossible to know each circumstance which affects the
student, the personal characteristics are summarised into two groups. On the one hand the
positive characteristics (active Sycrive) and on the other the negative characteristics (inactive

Sinactiv€)~

S= {Suctiveysinaclive} (43)

Observation symbols O The results of the assessment are the observation symbols. As
described in chapter 3, there are four tags: “no error” (On_err), “error” (O.,r), “insufficient
knowledge” (Oins_tnow) and “skipped” (Oskippea)-

0= {Ono_erry Oerr, Oinsfknowa Oskipped} (44)

Transitions A The transitions are the state probability distributions. For example, if the
system is in state active it describes the probabilities to switch to the state inactive or to
stay in the same state. Assuming that keeping a personal characteristic is more likely than
switching, the transitions are chosen.

. 4

A= 060 (4.5)
0.1 09

Emissions B The emissions are the observation symbol probability distributions. They

define the probability of each tag depending on the current state. To have a minimum of

influence to the training process, the emissions are kept equally distributed.

0.25 0.25 0.25 0.25
025 0.25 0.25 0.25

B= (4.6)
0.25 0.25 0.25 0.25

025 025 0.25 0.25

Initial state distribution 7 If the system is not in any state yet, the initial state distribution
decides which state is used to start with. As initial parameters the submission distribution
of assignment one from 1.1 is chosen.

T— [0.79 0.21} 4.7)

22 CHAPTER 4. STATISTICAL MODELS

(hidden)
states

emissions

observations

Figure 4.5: Hidden Markov Model with trained probabilities. The Theoretical
Computer Science course introduced in chapter 3 is used as training data.

Before the model can be trained, the model needs to be initialised by specifying the
transition, emission and initial probability distribution sets as well as the hidden states and
observation symbols. The compact notation for the parameter set of the model looks like:

A =(A,B,m) (4.8)

As defined by Rabiner as problem 3, the initial model can be optimized by tag histories
using the Baum-Welch algorithm (Rabiner, III. C.). Once the model is trained, the probability
distribution sets are adjusted like exemplary shown in figure 4.5.

Running Assignment 1 Assignment2 | Assignment3 | Assignment 4 Assignment 5
Course 06.11.2016 03.12.2016 08.01.2017 10.02.2017 06.03.2017

insufficient
Knowledge

Figure 4.6: Exemplary personal recent behaviour sequence of a student up to
assignment 4. Assignment 5 should be predicted.

Based on this trained model and the students’ personal recent behaviour sequence the
prediction should be made. As Rabiner describes problem 1, a trained model and an observ-
able sequence can be used to calculate the probability of that sequence using the Forward-
Backward algorithm (Rabiner, III. A.). Assuming a personal recent behaviour sequence until
assignment four during a running course.

SeCIrecent = Oins_know Oerr Oskipped Oerr (49)

The fifth assignment outcome of the student should be predicted (exemplified by figure 4.6).
To predict the future behaviour the personal recent behaviour sequence must be extended

4.2. MARKOV MODELS 23

insKnow error skipped error no error 0.000626 0.15
insKnow error skipped error error * 0.001716 # 0.42
insKnow error skipped error insKnow 0,000559 0.14
insKnow error skipped error skipped 0.001181 0.29
(a) (b) ()

Figure 4.7: Process to calculate a distribution of the HMM predicted
probabilities based on a user sequence. (a) Brute force approach: Extension of
the user sequence with each possible step. (b) Predicted probabilities of each
step provided by the Hidden Markov Model. (c) Normalised probability
distribution.

with each observation symbols (figure 4.7 (a)).

SEQnexl = SEQrecent Onext

= Oins_kn()w Oerr OSkipped Ocrr Onext (410)
where

Onext S {Om)_erra Oerra Oins_knowv OSkipped }

Now it is possible to calculate the probability for each of theses sequences (figure 4.7 (b)).
Comparing these probabilities respecting the maximum likelihood the best guess for the
next behaviour is received. As the other observable states might be of interest as well, a
probability distribution should be created. For this purpose the probabilities have to be
normalised. The normalisation is done by dividing each of these probabilities by the one
of the personal recent behaviour sequence. This is reasonable since the personal recent
behaviour sequence is already concluded thus it has a probability of 1. In general, it can be

said:
P(Seqnex|A)

P(SeQrecentlﬂv)
Figure 4.7 (c) exemplified such a normalised probability distribution of the previously de-

P(Opext|A) = (4.11)

fined sequence.

Additionally it is possible to predict the underlying hidden states (Rabiner problem 2).
The Viterbi algorithm reveals a hidden state sequence given an observation sequence (Ra-
biner, III. B.). The prediction of the underlying hidden states is not further pursued in this
work.

24 CHAPTER 4. STATISTICAL MODELS

Summarised the Hidden Markov Model solves our initial main problems to predict the
students’ behaviour regarding work assignments as follows:
(1) How to train a model given a tag history?
Based on an initial model and a tag history, the model can be trained using
the Baum-Welch algorithm.
(2) How to determine the probability of the next possible state (with respect to the
students’ personal recent behaviour sequence)?

The Forward-Backward algorithm calculates the probability of the extended
personal recent behaviour sequence concerning a trained model. Afterwards the
probabilities can be normalised to receive a probability distribution.

(3) How to represent students’ personal characteristics, like motivation or time con-
straints?

The personal characteristics are expressed by the hidden states of a HMM.

CHAPTER D

Technical Implementation

To combine different classification types (categories) and statistical models an extendable
prediction framework has been implemented. The main components of this framework
are the prediction units. They are responsible for training the statistical models and for
predicting the possible next behaviour of the students. How the prediction framework is
structured so as to be modular is addressed in section 5.1. Section 5.2 describes the inte-
gration in an existing system. What has to be done so as to implement further prediction
units and tags to extend the framework is discussed in section 5.3. The server-side of this
system is implemented in Scala' using the Play Framework®. The prediction framework is
implemented in Scala as well. The Hidden Markov Model, used to predict the students
behaviour, is part of the Smile library®.

«traits
PredictionUnit[O <: Tag, P <: Tag]

#model: Model[Q, P]
+options: Options[O, P]
+histories: Seq[History[O]]
+initModel()
+trainModel(histories: Seq[History[O]])
+predict(behaviour: Seq[O]): Prediction[P]

Figure 5.1: Simplified UML diagram of the PredictionUnit trait. It shows
the attributes as well as the functions which are needed to predict the
students” behaviour.

1The Scala Programming Language, version 2.11. Available at https://www.scala-lang.org

2Play Framework, version 2.5. Available at https://www.playframework.com

3Smile - Statistical Machine Intelligence and Learning Engine, version 1.2. Available at
http://haifengl.github.io/smile

25

https://www.scala-lang.org
https://www.playframework.com
http://haifengl.github.io/smile

26 CHAPTER 5. TECHNICAL IMPLEMENTATION

PredictionUnit specific information
- Category of observations
- Category of predictions .
- ObservationSet .
- PredictionSet

Figure 5.2: Simplified visualisation to show which tag category is necessary
for which interaction of the PredictionUnit. (a) Initial options.
(b) Training data (c) Transformation of observations into predictions

5.1 Prediction Framework

As seen in chapter 3, there are different kinds of classifications. Therefore the prediction
unit needs to be independent of the tagged data. Furthermore the statistical model needs
to be exchangeable as described in chapter 4. To reach this the PredictionUnit is imple-
mented as a trait without any dependency on the statistical model and the category of
tagged data. Only the concrete implementation of this trait determines the model as well
as the observation and prediction categories. Figure 5.1 shows the design of the Predic-
tionUnit trait. It shows the inner dependencies of the observation and prediction tag
category and where which one is used.

At first — in subsection 5.1.1 — the tags are separated into different classes. Subsec-
tion 5.1.2 explains the design of the PredictionUnit step by step. After that, the interface
to the outside of the framework is shown in subsection 5.1.3 and 5.1.4.

5.1.1 Observation and Prediction Tags

In general it can be said that making a prediction is transforming a sequence of tags (obser-
vation) into a distribution of tags (prediction). As mentioned in chapter 3, the category of
observations and predictions can be different. To realise this the prediction unit depends
on two independent tag categories. Besides the categories there is a need to know which
tags are allowed, because the prediction unit respectively the statistical model needs the
possible values to create a probability distribution of them. These are the main information
that each PredictionUnit needs to be initialised. To describe the design of tags some
keywords have to be defined. The skipping behaviour classification of section 3.1 is used
to explain these keywords by example. Figure 5.2 visualises all dependencies between the
PredictionUnit and the tag categories.

Tag A tag is a classification feature. It describes an observed or predicted behaviour. The
tags to predict the skipping behaviour are the already defined classifications: “no
error”, “error”, “insufficient knowledge” and “skipped”. A possible other example
is a mark in an exam (e.g. the marks 1,0; 2,3 or 3,7). Generally can be said that a tag is

a value of a behaviour.

5.1. PREDICTION FRAMEWORK 27

Tag category Each tag belongs to exactly one tag category. The possible values for how the
behaviour can be categorised are described by this category. To make a prediction
the prediction unit receives a tag sequence where each tag is from the observation tag
category. Based on this sequence the prediction unit predicts a probability for each
tag out of the prediction tag category.

For the skipping behaviour prediction the tag category is called ErrorState. ErrorState
contains the four afore-mentioned tags. In this case the observations and predictions
are of the same category. An example for the use of different tag categories is the
prediction of an exam mark based on the submission behaviour. Here the prediction
category is represented by a set of all possible marks (ExamMark) while the obser-
vation category is the ErrorState. Possible tags of this category are: {1,0; 1,3; 1,7;
2.0; ...; 4,0; 5.0}. In this use case the prediction unit would transform a sequence of
ErrorState-tags into a probability distribution of all possible exam marks.

Tag category collection The TagCategoryCollectionisa collection of all tag categories.
It is necessary due to two reasons. On the one hand a user might want to know which
are the available categories to choose from, on the other hand it has technical reasons:

The prediction unit has to know from which tag category the observations should be
taken and from which tag category the predictions should be produced. This could be
realised by using classical object oriented inheritance. But some other system require-
ment causes trouble. As imaginable, the tags are supposed to be saved in a database
on the integrating system. This concerns the observation sequences as well as the
prediction distributions. As will be shown later, the framework components will be
implemented as generic classes. To (de-)serialise the tags during runtime the system
has to detect the category so that the correct serialisation method can be chosen. Ex-
actly this is done by the TagCategoryCollection. It provides methods to serialise
and deserialise the different tag categories.

Summarised the TagCategoryCollection is a collection to define the used tag
category in different objects during the system runtime.

The trait Tag is a wrapper to determine different implementations of observation- and
prediction-values. The implemented tags are bound to a tag category. A tag category is no
explicit implemented class or trait. Instead it is a kind of Enumeration where each
possible tag is added as value. The TagCategoryCollection is a Scala Enumera-—
tion to which each realised category is added. Figure 5.3 visualises the components of the
ErrorState and ExamMark implementation with entries in the TagCategoryCollec-
tion enumeration.

A problem of Scala’s Enumeration (enum) is that “Enumerations have the same type
after erasure” (Rijo (2016) and Dallaway (2014)) which means “you do not end up with a
class per member” as said by Dallaway. Unfortunately this is what we need for the tag
category. Each value of the tag category has to be an instance of the trait Tag to enable a
generic implementation of the PredictionUnit. Regarding to Rijo and Dallaway sealed
case objects can be used instead. With sealed case objects it would be possible to ensure that
each value of the tag category is an instance of Tag, but there would be no possibility to

28 CHAPTER 5. TECHNICAL IMPLEMENTATION

«Enumeration»
TagCategoryCollection

ErrorState,
ExamMark
4 contains ‘ | contains P
«Enumeratum:» «Enumeratums
ExamMark ErrorState
1.0 : ExamMark NO_ERROR : ErrorState
1.3 : ExamMark ERROR : ErrorState
INSUFFICENT_KNOWLEDGE : ErrorState
4.0 : ExamMark SKIPPED : ErrorState
S.IIJ : ExamMark :
:each value :each value
|eextendss |<<extends»
«trait» «trait» «traite
ExamMark —“—EE{E@E&[‘;: Tag <]«_e§tgn_di»_ ErrorState

Figure 5.3: Reduced UML diagram of the tag components based on the
ErrorState and ExamMark categories.

get all values of the category at a time. This again is needed to instantiate the Predictio-
nUnit as seen in figure 5.2. Additionally it can be imagined that it is helpful to have one
method which provides each possible value of a tag category when the students’ behaviour
should be described. Thankfully there is a library called Enumeratum by Chan* which offers
these functionalities. Besides that it provides “exhaustive pattern match warnings” which
might be useful when checking the prediction distributions. Further it adds a good inte-
gration into the Play Framework which is used at the project anyway. Listing 5.1 shows the
usage of the enumeratum for the ErrorState tag category. At line 1 a tag category specific
Tag for the entries of the enumeratum is introduced, called ErrorState. This sealed
trait is used to instantiate the enum object ErrorState (line 3). Hereby the name of the
EnumEntry and the PlayEnum itself have to be equal which might be a little confusing
when reading the code. For a better understanding in the later work the enumeratum itself
— the extended PlayEnum — will be called ErrorStates or ErrorState category and one value
of this enum will be called ErrorState. As seen in line 6-9, each value of the tag category is
extended with the specific Tag ErrorState.

5.1.2 Prediction Unit

Since the design of tags is explained now, the prediction unit can be described. As already
mentioned, the prediction unit depends on the observation and prediction category. So

4Chan at github: https://github.com/lloydmeta/enumeratum

https://github.com/lloydmeta/enumeratum

Jy

J

O W W ~J o U b W N

O W W ~J o U b W N

5.1. PREDICTION FRAMEWORK 29

sealed trait ErrorState extends EnumEntry with Tag

object ErrorState extends enumeratum.PlayEnum[ErrorState] {

val values = findValues // mandatory due to Enum extension
case object NO_ERROR extends ErrorState
case object ERROR extends ErrorState

case object INSUFFICIENT_KNOWLEDGE extends ErrorState
case object SKIPPED extends ErrorState

Listing 5.1: ErrorState implementation that shows the usage of the
Enumeratum library.

the PredictionUnit needs to be generic for these both types (line 1 in listing 5.2). The
TagCategoryCollection is not used in the PredictionUnit itself although it is com-
pletely build up on generics, but it has not be serialised. Anyway the PredictionUnit
additionally requires all possible values of both — the observation and prediction category
— as already seen in figure 5.2. The possible values are defined inside the inner trait Op—
tions (line 5-8 in listing 5.2). Line 2 in listing 5.2 instantiates the Options directly. This
forces the developer of a new class which implements the PredictionUnit to define the
sets, since each class has to override abstract fields and methods of its parents traits.

trait PredictionUnit [0 <: Tag, P <: Tag] {
val options : Options[O, P]

trait Options[O <: Tag, P <: Tag] {
val observationSet : Seq[O]

val predictionSet : SeqlP]

Listing 5.2: PredictionUnit implementation (Part 1/3). It shows the
definition of the inner Options trait.

Listing 5.3 shows such an implementation of a Hidden Markov Model to predict stu-
dents’ skipping behaviour. The first line of the listing shows the definition of the same
tag category for observations and predictions. As described before, the options have to be
implemented. Here this happens as an anonymous class (line 3 in listing 5.3). The obser-
vationSet and predictionsSet is defined by retrieving all values of the ErrorState
category (line 4-5 in listing 5.3). Inside the inner class it is possible to instantiate additional
properties which may be needed by the used statistical model (line 8-10 in listing 5.3).

So far a concrete prediction unit implementation could be initiated. But there is still no
statistical model yet. Listing 5.4 shows the next part of the PredictionUnit. The Model
is likely to the Options implemented as inner trait (line 8-11 in listing 5.4). Because of a

0 J o U W N

e e
w N P O

0 J o U W N

e e e e
O W NP O W

30 CHAPTER 5. TECHNICAL IMPLEMENTATION

class HMMSkippingPrediction extends PredictionUnit [ErrorState, ErrorState] ({

override val options = new Options[ErrorState, ErrorState] {
override val observationSet: Seqg[ErrorState] = ErrorState.values
override val predictionSet: Seqg[ErrorState] = ErrorState.values

// additional options for the HMM
val iterations = 100 // baum-welch iterations / forward-backward algorithm
val startProbability = Array (0.8, 0.2) // motivated / unmotivated

Listing 5.3: HMMSkippingPrediction implementation (Part 1/2). It shows
an anonymous class implementation of the Opt ions trait. Besides the needed
set overrides it defines additional options which are used to initialise the
Hidden Markov model.

possible reinitiation of the model its field is not declared as constant (line 3 in listing 5.4).
For the same reason the PredictionUnit provides an abstract method initModel ()
which has to be implemented by its child classes (line 13 in listing 5.4).

trait PredictionUnit [0 <: Tag, P <: Tag] {
val options : Options[O, P]
protected var model : Model[O, P]
var histories: Seq[History[O]] = Seq[History[O]] ()

trait Options[O <: Tag, P <: Tag] { ... }

trait Model[O <: Tag, P <: Tag] {
def train(history : Seql[Seq[O]]) : Unit
def predict (behaviour : Seq[O], predSet : Seq[P]) : Prediction[P]

def initModel ()

Listing 5.4: PredictionUnit implementation (Part 2/3). It shows the
definition of the inner Model trait.

As with the Options, the Model has to be defined when extending the Predictio-
nUnit, but in this case the implementation is not an anonymous class as seen in listing 5.5
on line 6. Instead the inner class is implemented regularly to use it twice (line 29 and 4 in
listing 5.5).

Since the model can be initialised by creating a concrete implementation of the Pre-
dictionUnit, it still has to be trained. The model is trained by sequences of observations

0 J o U W N

N
FNENTVE SR S © B

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

5.1. PREDICTION FRAMEWORK 31

class HMMSkippingPrediction extends PredictionUnit [ErrorState, ErrorState] {

override val options = new Options[ErrorState, ErrorState] { ... }
override protected var model: Model [ErrorState, ErrorState] = new HMMModel

class HMMModel extends Model [ErrorState, ErrorState] {
var hmm: HMM[ErrorState] = new HMM[ErrorState] (options.startProbability, ...)

override def train(history: Seqg[Seq[ErrorState]]): Unit = {
val histArray = seqToArray (history)
hmm = hmm.learn (histArray, options.iterations)

override def predict (behaviour: Seqg[ErrorState], predSet: Seqg[ErrorStatel]):
Prediction[ErrorState] = {
val possibleSegs = getPossibleSequences (behaviour, predSet)
val p = if (behaviour.size > 0) hmm.p (behaviour.toArray) else 1
val dist = mutable.Map (possibleSeqgs.map ({
case (sym, seq) => (sym -> hmm.p(seq) / p) }).toSeq:

*)

new Prediction (dist)

protected def getPossibleSequences (behaviour: Seqg[ErrorState], predSet: Seq|
ErrorState]): Map[ErrorState, Array|[ErrorState]] = {
(predSet.map (sym => sym —-> (behaviour.toArray.clone() :+ sym))) .toMap

override def initModel () = {
model = new HMMModel

Listing 5.5: HMMSkippingPrediction implementation (Part 2/2). It shows
the implementation of an inner HMMModel class.

— the so called History. A History is a simple case class as seen in listing 5.6. At-
tention should be paid to the tagCategory. As already described, the generic classes
which perhaps should be serialised have to know about its categories during runtime —
so does the History. How the serialisation is done is shown in section 5.2. In section 3.2
was shown that it has to be possible to change the training data of an unit. Therefore the
histories are saved in the PredictionUnit (line 4 in listing 5.4).

case class History[+0O <: Tag] (title : String,
entries: Seq[Seq[O]],
tagType : TagType.Value)

Listing 5.6: Implementation of the case class History.

0 J o U W N

I S S R R e N o e e e e e
B WD P O WwWwomJo b WM EFE O W

32 CHAPTER 5. TECHNICAL IMPLEMENTATION

The predict method does the transformation from an observed behaviour sequence
to a prediction distribution based on the predictionSet. As already described in sec-
tion 4.2, the prediction is made (line 14-24 in listing 5.5).

The last part of the PredictionUnit is shown in listing 5.7. A benefit of traits “is that
they can be partially implemented, like abstract classes” in Java (Harrison, 2011). Through
this, some operations can be predefined inside the PredictionUnit so that the developer
has not to take care of them. These operations are the concatenation of histories and the
insertion of the predictionSet into the predict method. The PredictionUnit itself
can be seen as a wrapper or container which delegates the request to the model. By this, the
interface of the PredictionUnit is very clean and no interaction with the model itself is
needed from the outside.

trait PredictionUnit [0 <: Tag, P <: Tag] {
val options : Options[O, P]
protected var model : Model[O, P]
var histories: Seqg[History[O]] = Seq[History[O]] ()

trait Options[O <: Tag, P <: Tag] { ... }
trait Model[O <: Tag, P <: Tag] { ... }

def initModel ()
def trainModel (history: History[O]) {

trainModel (Seq(history))

def trainModel (histories: Seqg[History[O]]) {

initModel ()

this.histories = histories

model.train(this.histories.map(_.entries) .reduceleft (_ ++ _))
}

def predict (behaviour: Seq[O]): Prediction[P] = {
model.predict (behaviour, options.predictionSet)

Listing 5.7: PredictionUnit implementation (Part 3/3). It shows the
delegation to the concrete implemented models.

5.1. PREDICTION FRAMEWORK 33

5.1.3 Behaviour Log

Since the predictions that should be made are related to a course, there has to be a place to
summarise all needed information for the prediction unit. Mainly these information are:

TagCategory of the observations and predictions.

Observation and prediction sets.

Observations respectively the personal recent behaviour sequences of each student.
Predictions of each student which already were predicted.

Histories that should be used to train the prediction units

The prediction units themselves which should be used for the predictions

In addition some other data might be useful:

e Names for each step / assignment.
o A possibility to compare two predictions per step, e.g. by subtract one prediction
distribution from the other — called discrepancy.

The BehaviourLog is the one point in the framework where all the components per
course come together. Figure 5.4 shows its class diagram. As already seen at the His—
tory, the BehaviourLog also holds a reference to its tag category. Reason for this is
the serialisation and deserialisation as well. ObservationSet and predictionSet are
needed to initialise the prediction units. The observations will be updated from the
outside of the framework. They are represented by a key/value pair (Map). Key of this
Map is the ID of the user which belongs to the sequence of observations (value). Once a
observation is updated the predictions have to be updated. Since there can be multi-
ple predictions per user (from different prediction units), the key of the outer Map is an
unique identifier of the prediction unit. The inner key/value pair maps the user to a se-
quence of predictions. That sequence represents the predictions of the different steps/as-
signments. In summary, this means: Map [<id of prediction unit>, Map[<id of
user>, Sequence of predictions per step]].The StepNames are just a simple
list in which the mapping to the related observations and predictions are identified by the
index of the step. The discrepancy is a list with at most two entries. If the discrepancy of
two prediction distributions should be calculated, it contains the IDs of the two prediction
units which are subtracted. Histories are referenced by unique titles that are represented
by lists of strings. Each behaviour log holds an instance of its prediction units which can
be initialised by the initUnit (...) method using reflection. There are various further
methods that enable all needed interactions to make predictions. Many of these delegate
calls to the prediction units. By this structure the framework provides one main interaction
point since all these methods are called from the outside of the framework.

5.1.4 Prediction Unit Factory

Another object that is directly used from outside the framework, is the PredictionUnit-
Factory. Itis used to define which PredictionUnit and BehaviourLog implementa-
tions are available. Therefore it is an object to be accessible from everywhere in the sys-
tem. Two maps are saved in this object. The prediction unit implementations are saved by

34

CHAPTER 5. TECHNICAL IMPLEMENTATION

BehaviourLog[O <: Tag, P <: Tag]

+observationCategory: TagCategoryCollection.Value
+predictionCategory: TagCategoryCollection.Value
+observationSet: Seq[O]

+predictionSet: Seq[P]

+observations: Map[String, Seq[O]]

+predictions: Map[String, mutable.Map[String, Seq[Prediction[P]]]]
+stepNames: Seq[String]

+historyTitles: Seq[String]

+discrepancy: Seq[String]

+predictionUnits: Map[String, PredictionUnit[O, P]]

+initAndTrainAll(histories: History[O][1)
+initAndTrain(unitName: String, histories: History[O][])

+predictUserBehaviour(userld: String, behaviour: O], repredictAll: Boolean)
+predictAll()
+predictByUnit(unitName: String)

+addDiscrepancy(firstUnitld: String, secondUnitld: String)
+calculateDiscrepancy()

+addUnit(unitName: String, histories: History[O][])
+removelnit{unitName: String)
+initUnit(unitName: String, className: String): PredictionUnit[O, P]

Figure 5.4:

UML class diagram of the BehaviourLog which unites all

components of the prediction framework.

its unique identifier and its corresponding qualified class path. In this way it is possible to

create an instance of these prediction units applying reflection as used by the Behaviour—

Log. Available behaviour logs are presented by a second map that refers to a simplified

behaviour log object (SimpleBehaviourLog). It only contains the most important in-

formation to initialise behaviour logs (figure 5.5). Besides the two kinds of categories it

encloses the prediction units which can be used with this behaviour log.

SimpleBehaviourLog
name: String
observationCategory : TagCategoryCollection.Value
predictionsCategory : TagCategoryCollection.Value
predictionUnits : String[]

Figure 5.5: UML class diagram of the SimpleBehaviourLog. It defines the

prime data which are needed to initialise a behaviour log.

There are some functions provided by the factory that can be used by the developer

to (de-)register newly implemented prediction units and behaviour logs. Normally this

registration is done at the server start up and might be defined in a configuration file. How

this could look like is shown in the next section.

Figure 5.6 summarises the different components of the prediction framework. Besides

the classes and traits, which are provided by the framework, the figure contains the imple-

mentation of the ErrorState tags and two prediction units.

5.2. INTEGRATION 35

PredictionFramework |

4 uses
SimpleBehaviourLog «objects
PredictionUnitFactory

specifies
simplifies ¥ available
logs ¥

E— |
haviourLog
[0 <: Tag, P <: Tag]

specifies &

History

Prediction
[P <: Tag]

[0 <: Tag]
«Enumeration»
TagCategoryCollection has
ErrorState. instances i i
sate e L‘v"va'"“ creates A specifies
available
units ¥
— atrait»
«trait» specifies P PredictionUnit
Tag {0 <: Tag, P <: Tag]
contains ¥
N AN
Teach value B
| «extends» | |
tion! I] [
| «extendsy i i «extends»
r———~——"~"~""""~ T~ o
Enumeration» | | |
ErrorState

RelativeFrequencyErrorStatePredictionUnit
]

NO_ERROR, -
[ErrorState, ErrorState]

HMMErrorStatePredictionUnit
[ErrorState, ErrorState]

ERROR, -
INSUFFICENT_KNOWLEDGE
SKIPPED

Figure 5.6: Simplified structure of the prediction framework including an
implemented ErrorState category and two PredictionUnit
implementations.

5.2 Integration

To integrate the prediction framework properly in an existing system some questions need

to be answered.

e How are the available prediction units and behaviour logs registered to be used in

different courses and projects?

e How are the histories and behaviour logs stored and reinitialised to still be available

on server restart?

e How is the interaction between the front-end and the back-end managed and which

requests are needed?

To address these questions we need to have a look at the design of the existing system
in which the framework has been integrated. Like already described the system uses the
Play Framework which provides RESTful Web services as interface between front-end and
back-end. On server-side Controllers handle the requests of the client. Actions® define the
possible payload of these requests. The database of the system is MongoDB® that saves
BSON objects. BSON “is a binary-encoded serialization of JSON-like documents” (BSON
- Binary JSON). This is convenient since the RESTful Web service can use JSON objects as

5https ://www.playframework.com/documentation/2.5.x/ScalaActions
6MongoDB, version 2.8. Available at https://www.mongodb.com
7BSON - Binary JSON. Available at http://bsonspec.org/

https://www.playframework.com/documentation/2.5.x/ScalaActions
https://www.mongodb.com
http://bsonspec.org/

0w ~J o b W N

36 CHAPTER 5. TECHNICAL IMPLEMENTATION

response format. Through this the same deserialisation and serialisation methods can be
used to transform the Scala objects when saving the data on the database and when sending
the data to the front-end. The current system organises learning activities in projects. A
Project can be used to represent a course. To integrate the prediction framework the
important fields of this model are the unique identifier (id) and a list of all participants of
the course. All project instances are fully serialisable to be saved in the database and to be
sent to the front-end. The following subsections show how the integration into this existing
system has been done.

5.2.1 Server Start Up

As already mentioned in subsection 5.1.4, the PredictionUnitFactory of the frame-
work provides methods to register behaviour logs and prediction units. On the given sys-
tem the available units and logs are defined in the application configuration as seen in list-
ing 5.8. Each prediction unit needs an unique name and a fully qualified class path to the
implemented class to be initialised by the PredictionUnitFactory. A behaviour log
requires, besides an unique name, the prediction units it is using as well as the tag category
of the observations and predictions. These are exactly the information which are needed
to initialise a behaviour log (see figure 5.5). This configuration is used on server start up to
register the prediction units and behaviour logs at the PredictionUnitFactory. After
that the prediction units and behaviour logs can be initialised by the PredictionUnit—
Factory during runtime. Furthermore the Singleton BehaviourLogFactory is created
on server start up which takes care of all behaviour log instances.

predictionUnits += { name = "HMM",

class = "predictionFramework.units.HMMSkippingPrediction" }
predictionUnits += { name = "Relative Frequency",

class = "predictionFramework.units.RFSkippingPrediction" }
behaviourLogs += { name = "Skipping Prediction",

predictionUnits = ["HMM", "Relative Frequency"],

observationCategory = "ErrorState", predictionCategory = "ErrorState" }

Listing 5.8: Scala Play configuration entries of the integrated system to add
two prediction unit implementations and one behaviour log entry.

5.2.2 History and Behaviour Log Integration

To have a connection between behaviour logs and a course the existing Project model
needs to be adjusted. It has to be said again that the Project has to be serialisable for the
afore-mentioned reasons. Since the behaviour log should also be sent to the front-end to
be displayed and adjusted, the behaviour log referenced in the project must be serialisable
as well. This makes also sense considering that all predictions of a project are saved in the
behaviour log. If the behaviour logs would not be serialised and stored in the database, the

5.2. INTEGRATION 37

SerializedBehaviourLog

+observationCategory: TagCategoryCollection.Value
+predictionCategory: TagCategoryCollection.Value
+observationSet: Seq[JsValue]

+predictionSet: Seq[JsValue]

+observations: Map[String, Seq[JsValue]]
+predictions: Map[String, Map[String, Seq[JsObject]]]
+stepNames: Seq[String]

+historyTitles: Seq[String]

+discrepancy: Seq[String]

+predictionUnits: Seq[String]

+id: String

+apply(log: SimpleBehaviourLog): SerializedBehaviourLog

+deserialize(log: SerializedBehaviourLog): BehaviourLog[Tag, Tag]
+serialize(log : BehaviourLog[Tag, Tag]) : SerializedBehaviourLog

Figure 5.7: UML class diagram of the SerializedBehaviourLog which
acts as a serialisable version of the BehaviourLog (Figure 5.4). Differences
between these two classes are highlighted.

predictions of all courses would have to be recalculated when the server starts. In case of a
slow predicting process this would have a delaying effect on server start up.

Since each BehaviourLog holds references to its prediction units, the prediction unit
implementations would have to be serialisable as well, which might be a problem for the
developer. To prevent this, a serialisable version of the BehaviourLog is introduced. This
so-called SerializedBehaviourLog is saved in the Project. By saving the unique
name of its prediction units instead of a reference, the prediction unit itself does not need
to be serialisable. Furthermore the SerializedBehaviourLog is no generic class imple-
mentation which means that it is independent of the implementations of the tag categories.
Instead it saves the different tags as JSON objects. Figure 5.7 shows the UML diagram of
the SerializedBehaviourLog. By using this serialisable version, the Project can be
extended and is still able to be saved in the database and to be sent to the front-end.

However the new class adds another issue — the transformation between Behaviour-
Log and SerializedBehaviourLog. To this end the SerializedBehaviourLog has
two additional methods as seen in figure 5.7. The serialize and deserialize methods
are used to convert the tags based on the observationCategory and predictionCat-
egory. Exactly this is the reason why tag categories have to be saved as variables in the
BehaviourLog. Without doing this it would not be possible to know to which tag the
JSON data should be converted. How a respective tag of a category is converted is task
of the developer who introduces a new tag category. As the developer should not have to
adjust the nested entries of the SerializedBehaviourLog, the framework provides one
point where a converter function can be implemented so that the developer need not adjust
the nested entries of the SerializedBehaviourLog. The TagCategoryCollection
provides methods — for serialisation and deserialisation — which return a converter func-
tion based on the category. How these methods look like is shown in subsection 5.3. Any-
way the SerializedBehaviourLog calls these methods and uses the converter functions

W 0 J o0 U b W NN -

38 CHAPTER 5. TECHNICAL IMPLEMENTATION

when converting between the two behaviour log implementations.

Unfortunately the conversion from SerializedBehaviourLog to BehaviourLog
should only be done once at the server lifetime, since it holds the reference to prediction
unit instances. For this purpose the BehaviourLogFactory is used. It adds the be-
haviour log instances to the projects of the system. At server start up the BehaviourLog-
Factory initialises all behaviour logs by finding all projects in the database which include
at least one behaviour log. For each of these projects the BehaviourLogFactory deseri-
alises the SerializedBehaviourLog which creates a BehaviourLog instance. During
the deserialisation the prediction units of the behaviour log are initialised as well. Once a
BehaviourLog instance is created the BehaviourLogFactory trains its prediction units
by its histories. After that all BehaviourLog instances are saved in a map. The key of an
entry is the concatenation of the project ID and the behaviour log name defined in the
configuration file. By doing this the BehaviourLogFactory can handle requests on an
specific behaviour log and change it accordingly.

def deserialize(h : SerializedHistory): Historyl[Tag] = {
val converter = TagCategoryCollection.deserialize (h.category)
new History[Tag] (h.title, h.entries.map(_.map(converter)), h.category)

def serialize(h : History[Tag]) : SerializedHistory = {
val converter = TagCategoryCollection.serialize (h.category)

new SerializedHistory(h.title, h.entries.map(_.map (converter)), h.category)

Listing 5.9: Implementation of the serialize and deserialize method of
the SerializedHistory. It shows the call of the
TagCategoryCollection methods which return converter functions based
on the category.

As already described in subsection 5.1.2, the histories should be serialised as well. Since
the History is a generic class which depends on the observation tag category, there is also
a need of a serialised version of this class. The SerializedHistory is similar to the
SerializedBehaviourLog. It also saves its entries as JSON object and provides a se-
rialize and deserialize method. Listing 5.9 shows the implementation of these meth-
ods. Due to the fact that each History can be used by multiple behaviour logs respectively
projects, it is saved in an own database collection.

5.2.3 C(lient-Server Communication

As mentioned, the Play Framework uses Controllers and Actions to handle client requests.
To handle the requests which update the behaviour log an own Controller and Action is
written. The Action defines the values possibly send with a request. It is called Predic-
tionUpdate. Figure 5.8 shows the UML diagram. In order to know which behaviour
log is addressed the projectId and behaviourLogTitle are mandatory. If the further

5.2. INTEGRATION 39

PredictionUpdate

+projectld: String
+behaviourLogTitle: String

+behaviourLog: Option[SerializedBehaviourLog]
+userlds: Option[Seq[String]]

+unit: Option[String]

+repredictAll: Option[Boolean]

+histories: Option[Seg[String]]

Figure 5.8: UML class diagram of the PredictionUpdate Action. It contains
the project ID and the title of the current behaviour log as required fields. All
further fields are optional.

fields are set depend on the request. Possible requests are defined by the RESTful API as
shown in table 5.1.

GET | /oredicti /1 get all available behaviour
predictions/logs
logs

update the complete
PUT | /predictions/project/behaviourlog p . P
behaviour log

update the histories of the
PUT | /predictions/project/histories p .
behaviour log

add a new behaviour log to
PUT | /predictions/project/addLog . &
the project

add a prediction unit to the
PUT | /predictions/project/add P
behaviour log

remove a prediction unit
PUT | /predictions/project/del p

from the behaviour log

Table 5.1: An extracted version of the RESTful API which is used to modify or
visualise the behaviour log.

The incoming requests are forwarded to the corresponding methods of the prediction
controller. This controller extracts the values from the PredictionUpdate and delegates
the task to the BehaviourLogFactory. The BehaviourLogFactory receives the ap-
propriate BehaviourLog instance based on the project ID and behaviour log title from its
Map. The BehaviourLog instance itself processes the request. Once the behaviour log is
updated, it is serialised and saved in the Project by the BehaviourLogFactory. The
Project is returned to the controller in which the Project is saved in the database. If
everything went well, a response with the changed serialised behaviour log is sent to the
client.

0 J o0 O w NN

Bw N

O o J o U

11
12
13
14

40 CHAPTER 5. TECHNICAL IMPLEMENTATION

5.3 Framework Extension

This section summarises what needs to be done to extend the framework and integrate it
into the system. For this purpose the ExamMark example is used which requires an addi-
tional tag category and a prediction unit. Short recapitulation: The students” exam mark
should be predicted based on the assignment behaviour of that student.

Implement Tag At first a new tag category implementation is needed. Each possible tag
of this category needs to extend the new ExamMark tag. Listing 5.10 shows this.

sealed trait ExamMark extends EnumEntry with Tag

object ExamMark extends enumeratum.PlayEnum[ExamMark] {
val values = findValues // mandatory due to Enum extension
case object mark_1_0 extends ExamMark
case object mark_1_ 3 extends ExamMark

Listing 5.10: Implementation of the Enumeratum ExamMark.

Extend TagCategoryCollection Tomake the new tagcategory available in the frame-
work the TagCategoryCollection has to be extended. This is done by adding the new
enumeration to the values of this class (listing 5.11 in line 2). Furthermore the methods to
serialise and deserialise the tags need to be implemented. As described in subsection 5.1.3,
they are used when transforming the BehaviourLog into the SerializedBehaviour-
Log and vice versa. Moreover the method getA11Tags should be extended which simply
returns all tags based on the category.

object TagCategoryCollection extends Enumeration {
val ErrorState, ExamMark = Value

def deserialize(category: TagCategoryCollection.Value) : (JsValue) => Tag =
category match {
case ExamMark => ((jv: JsValue) => tags.ExamMark.withName (jv.as[String]))
case ErrorState => ((jv: JsValue) => tags.ErrorState.withName (jv.as[String]))
case _ => throw new NoSuchElementException(...)
}
def serialize(category: TagCategoryCollection.Value) : (Tag) => JsValue =

category match {
case ExamMark => o => JsString(o.toString)

}
def getAllTags([P <: Tag] (category: TagCategoryCollection.Value) : Seq[P] = ...

Listing 5.11: Extended version of the TagCategoryCollection which
includes the ExamMark und ErrorState tag categories.

g W N

Ssw NN

5.4. SUMMARY 41

Implement a Prediction Unit Nexta new PredictionUnit implementation is needed.
The new class needs to extend the PredictionUnit trait. Here the category of observa-
tions and predictions are different as seen in listing 5.12. Through the inheritance the inner
classes Options and Model as well as the initModel method have to be implemented.

class ExamMarkPrediction extends PredictionUnit [ErrorState, ExamMark] {
override val options: Options|[ErrorState, ExamMark] = ...
override protected var model: Model [ErrorState, ExamMark] = ...

override def initModel(): Unit = ...

Listing 5.12: Shortened implementation of an ExamMarkPrediction unit.

Extend Configuration At last the extension of the configuration file is needed to register
the new prediction unit in the system. Additionally the unit has to be added to an existing
behaviour log or a new one is needed. Since there is no existing behaviour log which has
the same tag categories as the ExamMarkPrediction, a new behaviour log is required.

predictionUnits += { name = "ExamMarkUnit",
class = "predictionFramework.units.ExamMarkPrediction" }
behaviourLogs += { name = "Exam Mark Log", predictionUnits = ["ExamMarkUnit"],
observationCategory = "ErrorState", predictionCategory = "ExamMark" }

Listing 5.13: Needed entries in the configuration file to register the
ExamMarkPrediction unit and a new behaviour log.

54 Summary

In this chapter the architecture of the framework has been explained. Furthermore the
integration in an existing system has been described. It has been demonstrated that the
framework is simply extendable for further statistical models and additional tags. These
are also mostly the reasons for the design of the framework, since it had to be independent
of the statistical model and the tagged data as shown in chapter 3 and chapter 4.

42

CHAPTER 5. TECHNICAL IMPLEMENTATION

CHAPTER O

User Interface

The focus of this thesis lies on the server implementation. Therefore less emphasis has
been put on the client-sided implementation of the user interface and the usage will be
described instead. A front-end view for examining and getting predictions as well as for
modifying behaviour logs was implemented and integrated in the existing system. As the
rest of the platform, this view was implemented in Angular JS' and Bootstrap®. The user
interface represents exactly one behaviour log of the current project at a time. It consists of
four main elements which will be explained one by one in the following sections.

6.1 Students’ Behaviour Table

Name Assignment 1 Assignment 2 Assignment 3 Assignment 4 -
bob NO_ERROR v SKIPPED + ERROR v ﬂ

HMM HMM HMM HMM

ERROR: 47.77% ERROR: 46.64% ERROR: 26.83% ERROR: 42.34%

SKIPPED: 18.93% SKIPPED: 20.89% SKIPPED: 55.39% SKIPPED: 28.38%

NO_ERROR: 17.63% NO_ERROR: 17.18% NO_ERROR: 9.25% NO_ERROR: 15.46%

INSUFFIC: 15.67% INSUFFIC: 15.29% INSUFFIC: 8.52% INSUFFIC: 13.82%

Figure 6.1: Students’ Behaviour Table including one student and three
assessed assignments.

To visualise the students’ behaviour and their predictions a table has been chosen (fig-
ure 6.1). Each row represents a student and each column represents the students behaviour
per step. The table header provides the possibility for naming the steps. So for example a
step could be an assignment during a running course. An entry of the table visualises the

1Amgular JS, version 1.6. Available at https://angularjs.org
2Boots’crap, version 3.3. Available at http://getbootstrap.com

43

https://angularjs.org
http://getbootstrap.com

44 CHAPTER 6. USER INTERFACE

students’ behaviour at a step. This is represented by a tag and can be changed using a drop-
down menu. Changing a tag can be useful since the assessment for a tag of an assignment
could be adjusted during a running course or if the tutor committed a wrong entry. Fur-
thermore predictions per assignment are shown. It represents the predicted behaviour of
the corresponding prediction unit for this assignment. How many different predictions are
possibly shown depends on the available prediction units of this behaviour log. The last
column of each row shows the predictions for the next non assessed assignment. Moreover
the last column contains interaction elements for adding or removing an entry, or to reset
all changes of this row. Once a change is done, either by adding/removing an entry or by
editing one, the row is highlighted to visualise a change which needs to be saved.

On pressing the save button, which is available in the view control above the table, all
current changes in the behaviour log are saved. By saving, the predictions of the students,
whose behaviour has been changed, are recalculated and the behaviour log is saved in
the database. Once this is done, the view is updated. Besides the saving button the view
control contains a button to reset all current changes. These two buttons are shown on the
top right of figure 6.2.

6.2 View Control

Predictions: Training sets: Discrepancy calculation: @

Relative Frequency HMM Discrepancy Theoretical informatics SS2014 Relative Frequency - HMM

Hide old predictions Theoretical informatics $52015

Figure 6.2: View control which visualises the current settings of the behaviour
log and provides options to update the view.

The view control displays the behaviour log settings (figure 6.2). On the left the active
prediction units of the current behaviour log are shown. At centre the histories respectively
training data which are used to train the statistical models of the prediction units are rep-
resented by their unique name. The prediction units which are used for the discrepancy
calculation are shown on the right.

Furthermore the user is able to select which predictions are visible in the students’ be-
haviour table. On the one hand the prediction units can be chosen and on the other hand
it is possible to decide whether to show the predictions of each assignment or only these of
the future assignment (“hide old predictions”). Additionally the students’ behaviour table
can be filtered by the name of its students using the input field. Summarised, the view
control offers possibilities to adjust the view of the students’ behaviour table. In order to
change the behaviour log itself the behaviour log control is used that can be opened by
pressing the edit button in the right upper corner.

6.3. BEHAVIOUR LOG CONTROL 45

6.3 Behaviour Log Control

Edit behaviour log options 4
Select prediction units: HMM Relative Frequency
Select training sets: Theoretical informatics SS2016 Theoretical informatics SS2015
Theoretical informatics SS2014
Discrepancy: Relative Frequency v HMM ~
Predict complete time series:

Save observations as history:

Figure 6.3: Possible behaviour log settings (Behaviour Log control)

The behaviour log control enables the functionality to change the behaviour log set-
tings (figure 6.3). In this case changing one value automatically sends a server request and
perhaps recalculates the predictions if they are affected.

All prediction units of this behaviour log are available for selection. The predictions for
each activated prediction unit is calculated when updating the behaviour log. This means
that it effects the duration of the server requests. The selection of the training set decides
which histories are used for training the statistical model of all selected prediction units.
Which histories are shown depends on the observation tag category. At least one history
needs to be activated. The discrepancy calculation can be defined by selecting prediction
units based on the active ones. The last checkbox determines if the complete time series
should be predicted again when the behaviour log is updated. If not activated, only the
future behaviour is predicted and earlier assignment predictions remain unchanged even
if previous step behaviours have changed. In order to create a new history from the current
behaviour log the input field on the bottom of the behaviour log control can be used. The
new history is then available for selection in the training set list.

6.4 Behaviour Log Selection

Active behaviour log Skipping Prediction ~ + Behaviour log

Figure 6.4: Selection of the currently visible behaviour log.

Since each project is able to handle multiple behaviour logs, the behaviour log selection
is needed (figure 6.4). The active behaviour log is set by a drop-down menu. By selecting
a new one the view is updated instantly. Furthermore it is possible to add new behaviour
logs to the project by clicking the “add” button. Figure 6.5 gives a complete overview about
the user interface and its described components.

46

Active behaviour log

Edit behaviour log options

Select prediction units:

Select training sets:

Discrepancy:

Predict each step again:

Predictions:

Relative Frequency HMM Discrepancy

Hide old predictions

filter participants...

Name Assignment 1

bob NO_ERROR v
Relative Frequency
ERROR:

SKIPPED:
NO_ERROR:
INSUFFIC:

HMM
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

Discrepancy
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

alice ERROR v

Relative Frequency

32.50%
21.25%
28.75%
17.50%

47.77%
18.93%
17.63%
15.67%

-15.27%
2.32%
11.12%
1.83%

¥ HMM

Theoretical informatics S52016

¥ Theoretical informatics $S2014

Relative Frequency v

Training sets:

HMM ~

Theoretical informatics SS2014

Theoretical informatics $S2015

Assignment 2

SKIPPED v

Relative Frequency
ERROR:

SKIPPED:
NO_ERROR:
INSUFFIC:

HMM
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

Discrepancy
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

SKIPPED v

Relative Frequency

42.50%
30.00%
11.25%
16.25%

46.64%
20.89%
17.18%
15.29%

-4.14%
9.11%
-5.93%
0.96%

Assignment 3

ERROR v

Relative Frequency
ERROR:

SKIPPED:
NO_ERROR:
INSUFFIC:

HMM
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

Discrepancy
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

SKIPPED v

Relative Frequency

CHAPTER 6. USER INTERFACE

Skipping Prediction v <+ Behaviour log

¥ Relative Frequency

¥ Theoretical informatics $52015

Discrepancy calculation:

Relative Frequency - HMM

33.75%
33.75%
22.50%
10.00%

26.83%
55.39%
9.25%
8.52%

6.92%
-21.64%
13.25%
1.48%

Assignment 4

a
Relative Frequency
ERROR:

SKIPPED:
NO_ERROR:
INSUFFIC:

HMM
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

Discrepancy
ERROR:
SKIPPED:
NO_ERROR:
INSUFFIC:

Bl

Relative Frequency

25.00%
36.25%
13.75%
25.00%

42.34%
28.38%
15.46%
13.82%

-17.34%
7.87%
-1.71%
11.18%

[+ [

Figure 6.5: Screenshot of the complete user interface with expanded

behaviour log control. All predictions are visible in the behaviour log table

(HMM, Relative Frequency and Discrepancy).

CHAPTER /

Evaluation

In this chapter, the two implemented prediction units are evaluated. Each use a specific
statistical model — on one hand the Relative Frequency Estimation (RFE) and on the other
the Hidden Markov Model (HMM). The predictions of the Relative Frequency Estimation
(RFE) and the Hidden Markov Model (HMM) are compared. The evaluation is performed
by comparing the predictions of these two models. This makes sense because the RFE
describes the behaviour for most of the students in a given situation while the HMM pre-
dicts the students” future behaviour based on their recent behaviour. As seen before in
section 5.1, the prediction units provide a probability distribution of all tags instead of one
specific tag. That is why the tag with the maximum value of this distribution is defined as
prediction (or predicted tag) in this chapter.

Since there is only one course in which the ErrorState tags have been assigned, this
data has to act as training data and test data (see chapter 3). This is done by splitting
the data into subsets (one set used for training and the other for evaluating). In order to
implement this evaluation, cross-validation is introduced in section 7.1. Furthermore this
section explains the metrics used for measuring the prediction performance and how they
have been applied. Section 7.2 points out the key results of these metrics. In section 7.3
these results are summarised and discussed.

7.1 Method

To evaluate the prediction performance different metrics are used. These metrics are ap-
plied on different parts of the test set. Cross-validation is used to receive several training
and test sets. Three main aspects have been considered to evaluate the two implemented
prediction units.

47

48 CHAPTER 7. EVALUATION

7.1.1 Metrics for Measuring Prediction Performance

There are two types of measurements which are distinguished in this thesis. On the one
hand tag independent measurements and on the other hand tag dependent measurements. At
both measurements the performance depends on the predicted tag and the actual tag. The
following subsection is based on Powers (2011) and Fawcett (2006).

The tag independent measurements simply address the question if a prediction is cor-
rect or not (tag independent accuracy). This is done by comparing the actual tag with the
predicted tag. If both tags are the same, the number of correct predictions is increased oth-
erwise the number of incorrect predictions. The marginal probabilities are calculated as
shown by equation 7.1 and 7.2.

|Correct Predictions|

correct prediction = 7.1
P |All Predictions| @.1)
. L |Incorrect Predictions|
incorrect prediction = —
|All Predictions| (7.2)

= 1 — correct prediction

Tag dependent measurements are calculated by considering exactly one tag type at
a time. For better understandings the measurement is explained by the tag (classifier)
“skipped”. This is reasonable since the main focus of this thesis is on predicting stu-
dents” skipping behaviour. But of course the classifier can be each possible tag. For the
actual tag two classes {A*,A™} are given, either the actual tag is positive (A" : actual tag =
skipped) or it is negative (A~ : actual tag # skipped). Something similar applies to the
predicted tag {P",P~}. It also can be classified as positive regarding the tag “skipped”
(P : predicted tag = skipped) or negative (P~ : predicted tag # skipped). Given an actual
tag and a predicted tag it is possible to assign the prediction to one of four groups/counts:

True positive (TP) Actual tag is positive (AT) and predicted tag is positive (PT)

True negative (TN) Actual tag is negative (A™) and predicted tag is negative (P~)
False positive (FP) Actual tag is negative (A~) and predicted tag is positive (P*)
False negative (FN) Actual tag is positive (A") and predicted tag is negative (P~)

The “true values” (TP/TN) are good relating to predictions since they describe a correct
predicted tag, while the “false values” (FP/FN) describe exactly the opposite of it. All four
values are counts!. So given a classifier (e.g. “skipped”) and a test set (actual tags and
regarding predicted tags) a two-by-two confusion matrix can be constructed as visualised in
figure 7.1. How the test sets are set up is shown in the next sections. Once the predictions
are assigned to the different groups, and thus the matrix is build, many common metrics
can be calculated from it to evaluate the prediction performance. All these common metrics
provide a “joint and marginal probability” (Powers, 2011). These metrics are shown in
figure 7.1 and can be described as follows:

IThe UPPER CASE variables describe counts and the lower case variables describe proportions relative to N
(number of all predictions) or the marginal probabilities

7.1. METHOD 49

Classifier
(e.g. skipped) Actual Tag
N=A"+A" P— _ITPI+ITN]
—pip A =TP+FN A" =FP+IN INI
recision—@
i = P 1P*1
Predicted P*=TP+FP
Tag
P =FN+TN
ITP| |FP1
te=—— te =
ip rate A fp rate A)
|FN | | TN |
Jnrate=—— m rate=——
1A"| 1A” |

Figure 7.1: Confusion matrix (also called a contingency table) and common
performance metrics calculations (Source: adapted from Fawcett (2006))

True positive rate (tp rate) | sensitivity | recall | hit rate The true positive rate is the propor-
tion of Actual Positive (A™) cases which are correctly Predicted Positive (P™). It describes
how many Actual Positive cases are actually being detected.

False negative rate (fu rate) | miss rate The false negative rate is the proportion of Actual
Positive (A") cases which are incorrectly Predicted Negative (P~). It describes how many
Actual Positive cases are not being detected.

True negative rate (tn rate) / specificity | inverse recall The true negative rate is the propor-
tion of Actual Negative (A™) cases which are correctly Predicted Negative (P~). It describes
how many Actual Negative cases are actually being detected.

FEalse positive rate (fp rate) / false alarm rate | fallout The false positive rate is the propor-
tion of Actual Negative (A™) cases which are incorrectly Predicted Positive (P). It describes
how many Actual Negative cases are not being detected.

Precision | positive predictive value The precision is the proportion of Predicted Positive
(P*) cases which are correctly Actual Positives (A™). It describes the accuracy of Predicted
Positives regarding the Actual Positives.

Accuracy The accuracy is the proportion of correct predictions (TP+TN) regarding all pre-
dictions (N).

F1-score | F-measure The fl-score is a combined metric that considers the precision and
the recall. It is the harmonic mean of precision and recall:
precision - recall

=2 7.3
! precision+ recall 73)

50 CHAPTER 7. EVALUATION

The importance and relevance of these metrics to evaluate the prediction performance
regarding students’ skipping behaviour is focused in section 7.2. But first it is shown how
the test sets are built and on which data the metrics are applied.

7.1.2 Cross-Validation

If tagged data would be available for several courses, one or more courses could be used
to train our model and one other course could be used to evaluate the performance of
this model. Unfortunately at the time of this report there was only one tagged data set
available. Therefore K-fold cross-validation is taken to use one “part of the available data
to fit the model, and a different part to test it” (Hastie et al., 2009, 241ff.). K-fold cross-
validation splits the data into “K roughly equal-sized parts”. The length of the whole data
set is defined as N. One of the splitted parts is tested while the other K — 1 parts train the
model. The part which is used as test data is defined as kth part. This is done K times while
k is increased per round (k = 1,2,...,K). In each of these rounds the previously described
metrics are applied and their results are combined to the results of the steps before. The
case where K = N is called leave-one-out cross-validation. Hereby exactly one entry of the data
set is used as test set while all remaining entries are used to set up the prediction model.

The tagged data set consists of 82 entries, which is already pretty small to train a pre-
diction model — even without leaving entries out to take them as test data. Therefore
leave-one-out cross-validation is applied to train the model with as much entries as possible.

During each cross-validation step each subsequence of the current entry has to be pre-
dicted and evaluated. These subsequences always start at assignment/step 1 which means
for an exemplary sequence

”oou a7 Za

“no_error”, “error”, “error”, “skipped”
that the evaluation performance of the following subsequences has to be measured:

Step1 “no_error”

v

Step 2 “no_error”, “error”

v a7

Step 3 “no_error”, “error”, “error”

a7 /Za

Step 4 “no_error”, “error”, “error”, “skipped”

For each of these sequences the grouping of subsection 7.1.1 is applied so that the con-
fusion matrix is built up to calculate the metrics. This has to be done for the both im-
plemented prediction units independently — Relative Frequency Estimation and Hidden
Markov Model.

Besides a composed evaluation of all steps, each step can be evaluated separately. This
is useful since the students’ recent behaviour and the passed duration of the course have
an impact on the predictions and thus on the prediction performance. So it can be assumed
that the HMM predictions of step 1 are less accurate than the predictions of step 6, since
there is no recent behaviour given before step 1 and thus the personal characteristics are
missing. Additionally due to the trend of skipping during a running course an uneven
distribution is given towards the end of the course which could distort the predictions as

7.2. RESULTS 51

well. To evaluate these assumptions the prediction performance of step 1, 6 and 112 are

examined.

7.1.3 Evaluation Aspects

The evaluation of the two implemented prediction units is done considering three different
aspects:

1. Comparison of Hidden Markov Model and Relative Frequency Estimation re-
garding tag independent measurements.

a. Considering the best prediction.
b. Considering the two best predictions.
2. Comparison of Hidden Markov Model and Relative Frequency Estimation re-
garding tag dependent measurements.
a. Step-based evaluation
b. Composed evaluation for all steps

3. How important are the different classifications? Which influence has the tag “in-
sufficient knowledge” when predicting the students’ skipping behaviour?

7.2 Results

This section shows the results received by performing the cross-validation on the given
data set. It is separated into the different evaluation aspects.

7.2.1 TagIndependent Evaluation

The tag independent evaluation describes the tag independent accuracy. Here the evalua-
tion is done for all steps composed which means that there is no evaluation per step. Using
cross-validation 902 predictions are made. Each prediction unit is assessed by counting the
correct — respectively incorrect — prediction regarding the actual tag. This is done in two
different ways. For one thing by considering only the tag with the maximum value out
of the probability distribution provided by the prediction unit (best prediction, table 7.1),
for another thing by considering the two highest tags regarding their probability (two best
predictions, table 7.2).

Best prediction (N = 902) Correct Predictions | Incorrect Predictions
Relative Frequency Estimation 0.45898 (414) 0.54102 (488)
Hidden Markov Model 0.60643 (547) 0.39357 (355)

Table 7.1: Results of tag independent measurements for the best prediction.

%last step of the given data set

52 CHAPTER 7. EVALUATION

Two best predictions (N = 902) Correct Predictions | Incorrect Predictions
Relative Frequency Estimation 0.77384 (698) 0.22616 (204)
Hidden Markov Model 0.78271 (706) 0.21729 (196)

Table 7.2: Results of tag independent measurements for the two best
predictions.

For the best prediction the correct prediction accuracy is relatively low for both predic-
tion units (RFE: 46% vs. HMM: 61%), but at least the HMM provides better results. By
considering the best two predictions the accuracies are almost equal (~78%).

7.2.2 Tag Dependent Evaluation

This subsection treats the metrics based on the different tags. The focus is on the tag
“skipped”. Each tag can be considered step-based or as a combination of all steps. The
step-based evaluation is done for the first step (step 1), one in the middle (step 6) and the
last (step 11).

Step-based evaluation As represented in table 7.3, the step-based results of the Relative
Frequency Estimation are very inaccurate. Due to the statistical model the likeliest tag is
always the same at a specific step. This means that predicting the tag “skipped” is very
likely because of the students’ propensity to skip. As a consequence, the sensitivity and
specificity — and with it also the miss rate and false alarm rate> — only are one or zero.
Through this characteristic the step-based results for the RFE are useless.

As expected, step 1 of the Hidden Markov Model is also very inaccurate since there is
no recent behaviour available at this time. Step 6 and 11 are very similar although step 11
is more accurate due to the skipping trend. But both have a high precision and accuracy as
well as an associated fl-score (>75%).

Step-based RFE HMM

"skipped" Step1 | Step 6 | Step11 | Step1 | Step 6 | Step 11
sensitivity 0.0 1.0 1.0 0.0 0.7895 | 0.7869
specificity 1.0 0.0 0.0 1.0 0.7727 | 0.8095
miss rate 1.0 0.0 0.0 1.0 0.2105 | 0.2131
false alarm rate 0.0 1.0 1.0 0.0 0.2273 | 0.1905
precision 0.0 | 04634 | 0.7439 0.0 0.75 0.9231
accuracy 0.7927 | 0.4634 | 0.7439 || 0.7927 | 0.7805 | 0.7927
f1-score 0.0 | 0.6333 | 0.8531 0.0 0.7692 | 0.8496

Table 7.3: Results depending on tag “skipped” based on the steps 1, 6 and 11.

3Reminder: miss rate = 1 — sensitivity and false alarm rate = 1 — specificity

7.2. RESULTS 53

Composed evaluation of all steps Table 7.4 shows the composed results of all steps and
all described metrics for the tag “skipped”. As already said, the sensitivity of the Relative
Frequency Estimation is comparatively high (83%) for predicting the tag “skipped”, since
most of the students tend to skip during the running course. In contrast to that the speci-
ficity is very low (25%) — or the false alarm rate very high (75%) — which makes sense
considering that nearly each step predicts skipping. This explains the moderate precision
and accuracy of about 50%.

Although the Hidden Markov Model provides better overall performances. Even if the
sensitivity is lower than the sensitivity of the RFE the specificity is sharply higher. This has
an impact on the precision and accuracy which are both about 80%.

Al l. steps RFE | HMM

"skipped”
sensitivity 0.8341 | 0.7299
specificity 0.2542 | 0.8479
miss rate 0.1659 | 0.2701
false alarm rate || 0.7458 | 0.1521
precision 0.4958 | 0.8084
accuracy 0.5255 | 0.7927
f1-score 0.6219 | 0.7671

Table 7.4: Composed results of all steps depending on tag “skipped”.

7.2.3 Classification Evaluation

So far only the tag “skipped” has been considered. Now the other tags are taken into
account. This is done by comparing the performance results of the Hidden Markov Model.
As seen in table 7.5, besides the tag “skipped” only “error” provides relevant values. The
reason for this is that “no error” and “insufficient knowledge” are never predicted using
cross-validation and the given data set. This also has an influence on the results of the tag
“error” by which the false alarm rate is higher (46%) than for the tag “skipped”.

All steps Hidden Markov Model

All tags skipped | error | no error | insufficient knowledge
sensitivity 0.7299 | 0.8241 0.0 0.0
specificity 0.8479 | 0.5392 1.0 1.0
miss rate 0.2701 | 0.1759 1.0 1.0
false alarm rate || 0.1521 | 0.4608 0.0 0.0
precision 0.8084 | 0.4587 0.0 0.0
accuracy 0.7927 | 0.6308 | 0.8891 0.9002
fl-score 0.7671 | 0.5894 0.0 0.0

Table 7.5: Composed results of all steps visualised for each tags.

54 CHAPTER 7. EVALUATION

7.3 Discussion

The results using a Hidden Markov Model are valuable for the tag “skipped” which means
the students’ skipping behaviour can be predicted relatively accurate. Step-based eval-
uation is senseless using Relative Frequency Estimation because the students’ recent be-
haviour has no influence and thus predictions are identical for all students at each step.
However the RFE describes the “default behaviour” which most students showed in a
given situation. This means that it is a good comparative measurement that can perfectly
be used for comparing with another statistical model using the discrepancy function of the
prediction framework.

For both units the tags “no error” and “insufficient knowledge” have less influence,
since they are not very common to be predicted — or to be precise they are never predicted
using cross-validation and the given data set. This means that the most likely predictions
are more accurate without these tags. As a consequence, the assignments could also be clas-
sified with “submitted” (including “no error”, “error” and “insufficient knowledge”) and
“not submitted” (or “skipped”). Table 7.6 represents the results of this classification using
Hidden Markov Model. It shows that the correct predictions rise to 78% for tag indepen-
dent evaluation. For tag dependent evaluation with combined steps the “not submitted”
values are nearly the same compared to the results of the tag “skipped” in table 7.5. Addi-
tionally the “submitted” results are better compared with the results of the tag “error” (e.g.
precision 80% vs. 46%). Due to these results (based on one course and the most likely pre-
diction) it can be said that it is not necessary to assign detailed tags to predict the skipping
behaviour of the student. But indeed the detailed classification might be important when
considering the two best predictions or even the complete probability distribution.

Submitted / Hidden Markov Model
Not Submitted Tag independent

Correct predictions 0.7827 (706/902)
Incorrect predictions 0.2173 (196/902)

All steps Tag dependent

combined Submitted | Not Submitted
sensitivity 0.8479 0.7085
specificity 0.7085 0.8479
miss rate 0.1521 0.2915
false alarm rate 0.2915 0.1521
precision 0.7679 0.8038
accuracy 0.7827 0.7827
f1-score 0.8059 0.7531

Table 7.6: Hidden Markov Model results of tag independent and tag
dependent evaluations using the tags “submitted” and “not submitted”

7.3. DISCUSSION 55

Summarised, the evaluation shows that the Hidden Markov Model provides good re-
sults when predicting the skipping behaviour of students with the given data set. It re-
spects the students’ recent behaviour whereas the Relative Frequency Estimation supplies
the same predictions for each student in a specific step.

56

CHAPTER 7. EVALUATION

CHAPTER 8

Conclusion

This work addresses the problem that students of a course tent to skip their weekly work
assignments as time goes on. To prevent the students from doing this it was shown that
it is possible to predict this behaviour to a certain degree. This was done by introducing
a classification scheme to tag the students’ submissions. The tags of this classification are:
“no error”, “error”, “insufficient knowledge” and “skipped”. Based on these tags statisti-
cal models were investigated which also consider personal characteristics of students. As
a result of this research, the simple Relative Frequency Estimation, which describe the stu-
dents’ “default behaviour” in a given situation, and the more detailed Hidden Markov
Model, which respects the students’ recent behaviour, have been found. These informa-
tion were used to design and implement a prediction framework which is independent of
the classification and statistical model, so that it can be applied for other use cases as well.
The main parts of this framework are the prediction units, which are responsible for the
predictions, and the behaviour logs, which provide several functions to interact with the
prediction units. To predict the students’ skipping behaviour regarding weekly work as-
signments the framework was integrated into an existing system whereby the usage was
demonstrated. Furthermore it was shown how the framework can be extended with ad-
ditional tags and prediction units to cover further use cases. On top of this, a user inter-
face, which is usable for varying kinds of predictions, was conceptualised and its usage
described. The predictions have been evaluated regarding different aspects.

The evaluation has shown that the Hidden Markov Model results in good predictions
regarding skipping, whereas the Relative Frequency Estimation provides good compara-
tive measurements. A further result is that the given classification has less influence when
using these statistical models and the given test data, since the tags “no error” and “in-
sufficient knowledge” are never predicted. Under these circumstances a less detailed clas-
sification with tags such as “submitted” and “not submitted” would be enough to obtain
predictions of a similar quality — or even better ones. Through this knowledge further

57

58 CHAPTER 8. CONCLUSION

test data could be exported from existing systems (e.g. UniWorX!) and act as training sets
for the statistical models, since such a system already maintains information about those
submitting tags.

Anyway the work on the more detailed classification should be continued as well. Per-
haps other statistical models or further training sets would provide better predictions for
the more detailed tags. Also the predictions could be improved by comparing the pre-
dicted behaviour with the real future behaviour of the students during a running course.
Furthermore providing information to students about their future behaviour could coun-
teract the actual one which in turn could change the predictions so that the tags “no error”
and “insufficient knowledge” become important again.

It will be interesting to see if and how the students can be incited to a sufficient work
level by the predictions. Thereto different approaches of feedforward need to be tested.
This could be realised with an A/B test where two groups are introduced during a course.
One test group in which the students receive information about their possible future be-
haviour (feedforward) and one control group which receive nothing. In this way a compar-
ison is possible whether the feedforward has an impact or not. In case of a high likelihood
in the prediction the system could automatically produce feedforward for the student. Ad-
ditionally an indicator could be introduced which describes how strongly the student has
been influenced by this information. Thus, it could be evaluated if the students’ exam mark
correlates with this indicator. Lastly, the reaction by the student to the feedforward could be
used for further training of the prediction unit. This approach could result in personalised
predictors if this is striven for.

Further statistical models and other classifications should be implemented and tested.
The idea here is to implement good and accurate predictors. Using these predictors to
inform the students about their possible future behaviour and thus to have an impact on
them the predictions should not come true if the student counteracts against the prediction.
As a consequence, the predictors in a running course would turn bad. This in turn could
be used to motivate the student by telling him that he has tricked the system.

As a conclusion, it can be stressed that predicting the human behaviour is a very inter-
esting and up-to-date topic which not only concerns the university. In almost every sector
one tries to predict the future. For example, many companies try to predict the behaviour of
their customers. And in the end both sides benefit from these predictions. So, for example,
if a supermarket can predict the rush hours, the customers can react to these predictions
and change their shopping behaviour to have a more relaxed shopping experience. Besides,
the supermarket can do their staffing based on the predictions.

Anyway, since it is not possible for the professors and tutors to take care of each student
individually, the problem needs to be abstracted, so that both sides benefit. On the one
hand the professors and tutors are able to educate the students in the best possible way, on
the other hand the students are prevented from cramming and they are perfectly prepared
for their professional life. In the end, this is a win-win situation for both sides.

1UniWorX: https://uniworx.ifi.lmu.de/

https://uniworx.ifi.lmu.de/

Appendix

The source code of the implemented software is available at:
https://gitlab.pms.ifi.lmu.de/niels/cwdl-projects
on branch behaviourlog (Last commit: c5b76£15).

59

https://gitlab.pms.ifi.lmu.de/niels/cwdl-projects

60

CHAPTER 8. CONCLUSION

Bibliography

Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. Exploring ma-
chine learning methods to automatically identify students in need of assistance. In Pro-
ceedings of the Eleventh Annual International Conference on International Computing Educa-
tion Research, ICER 15, pages 121-130, New York, NY, USA, 2015. ACM. ISBN 978-
1-4503-3630-7. doi: 10.1145/2787622.2787717. URL http://doi.acm.org/10.1145/
2787622.2787717.

Sattar Ameri, Mahtab]. Fard, Ratna B. Chinnam, and Chandan K. Reddy. Survival
analysis based framework for early prediction of student dropouts. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management,
CIKM 16, pages 903-912, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4073-
1. doi: 10.1145/2983323.2983351. URL http://doi.acm.org.emedien.ub.uni-
muenchen.de/10.1145/2983323.2983351.

Angular JS, 2017. URL https://angularjs.org/. [Online: accessed 23-July-2017].

L. Aulck, N. Velagapudi,]. Blumenstock, and J. West. Predicting Student Dropout in Higher
Education. ArXiv e-prints, June 2016.

Girish Balakrishnan. Predicting student retention in massive open online courses us-
ing hidden markov models. Master’s thesis, EECS Department, University of Califor-
nia, Berkeley, May 2013. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2013/EECS-2013-109.html.

Demis Basso and Marta Olivetti Belardinelli. The role of the feedforward paradigm in cog-
nitive psychology. Cognitive Processing, 7(2):73-88, 2006. ISSN 1612-4790. doi: 10.1007/
510339-006-0034-1. URL http://dx.doi.org/10.1007/s10339-006-0034-1.

Bootstrap, 2017. URL http://getbootstrap.com/. [Online: accessed 23-July-2017].

Francois Bry and Niels Heller. Research project: Backstage 2. personal communication,
2017.

61

http://doi.acm.org/10.1145/2787622.2787717
http://doi.acm.org/10.1145/2787622.2787717
http://doi.acm.org.emedien.ub.uni-muenchen.de/10.1145/2983323.2983351
http://doi.acm.org.emedien.ub.uni-muenchen.de/10.1145/2983323.2983351
https://angularjs.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-109.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-109.html
http://dx.doi.org/10.1007/s10339-006-0034-1
http://getbootstrap.com/

62 BIBLIOGRAPHY

Francois Bry and Alexander Pohl. Backstage: A digital backchannel for large class
lectures, 2009. URL http://www.en.pms.ifi.lmu.de/research/backchannels/
index.html. [Online: accessed 23-July-2017].

BSON - Binary JSON, 2017. URL http://bsonspec.org/. [Online: accessed 23-July-
2017].

Lloyd (lloydmeta) Chan. Enumeratum, 2017. URL https://github.com/lloydmeta/
enumeratum. [Online: accessed 23-July-2017].

Richard Dallaway. Enumeratum, 2014. URL http://underscore.io/blog/posts/
2014/09/03/enumerations.html. [Online: accessed 23-July-2017].

Peter W. Dowrick. Self model theory: learning from the future. Wiley Interdisciplinary
Reviews: Cognitive Science, 3(2):215-230, 2012. ISSN 1939-5086. doi: 10.1002/wcs.1156.
URL http://dx.doi.org/10.1002/wcs.1156.

Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861-874, June
2006. ISSN 0167-8655. doi: 10.1016/j.patrec.2005.10.010. URL http://dx.doi.org/
10.1016/3j.patrec.2005.10.010.

S.Halawa, D. Greene, and J. Mitchell. Dropout prediction in MOOCs using learner activity
features. eLearning Papers, 37, March 2014.

Mark Harrison. Cake pattern, 2011. URL http://www.cakesolutions.net/
teamblogs/2011/12/19/cake-pattern—-in-depth. [Online: accessed 23-July-
2017].

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York,
2009. ISBN 978-0-387-84857-0. doi: 10.1007/978-0-387-84858-7.

Shelby H. McIntyre and J. Michael Munson. Exploring cramming. Journal of Marketing Edu-
cation, 30(3):226-243, 2008. doi: 10.1177/0273475308321819. URL http://dx.doi.org/
10.1177/0273475308321819.

MongoDB, 2017. URL https://www.mongodb.com. [Online: accessed 23-July-2017].

Tomas Obsivac, Lubos Popelinsky, Jaroslav Bayer, Jan Geryk, and Hana Bydzovska. Pre-
dicting drop-out from social behaviour of students. In Kalina Yacef, Osmar R. Za-
fane, Arnon Hershkovitz, Michael Yudelson, and John C. Stamper, editors, EDM, pages
103-109. www.educationaldatamining.org, 2012. ISBN 978-1-74210-276-4. URL http:
//dblp.uni-trier.de/db/conf/edm/edm2012.html#0bsivacPBGB12.

Play Framework, 2017. URL https://www.playframework.com/. [Online: accessed
23-July-2017].

D. M. W. Powers. Evaluation: From precision, recall and f-measure to roc., informedness,
markedness & correlation. Journal of Machine Learning Technologies, 2(1):37-63, 2011.

http://www.en.pms.ifi.lmu.de/research/backchannels/index.html
http://www.en.pms.ifi.lmu.de/research/backchannels/index.html
http://bsonspec.org/
https://github.com/lloydmeta/enumeratum
https://github.com/lloydmeta/enumeratum
http://underscore.io/blog/posts/2014/09/03/enumerations.html
http://underscore.io/blog/posts/2014/09/03/enumerations.html
http://dx.doi.org/10.1002/wcs.1156
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://www.cakesolutions.net/teamblogs/2011/12/19/cake-pattern-in-depth
http://www.cakesolutions.net/teamblogs/2011/12/19/cake-pattern-in-depth
http://dx.doi.org/10.1177/0273475308321819
http://dx.doi.org/10.1177/0273475308321819
https://www.mongodb.com
http://dblp.uni-trier.de/db/conf/edm/edm2012.html#ObsivacPBGB12
http://dblp.uni-trier.de/db/conf/edm/edm2012.html#ObsivacPBGB12
https://www.playframework.com/

BIBLIOGRAPHY 63

Jiezhong Qiu, Jie Tang, Tracy Xiao Liu, Jie Gong, Chenhui Zhang, Qian Zhang, and Yufei
Xue. Modeling and predicting learning behavior in moocs. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining, WSDM ’16, pages 93-102,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3716-8. doi: 10.1145/2835776.2835842.
URL http://doi.acmorg/10.1145/2835776.2835842.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In PROCEEDINGS OF THE IEEE, pages 257-286, 1989.

Hendrik Radatz. Error analysis in mathematics education. Journal for Research in Math-
ematics Education, 10(3):163-172, 1979. ISSN 00218251, 19452306. URL http://
www.jstor.org/stable/748804.

Pedro Rijo. Scala enumerations, 2016. URL http://pedrorijo.com/blog/scala-
enums/. [Online: accessed 23-July-2017].

Henry L Roediger and Jeffrey D Karpicke. Test-enhanced learning taking memory tests
improves long-term retention. Psychological Science, 17(3):249-255, 2006.

Alina Selyukh. Time management, avoiding procrastination key in evading end-
of-semester stress, 2007. URL http://www.dailynebraskan.com/time-
management—-avoiding-procrastination-key-in-evading-end-of-
semester/article_14c07b5d-a795-5691-aecaf-74bb72c7eb94.html. [Online:
accessed 23-July-2017].

Smile - Statistical Machine Intelligence and Learning Engine, 2017. URL http://
haifengl.github.io/smile. [Online: accessed 23-July-2017].

The Scala Programming Language, 2017. URL https://www.scala-lang.org/. [On-
line: accessed 23-July-2017].

UniWorX, 2017. URL https://uniworx.ifi.lmu.de/. [Online: accessed 23-July-2017].

Weka: Data Mining Software in Java, 2017. URL http://www.cs.waikato.ac.nz/~ml/
weka/. [Online: accessed 23-July-2017].

S. K. Yadav, B. Bharadwaj, and S. Pal. Data Mining Applications: A comparative Study for
Predicting Student’s performance. ArXiv e-prints, February 2012.

http://doi.acm.org/10.1145/2835776.2835842
http://www.jstor.org/stable/748804
http://www.jstor.org/stable/748804
http://pedrorijo.com/blog/scala-enums/
http://pedrorijo.com/blog/scala-enums/
http://www.dailynebraskan.com/time-management-avoiding-procrastination-key-in-evading-end-of-semester/article_14c07b5d-a795-5691-aeaf-74bb72c7eb94.html
http://www.dailynebraskan.com/time-management-avoiding-procrastination-key-in-evading-end-of-semester/article_14c07b5d-a795-5691-aeaf-74bb72c7eb94.html
http://www.dailynebraskan.com/time-management-avoiding-procrastination-key-in-evading-end-of-semester/article_14c07b5d-a795-5691-aeaf-74bb72c7eb94.html
http://haifengl.github.io/smile
http://haifengl.github.io/smile
https://www.scala-lang.org/
https://uniworx.ifi.lmu.de/
http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.waikato.ac.nz/~ml/weka/

	Introduction
	Motivation
	Approach

	Related Work
	Classification
	Data Collection
	Training Data Selection

	Statistical Models
	Relative Frequency
	Markov Models
	Markov Chain
	Hidden Markov Model

	Technical Implementation
	Prediction Framework
	Observation and Prediction Tags
	Prediction Unit
	Behaviour Log
	Prediction Unit Factory

	Integration
	Server Start Up
	History and Behaviour Log Integration
	Client-Server Communication

	Framework Extension
	Summary

	User Interface
	Students' Behaviour Table
	View Control
	Behaviour Log Control
	Behaviour Log Selection

	Evaluation
	Method
	Metrics for Measuring Prediction Performance
	Cross-Validation
	Evaluation Aspects

	Results
	Tag Independent Evaluation
	Tag Dependent Evaluation
	Classification Evaluation

	Discussion

	Conclusion
	Bibliography

