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Abstract

In his book The Structural Evolution of Morality (Alexander 2007), J. McKenzie Alexander uses
agent-based simulations to investigate the emergence of social norms in populations of bound-
edly rational individuals playing games of social interaction on di�erent network topologies. In
order to get more insight into which conditions are necessary for moral behaviour to emerge,
this paper o�ers a new agent-based model to build upon Alexander’s approach. Numerical
methods are used to analyze the in�uence of di�erent parameters on the emergence of moral
behaviour. By focusing on supporting arbitrary combinations of games, network topologies
and other parameters, the in�uence of the individual components on the results can be uncov-
ered using a sensitivity analysis. The one-factor-at-a-time method is used to provide a number
of interesting results. While the shape of the interpersonal decision problem is still most im-
portant, di�erent network topologies can increase the likelihood that moral behaviour emerges
in the populations. Cooperation in the Prisoner’s Dilemma can only be achieved consistently
by strongly incentivizing cooperation in the payo� matrix. The Best Response learning rule,
which models higher cognitive abilities on part of the individuals, does not only have a nega-
tive impact on the emergence of morality in the Stag Hunt, but also in the Bargaining Subgame.
Small-world networks are detrimental to the evolution of fairness in the Bargaining Subgame,
and do not have a strong in�uence in the other cases. Sparse random network topologies exhibit
a unique behaviour that makes it more likely for a norm of retribution to foster in populations
playing the Ultimatum Subgame. Both the model and the results of the analysis can be built
upon to further uncover the precise conditions needed for moral behaviour to evolve.
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Chapter 1

Introduction

The Structural Evolution of Morality is a theory about the evolutionary emergence of moral be-
haviour by J. McKenzie Alexander (Alexander 2007). According to this theory, moral behaviour
evolves due to boundedly rational individuals engaging in social interactions that can be mod-
elled using game theory. These interactions take place in social networks which put constraints
on who can interact with whom. The individuals try to maximize their expected utility in the
interactions, and adapt their strategies accordingly over time. This goal of utility maximization
creates an evolutionary selection pressure which favours strategies that are more successful at
achieving a good payo� in the interactions. Given the right constraints, it can lead populations
to a state in which the strategies which we commonly interpret to be morally right—like playing
Cooperate in the Prisoner’s Dilemma or fairly dividing a resource in the Bargaining Game—are
precisely the strategies that maximize the expected utility of the individuals. The evolutionary
dynamics thus select for moral behaviour among populations of boundedly rational individu-
als. The structural part of the theory is the hypothesis that di�erent social network topologies
have di�erent impacts on whether this emergence of morality takes place. In his book, Alexan-
der analyzes this theory with agent-based simulations. He provides many analytically derived
results for selected con�gurations of his model, and shows that moral behaviour can indeed
emerge as a stable equilibrium in some cases. Considering that this doesn’t happen in every
case, though, and that the emergence of such equilibria is indeed quite rare for many of the
analyzed interactions, the crucial question is what exactly the conditions look like in which
moral behaviour can evolve.

This paper builds upon Alexander’s results by taking a more quantitative approach, which
can get additional insights about these conditions. This is done by constructing a model that
extends Alexander’s original model with a focus on systematically combining di�erent param-
eters and the ability to analyze arbitrary combinations of parameters with common methods
from the agent-based modelling literature. Using this new model, a sensitivity analysis is car-
ried out, which shows how di�erent parameters of the model (i.e. the conditions) in�uence the
result (i.e. the emergence of moral behaviour). The outcomes of revisiting Alexander’s theory
in this manner are promising. First, while the emergence of morality is mostly determined by
the shape of the decision problem, di�erent network topologies can change these results to
di�erent degrees across many parametrizations. Second, incentivizing cooperation is the only
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reliable way to foster cooperation in the Prisoner’s Dilemma. Third, more sophisticated learn-
ing rules (requiring higher cognitive abilities) are very detrimental to morality in both the Stag
Hunt and the Bargaining Subgame. Fourth, small-world networks either don’t have a strong
impact on the results at all, or they provide a negative in�uence on the emergence of morality.
Finally, sparse random network topologies exhibit special behaviour which can have a strong
positive impact on the survival of moral strategies in the Ultimatum Subgame. Using these new
results from the sensitivity analysis, the investigation of the Structural Evolution of Morality
can be taken further by adapting the model accordingly and performing di�erent analyses.

The paper is structured as follows. Chapter 2 gives an overview of related work in the area of
agent-based simulations of evolutionary game theory and moral behaviour. Chapter 3 presents
some background to the theories this paper builds upon, namely evolutionary game theory,
agent-based simulations and Alexander’s theory of the Structural Evolution of Morality. In
chapter 4, the revised model is described in detail. Based on this description, other researchers
should be able to replicate the simulations described in this paper. Chapter 5 then explains
some important aspects of the implementation of the model, with a focus on the generation of
random social network topologies. Chapter 6 attempts to validate the model against Alexan-
der’s model, by replicating some of Alexander’s experiments using quantitative data reported in
his book. Chapter 7 presents the methodology of the sensitivity analysis and the experimental
setup for executing it, and then reports the results of the analysis. In chapter 8, the results of the
sensitivity analysis are discussed in the context of Alexander’s theory, and some suggestions
for future work on this topic are presented. Chapter 9 concludes the paper by summarizing the
important points.



Chapter 2

Related Work

Parts of this section are taken from Seil (2020, section 2.3).

J. McKenzie Alexander’s The Structural Evolution of Morality (Alexander 2007) can be seen
to follow a line of research using evolutionary game theory to explain di�erent social and moral
phenomena. In more recent times, this scienti�c project has been brought to the popular science
audience through works by Nowak and High�eld (2011) as well as Bowles and Gintis (2013).
There has been a sizeable amount of academic work in this area already. In The Evolution of
Cooperation, Robert Axelrod famously investigated cooperative behaviour in the repeated Pris-
oner’s Dilemma by letting di�erent strategies compete against each other in a computer-based
tournament (Axelrod 1984). In his two-volume work Game Theory and the Social Contract, Ken
Binmore advocates for evolutionary game theory as a systematic tool for investigating ethics,
and uses the theory to argue about moral and political philosophy in the tradition of Hume,
Rawls and Harsanyi (Binmore 1994; Binmore 1998). Brian Skyrms analyzes moral and social
phenomena such as justice and altruism with evolutionary game theory in his work Evolution
of the Social Contract, where he uses the replicator dynamics to investigate the evolutionary
dynamics of these behaviours (Skyrms 1996). Alexander’s addition to this lineage is that he
uses agent-based models to study the structural properties of a variety of interpersonal deci-
sion problems, which can lead to the emergence of some common moral intuitions we have
today.

One can �nd many publications using computational models to analyze the emergence of
certain equilibria in interpersonal decision problems constrained by social networks. In fact,
they are too numerous and too broadly scattered among di�erent scienti�c disciplines to be
listed conclusively. Following, a few examples for some classic game-theoretic games are given.
The Prisoner’s Dilemma is chosen disproportionately often, leading to research into the emer-
gence of cooperation on many topologies, including lattices (Ifti, Killingback, and Doebeli 2004),
small-world networks (Masuda and Aihara 2003) and dynamic networks which react to the in-
teractions inside the population (Spiekermann 2009). For the Stag Hunt, one can �nd simula-
tions of the game on dynamic network topologies (Starnini et al. 2011) as well as lattice-based,
ring-based and small-world networks (Zhou et al. 2018). The Ultimatum Game was investi-
gated on small-world networks (Xianyu 2010) as well as dynamic networks (Deng, Tang, and
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Zhang 2011). In the spirit of Alexander’s work, Sun, Zhao, and Robaldo (2017) create an agent-
based model to analyze a variation of the Hawk-Dove game on a variety of di�erent network
topologies.

There are two points to note about the aforementioned publications. First, they mostly
focus on one interpersonal decision problem and/or network topology at a time. Alexander’s
holistic approach, i.e. using an agent-based model to study a variety of di�erent games of social
interaction on di�erent social network topologies, is quite rare. The reasons are apparent: Con-
structing and analyzing such a model takes much technical skill and time, both of which are
oftentimes not available. Second, the publications use many di�erent assumptions, parameters
and methods of analysis for their respective models. This makes it hard to compare results,
because a common foundation among the di�erent models is lacking. The approach taken in
this paper attempts to mitigate this problem. By building a model which can be used with any
combination of pre-de�ned games and network topologies, the results of di�erent parametriza-
tions can be properly compared with one another. Additionally, by keeping the new model
close to Alexander’s model, the results in this paper can be compared to Alexander’s �ndings
with higher certainty.



Chapter 3

Theory

This chapter provides a brief overview of the relevant concepts and theories that this paper
builds upon. Section 3.1 delivers a short introduction into evolutionary game theory, which
represents the foundation of both Alexander’s theory and the model described in this paper.
Section 3.2 describes the concept of agent-based simulations, and the bene�ts they provide
for modelling systems governed by evolutionary game theory. Section 3.3 presents the cen-
tral points of Alexander’s theory, The Structural Evolution of Morality (Alexander 2007), which
delivers the groundwork for this thesis.

3.1 Evolutionary Game Theory

This section is taken from Seil (2020, section 2.2).

Evolutionary game theory provides the foundation of the theory of the Structural Evolution
of Morality and the model described in chapter 4. Giving a conclusive introduction into evolu-
tionary game theory would be outside the scope of this paper. For a better coverage of the topic,
see Jörgen W. Weibull’s classic Evolutionary Game Theory (Weibull 1995). This section brie�y
presents the basic principles of the theory, as some of the points are going to be important for
the rest of this paper.

In short, evolutionary game theory can be viewed as the study of in�nitely repeated inter-
personal decision problems, faced by populations of boundedly rational individuals, whereby
some evolutionary selection processes govern the behaviour of those individuals over time.
Let us take a classic example from evolutionary biology to make this clearer. Consider W. D.
Hamilton’s explanation for why populations of mammals have approximately equal ratios of
males and females (Hamilton 1967). The individuals of such a population face the interpersonal
decision problem of reproduction, whereby each individual embodies the behaviour of having
a tendency to produce more males, or that of having a tendency to producing more females.
Here, the behaviour of an individual is �xed from birth, but this need not be the case in general.
Let us now assume that the payo�s of the decision problem, i.e. reproduction, are the expected
numbers of grandchildren an individual is going to have. If there are fewer males than females
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among the population, the behaviour of producing more males is then advantageous. A male
has higher prospects for mating, which is going to lead him to create more o�spring. His par-
ents then get a higher payo� (expected number of grandchildren) in the decision problem of
reproduction. The behaviour of producing more males is then going to spread genetically, until
there is no relative advantage to producing males anymore. The same holds for females, re-
spectively, when males dominate the population. Thus, over time, the evolutionary processes
are going to move the population to a state where the amount of males and females in the
population are approximately equal.

There are two main areas of interest to evolutionary game theory (Alexander 2019, sec. 2).
For one, we can use the theory to analyze the stability of certain behaviours among a popula-
tion at a speci�c point in time. The classical approach to this is the notion of an evolutionarily
stable state, which speci�es that a population of individuals with a certain distribution of be-
haviours can resist being taken over by individuals with novel behaviours. Secondly, we can
investigate the dynamics of the evolutionary processes, i.e. how the behaviours among the
population change over time and whether they converge to some stable equilibrium. There are
di�erent models to do so. The classical approach lies in using the replicator dynamics, which
analyzes how the frequency of certain behaviours changes among a large population in the
limit. Another approach is using agent-based computer simulations, where we can model more
sophisticated interactions and constraints compared to the replicator dynamics (see section
3.2). Alexander uses such an agent-based model for investigating his theory of the Structural
Evolution of Morality (see section 3.3).

While evolutionary game theory started as an application of game theory to evolutionary
biology, it has become an especially valuable tool for economics and the social sciences. The
analysis of the evolutionary processes has been carried over to explain market forces and cul-
tural dynamics. Therefore, we can interpret the models used in evolutionary game theory in
two ways. One is the interpretation of biological evolution, which was used in the example of
the sex ratio among mammalian populations above. The other is the interpretation of cultural
evolution, whereby we can view the behaviours as beliefs which are changed by the individuals
over time. Here, it is clearer how the bounded rationality of the individuals comes into play, as
the individuals then do in fact make choices on their own. This interpretation is the main focus
of Alexander’s theory and the model described in this paper.

3.2 Agent-Based Simulations

Agent-based simulations are a modelling practice for simulating the behaviour of complex sys-
tems, which has received strong interest in may di�erent scienti�c disciplines. An agent-based
simulation can be de�ned as a computer simulation "made up of agents, objects or entities that
behave autonomously" and are "aware of (and interact with) their local environment through
simple internal rules for decision-making, movement, and action" (Sanchez and Lucas 2002,
p. 116). These simulations are thus well-suited to analyze a particular type of system, namely
systems which exhibit behaviour that emerges from the interactions of many autonomous en-
tities (Bandini, Manzoni, and Vizzari 2009). Many areas of study are characterized by such sys-



3.3 The Structural Evolution of Morality 7

tems, and the applications of agent-based modelling are correspondingly broad. For example,
agent-based simulations can be used to study animal societies, social and economic systems
as well as transportation infrastructure (Davidsson et al. 2007). The most important general
use case for agent-based models is to predict the behaviour of complex systems which share
the characteristics just mentioned. But their use goes beyond prediction. They can be em-
ployed to explain and illuminate the inner workings of a system under investigation, provide a
framework to guide the collection of large amounts of data from real-world systems, or educate
people about systems which are already well-understood (Axelrod 1997; Epstein 2008).

In the context of this paper, agent-based modelling is used to provide a more sophisticated
way to analyze the dynamics of systems governed by evolutionary game theory. Concretely, the
model described in this paper attempts to explain and predict the behaviour of a hypothetical
system which models game-theoretic interactions among boundedly rational individuals on
social networks. The crucial advantage of using an agent-based simulation instead of simpler
models, like the traditional replicator dynamics, is that this is a viable way to study populations
of individuals who do not conform to idealistic assumptions (Axelrod 1997). We do not need to
assume that individuals have perfect rationality or an all-encompassing view of the population.
Rather, they can be con�gured to adapt their strategies heuristically based on what happens in
their environment. Using agent-based simulations lets us add constraints to the system, such
as social network topologies, which restrict the interactions that can take place among the
individuals. This makes for a more realistic model of social interactions.

The powerful agent-based approach comes with challenges, though. It can be quite hard
to properly analyze the output of such models (Lee et al. 2015). Modellers have to make sure
to use suitable statistical methods for the experimental setup and analysis of the results, and
to explore and constrain the oftentimes large and complex solution space of the simulations.
As the complexity of systems analyzed through agent-based models increase, the use of well-
established methods to describe the model (Grimm et al. 2006), to validate and verify it (Balci
1994) and to properly analyze its result data (Broeke, Voorn, and Ligtenberg 2016) becomes
more and more important.

3.3 The Structural Evolution of Morality

This section is taken from Seil (2020, section 2.3).

In The Structural Evolution of Morality (Alexander 2007), Alexander attempts to ground
morality in a foundation of evolutionary game theory. The main thesis of the book can be
summarized as follows: Moral behaviour is a result of boundedly rational individuals attempt-
ing to maximize their expected utility in games of social interaction, whereby these games take
place on social networks which themselves shape the outcomes of the interactions. In order
to argue for this point, he analyzes four di�erent game-theoretic games which contain strat-
egy pro�les that are supposed to model di�erent moral intuitions. The Prisoner’s Dilemma
can be seen to re�ect cooperation when players choose the Pareto-e�cient outcome of both
playing Cooperate. The Stag Hunt models a game of trust, because players need to trust each
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other to choose Stag in order to get the highest payo�. The Nash Bargaining Game (also called
divide-the-cake) prompts fairness, as players can choose an equal split which leaves everybody
with the same payo� and doesn’t waste any of the resource. The Ultimatum Game o�ers the
possibility of retribution, when a player rejects a seemingly unfair demand, even though it is
sub-optimal in the short-term. Alexander thus attempts to show through evolutionary game
theory that the strategies re�ecting these moral intuitions can be selected by evolutionary pres-
sures as the dominant behaviour among a population. This can then o�er an explanation for
why we hold these moral norms of cooperation, trust, fairness or retribution. For the most part,
his attempt succeeds. The only exception is the Ultimatum Game, where he could not convinc-
ingly show how strategies encoding a norm of retribution could reliably succeed in the model
(see Alexander 2007, ch. 6).

As mentioned earlier, Alexander uses agent-based simulations to analyze the evolutionary
dynamics of the social interactions. These simulations provide a more sophisticated model
compared to the replicator dynamics, in that they o�er more �ne-grained control over the in-
teractions between the individuals, as well as the possibility to add certain constraints (see ibid.,
sec. 2.2). A typical simulation of Alexander’s model can be seen to work as follows: A popu-
lation of agents is randomly initialized with strategies. The agents populate a social network
which determines the kind of interactions that can take place. When interacting with another
agent, an individual gets a certain payo� respective to the game that is being played. After
a round of interactions, an agent can update his strategy by imitating a neighbor who got a
better payo� than himself. This way, the distribution of strategies changes over time. The most
important di�erence to simpler models of evolutionary dynamics is the addition of the struc-
tural component, hence the Structural Evolution of Morality. Whereas the replicator dynamics
model assumes that every agent has an equal probability of interacting with any other agent,
the social networks used in Alexander’s agent-based model constrain the possible interactions
by virtue of their network topology. There are four di�erent kinds of network topologies which
are investigated in the book (see ibid., sec. 2.2–2.5). Lattice models constrain agents on a grid,
whereby an individual can only interact with the individuals surrounding his cell. Small-world
networks model a social network in which the majority of people have few social relations,
while a handful of well-connected individuals exhibit additional relations across the network.
These additional bridge edges e�ectively shorten the path between many of the other agents.
Bounded-degree networks limit the amount of relations each agent can have through a lower
and an upper limit. Dynamic networks o�er the possibility of changing one’s social relations
over time, which leads to the social network being in�uenced by the interactions taking place
inside of it. The crucial idea is that these di�erent network topologies have di�erent in�uences
on the evolutionary dynamics. While the Prisoner’s Dilemma analyzed through the classic
replicator dynamics necessarily leads to a state of complete defection (ibid., pp. 56–59), a one-
dimensional lattice-based model can result in Cooperate being selected as the dominant strategy
(ibid., pp. 71–73). The evolution of morality is therefore structural, in that it is a consequence
of the structural constraints on the interactions between individuals.

Let us consider a concrete example in order to make it clear how the Structural Evolution
of Morality is supposed to work. Consider a population of people facing interpersonal deci-
sion problems corresponding to the Prisoner’s Dilemma. The social relationships of the people
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are structured in such a way that most of the persons have few acquaintances, while a few
individuals have relationships with more people. The social network which describes these
relationships can thus be thought of as a small-world network. Each person among the popu-
lation has a strategy for the Prisoner’s Dilemma (Cooperate or Defect), which she uses for her
interactions. The people now regularly engage in Prisoner’s Dilemmas with their respective ac-
quaintances. When a person has �nished an interaction, she gets a payo� corresponding to the
payo� structure of the game. The person then investigates her social relationships and looks
for someone who got a better payo� than herself in the previous interactions. If she �nds such a
person, and this person was using a di�erent strategy than her, then she chooses to imitate this
strategy for the upcoming interactions. This way, the strategy of an individual changes. Over
time, this strategy updating mechanism can lead to the population converging to a stable state,
whereby the changes in strategies have come down to a minimum. The evolutionary dynamics
have thus selected an equilibrium, which can contain one dominant strategy that the majority
of people are using. Depending on a number of factors, the dominant strategy of the population
can turn out to be Cooperate or Defect. Together with psychological mechanisms that are not
directly part of Alexander’s theory, this stable strategy can then, over time, turn into a moral
intuition stating that cooperation is good (when Cooperate is dominant) or bad (when Defect is
dominant).
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Chapter 4

Model

This chapter describes the newly constructed model according to the ODD protocol (Grimm et
al. 2006). ODD is a standard protocol for describing agent-based models, which focuses on three
main reference points: an overview of the model, its central design concepts and the details of
the model’s behaviour. Given that this protocol comes from ecology research, a number of
sections have been changed in order to better re�ect the di�erent domain of this model and
to aid readers who are as of yet unfamiliar with the ODD protocol. The section titled State
Variables and Scales in the original ODD speci�cation has been renamed to Structure, because
the structure of the model is more complex than could reasonably be described by a listing
of variables. The original subsection Fitness in the section Design Concepts was renamed to
Utility, considering that a cultural-evolutionary interpretation of the evolutionary dynamics is
assumed. There is an additional section titled Output, which describes the measurements taken
from the model in more detail, as well as a section Parameter Overview at the end, which lists
the available parameters of the model in a table.

4.1 Purpose

The purpose of the model is to get more insight into the speci�c conditions which are necessary
for moral behaviour to evolve in the context of the Structural Evolution of Morality (Alexander
2007). Alexander has shown analytically which requirements need to hold for certain cases of
his model. These analytical results can be seen as the holy grail of model analysis. However,
their use is also limited to rather simple models constrained to few parameters. The approach
in this paper is to use common statistical methods to numerically approximate the behaviour
of the system described by the model. The advantage to this approach is that it is more scal-
able. One can combine and extend arbitrarily complex components of the model, and analyze
the system using the same statistical methods. The drawback is that the numerical nature of
this approach can miss potentially important details about e.g. tipping points of parameter
in�uence or edge cases of the system behaviour. Additionally, the analysis can be quite compu-
tationally demanding and is constrained by the available computing power. Still, this approach
is a worthwhile addition to the analysis of Alexander’s Structural Evolution of Morality, es-
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pecially as it enables other researchers to build upon both the model and the analysis using
common approaches from the modelling literature.

4.2 Structure
This section lays out the structure of the model system. The model describes a system in which
a population of agents interact among each other according to games of social interaction. The
agents occupy vertices on a social network, the topology of which puts constraints on what
interactions can take place. Over the course of a simulation of the model, the agents use certain
learning rules to adapt their behaviour, in order to maximize their expected utility in the social
interactions. Many of the speci�c components of these four categories can be con�gured using
multiple parameters. In the following, the categories are described in detail.

4.2.1 Agents

An agent describes a boundedly rational individual who is taking part in the games of social
interaction and subsequent learning process. Each agent is characterized by three di�erent vari-
ables: a unique identi�er, the currently used strategy for the respective game-theoretic game,
and the payo� score accumulated in the current generation by engaging in interactions with
other agents. An agent’s identi�er is set once during the initialization of the model (see section
4.5) and doesn’t change over the course of the simulation. The payo� score is reset every gen-
eration and ultimately only serves to make a decision in the learning process (see section 4.8.2).
The state of the simulation in a speci�c generation is described by a mapping of all agents’
identi�ers to their strategies, after the adaptations of the learning process of this generation
took place.

4.2.2 Games

The model contains four di�erent interpersonal decision problems, i.e. game-theoretic games.
They are all two-player games. The Prisoner’s Dilemma, the Stag Hunt and the Bargaining Sub-
game are simultaneous games (i.e. both players decide which strategy to use at the same time),
whereas the Ultimatum Subgame is a sequential game (i.e. �rst one player makes a decision,
then the other player). The model uses the technique of subgame approximation, which simpli-
�es an interpersonal decision problem by only regarding a subset of the possible strategies. The
Bargaining Subgame is a subset of the Nash Bargaining Game, and the Ultimatum Subgame is
an approximation to the full Ultimatum Game. The purpose of these approximations is to lower
the total amount of strategies available, and thus to reduce the variance of the results, while
trying to keep the general strategic dynamics of the game in question. For the purposes of the
result computation (see section 4.7) and the sensitivity analysis (see chapter 7), each game spec-
i�es a set of strategies which are considered to be the morally right choices. These strategies
are de�ned in the following sections. Note that this is merely done to more easily categorize
the results of the model. It is debatable whether the respective strategies are actually the right



4.2 Structure 13

choices with regards to normative ethics. This, however, is a question for practical philosophy
and is not going to be discussed here.

Prisoner’s Dilemma

The Prisoner’s Dilemma is a simultaneous game. It o�ers the strategies Cooperate and Defect.
The moral strategy is considered to beCooperate. The game is characterized by the normal-form
representation visualized in �gure 4.1. The parameters R (reward), S (sucker), T (temptation)
and P (punishment) need to ful�ll the constraints T > R > P > S and T+S

2
< R. The variation used

in this model contains two additional parameters: Cooperation Incentive and Defection
Incentive. These parameters take positive rational numbers as values and control the scale of
the game’s parameters R and T . Note that the two parameters cannot be used at the same time,
i.e. one can only scale R or T at a time, but not both simultaneously.

Figure 4.1: Normal-form representation of the general Prisoner’s Dilemma.

Cooperation Incentive scales the parameter R. When using this parameter, the values
for the game’s parameters are chosen as shown in equation 4.1. The parameter is supposed to
incentivize or decentivize cooperation in the Prisoner’s Dilemma. Figure 4.2 shows the normal-
form representation of the game for two di�erent values for Cooperation Incentive.

R = 1.0 + Cooperation Incentive
S = 0

T = max(3.0, 2.0 + Cooperation Incentive)
P = 1.0

(4.1)
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Figure 4.2: Normal-form representation of the Prisoner’s Dilemma using the Cooperation
Incentive parameter set to 0.2 (left) and 5.0 (right).

Defection Incentive scales the parameter T . When using this parameter, the values for
the game’s parameters are chosen as shown in equation 4.2. This parameter incentivizes or de-
centivizes Defection. Figure 4.3 shows normal-form representations of the Prisoner’s Dilemma
using two di�erent values for Defection Incentive.

R = 2.0

S = 0

T = 2.0 + Defection Incentive
P = 1.0

(4.2)

Figure 4.3: Normal-form representation of the Prisoner’s Dilemma using the Defection In-
centive parameter set to 0.2 (left) and 5.0 (right).

Note that when using Cooperation Incentive < 1.0 or Defection Incentive ≥ 2.0, the
resulting game is strictly speaking not a Prisoner’s Dilemma anymore, because the constraint
T+S

2
< R is violated.
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Stag Hunt

The Stag Hunt is a simultaneous game. It o�ers the strategies Stag and Hare. The moral strategy
is considered to be Stag. The game is characterized by the normal-form representation shown
in �gure 4.4. The parameters A, B, C and D need to ful�ll the constraint A > B ≥ C > D.

Figure 4.4: Normal-form representation of the general Stag Hunt.

The variation in this model contains an additional parameter: Risk Dominance. This pa-
rameter is a Boolean truth value and controls the relation between the game’s parameters A, B
and D. Depending on whether the parameter is set to true or false, the concrete values for the
game’s parameters are chosen as shown in �gure 4.5. The parameter thus controls whether the
strategy Stag is risk dominant or not. A strategy is considered risk dominant if it delivers the
greatest payo� under the assumption that the other player randomly chooses one of the avail-
able strategies with equal probability. Thus, the strategy Stag is risk dominant if the constraint
A > B + D is satis�ed.

Figure 4.5: Normal-form representation of the Stag Hunt using the Risk Dominance parameter
set to true (left) and false (right).
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Bargaining Subgame

The Bargaining Subgame is a simultaneous game. It is a limited case of the Nash Bargaining
Game for a resource of 10 units (Alexander 2007, pp. 148–155), containing only the strategies
Demand 4, Demand 5 and Demand 6. The moral strategy is considered to be Demand 5. The
normal-form representation of the Bargaining Subgame is shown in �gure 4.6. Limiting the to-
tal amount of strategies reduces the variance of the result, and enables robust simulations with
fewer agents, which again improves the runtime of the sensitivity analysis (see chapter 7). The
choice of the speci�c strategies keeps the general strategic dynamics of the Nash Bargaining
Game (demanding less than, equal to, or more than the equal division of the resource). Based
on experiments, approximating the full Nash Bargaining Game using the aforementioned three
strategies doesn’t signi�cantly change the dynamics of the model. In fact, when using the full
game, the population frequently reaches an intermittent state in which all agents play Demand
4, Demand 5, or Demand 6 anyways. This phenomenon is also hinted at in the quantitative
model validation described in section 6.2.3.

Figure 4.6: Normal-form representation of the Bargaining Subgame.
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Ultimatum Subgame

The Ultimatum Subgame is a sequential game. It is a limited case of the Ultimatum Game for
a resource of 10 units, and was adopted from Alexander’s experiments (ibid., pp. 204–205). It
only contains those strategies which accept and/or demand values of 5 and 9. The extended-
form representation of the Ultimatum Subgame is shown in �gure 4.7. The available strategies
are listed in table 4.8, whereby S5 (Easy Rider) and S7 (Fairman) are considered to be the moral
strategies. For the Ultimatum Game, subgame approximation is especially useful, considering
that the full Ultimatum Game for a resource of 10 units would contain prohibitively many
strategies. Even when disallowing Demand 10 and Accept 0, the number of distinct strategies
is 4608 (9 ⋅ 29). Leaving this much room for the strategic dynamics would require a very large
population as well as very long simulations in order to reach any equilibrium. Note that because
the game is sequential, the interactions process (see section 4.8.1) needs to be executed twice
for each pair of neighboring agents (once in each direction), such that both agents get the
opportunity to be on the demanding and on the accepting side.

Figure 4.7: Extended-form representation of the Ultimatum Subgame.

Strategy Demands Accepts
S1 (Gamesman) 9 5, 9
S2 9 —
S3 9 5
S4 (Mad Dog) 9 9
S5 (Easy Rider) 5 5, 9
S6 5 —
S7 (Fairman) 5 5
S8 5 9

Table 4.8: Strategies of the Ultimatum Subgame.
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Overview

The available parameters for the games of the model are listed in table 4.9.

Game Parameter Scale

Prisoner’s Dilemma Cooperation Incentive (0,∞)

Defection Incentive (0,∞)

Stag Hunt Risk Dominance {true, false}

Table 4.9: Overview of game-related parameters.

4.2.3 Networks
In the context of the model, a network is considered to be the combination of an interaction
and a learning graph. Both graphs are undirected and connected. The distinction between the
two graphs is done to make it possible for an agent to have di�erently sized neighborhoods
for the interaction and learning processes (see sections 4.8.1 and 4.8.2). Both graphs share the
same vertices, but the edges connecting the vertices di�er. Each vertex in the two graphs is
occupied by one agent. The model contains di�erent network topologies, which impose di�er-
ent structural constraints on the strategic dynamics of the model. The di�erent topologies are
mostly adapted from Alexander’s experiments (Alexander 2007, pp. 42–48), but have been mod-
i�ed and extended to enable some additional requirements (see section 6.1 for a comparison to
Alexander’s model). There is an inherit progression among the network topologies from com-
pletely regular (lattices), to regular with few randomized connections (small-world networks),
to random networks with constraints (bounded-degree networks), to completely random net-
works (fully random networks). Additionally, there is the fully connected network, which acts
as a control topology by imposing no structural constraints at all. The progression of topologies
makes it possible to analyze the in�uence of the regularity or randomness of the social network
on the emergence of a stable equilibrium consisting of moral strategies.

All the network topologies share one parameter: Population Size. This parameter simply
determines the number of vertices on the graphs, and thus the number of agents occupying the
social network. All but the fully connected network share an additional parameter: Learning
Distance. This parameter speci�es the size of the agents’ neighborhoods on the learning graph
of the network, based on the topology of the interaction graph. Concretely, it de�nes the num-
ber of depth levels traversed in a breadth-�rst search from an agent’s vertex in the interaction
graph of the network. Figure 4.10 visualizes an example for a a simple interaction graph and
its corresponding learning graph when setting Learning Distance to 2. Using values larger
than one for the Learning Distance expands the agent’s survey of neighbors for the adaptive
learning process, while keeping the interactions to a smaller locus.
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Figure 4.10: Exemplary interaction graph (top) with its corresponding learning graph (bottom)
using a Learning Distance of 2.

Fully Connected Network

The fully connected network models a complete graph (i.e. a graph where every vertex is
connected with an edge to every other vertex) for both the interaction graph and the learning
graph. Figure 4.11 shows an example for a fully connected network. This network type has
two purposes. First, it serves as a control for the in�uence of di�erent network topologies on
the strategic dynamics of the model. Second, it is an attempt to imitate the behaviour of the
replicator dynamics in an agent-based simulation using social networks. The crucial di�erence
between the two models is that the replicator dynamics assume an in�nitely large population,
while the fully connected network contains a limited number of agents.

Figure 4.11: Fully connected network with 6 vertices.
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Lattice

Lattices are n-dimensional regular network structures. The model supports one- and two-
dimensional lattices. Both kinds of lattices have two additional parameters: Neighborhood
and Wrap Around.

One-dimensional lattices are vertices connected to form a line. For this kind of lattice, the
parameter Neighborhood de�nes the size of the agents’ neighborhoods as the number of steps
traversed from the agent in a breadth-�rst search (exactly like with the Learning Distance
parameter). Wrap Around is a Boolean parameter which dictates whether the ends of the
lattice are connected by an edge to form a ring. Figure 4.12 shows the interaction graph for an
exemplary one-dimensional lattice.

Figure 4.12: One-dimensional lattice with 10 vertices, using Neighborhood = 2 and
Wrap Around = true.

Two-dimensional lattices are vertices arranged on a grid. Here, the parameter Neighbor-
hood de�nes both the kind of neighborhood, as well as its size. There are two di�erent kinds of
neighborhoods: the von Neumann neighborhood and the Moore neighborhood. The von Neu-
mann neighborhood reaches in the four cardinal directions, while the Moore neighborhood
additionally includes the four diagonal directions. The kind of neighborhood is coupled with
its size, again de�ned by the depth levels of a breadth-�rst search starting at an agent’s vertex
(like with the Neighborhood parameter for the one-dimensional lattice). The possible values
for the Neighborhood parameter are listed in table 4.13. The Wrap Around parameter de-
�nes whether the edges and corners of the grid wrap around to form a torus. Figure 4.14 shows
the interaction graph for an exemplary two-dimensional lattice.
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Neighborhood Type Size Agent Count
N4 von Neumann 1 4
N12 von Neumann 2 12
N24 von Neumann 3 24
⋮ ⋮ ⋮ ⋮

M8 Moore 1 8
M24 Moore 2 24
M48 Moore 3 48
⋮ ⋮ ⋮ ⋮

Table 4.13: Possible values for the Neighborhood parameter for two-dimensional lattices.

Figure 4.14: Two-dimensional lattice with 9 vertices, using Neighborhood = M8 and
Wrap Around = false.

Small-World Network

The small-world networks used in the model are modi�cations of the lattices described earlier.
The modi�cation lies in the random rewiring of a small number of edges on the lattice. This way,
the distances between normally far apart regions of the lattice are shortened. This approach
conforms to the Watts-Strogatz model for small-world graphs (Watts and Strogatz 1998), with
the caveat that the networks used in the model are not limited to one-dimensional ring lattices.
Instead, they can take any one- or two-dimensional lattice with arbitrary parametrizations as
their basis, forming a one- or two-dimensional small-world network, respectively. This makes
it possible to analyze the progression from an arbitrary lattice to its small-world counterpart.
Because the small-world networks are based on lattices, they share the Neighborhood and
Wrap Around parameters of their one- and two-dimensional lattice counterparts. They have
one additional parameter: Beta. This parameter de�nes the probability with which an edge
of the base lattice is randomly rewired. The higher the value chosen for Beta is, the more the
resulting network is going to look like a random graph. Figure 4.15 shows exemplary small-
world counterparts for the one- and two-dimensional lattices shown earlier.
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Figure 4.15: Exemplary small-world counterparts for a one-dimensional (left) and two-
dimensional (right) lattice. The rewired edges are marked in bold.

Bounded-Degree Network

Bounded-degree networks model graphs in which the degree of each vertex (i.e. the number of
edges the vertex is connected to) is limited according to a speci�ed interval [dmin, dmax]. Com-
pared to the fully random network, it preserves some regularity by imposing this constraint on
the degrees of the vertices. The network contains one additional parameter: Degree Interval.
This parameter speci�es the interval [dmin, dmax], inside of which the degrees of all vertices of
the underlying interaction graph have to lie. The degrees are distributed among the vertices
according to a uniform probability distribution. Figure 4.16 shows the interaction graph of an
exemplary bounded-degree network.

Figure 4.16: Exemplary bounded-degree network with 10 vertices and Degree Interval =

[2, 3].
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Fully Random Network

The fully random network models a completely random graph. Compared to the bounded-
degree network, it doesn’t guarantee to preserve any kind of regularity (with the exception
that the graph needs to be connected). The network conforms to the Erdős–Rényi model for
random graph generation (Erdős and Rényi 1959). It contains one additional parameter: Edge
Probability. This parameter de�nes the probability with which each of the (

N

2)
possible edges

of a graph with N vertices is added to the interaction graph of the network. Figure 4.17 shows
an exemplary fully random network.

Figure 4.17: Exemplary fully random network with 10 vertices.

Overview

The parameters for the di�erent network topologies of the model are listed in table 4.18.

Network Topology Parameter Scale

General Learning Distance [0,∞)

Population Size [2,∞)

Lattice 1D Neighborhood [1,∞)

Wrap Around {true, false}

Lattice 2D Neighborhood {N4, N12, . . . , M8, M24, . . . }
Wrap Around {true, false}

Small-World 1D Beta [0, 1]

Small-World 2D Beta [0, 1]

Bounded-Degree Degree Interval [[1,∞), [3,∞)]

Fully Random Edge Probability (0, 1]

Table 4.18: Overview of network-related parameters.
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4.2.4 Learning Rules

Learning rules de�ne the mechanism by which agents change their strategies during the learn-
ing process of a generation (see section 4.8.2). Each rule speci�es whether and how an agent
adapts his strategy, based on his neighbors’ payo� scores earned during the interaction process.
The agent’s neighborhood is de�ned by the network’s underlying learning graph (see section
4.2.3). The learning rules which are available in the model are directly taken from Alexan-
der’s experiments (Alexander 2007, pp. 39–41). The di�erent rules are supposed to represent
a progression from very basic towards more complex decision making, while preserving the
bounded rationality assumption about the individuals in the population. The learning rules
Imitate Best, Imitate Probability and Imitate Average are quite rudimentary, while Best Response
requires some more sophisticated cognitive abilities and may stretch the boundaries of the as-
sumptions of evolutionary game theory (ibid., p. 41). The four rules are sometimes abbreviated
as IBest, IProb, IAvg and BestR, respectively.

When surveying an agent’s neighborhood for a better strategy to adopt, it can happen that
multiple neighbors using di�erent strategies are equally suited as candidates for imitation. In
this case, the strategy of the neighbor with the lowest identi�er is chosen among the options.
Similarly, when looking at the available strategies directly, there can be multiple strategies
which are equally suitable for adoption. In this case, the chosen strategy is the one which comes
�rst in the order of strategies de�ned by the game being played. The order of the strategies is
implicitly de�ned in the listings of strategies for the di�erent games in section 4.2.2. In table
4.19, the orders are repeated for completion.

Game Order of Strategies
Prisoner’s Dilemma Cooperate, Defect
Stag Hunt Stag, Hare
Bargaining Subgame Demand 4, Demand 5, Demand 6

Ultimatum Subgame S1 (Gamesman), S2, S3, S4 (Mad Dog),
S5 (Easy Rider), S6, S7 (Fairman), S8

Table 4.19: Order of game strategies for con�ict resolution.

Imitate Best

Imitate Best represents a very common learning rule in the modelling literature (ibid., p. 39).
Using this rule, an agent surveys the payo� scores of all of his neighbors. If no neighbor has
a higher score than the agent herself, then she doesn’t change her strategy. Otherwise, she
imitates the strategy of the neighbor with the highest score in her neighborhood.

Imitate Probability

Imitate Probability adds a stochastic element to the choice of which neighbor to imitate. The
higher the payo� of an agent’s neighbor is, the more likely she is to imitate this neighbor. Again,
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the agent only adapts her strategy if at least one other agent in her neighborhood has a higher
payo� score than herself.

Concretely, the learning rule proceeds as follows. Take the set N of all neighbors of the
agent a with a higher payo� score than a. Let T be the sum over all score di�erences between
the agent a and the neighbors in N , i.e. T = ∑

n∈N
(score(n) − score(a)). Let di be the individual

score di�erence between the agent ni ∈ N and the agent a. The individual di�erences di in
relation to T sum up to a probability distribution, i.e. ∑

i

di

T
= 1. The agent a then adopts the

strategy of the neighbor ni with probability di

T
.

Imitate Average

Imitate Average analyzes the average payo� score of each strategy being used in an agent’s
neighborhood, instead of relying on individual neighbors’ scores. The strategy with the highest
average payo� score is chosen for imitation.

The learning rule is de�ned as follows. Take the set of all strategies S available for the game
being played. For each strategy s ∈ S, take the subset Ns of N which contains all neighbors
that use the strategy s. For each strategy s, calculate the average payo� ps = ∑

i∈|Ns |

payo�(ni )
|Ns |

. The
agent a then adopts the strategy with the highest average payo� value ps .

Best Response

Best Response is a slightly more sophisticated learning rule compared to the other ones sup-
ported by the model. It adopts the strategy which would have lead to the highest payo� in the
current generation. Another way to look at it is that it adopts the strategy which achieves the
highest payo� in the next generation, under the assumption that the agent’s neighbors don’t
change their strategies. Thus, it requires at least some counterfactual reasoning on part of the
agents (What would my score have been if I had used this strategy instead? or What will my score
be in the following generation if my neighbors behave in the same way?).

4.3 Process Overview and Scheduling

This section provides an overview of the processes which are part of the model. They are
described in detail in section 4.8. The model is scheduled in discrete time steps, referred to as
generations. During each generation, the four processes Interactions, Learning, Mutation and
Stability are scheduled in this order. Before the �rst generation, the initialization process (see
section 4.5) is executed to setup the simulation. The simulation is halted by the stability process.
The schedule of the model is visualized in �gure 4.20.
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Figure 4.20: Flowchart visualizing the schedule of the model.
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Interactions

During this process, the agents engage in the interpersonal decision problem speci�ed by the
con�gured game. The interactions take place between neighbors on the interaction graph of the
social network. Each agent collects a cumulative score for the interactions with his neighbors,
which is then used in the learning process to adapt the agent’s strategy.

Learning

In the learning process, the agents update their strategy using the con�gured learning rule.
To do so, they analyze the payo� scores and strategies of their neighbors in the neighborhood
de�ned by the learning graph of the social network.

Mutation

When the mutation process is activated, each agent gets a change to switch his strategy to
a random di�erent one with a speci�ed probability. Agents who mutate can in�uence their
neighbors to adopt the new strategy as well.

Stability

The stability process tracks the state of the population over time. If the population is in a state
in which no changes in strategies can take place anymore, or if a cycle of simulation states is
detected, this process stops the simulation of the model.

4.4 Design Concepts
This section describes the central design concepts of the model.

Emergence

The strategic dynamics (i.e. the change in the distribution of strategies among the population
over time) emerge from the interaction and learning processes over the course of the simulation.
The in�uence of the structural constraints on the strategic dynamics emerges from the speci�c
topology of the social network. Stochastic noise occurs as a results of spontaneous changes of
strategies caused by the mutation process. Except for the agents’ strategies (and their transient
payo� scores), all components are �xed during the initialization and do not change over the
course of the simulation.

Adaptation

The learning rules act as adaptive traits, which enable agents to change their strategies in re-
sponse to their environment. They are chosen to maximize the agents’ expected utility in future
generations, based on cognitive processes of di�erent sophistication.
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Utility

In this model, a cultural interpretation of the evolutionary dynamics is assumed. Thus, the
agents attempt to maximize their expected utility using the learning rules as adaptive mech-
anisms. This is modelled explicitly in the di�erent learning rules used in the model, and the
speci�c way the expected utility is measured depends on the learning rule that is being used
(see section 4.2.4). The utility scores which an agent and his neighbors accumulate over the
course of the interactions in one generation serve as the basis for the measures of expected
utility.

Sensing

The agents are assumed to know their interaction and learning neighborhoods in the social
network, the learning rule being used in the model, their own strategy and cumulative utility
score for the current generation, as well as the strategies and scores of their neighbors. Which
agents are considered neighbors depends on the process an agent takes part in, considering that
the learning and interaction neighborhoods can di�er from each other. Due to the bounded
rationality assumption, there is no prediction of future states or remembering of past states of
the simulation. The agents’ actions only take the information of the current generation into
account.

Interaction

The agents interact according to the game-theoretic interaction de�ned for the simulation (see
section 4.2.2). For the Prisoner’s Dilemma, the Stag Hunt and the Bargaining Subgame, the
interactions are modelled as one-shot games between an agent and his neighbor. For the se-
quential Ultimatum Subgame, the agents interact twice with each neighbor.

Stochasticity

There are a number of stochastic elements in the model. The initialization of initial strate-
gies among the population is stochastic, in order to reduce the impact of speci�c initializations
favoring the outcome of the model in one direction or another. The mutation process is stochas-
tic, because it is de�ned as a random change in strategies among the population. The learning
rule Imitate Probability uses stochasticity to select which neighbor to imitate, which is sup-
posed to model a boundedly rational approach to imitating a neighbor without systematic or
sophisticated reasoning. The small-world networks, bounded-degree networks and fully ran-
dom networks are generated randomly.

Observation

Throughout the simulation, the generational states of the population (i.e. mappings from agents’
identi�ers to their respective strategies) are stored in a list. At the end of the simulation, the
two result measures stability and morality are calculated based on this data (see section 4.7).



4.5 Initialization 29

4.5 Initialization

The initialization of the simulation entails two steps. First, the network is generated based on
the parameters for the con�gured topology (see section 4.2.3). For each vertex in the interaction
and learning graph, an agent is created which inhabits this vertex for the rest of the simulation.
Second, the initial strategies are distributed among the population. This is done randomly,
based on the Initial Moral Mean parameter of the con�guration (see section 4.6). At the
beginning of the initialization, a probability distribution over the di�erent strategies of the
game is calculated. During the distribution of initial strategies, each agent then gets assigned
one of the strategies according to the respective probability. Figure 4.21 shows the probability
density functions for a moral strategy using two di�erent values for Initial Moral Mean.

The probability distribution is computed like follows. For each strategy s, take the proba-
bility density function fs of a normal distribution  (�, �

2
) with � = 0.1. If s is considered to

be a moral strategy (see section 4.2.2), the Initial Moral Mean parameter speci�es the mean
� for the normal distribution. Otherwise, the choice for the mean is � = 0.5. Then, take a sam-
ple x of fs . If the sample lies outside the interval [0, 1], cap it at the ends of the interval, i.e.
x = max(0, min(1, x)). Let T be the sum over the samples of all strategies, i.e. T = ∑

i
xi . The

samples xi in relation to T sum up to a probability distribution, i.e. ∑
i

xi

T
= 1. The probability

ps for the strategy s is then de�ned to be xi

T
.

Figure 4.21: Probability density functions for a moral strategy using Initial Moral Mean = 0.5

(left) and Initial Moral Mean = 0.75 (right).
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4.6 Input

The input to the model is a con�guration which speci�es the di�erent components to be used for
the simulation, as well as the precise behaviour of the processes of the model. This con�guration
contains the parameters listed in table 4.22. The parameter Seed speci�es the seed for the
pseudorandom number generator used for the stochastic elements of the model. When using
a non-random social network topology, the results of the model are deterministic with regards
to the seed used (see section 5.1 for this limitation).

Parameter Scale/Values
Game see section 4.2.2
Network see section 4.2.3
Learning Rule see section 4.2.4
Initial Moral Mean [0, 1]

Mutation Probability [0, 1]

Mutation Distance [0,∞)

Homogeneity Detection {true, false}
Cycle Detection {true, false}
Max Generation Count [1,∞)

Seed —

Table 4.22: Parameters of the input con�guration.

4.7 Output

Once the simulation is �nished (due to one of the reasons described in section 4.8.4), the results
are calculated. There are two distinct result measures: stability and morality. Both measures
are based on the stable population cycle of the simulation (equation 4.3). The stability measure
describes the extent to which the distribution of strategies changes over a certain time period.
Concretely, it is de�ned to be the inverse of the size of the stable population cycle (equation
4.4). The morality measure describes the relative number of agents using moral strategies in
the stable population cycle (equation 4.5).

cycle =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

single generation if population converged to a single stable state
generations in cycle if population ran into a cycle
all generations if simulation reached max. number of generations

(4.3)

stability =

1

|cycle|

(4.4)
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Amoral = {(agent, strategy, generation) ∣ generation ∈ cycle, strategy is moral}

morality =

|Amoral |

Population Size ⋅ |cycle|
(4.5)

4.8 Submodels
In this section, the behaviour of the processes listed in section 4.3 is explained in detail.

4.8.1 Interactions
The interaction process operates on all edges of the network’s underlying interaction graph.
For each edge, the game is being played between the two agents ai and aj occupying the two
endpoints of the edge. If the game is sequential (only the Ultimatum Subgame), the game is
being played twice, once with agent ai being the �rst and agent aj being the second player, and
once vice-versa. If the game is simultaneous, the interaction only takes place once between the
two agents.

At the beginning of a generation, each agent starts with a payo� score of zero. After an
interaction between two agents is �nished, the payo�s of the strategy pro�le chosen by the
strategies of both players are added to the agents’ respective payo� scores. This way, the agents
accumulate scores across all interactions they are part of in one generation. Note that the payo�
scores are not normalized with regards to the number of interactions an agent takes part in. This
means that a more connected agent (with more neighbors) can get a higher total score during
one generation than a less connected agent, even if the former uses a worse strategy than the
latter. The cumulative payo� score of each agent is saved for the succeeding learning process.

4.8.2 Learning
The learning process operates on all vertices in the network’s underlying learning graph. For
each vertex, the con�gured learning rule is applied using the agent occupying that vertex as
well as that agent’s neighborhood according to the learning graph. The new strategy for the
agent is stored intermittently. After the process has executed the learning rule for each agent
in the population, the intermittently stored strategies are applied to all agents respectively. The
agents payo� scores are then reset to zero.

4.8.3 Mutation
The mutation process implements a generalized version of the correlated mutation process
using in�uence neighborhoods described by Vanderschraaf and Alexander (2005, pp. 95–96). It
enables agents to randomly change their strategies throughout the simulation, thereby adding
noise to the evolutionary dynamics. Upon mutating, agents can also in�uence their neighbors
to adopt the same new strategy.
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The behaviour of the mutation process is speci�ed by two parameters: Mutation Proba-
bility and Mutation Distance. The process operates on all agents in the population. Each
agent individually mutates with the probability de�ned by Mutation Probability. If an agent
is selected for mutation, a random strategy from the con�gured game’s set of strategies is drawn
which is di�erent from the agent’s current strategy. Thus, when mutation occurs, it is always
guaranteed to actually change an agent’s strategy. The parameter Mutation Distance de-
�nes the size of the neighborhood in the network’s interaction graph around the selected agent
which is to be a�ected by the mutation. Like with e.g. the Learning Distance parameter, the
distance concretely speci�es the depth level of a breadth-�rst search starting at the selected
agent. The a�ected neighborhood of an agent is visualized in �gure 4.23 for di�erent values of
Mutation Distance.

Figure 4.23: A�ected neighborhood (in black) of an agent (in the center) when settingMutation
Distance to 0, 1 and 2 (left to right).

4.8.4 Stability

Throughout the simulation, the stability process stores every generation’s population state
(consisting of a mapping of each agent’s identi�er to her strategy) in an ordered list. The pur-
pose of the process is to stop the simulation once it has reached a stable state, and to collect
the necessary data for the result measure calculation (see section 4.7). Its behaviour is con-
�gured by three parameters: Max Generation Count, Homogeneity Detection and Cycle
Detection. There are three di�erent scenarios which can be detected:
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1. Generation limit is reached (as de�ned by Max Generation Count)

2. Population state is homogeneous (only if Homogeneity Detection is enabled)

3. Population has run into a cycle (only if Cycle Detection is enabled)

Option 1 is used to limit the runtime of the simulation. The parameter Max Generation
Count de�nes for how many generations the simulation can run before being stopped. Option
2 describes the state in which every agent of the population is using the same strategy. This sce-
nario is only detected if the Boolean parameter Homogeneity Detection is set to true. Option
3 occurs when the changes in strategies among the population are repeating in a �xed pattern
inde�nitely. It is only detected if the Boolean parameter Cycle Detection is set to true. A
cycle is de�ned as a sequence of succeeding generations limited by an interval [gi , gj), whereby
the population state of the generation gi is equal to the population state of the generation gj . To
detect a cycle, the process tries to �nd the current state of the population in the stored history
of population states. Options 2 and 3 are only detected when no stochastic components are
con�gured. Both a non-zero Mutation Probability as well as using the learning rule Imitate
Probability are considered to specify stochastic components for the model. When mutation is
activated by setting Mutation Probability to a value above zero, a stable population state
could in principle always change due to random mutations in proceeding generations. When
the population has seemingly run into a cycle and Imitate Probability is used as the learning
rule, agents could change their strategies in ways di�erent than before, moving the population
out of the cycle again.

4.9 Parameter Overview
All available parameters of the model are listed in table 4.24.
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Parameter Scale/Values Process/Component Description

Game

Prisoner’s Dilemma —

4.2.2Stag Hunt —
Bargaining Subgame —
Ultimatum Subgame —

Network

Fully Connected —

4.2.3

Lattice 1D —
Lattice 2D —

Small-World 1D —
Small-World 2D —
Bounded-Degree —

Fully Random —

Learning Rule

Imitate Best —

4.2.4Imitate Probability —
Imitate Average —
Best Response —

Cooperation Incentive (0,∞) Prisoner’s Dilemma
4.2.2Defection Incentive (0,∞) Prisoner’s Dilemma

Risk Dominance {true, false} Stag Hunt
Population Size [2,∞) All Networks

4.2.3

Learning Distance [0,∞) All Except F. C.
Neighborhood [1,∞) Lattice 1D
Wrap Around {true, false} Lattice 1D
Neighborhood {N4,N12,… ,M8,M24,…} Lattice 2D
Wrap Around {true, false} Lattice 2D
Neighborhood [1,∞) Small-World 1D
Wrap Around {true, false} Small-World 1D
Beta [0, 1] Small-World 1D
Neighborhood {N4,N12,… ,M8,M24,…} Small-World 2D
Wrap Around {true, false} Small-World 2D
Beta [0, 1] Small-World 2D
Degree Interval [[1,∞), [3,∞)] Bounded-Degree
Edge Probability (0, 1] Fully Random
Initial Moral Mean [0, 1] Initialization 4.5
Mutation Probability [0, 1] Mutation 4.8.3Mutation Distance [0,∞) Mutation
Homogeneity Detection {true, false} Stability

4.8.4Cycle Detection {true, false} Stability
Max Generation Count [1,∞) Stability
Seed — — 4.6

Table 4.24: Overview of all available parameters of the model.



Chapter 5

Implementation

The source code for the model implementation can be found at https://github.com/srseil/Se
om/tree/v1.0.0 as well as at https://pms.ifi.lmu.de/publications/diplomarbeiten/Ste
fan.Seil/software.zip.

This chapter describes the solutions to a number of interesting challenges when imple-
menting the model described in chapter 4. Section 5.1 describes some general aspects of the
implementation of the model. Section 5.2 delves into the generation of random social networks.
Section 5.3 explains the approach to detecting cycles in the stability process of the simulation,
and 5.4 lays out the approach to verify the correctness of the implementation.

5.1 Agent-Based Simulation

The implementation of the model was done in Java using the MASON framework for agent-
based simulations (Luke, Cio�, et al. 2005, https://cs.gmu.edu/~eclab/projects/mason/)
in version 20. For the social networks, the JUNG library (https : / / jrtom . github . io /
jung/) was chosen in version 2.1.1 for its high stability and interoperability with the MASON
framework. Due to limitations of Java’s internal pseudorandom number generator (PRNG), the
model uses an implementation of the Mersenne Twister algorithm (http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/emt.html) provided by the MASON framework in version
MT199937(99/10/29) wherever possible.

One goal during the implementation was to make the simulations deterministic for the cho-
sen PRNG seed, such that one could execute the simulation multiple times for a set of parame-
ters and a PRNG seed and get the same results every time. Unfortunately, this goal could not be
fully achieved due to the implementation of graphs in the JUNG library. When querying a set
of vertices or edges from a graph, the interface of JUNG does not guarantee a stable ordering
of the provided results. This can lead to di�erences in the behaviour of the random network
generation. Attempts were made to circumvent this problem by sorting the queried results be-
fore continuing the generation, but not all of the indeterminism could be eliminated from the
execution. Therefore, the simulations are only deterministic for those con�gurations which do

https://github.com/srseil/Seom/tree/v1.0.0
https://github.com/srseil/Seom/tree/v1.0.0
https://pms.ifi.lmu.de/publications/diplomarbeiten/Stefan.Seil/software.zip
https://pms.ifi.lmu.de/publications/diplomarbeiten/Stefan.Seil/software.zip
https://cs.gmu.edu/~eclab/projects/mason/
https://jrtom.github.io/jung/
https://jrtom.github.io/jung/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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not involve a random network (i.e. only for fully connected networks and lattices). All other
stochastic processes, however, are fully deterministic for a given PRNG seed.

5.2 Random Network Generation

All networks in the simulation are modelled as undirected multigraphs (i.e. graphs which can
contain more than one edge between two vertices) made up of two di�erent kinds of edges: in-
teraction edges and learning edges. This approach makes it straightforward to vary an agent’s
interaction and learning distance. The implementation can query the interaction and learning
subgraph of a network, and use those for the respective interaction and learning processes.
The generation of non-random networks (i.e. fully connected networks and lattices) is triv-
ial. The generation of random networks (i.e. small-world networks, bounded-degree networks
and fully random networks), however, o�ers a number of challenges. Most importantly, the
generated networks need to be connected graphs, such that the population is not divided into
isolated subgraphs which cannot in�uence each other. Additionally, the generation needs to be
performant enough in practice in order not to slow down the initialization process too much.

5.2.1 Small-World Networks

The algorithm for generating small-world networks used in the implementation is a modi�-
cation of the Watts-Strogatz model for small-world networks (Watts and Strogatz 1998). The
original model uses a central parameter � to control the regularity or randomness of the result-
ing graph. It is presented in algorithm 1.

Algorithm 1 Watts-Strogatz Model
Input: N = vertex count, K = mean degree, � = randomness control
Output: Undirected graph with N vertices and NK

2
edges exhibiting small-world properties

Ensure: 0 ≤ � ≤ 1

1: procedureWattsStrogatz(N , K , �)
2: G = one-dimensional ring lattice with N vertices
3: for each edge e in G do
4: rewired = true with probability �
5: if rewired is true then
6: disconnect e from its right endpoint v1
7: v2 = randomly chosen vertex: v2 ≠ v1
8: connect e to v2
9: end if

10: end for
11: return G

12: end procedure
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The modi�cation used in the implementation is to accept any one-dimensional or two-
dimensional lattice as a basis, including ones which do not wrap around and thus do not form
a ring or torus. The crucial advantage of this is that we can compare the progression of every
possible lattice supported by the model to its respective small-world counterpart. Considering
one can simulate the model with both a speci�c lattice and its small-world version using the
same parameters, the e�ects of the small-world properties can be �ltered out very well. The
modi�cation of the Watts-Strogatz model is presented in algorithm 2.

Algorithm 2 Modi�ed Watts-Strogatz Model
Input: L = base lattice, � = randomness control
Output: Undirected graph based on L exhibiting small-world properties

Ensure: 0 ≤ � ≤ 1

1: procedureWattsStrogatzModified(L, �)
2: for each edge e in L do
3: rewired = true with probability �
4: if rewired is true then
5: v1 = randomly chosen vertex from one of the two endpoints of e
6: v2 = randomly chosen vertex: v2 ≠ v1 and v2 not connected to v1
7: if v2 exists then
8: disconnect e from v1

9: connect e to v2
10: else
11: restart WattsStrogatzModified
12: end if
13: end if
14: end for
15: if L is not connected then
16: restart WattsStrogatzModified
17: end if
18: return L

19: end procedure

The vertex to be rewired among the existing endpoints of an edge is chosen randomly, such
that even the outermost vertex on a non-ring structure (i.e. a lattice that does not wrap around)
can be chosen to be rewired. Note that the probability distribution over the vertices is not quite
uniform anymore if the underlying lattice is not a ring, because the outermost two vertices have
less edges connected to them and thus are chosen with lower probability than the rest. In case a
chosen edge cannot be rewired, because there is no other edge which ful�lls the requirements,
the algorithm is restarted from scratch. Similarly, if the constructed graph is not connected, the
generation is started from scratch. Both of these cases happen extremely rarely, though, such
that this brute-force method is good enough for the practical execution of the simulations.
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5.2.2 Bounded-Degree Networks
The bounded-degree networks used in the simulation are undirected, connected graphs with
a �xed number of vertices, whereby the degrees of vertices are uniformly distributed among
an interval [dmin, dmax]. The approach to generating networks of bounded degrees is based on
a comparison of di�erent models for this purpose described by Britton, Deijfen, and Martin-
Löf (2006). The concrete algorithm used is a variation of the con�guration model described by
Bollobás (1980) and Wormald (1980). The original con�guration model o�ers an algorithm for
generating graphs of bounded degrees in which the degrees are distributed according to any
speci�ed probability distribution. It is shown in algorithm 3.

Algorithm 3 Con�guration Model
Input: N = vertex count, F = probability distribution
Output: Undirected graph with N vertices and degrees distributed according to F

1: procedure Configuration(N , F )
2: G = undirected graph with N vertices and no edges
3: for each vertex v in G do
4: d = random degree chosen independently from F

5: attach d stubs to v
6: end for
7: while stubs are remaining in G do
8: s1, s2 = two randomly chosen stubs: s1 ≠ s2
9: join s1 and s2 to form an edge

10: end while
11: return G

12: end procedure

The problem with this algorithm is that it can generate graphs with loop edges (i.e. edges
connecting one and the same vertex) and duplicate edges (i.e. more than one edge between two
distinct vertices). Britton, Deijfen, and Martin-Löf (2006) describes two approaches to combat
this problem: the erased con�guration model and the repeated con�guration model. The erased
con�guration model works by removing any unwanted edges from the generated graph. The
repeated con�guration model operates by repeating the algorithm until a graph is generated
which does not contain any unwanted edges.

Neither of these two solutions is appropriate for the generation of bounded-degree networks
for the simulation. Using the erased con�guration model, it is not guaranteed that the degree
of each vertex lies within the interval [dmin, dmax]. One of the hypotheses of the model is that
the connectivity of the social network is quite important for the evolutionary dynamics of the
population. Speci�cally, the di�erence between e.g. a degree of one and a degree of two could
lead to a big di�erence in the strategic dynamics of the agent occupying that vertex. Therefore,
the erased con�guration model is not suitable for this use case. The repeated con�guration
model would in theory be suitable, but turns out to be prohibitively slow for larger values
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of [dmin, dmax] relative to the number of vertices. The connectivity of the graph grows as the
degree interval approaches the number of vertices in the graph. The number of unwanted
edges produced by the con�guration model grows with the connectivity, because more edges
o�er more potential for loops and for creating an edge between two vertices which are already
connected. Hence, the repeated con�guration model is not applicable to this use case, either.

To solve the problem, the implementation uses a variation of the con�guration model named
the replaced con�guration model. Instead of erasing unwanted edges, this variation attempts to
randomly rewire them in the graph such that the formerly chosen degrees do not change. For
simplicity, the implementation assumes a uniform probability distribution over the degrees in
the interval [dmin, dmax]. The replacement strategies are visualized in �gure 5.1, while the whole
replaced con�guration model is shown in algorithms 4 and 5.

Figure 5.1: Replacement strategies for the replaced con�guration model.
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Algorithm 4 Replaced Con�guration Model (Part 1)
Input: N = vertex count, dmin = lower degree bound, dmax = upper degree bound
Output: Undirected graph with N vertices and degrees uniformly distributed among
[dmin, dmax]

1: procedure ReplacedConfiguration(N , dmin, dmax )
2: G = undirected graph with N vertices and no edges

3: for each vertex v in G do ⊳ Distribute degrees
4: d = degree, randomly chosen uniformly from [dmin, dmax]

5: attach d stubs to v
6: end for

7: if number of stubs in G is odd then ⊳ Ensure the number of stubs is even
8: v1 = randomly chosen vertex with degree > dmin
9: if vr exists then

10: remove one random stub from v1

11: else
12: v2 = randomly chosen vertex
13: add stub to v2
14: end if
15: end if

16: while stubs are remaining in G do ⊳ Connect stubs randomly
17: s1, s2 = two randomly chosen stubs: s1 ≠ s2
18: join s1 and s2 to form an edge
19: end while
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Algorithm 5 Replaced Con�guration Model (Part 2)
20: Er = set of edges e in G: e is loop edge or duplicate edge ⊳ Replace unwanted edges
21: for each edge er in Er do
22: E = set of all edges in G
23: rewired = false
24: repeat
25: e = randomly chosen edge from E

26: if e = er then
27: remove e from E

28: else if e is loop edge and er is loop edge then
29: remove e from E

30: else if G contains vertex v: v connected to both e and er then
31: remove e from E

32: else if G contains vertex v: v connected to er and
v is neighbor of either of the two endpoints of e then

33: remove e from E

34: else
35: v1, v2 = endpoints of e
36: u1, u2 = endpoints of er
37: remove e and er from G

38: add edge between v1 and u1 to G
39: add edge between v2 and u2 to G
40: rewired = true
41: end if
42: until rewired is true or E is empty
43: if rewired is false then
44: restart ReplacedConfiguration
45: end if
46: end for

47: if G is not connected then ⊳ Restart if graph is not connected
48: restart ReplacedConfiguration
49: end if

50: return G

51: end procedure
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During implementation, an additional method for removing unwanted edges was tested:
removing loop triples. The method is visualized in �gure 5.2, and the corresponding pseudo-
code is shown in algorithm 6.

Figure 5.2: Loop triple replacement for the replaced con�guration model.

Algorithm 6 Loop Triple Replacement
1: El = set of edges e in G: e is loop edge
2: e1, e2, e3 = randomly chosen edges from El

3: if e1, e2, e3 exist then
4: if G contains vertex v: v connected to two edges in {e1, e2, e3} then
5: continue
6: else if G contains edge e: e connects two endpoints of edges in {e1, e2, e3} then
7: continue
8: else
9: v1, v2 = endpoints of e1

10: u1, u2 = endpoints of e2
11: w1, w2 = endpoints of e3
12: remove e1, e2, e3 from G

13: add edge between v2 and u1 to G
14: add edge between u2 and w1 to G
15: add edge between w2 and v1 to G
16: end if
17: end if

Even with the replaced con�guration model, there are still plenty of cases in which the gen-
eration can fail. If an unwanted edge cannot be removed, or if the resulting graph is not con-
nected, the algorithm has to be started from scratch. However, based on practical experiments,
the success rate of the generation is much higher for the replaced con�guration model. Table
5.3 shows experimental results for the relative number of failures of the three approaches just
discussed. The addition of the loop triple replacement turns out to decrease the performance
of the network generation for higher values of dmin and dmax . Therefore, it was deactivated for
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the simulations. One additional problem is that for low values of dmin and dmax (like in the in-
terval [1, 2]), the network generation takes prohibitively long as the number of vertices grows,
because the algorithm generates disconnected graphs very frequently. Thus, very low values
like these could not be chosen for the simulations of the sensitivity analysis (see chapter 7).

Algorithm [2, 3] [3, 5] [5, 8]

Repeated con�guration model 3.534 90.425 ∞

Replaced con�guration model 0 0.094 28.838
Replaced with loop triple replacement 0 0.094 32.759

Table 5.3: Comparison of bounded-degree network generation algorithms. Shown are the rel-
ative numbers of failures for 1000 network generations, using the same PRNG seeds across
di�erent algorithms. For the degree interval [5, 8], the generation using the repeated con�gu-
ration model took prohibitively long to �nish and was aborted prematurely.

5.2.3 Fully Random Networks

To generate fully random networks, the implementation uses a modi�cation of what is com-
monly known as the G(n, p) variant of the Erdős-Rényi model for random graph generation
(Erdős and Rényi 1959), even though it was Edgar Gilbert who published this variant indepen-
dently of Erdős and Rényi (Gilbert 1959). The G(n, p) model creates a randomly wired graph
and is shown in algorithm 7.

Algorithm 7 Erdős-Rényi Model
Input: N = vertex count, p = edge probability
Output: Undirected graph with N vertices and p(N2) vertices

Ensure: 0 ≤ p ≤ 1

1: procedure ErdosRenyi(N , p)
2: G = undirected graph with N vertices and no edges
3: for each edge e among (

N

2)
possible edges in G do

4: added = true with probability p
5: if added is true then
6: add e to G
7: end if
8: end for
9: return G

10: end procedure

The modi�cation of the model used in the implementation makes sure to generate a con-
nected graph. The pseudo-code for this modi�ed version is shown in algorithm 8.
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Algorithm 8 Modi�ed Erdős-Rényi Model
Input: N = vertex count, p = edge probability
Output: Undirected graph with N vertices and p(N2) vertices

Ensure: 0 ≤ p ≤ 1

1: procedure ErdosRenyi(N , p)
2: G = undirected complete graph with N vertices and (

N

2)
edges

3: Er = empty set ⊳ Attempt to randomly remove edges
4: for each edge e in G do
5: removed = true with probability 1 − p

6: if removed is true then
7: v1, v2 = endpoints of e
8: if v1, v2 both have degree ≥ 2 then
9: remove e from G

10: else
11: add e to Er
12: end if
13: end if
14: end for

15: for each edge er in Er do ⊳ Remove alternatives for leftover edges
16: e = randomly chosen edge from G: e not in Er
17: if e exists then
18: v1, v2 = endpoints of e
19: if v1, v2 both have degree ≥ 2 then
20: remove e from G

21: remove er from Er

22: end if
23: else
24: restart ErdosRenyi
25: end if
26: end for

27: if G is not connected then ⊳ Restart if graph is not connected
28: restart ErdosRenyi
29: end if

30: return G

31: end procedure
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5.3 Cycle Detection
When mutation is disabled for a simulation, the population can run into a cycle whereby a
�xed series of changes in the strategy distribution repeats inde�nitely. In such a case, the
simulation should be halted. In order to do this, the implementation includes a mechanism to
automatically detect �nite cycles based on the previously observed states of the simulation. At
the end of each generation t , a hash value ℎt of the current state of the simulation is calculated
and appended to an ordered list of simulation states. This list is then iterated from the beginning
to see if there exists an equal hash value ℎi which has been stored in the past generation i. If
an equal value is found, the simulation has run into a cycle starting at generation i and ending
at generation t − 1. Concretely, each available strategy of the game which is being played is
assigned a unique integer. The integer representations of the strategies of all agents are then
stored in an array, in ascending order of the agents’ identi�ers. Considering agents cannot be
added to or removed from the population, this array serves as a unique representation of the
particular state of the simulation. For easier comparison, a hash value of the array is calculated
using the cryptographic hash function SHA-256. Java’s internal implementation of hashCode()
is not suitable for this use case, because it produces too many collisions too quickly.

5.4 Veri�cation
To verify the correctness of the implementation, standard software engineering practices were
used. The Java programming language provides a static type system which can catch many er-
rors at compile time. The choice of using the well-tested libraries MASON and JUNG made sure
to eliminate bugs in both the general execution of the agent-based simulation and in the gener-
ation of social networks. Throughout the development of the implementation, the simulations
were executed manually in order to see whether the results of the model were plausible. Ad-
ditionally, the implementation contains unit tests for all of the main components of the model,
which verify the correctness of a number of sample cases of the simulations. The unit tests all
passed before the �nal simulations of the sensitivity analysis were carried out. The quantita-
tive validation of the model described in section 6.2 provides further veri�cation of the whole
system when using two-dimensional lattices and bounded-degree networks.
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Chapter 6

Validation

While there is a wide range of validation techniques applicable to agent-based models (Klügl
2008), many of them are focused on comparing the simulation results to data provided by the
real-world system that is being modelled. In the case of the model described in this paper, there
is no real-world system that could be readily accessed to provide data for this purpose. Thus,
the validation focuses on the approach of model alignment (Axtell et al. 1996), which attempts
to validate a model by replicating the results of a di�erent model which models the same real-
world system. The approach to validation is therefore to replicate the results of Alexander’s
experiments in The Structural Evolution of Morality (Alexander 2007).

There are some important di�erences between Alexander’s approach and the approach cho-
sen in this paper with regards to how the models are constructed and used. For most combi-
nations of games and networks, Alexander focuses on analytically deriving the behaviour of
the model using selected parametrizations. Some parameters are only used for speci�c exper-
iments, e.g. correlated mutation on two-dimensional lattices and bounded-degree networks in
the Stag Hunt (ibid., pp. 128–131, 138–142). In contrast, the model described in this paper fo-
cuses on using numerical approaches and a systematic combination of parameters. This makes
it di�cult to validate the model against many of Alexander’s results. One would have to ex-
tract the respective con�gurations from the prose text and replicate or approximate them using
the parameters provided by the new model. Unfortunately, this is beyond the scope of this
paper and has thus been left out. Instead, the validation focuses on those subsets of exper-
iments where Alexander used numerical approaches and reports the associated quantitative
data. Thus, this chapter �rst describes the important di�erences between the model of this pa-
per and Alexander’s model in section 6.1, and subsequently reports the quantitative validation
of the new model against Alexander’s data in section 6.2.

6.1 Di�erences to Alexander’s Model

There are a number of di�erences between the model described in chapter 4 and the one used
by Alexander. These di�erences need to be taken into account when attempting to validate the
model of this paper against Alexander’s model.
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As alluded to earlier, one of the central points of the new model is the systematic combina-
tion of parameters. Some variations which have already been part of Alexander’s experiments
have been systematically incorporated as parameters, such that they can be used in a variety of
model con�gurations. The Learning Distance parameter is not limited to lattices, but can be
used for all network topologies except the fully connected network (for which it is redundant,
because this network models a complete graph). The Neighborhood parameter is applicable
not only to lattices, but also small-world networks, and can take on arbitrary sizes. The varia-
tions in the payo� matrices of the Prisoner’s Dilemma and the Stag Hunt have been consolidated
in the parameters Cooperation Incentive, Defection Incentive and Risk Dominance. In
Alexander’s experiments, the payo� matrices are more arbitrarily chosen and thus o�er some-
what more variability, but they still ful�ll the general constraints of the Prisoner’s Dilemma
(Alexander 2007, p. 55). The initialization of the new model is governed by the Initial Moral
Mean parameter, while Alexander uses many di�erent approaches to initializing the population
state depending on the experiment.

There are some constraints and components which are not part of Alexander’s model at all:

• Ensuring all networks are connected graphs

• Extended small-world networks (using arbitrary lattices as bases)

• Fully connected networks (as potential alternative to replicator dynamics)

• Fully random networks

• Cycle detection

Conversely, there are parts of Alexander’s model which are not present in the new model:

• Inclusion of replicator dynamics

• Dynamic networks (ibid., pp. 48–52), using the model for social network formation de-
scribed by Skyrms and Pemantle (2000)

• Decoupled frequencies for learning and interaction processes (Alexander 2007, p. 52),
only applicable to dynamic networks

• Past discounting in agents’ decision making (ibid., e.g. 144-145), only applicable to dy-
namic networks

• Multiplayer versions of the four interpersonal decision problems (ibid., pp. 238–266)

Dynamic networks were not included in the new model. Following the approach of sys-
tematically combining parameters, the additional structural dynamics created by the changing
topology of the network would have to be incorporated into all the previous network topolo-
gies. Both this addition and the multiplayer versions of the game-theoretic games are beyond
the scope of the model.
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6.2 Quantitative Validation
Alexander provides quantitative results for a number of experiments. Given his foremost ana-
lytical approach, these are unfortunately mostly limited to simulations using bounded-degree
networks and one experiment using lattices. The following describes the validation results for
four di�erent data sets, one for each interpersonal decision problem. Note that the initializa-
tion process might di�er among the experiments. For the simulations of the new model, the
initialization described in section 4.5 is used with an Initial Moral Mean of 0.5. Additionally,
the generation of bounded-degree networks seems to di�er between the two models. Alexan-
der mentions that the networks used in his experiments are oftentimes disconnected for low
degree intervals like [1, 2] or [1, 3] (ibid., p. 87). In contrast, the network generation used in the
new model makes sure to never produce disconnected networks.

6.2.1 Prisoner’s Dilemma
For the Prisoner’s Dilemma, Alexander provides some data for bounded-degree networks with
di�erent degree intervals (ibid., pp. 86–87). The experiment involves running the simulation
10000 times using random initializations, counting the number of runs in which the population
converges to a state in which all agents play Defect. The Prisoner’s Dilemma was con�gured as
T = 1.0, R = 0.666, P = 0.333, S = 0.0. Three di�erent population sizes were used: 15, 30 and 60.
It is not clear which learning rule was con�gured, thus Imitate Best was chosen, because it is the
most common in Alexander’s experiments. The comparison of results is shown in tables 6.1, 6.2
and 6.3 for the population sizes 15, 30 and 60, respectively. Note that the degree interval [1, 2]
was left out for the experiments of the new model, because it produces too many disconnected
networks in practice (see section 5.2.2).

The results show that the general trends of the values match. As both dmin and dmax increase,
the number of stable states of defection increases as well. Additionally, as the population size
rises, the numbers decrease for low degrees and increase for high degrees. However, the in-
dividual numbers di�er signi�cantly for lower degrees. The results of the new model show a
much smaller di�erence between low and high degrees (e.g. a di�erence of 901 for the new
model vs. 2309 for Alexander, between degree intervals [1, 3] and [9, 10] for 15 agents). These
di�erences shrink as we move towards higher degrees. Considering Alexander’s remarks about
networks for lower degree intervals oftentimes being disconnected, it is plausible that this is
the main culprit of the di�erences. As the degrees increase, the number of disconnected net-
works in Alexander’s model decreases. With fewer disconnected networks, the probability for
a stable cooperating subgraph to evolve becomes smaller as well. This hypothesis can explain
the di�erences the in results very well.
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dmax

dmin 2 3 4 5 6 7 8 9 10

Seil

1 — 9096 9513 9725 9788 9845 9859 9849 9857
2 — 9490 9751 9804 9889 9906 9916 9885 9871
3 — — 9946 9941 9953 9951 9943 9947 9927
4 — — — 9990 9993 9986 9978 9973 9971
5 — — — — 9993 9997 9991 9990 9983
6 — — — — — 9998 9998 9995 9990
7 — — — — — — 9998 9998 9999
8 — — — — — — — 9998 9997
9 — — — — — — — — 9997

Alexander

1 5185 7111 8062 8433 8686 8752 8720 8760 8692
2 — 8410 8688 8812 8884 8871 8893 8884 8853
3 — — 9244 9192 9112 9093 9007 8963 8954
4 — — — 9370 9354 9215 9199 9169 9114
5 — — — — 9363 9371 9312 9279 9197
6 — — — — — 9369 9350 9329 9339
7 — — — — — — 9346 9396 9345
8 — — — — — — — 9365 9409
9 — — — — — — — — 9420

Table 6.1: Comparison against Alexander (2007, p. 87): Number of runs out of 10000 converging
to all agents playing Defect in the Prisoner’s Dilemma, using bounded-degree networks with
15 agents.
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dmax

dmin 2 3 4 5 6 7 8 9 10

Seil

1 — 8437 9185 9601 9869 9927 9970 9991 9991
2 — 9023 9561 9750 9906 9957 9982 9984 9992
3 — — 9892 9927 9961 9978 9990 9992 9995
4 — — — 9989 9992 9994 9995 9998 9997
5 — — — — 10000 9999 9999 9998 10000
6 — — — — — 9999 9999 9999 10000
7 — — — — — — 10000 10000 10000
8 — — — — — — — 10000 10000
9 — — — — — — — — 10000

Alexander

1 4091 6003 7438 8455 8937 9199 9227 9262 9287
2 — 7781 8557 8907 9253 9324 9361 9333 9368
3 — — 9442 9423 9496 9484 9475 9412 9448
4 — — — 9627 9660 9581 9545 9502 9492
5 — — — — 9683 9667 9637 9601 9558
6 — — — — — 9693 9686 9688 9642
7 — — — — — — 9673 9668 9671
8 — — — — — — — 9660 9689
9 — — — — — — — — 9689

Table 6.2: Comparison against Alexander (2007, p. 87): Number of runs out of 10000 converging
to all agents playing Defect in the Prisoner’s Dilemma, using bounded-degree networks with
30 agents.
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dmax

dmin 2 3 4 5 6 7 8 9 10

Seil

1 — 7156 8581 9257 9728 9862 9964 9974 9996
2 — 8154 9187 9479 9835 9912 9975 9988 9992
3 — — 9826 9807 9915 9937 9979 9992 9990
4 — — — 9972 9982 9984 9992 9992 10000
5 — — — — 9999 9994 9998 9997 9999
6 — — — — — 10000 10000 9999 10000
7 — — — — — — 10000 9999 10000
8 — — — — — — — 10000 10000
9 — — — — — — — — 10000

Alexander

1 3076 4858 6441 7798 8790 9228 9482 9520 9621
2 — 6850 8113 8689 9270 9446 9587 9598 9664
3 — — 9412 9319 9547 9617 9646 9702 9708
4 — — — 9760 9788 9777 9781 9751 9745
5 — — — — 9828 9826 9796 9793 9779
6 — — — — — 9851 9836 9831 9835
7 — — — — — — 9806 9827 9831
8 — — — — — — — 9842 9817
9 — — — — — — — — 9858

Table 6.3: Comparison against Alexander (2007, p. 87): Number of runs out of 10000 converging
to all agents playing Defect in the Prisoner’s Dilemma, using bounded-degree networks with
60 agents.
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6.2.2 Stag Hunt

For the Stag Hunt, there is data for bounded-degree networks with degree interval [2, 4] (Alexan-
der 2007, pp. 137–138). For this experiment, the proportion of agents using the strategy Stag in
the risk-dominant Stag Hunt was recorded at the stable state of the population. The simulations
are executed 10000 times each for the learning distances 1 and 2, using random initializations.
The con�gured learning rule is Imitate Best, the population size is 40. The data is shown in table
6.4.

Number of simulations
Learning Distance = 1 Learning Distance = 2

Proportion p of Stag players Seil Alexander Seil Alexander
p = 1 68 1517 8139 5818

0.9 ≤ p < 1.0 237 909 67 138
0.8 ≤ p < 0.9 332 554 6 91
0.7 ≤ p < 0.8 522 426 4 66
0.6 ≤ p < 0.7 679 389 0 70
0.5 ≤ p < 0.6 932 351 3 40
0.4 ≤ p < 0.5 1144 418 3 50
0.3 ≤ p < 0.4 1392 456 14 35
0.2 ≤ p < 0.3 1487 571 16 59
0.1 ≤ p < 0.2 1612 851 21 40
0.0 < p < 0.1 115 76 6 7

p = 0 1480 3482 1721 3586

Table 6.4: Comparison against Alexander (2007, pp. 137–138): Number of runs out of 10000
converging to the speci�ed outcomes in the Stag Hunt, using bounded-degree networks with
degree interval [2, 4].

The results are matching in the trend observed by increasing the learning distance. The
strategies reported in the stable states are much more varied for a learning distance of 1, whereas
they are accumulated at the extremes for a learning distance of 2. The distribution of strategies
is very di�erent between the two models for a learning distance of 1, however. While Alexan-
der’s results simply show a smaller extent of the accumulation at the extremes, the result for
the new model are mostly centered around 0.2 ≤ p < 0.3. It is unclear what causes this stark
di�erence. One possibility is the di�ering initializations. Alexander mentions that for this ex-
periment, the initial strategies are "selected according to a randomly chosen distribution, in
addition to being randomly assigned to individuals" (ibid., p. 137). Conceptually, this sounds
similar to the approach described in section 4.5. What the available distributions are, though,
and how exactly they are chosen, is unclear and may have a strong in�uence on the results.
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6.2.3 Bargaining Subgame
For the Bargaining (Sub-)Game, Alexander reports an experiment using two-dimensional lat-
tices which counts the number of times the population converges to a polymorphic stable state
(Alexander 2007, pp. 170–173). The polymorphism 4-6, for example, speci�es the state of the
population in which every agent plays either Demand 4 or Demand 6. The model is con�gured
with the learning rules Imitate Probability, Imitate Best and Imitate Average as well as three
di�erent neighborhoods: von Neumann with distance 1 (N4), Moore with distance 1 (M8) and
Moore with distance 2 (M24). Again, the simulations are run 10000 times for each con�gu-
ration with random initializations. It is not clear how many agents Alexander chose for his
experiments, so a 32x32 lattice with wrap-around was con�gured for the simulations of the
new model. The comparison of results is shown in table 6.5. For this experiment, the full Bar-
gaining Game was added next to the Bargaining Subgame, in order to see whether the results
di�er signi�cantly among the two variations.

The results between the two models are very similar. Interestingly, using the Bargaining
Subgame instead of the full Bargaining Game seems to make almost no di�erence. Alexander’s
data is slightly more spread among the polymorphisms 5 and 4-6 as well as other �nal states,
while the new model results for the full Bargaining Game do not show a single simulation which
did not converge to all agents playing Demand 5. These small di�erences could be explained by
a variety of potential di�erences in con�gurations, including initialization, population size and
wrap-around of the lattice.
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Polymorphism
Nbhd. Learning Rule 0–10 1–9 2–8 3–7 4–6 5 Other

Seil
subgame

N4 Imitate Probability 0 0 0 0 0 10000 0
N4 Imitate Best 0 0 0 0 0 10000 0
N4 Imitate Average 0 0 0 0 0 10000 0
M8 Imitate Probability 0 0 0 0 0 10000 0
M8 Imitate Best 0 0 0 0 0 10000 0
M8 Imitate Average 0 0 0 0 0 10000 0
M24 Imitate Probability 0 0 0 0 0 10000 0
M24 Imitate Best 0 0 0 0 0 9998 2
M24 Imitate Average 0 0 0 0 0 9998 2

Seil
full game

N4 Imitate Probability 0 0 0 0 0 10000 0
N4 Imitate Best 0 0 0 0 0 10000 0
N4 Imitate Average 0 0 0 0 0 10000 0
M8 Imitate Probability 0 0 0 0 0 10000 0
M8 Imitate Best 0 0 0 0 0 10000 0
M8 Imitate Average 0 0 0 0 0 10000 0
M24 Imitate Probability 0 0 0 0 0 10000 0
M24 Imitate Best 0 0 0 0 0 10000 0
M24 Imitate Average 0 0 0 0 0 10000 0

Alexander
full game

N4 Imitate Probability 0 0 0 0 29 9970 1
N4 Imitate Best 0 0 0 0 26 9966 8
N4 Imitate Average 0 0 0 0 13 9984 3
M8 Imitate Probability 0 0 0 0 26 9973 1
M8 Imitate Best 0 0 0 0 26 9908 66
M8 Imitate Average 0 0 0 0 24 9970 6
M24 Imitate Probability 0 0 0 8 110 9879 3
M24 Imitate Best 0 0 0 21 220 9721 38
M24 Imitate Average 0 0 0 0 62 9934 4

Table 6.5: Comparison against Alexander (2007, p. 172): Number of runs out of 10000 converging
to the speci�ed polymorphisms in the Bargaining (Sub-)Game, using two-dimensional lattices.
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6.2.4 Ultimatum Subgame
For the Ultimatum Subgame, Alexander provides data for bounded-degree networks using dif-
ferent degree intervals (Alexander 2007, pp. 231–233). Here, two speci�c polymorphic stable
states of the population were recorded. The model is con�gured with a population size of 50,
and Imitate Best as the learning rule. The simulations were repeated 1000 times each for muta-
tion disabled and enabled (using a mutation rate of 0.02), both times with randomly initialized
populations. Tables 6.6 and 6.7 show the data for mutation disabled and enabled, respectively.

The results share the trend that the number of immoral polymorphisms (agents playing
either S1 (Gamesman) or S4 (Mad Dog)) is generally higher when mutation is enabled. Apart
from this, there are some interesting di�erences, though. In Alexander’s experiments, the num-
ber of moral polymorphisms (agents playing either S7 (Fairman) or S5 (Easy Rider)) generally
decreases when mutation is enabled. In the new experiments, there is a slight increase espe-
cially for smaller degrees. One possible explanation for this is the following: There are a few
additional cases where it would be possible, given the right mutations, for moral strategies to
spread as long as the connectivity of the network is low. The abundance of disconnected net-
works when using low degrees in Alexander’s model prevents exactly this spread, resulting in
lower numbers of such polymorphisms. A more signi�cant di�erence between the two models
is that in Alexander’s case, di�erent degree intervals have little in�uence on the results. For the
new model simulations, the degrees have a strong in�uence as long as mutation is disabled (e.g.
a result of 61, 7 vs. 917, 44 for degree intervals [2, 3] and [9, 10]). It is unclear where this dif-
ference comes from. It is possible that for low degrees, the initialization mostly determines the
outcome of the simulations. When activating mutations, this in�uence is obviously reduced. If
Alexander uses a di�erent initialization process, this could explain the di�erences in the results.
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dmax

dmin 3 4 5 6 7 8 9 10

S.

2 61, 7 184, 20 358, 43 500, 81 627, 94 690, 126 715, 128 750, 120
3 — 221, 18 369, 47 534, 53 626, 97 673, 107 743, 101 758, 126
4 — — 352, 36 535, 45 645, 71 701, 87 717, 95 747, 110
5 — — — 490, 36 659, 43 698, 72 747, 68 775, 95
6 — — — — 571, 40 662, 59 727, 65 810, 67
7 — — — — — 609, 31 698, 38 855, 52
8 — — — — — — 580, 40 882, 44
9 — — — — — — — 917, 44

A.

2 525, 64 605, 107 711, 140 734, 163 734, 183 721, 216 715, 215 708, 228
3 — 767, 131 772, 148 765, 150 736, 197 755, 192 731, 211 725, 225
4 — — 829, 118 796, 163 778, 162 752, 191 762, 190 737, 197
5 — — — 797, 143 777, 168 770, 178 773, 171 751, 180
6 — — — — 795, 134 773, 155 776, 166 728, 196
7 — — — — — 793, 153 796, 145 770, 152
8 — — — — — — 791, 123 775, 140
9 — — — — — — — 764, 144

Table 6.6: Comparison against Alexander (2007, p. 232): Number of runs out of 1000 converging
to di�erent polymorphisms, using bounded-degree networks with 50 agents, with mutation
disabled. Each entry g, f corresponds to the number of runs g which converged to all agents
playing either S1 (Gamesman) or S4 (Mad Dog), and the number of runs f which converged to
all agents playing either S7 (Fairman) or S5 (Easy Rider).
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dmax

dmin 3 4 5 6 7 8 9 10

S.

2 664, 20 888, 63 900, 88 875, 124 875, 125 873, 127 875, 125 855, 145
3 — 929, 55 929, 68 918, 79 880, 119 893, 107 890, 110 878, 122
4 — — 934, 66 932, 68 931, 69 897, 101 907, 93 890, 110
5 — — — 959, 40 947, 53 950, 50 941, 59 906, 92
6 — — — — 960, 40 959, 41 935, 64 939, 61
7 — — — — — 968, 32 956, 44 956, 42
8 — — — — — — 972, 28 964, 36
9 — — — — — — — 966, 33

A.

2 695, 1 743, 4 769, 16 780, 20 828, 31 818, 35 833, 34 854, 42
3 — 819, 3 859, 8 820, 16 835, 25 840, 41 845, 43 855, 36
4 — — 868, 4 844, 23 856, 15 854, 25 876, 31 857, 41
5 — — — 882, 8 888, 13 885, 14 864, 21 873, 26
6 — — — — 882, 4 885, 14 876, 16 891, 16
7 — — — — — 904, 5 906, 9 907, 10
8 — — — — — — 908, 4 912, 12
9 — — — — — — — 914, 7

Table 6.7: Comparison against Alexander (2007, p. 232): Number of runs out of 1000 converging
to di�erent polymorphisms, using bounded-degree networks with 50 agents, with mutation
enabled. Each entry g, f corresponds to the number of runs g which converged to all agents
playing either S1 (Gamesman) or S4 (Mad Dog), and the number of runs f which converged to
all agents playing either S7 (Fairman) or S5 (Easy Rider).
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Sensitivity Analysis

Sensitivity analysis can in general be described as "the study of how the uncertainty in the out-
put of a model (numerical or otherwise) can be apportioned to di�erent sources of uncertainty
in the model input" (Saltelli et al. 2004, p. 45). In other words, we want to �nd out which pa-
rameters and parameter combinations in�uence the result of the simulations in what way. In
doing so, we can �gure out the most relevant components of the system that is being modelled,
as well as uncover parts of the model which do not contribute to the behaviour of the system
at all. This chapter �rst introduces the speci�c methodology which is used for the sensitivity
analysis in section 7.1. The experimental setup and the choice of the sampled parameter values
are presented in section 7.2. The results of the analysis are then laid out in section 7.3.

7.1 Methodology

There are many di�erent methods one can choose to carry out a sensitivity analysis (Broeke,
Voorn, and Ligtenberg 2016). Oftentimes, there is a trade-o� between simplicity, generality and
fast execution on the one side, and complexity, precision and high computational demands on
the other. Thiele, Kurth, and Grimm (2014, sec. 3.54) recommend starting the inquiry into the
model with a simple method, and then use these results to selectively employ more sophisticated
methods. The sensitivity analysis in this paper thus takes the �rst step and uses the rather
simple one-factor-at-a-time (OFAT) method (Broeke, Voorn, and Ligtenberg 2016, secs. 3.3-3.4)
to provide a better understanding of the model mechanisms.

The OFAT method attempts to highlight the relationship between each single parameter of
the model and the simulation results. It works as follows. First, we need to select a base value
for each parameter, called the nominal value. All parameters set to their nominal values provide
the nominal con�guration of the model. We also need to de�ne a number of sampled values for
each parameter we want to analyze. Based on the nominal con�guration, we then apply the
sampled values of one parameter at a time, each time keeping all the other parameters at their
nominal values. The simulations are executed for all sampled values of every parameter. For
example, if the model contains the parameters A, B and C , we can de�ne their nominal values
An, Bn and Cn as well as their sampled values {A1, A2}, {B1, B2, B3} and {C1, C2}. We are then
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going to execute the simulations for the following con�gurations:

• (A1, Bn, Cn)

• (A2, Bn, Cn)

• (An,B1, Cn)

• (An,B2, Cn)

• (An,B3, Cn)

• (An, Bn,C1)

• (An, Bn,C2)

In using this method, we approximate the execution of all possible sampled parameter value
combinations by only looking at one parameter at a time. When using n di�erent parameters
and m di�erent values per parameter, this reduces the runtime complexity of the approach
from (nm) to (n ⋅ m). The downside of this method is that it disregards the in�uence of
combinations of parameters on the output. If parameters A and B each have little in�uence on
the results on their own, but the combination of certain values of A and B does have a strong
in�uence, then this piece of information cannot be uncovered using the OFAT method. Still, it
provides a very useful �rst step into understanding the behaviour of the model.

7.2 Experimental Setup

In order to use the OFAT method described in the last section, the general con�guration of
the model needs to be speci�ed, as well as the the nominal and sampled parameter values. For
the simulations of the sensitivity analysis, HomogeneityDetection andCycleDetection are
both enabled, except for when Imitate Probability is used as the learning rule, or when mutation
is enabled. The Max Generation Count is set to 1000, based on manual experimentation
which shows that most simulations converge after fewer than 100 generations. The Seed for
the PRNG is set to 19561831. Given there are stochastic components in the initialization, as
well as the mutation and possibly learning processes, each parameter con�guration needs to
be executed an adequate number of times, in order to account for variance among the results.
There are many approaches to deciding which number of repetitions to choose (Thiele, Kurth,
and Grimm 2014, sec 4.4). In this case, the number was chosen based on the available time
and computing resources available. Therefore, each con�guration is executed 100 times. The
exception to this are the simulations using the fully connected network. They were limited to
10 runs, because the sub-optimal implementation of these networks turned out to slow down
the simulations signi�cantly.
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The nominal and sampled values of the parameters are listed in table 7.1. In general, the
approach was to choose at least three sampled values for each parameter, in order to be able
to �nd potential non-linearities in the in�uence of a parameter on the simulation results. In
the case of parameters for which the scale of possible values is not restricted in one direc-
tion, �ve values were chosen to achieve the same goal. For the Neighborhood and Wrap
Around parameters, the same nominal and sampled values were chosen for each lattice and
its small-world counterpart. This makes it possible to identify the di�erence between the two
topologies by controlling for all other parameters. The lowest sampled value for the Neigh-
borhood parameter of the one-dimensional lattice is therefore 2, because using a value of 1 for
the one-dimensional small-world networks results in too many disconnected networks during
the network generation. The Degree Interval parameter contains values that are supposed
to show a progression in both absolute size of the degrees (e.g. [2, 3] vs. [8, 9]) as well as in
relative di�erence of the degrees (e.g. [5, 6] vs. [3, 8]). The values for the Edge Probability
parameter of the fully random network are chosen based on experimentation, while providing
a linear increase in value.

Network/Game Parameter Sampled Values Nominal

—

Population Size 100, 1000, 10000 1000
Initial Moral Mean 0.25, 0.5, 0.75 0.5
Learning Rule IBest, IProb, IAvg, BestR IBest
Mutation Probability 0.0, 0.001, 0.01, 0.1 0.0
Mutation Distance 0, 1, 2 0

Prisoner’s
Dilemma

Cooperation Incentive 0.2, 1.0, 5.0 1.0
Defection Incentive 0.2, 1.0, 5.0 1.0

Stag Hunt Risk Dominance true, false true
All Except F. C. Learning Distance 1, 2, 3 1

Lattice 1D Neighborhood 2, 3, 4 2
Wrap Around true, false true

Lattice 2D Neighborhood N4, N12, N24, M8, M24, M48 M8
Wrap Around true, false true

Small-World 1D
Neighborhood 2, 3, 4 2
Wrap Around true, false true
Beta 0.03, 0.07, 0.125, 0.18, 0.28 0.125

Small-World 2D
Neighborhood N4, N12, N24, M8, M24, M48 M8
Wrap Around true, false true
Beta 0.008, 0.04, 0.09, 0.17, 0.275 0.09

Bounded-Degree Degree Interval [2, 3], [5, 6], [8, 9], [4, 7], [3, 8] [4, 7]

Fully Random Edge Probability 0.004, 0.008, 0.012 0.008

Table 7.1: Sampled values and nominal values used for the parameters of the sensitivity analysis.
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In choosing the values for the Beta parameter of the small-world networks, the ! measure
described by Qawi et al. (2011) was used. This measure quanti�es the small-world property
of graphs. Concretely, it compares the characteristic path length and the clustering coe�cient
of the graph under investigation to equivalent lattices and random graphs. The measure is
de�ned in equation 7.1. The resulting ! values lie in the interval [−1, 1], regardless of the size
of the network. A value close to -1 describes a perfectly regular lattice, while a value close to
1 describes a completely random graph. Values close to 0 maximize the small-world properties
of the graph. The approach taken was thus to �nd suitable Beta values which approximate
corresponding ! values of -0.5, -0.25, 0, 0.25 and 0.5, in order to provide a progression in both
directions. These �nal values are listed in table 7.2. This was done by generating small-world
networks with 1000 agents and calculating their ! measures. Given the random generation of
the small-world networks, the ! values were averaged over 100 runs. For the one-dimensional
small-world network, the equivalent lattice was chosen to be a one-dimensional lattice with
1000 agents, a Neighborhood of 2 and Wrap Around set to true. The equivalent random
graph was chosen to be a bounded-degree network with 1000 agents and a Degree Interval
of [4, 4]. This results in the values Clattice = 0.5 and Lrandom ≈ 5.636 (the latter averaged over 100
generations). For the two-dimensional small-world network, the lattice was a two-dimensional
lattice with 1024 agents (32x32), the Neighborhood M8 and Wrap Around set so true. The
random graph was a bounded-degree network with 1000 agents and a Degree Interval of
[8, 8]. This delivers the values Clattice ≈ 0.429 and Lrandom ≈ 3.610 (the latter again averaged over
100 generations).

L = characteristic path length of small-world graph
Lrandom = characteristic path length of equivalent random graph

C = clustering coe�cient of small-world graph
Clattice = clustering coe�cient of equivalent lattice

! =

Lrandom

L

−

C

Clattice

(7.1)

There are a few special cases when carrying out the simulations of the sensitivity analysis.
The Population Size of 10000 was disabled for both the fully connected network and the fully
random network, because the simulations exceeded the available memory of the system being
used in both cases. Additionally, the Population Size of 100 was disabled for fully random
networks, because when using the speci�ed values for Edge Probability, the network gen-
eration produced too many disconnected networks for this small amount of agents. Finally,
when using the sampled values of the Mutation Distance parameter, the nominal value of
the Mutation Probability parameter was set to 0.01 instead of 0.0. For the fully connected
network, the Mutation Distance is always set to 0.
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Network � !

Small-World 1D

0.03 -0.53
0.07 -0.27
0.125 0.02
0.18 0.23
0.28 0.51

Small-World 2D

0.008 -0.50
0.04 -0.24
0.09 -0.01
0.17 0.27
0.275 0.50

Table 7.2: Average ! measures (rounded to two decimal places) over 100 network generations,
corresponding to di�erent � values for one- and two-dimensional small-world networks.

7.3 Results
The complete collection of result graphs as well as the raw result data of the sensitivity analy-
sis can be found at https://github.com/srseil/Seom/tree/v1.0.0 as well as at https:
//pms.ifi.lmu.de/publications/diplomarbeiten/Stefan.Seil/dataset.zip.

In this section, the results of the sensitivity analysis are presented in a descriptive way, while
staying within the context of the model. Chapter 8 discusses some of the interesting results in
more detail, focusing on the implications for the Structural Evolution of Morality (Alexander
2007). Note that the presentation of the results mostly focuses on the morality measure. This
is done because the stability results are almost always accumulated at the extremes. When a
stochastic component is used, the stability result is always 0, because all generations have to
be considered. For most other cases, the simulations converge to a small cycle, leading to very
high stability results. Only in a few speci�c cases does the stability measure report interesting
results.

The relationship between parameter values and result measures is sometimes visualized in
graphs. These graphs contain three main components: a box plot, a violin plot surrounding
it, and a curve �tted through the mean result values. As is common, the box plot displays the
quartiles of the result data, whereby the dot inside the box visualizes the mean value, and the
bar inside the box visualizes the median value. Since box plots cannot properly show the prob-
ability density of di�erent values, the graphs are supplemented with violin plots. The wider
the body of the violin plot is at a particular value, the higher the density of data points is at
this value. Note that the box plots and violin plots oftentimes degenerate to very small boxes,
or even singular points, when the variance of the result values is very low. Additionally, the
graphs include a polynomial curve �tted through the mean points of the box plots, calculated
with local regression (locally estimated scatterplot smoothing). This is not an attempt to provide
a plausible �t through the sampled values, given that there are too few sampled values for most
parameters. Rather, the purpose is to more clearly show the general progression of mean points

https://github.com/srseil/Seom/tree/v1.0.0
https://pms.ifi.lmu.de/publications/diplomarbeiten/Stefan.Seil/dataset.zip
https://pms.ifi.lmu.de/publications/diplomarbeiten/Stefan.Seil/dataset.zip
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over multiple parameter values, in order to ease the visual understanding of the high informa-
tional density in the graphs. Finally, the nominal value for each parameter is highlighted with
a dotted line.

7.3.1 General
There are a number of results which apply to the majority of games and network topologies.
Generally, each of the four games has a baseline result that dominates over the majority of
parametrizations. Certain con�gurations can then diverge from this result. These baseline re-
sults are visualized at the beginning of the respective subsections 7.3.3 to 7.3.6. The Stag Hunt
and the Bargaining Subgame generally converge to close to maximum morality, while the Pris-
oner’s Dilemma and Ultimatum Subgame typically result in a morality measure close to zero.
The stability measure is also close to 1.0 in most of these cases. The Ultimatum Subgame is the
only game where both measures consistently vary a bit more from their extremes. For all games
except the Bargaining Subgame, the baseline result also conforms to the nominal con�guration
on the fully connected network (see section 7.3.2). Across all games, the one-dimensional lat-
tice is the topology which consistently shows the highest results for morality. One-dimensional
small world networks oftentimes increase the variance of the results signi�cantly. The two-
dimensional small-world networks, however, do not typically exhibit this behaviour. The fully
connected network is, as expected, oftentimes an odd-one-out, considering it misses any struc-
tural constraints. The other topologies (two-dimensional lattices, two-dimensional small-world
networks, bounded-degree networks and fully random networks) tend to have very similar re-
sults for most of the parameters.
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Initial Moral Mean

For all games except the Prisoner’s Dilemma, increasing the Initial Moral Mean has an ef-
fect towards increasing morality. How strong this e�ect is depends on the game and network
topology. Figure 7.3 shows examples of this e�ect. In contrast, changing the Population Size
doesn’t have any e�ect on the results, except for three cases: the Stag Hunt on a fully connected
network (see section 7.3.2), as well as one-dimensional small-world networks in the Bargaining
Subgame (see section 7.3.5) and the Ultimatum Subgame (see section 7.3.6).

Figure 7.3: Examples for positive in�uence of Initial Moral Mean on morality.
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Mutation Distance & Mutation Probability

Increasing the values for the Mutation Distance proportionally moves the results away from
the baseline. Presumably, this is because the mutation process intermittently creates clusters of
agents which do not conform to the baseline strategy, which are quickly overtaken by the rest
of the population again. Because the cycle used for the morality and stability measures consists
of all 1000 generations when mutation is enabled, these intermittent changes still change the
results of the simulation.

Increasing theMutation Probability has a similar e�ect, although it typically takes a high
value (0.1) to make any signi�cant impact on the results. This seems straightforward: Clusters
of mutated agents can survive longer than individual mutants, because their neighborhood is
�lled with individuals playing the same strategy, which can reinforce their choice of strategy
for some time. Examples for both parameters are shown in �gure 7.4. The exceptions to this
behaviour are the Stag Hunt on a fully connected network (see section 7.3.2), and the Ultima-
tum Subgame generally, where the e�ects are reversed (see section 7.3.6).

Figure 7.4: Examples of Mutation Distance and Mutation Probability moving morality
results away from the baseline.
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Learning Distance

The Learning Distance parameter does not have much impact on the results at all, except for
a few speci�c cases shown in �gure 7.5. One reason for this might be that most of the games
under investigation do not have many strategies available to them. Thus, an agent is likely
to �nd an instance of each of the available strategies within a smaller learning neighborhood.
Considering one exception to this occurs in the Ultimatum Subgame, which has more strategies
than the other three games, this seems like a plausible explanation.

Figure 7.5: Examples of rare signi�cant in�uence of Learning Distance on morality.
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Learning Rule

Among the learning rules, Imitate Best and Imitate Probability lead to very similar results across
the board. In some cases, Imitate Average creates a negative in�uence on the morality measure.
Most interestingly, Best Response typically has a very di�erent in�uence on the results com-
pared to the other rules. This is to be expected, because it models more sophisticated reasoning
capabilities than the other three learning rules. The e�ects of Best Response on the morality
measure are mostly negative, though. Figure 7.6 shows an example of this on two-dimensional
lattices.

Figure 7.6: Examples of negative in�uence of Best Response learning rule on morality.
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Neighborhood &Wrap Around

The Neighborhood of the lattices has almost no e�ect on the results, except for a small de-
crease in the morality and stability measures in the Ultimatum Subgame. For the small-world
networks, very small neighborhoods move the morality results away from the baseline a bit.
We can assume that the same reason as with the Learning Distance parameter applies: Given
the low number of strategies, the size of an agent’s neighborhood does not matter much, unless
we restrict it to a very small size. Figure 7.7 shows examples of both behaviours. In contrast,
there is not a single case in which the Wrap Around parameter makes any signi�cant di�er-
ence for the results. Apparently, it is not relevant whether there are less-connected corners and
edges on a lattice, as long as the population is large enough.

Figure 7.7: Examples of impact of Neighborhood on morality on lattices and small-world
networks.
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Beta

The Beta parameter specifying the small-world property of small-world networks shows in-
teresting results. Except for the Prisoner’s Dilemma (where there is no e�ect), one-dimensional
small-world networks move the morality results away from baseline. For the Bargaining Sub-
game, and to a lesser extent for the Stag Hunt, this happens proportionally to the magnitude of
the small-world properties. Concretely, the � values which correspond to ! values close to 0
(near maximum small-world properties) show the strongest e�ect, which tapers o� when mov-
ing towards higher or lower ! values (closer to random networks and lattices, respectively).
The e�ect on the results thus forms a parable, with the minimum value at the maximum small-
world property of the network. Figure 7.8 shows an example of this. Outside of the Bargaining
Subgame, however, the stability results are mostly �at. Additionally, for the two-dimensional
small-world networks, the parameter has almost no e�ect on the result measures regardless of
which game is chosen. It is unclear what causes this behaviour, especially considering that it
only occurs for the one-dimensional small-world networks. One possible explanation is that
as long as an agent’s neighborhood is generally small (as is the fact on one-dimensional small-
world networks), multiple agents connected by rewired edges can survive using a di�erent
strategy than the rest of the population.

Figure 7.8: Example of in�uence of Beta on stability and morality on one-dimensional small-
world networks.
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Degree Interval

For bounded-degree networks, the choice of the Degree Interval does not seem to make a
di�erence, with the exception of one of the sampled values. Across all games, the interval [2, 3]
consistently moves the result a noticeable amount away from the baseline result. An example
of this is shown in �gure 7.9. To a lesser extent, this is also true for the Edge Probability pa-
rameter, where only the value 0.004 has a noticeable in�uence on the result measures. There is
one explanation that comes to mind: While the networks generated by the implementation are
guaranteed to be connected, it can happen that the graph contains multiple connected compo-
nents which are only connected to each other via one single edge. One can imagine that inside
one of these components, a strategy di�erent from the baseline survives, because the single
edge to the outside world is not enough for the cluster to be overtaken.

Figure 7.9: Example of in�uence of Degree Interval on stability and morality.
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7.3.2 Fully Connected Network
As alluded to in chapter 4, the fully connected network topology was meant to be both a con-
trol topology to analyze the in�uence of di�erent structural constraints on the evolutionary
dynamics, as well as an attempt to imitate the replicator dynamics in an agent-based model.
This section analyzes how the fully connected network fares against the replicator dynamics.

Prisoner’s Dilemma

For the Prisoner’s Dilemma, the results of the fully connected network perfectly match the
replicator dynamics. No parameter has any in�uence on these results. The results of both
models are shown in �gures 7.10 and 7.11. In this case, mimicking the replicator dynamics
seems easy, as the evolutionary dynamics always move the population towards a state of all
individuals playing defect.

Figure 7.10: Results for the Prisoner’s Dilemma on fully connected networks.

Figure 7.11: Results for the Prisoner’s Dilemma using the replicator dynamics (Alexander 2007,
p. 57). Lie low corresponds to Cooperate, and Anticipate corresponds to Defect. If there is at
least one individual using the strategy Defect, then the population is moved towards the state
in which all individuals play Defect.



7.3 Results 73

Stag Hunt

In the Stag Hunt on the fully connected network, the Initial Moral Mean completely de-
termines the morality result (shown in �gure 7.12). The results do not change with di�erent
learning rules, or when using the non-risk dominant version for the Stag strategy of the game.
The replicator dynamics tell a similar story, in that the state which the population converges
to only depends on the initial distribution of strategies (Alexander 2007, p. 112). However, how
many Stag players need to be initially present, in order to let the population converge to all
individuals playing Stag, is somewhat di�erent. For the payo� matrix used in the agent-based
model, the tipping point is calculated as p =

1

3−2+1
= 0.5. If more than half of the population

starts out as Stag players, then the population converges to the Stag equilibrium.
When looking at the results from the agent-based model, the tipping point seems to be

higher. If one imagines that the relationship between the parameter and the results is linear,
then the tipping point for the agent-based model would have to be somewhere between 0.5
and 1.0. Note that the variance of the results simply comes from the fact that the initialization
doesn’t use �xed probabilities for the strategies, but samples them from a probability density
function characterized by the Initial Moral Mean parameter. The violin plot also paints a de-
ceiving picture: The results are always at the extremes 0.0 or 1.0, and never in between. When
analyzing the Population Size parameter, we can see that reducing its value by one order of
magnitude results in a slightly lower tipping point. Due to the sub-optimal implementation
of the fully connected networks, no population size larger than 1000 could be chosen for the
experiments. Based on these preliminary results it seems plausible, though, that the tipping
point would converge towards 0.5 when increasing the population size further.

Figure 7.12: Results for the Stag Hunt on fully connected networks, in�uenced by the Initial
Moral Mean and the Population Size.
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Bargaining Subgame

The Bargaining Subgame shows interesting results on the fully connected network. In absence
of any stochastic e�ects, the simulation always results in minimum morality. When using Imi-
tate Probability as the learning rule, though, or when activating mutation, it achieves very high
morality results. The results for both the agent-based model and the replicator dynamics are
shown in �gure 7.13. In the replicator dynamics, the population can converge to one of two
di�erent equilibria (all individuals playing Demand 5, or some individuals playing Demand 4
and some playing Demand 6) depending on the initial state of the population. When looking
at the simplex diagram for the replicator dynamics in �gure 7.13, though, we see that an ini-
tialization which divides the initial strategies approximately equally among the population (i.e.
the point in the center of the triangle) would lead to the fair equilibrium of Demand 5. Despite
this being exactly how the population is initialized with an Initial Moral Mean of 0.5 in the
agent-based model, the results of the fully connected network are very di�erent. It is not clear
where this in�uence of the stochastic components comes from.

Figure 7.13: Results for the Bargaining Subgame on fully connected networks, and using the
replicator dynamics (Alexander 2007, p. 156). Note that all results which are shown for the
agent-based model use the nominal Initial Moral Mean of 0.5.
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Ultimatum Subgame

For the Ultimatum Subgame, the simulations on the fully connected network always lead to
minimum morality. Only a high Mutation Probability leads to a small increase in these
results. This behaviour is visualized in �gure 7.14. Alexander’s experiments with the replica-
tor dynamics and the Ultimatum Subgame show that morality emerges in about 15% of cases
(Alexander 2007, p. 207). In contrast, for the simulations using the fully connected networks,
the morality results are nowhere near 0.15. One explanation for the large di�erence could be
the initializations. Alexander only mentions that "the initial conditions are selected at random"
(ibid., p. 207). In the case of the agent-based model, the moral strategies S5 (Easy Rider) and
S7 (Fairman) are each only chosen with probability 0.125 on average when using an Initial
Moral Mean of 0.5. Increasing the mean to 0.75 presumably doesn’t make much of a di�er-
ence, given that it would only increase the probability to 0.167. The initialization chosen for
the model is thus potentially counter-productive for games with many strategies, like the Ulti-
matum Subgame.

Figure 7.14: Results for the Ultimatum Subgame on fully connected networks, slightly in�u-
enced by the Mutation Probability.
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7.3.3 Prisoner’s Dilemma
In the Prisoner’s Dilemma, the baseline result is minimum morality at maximum stability (shown
in �gure 7.15). No parameter is e�ective at signi�cantly raising the morality measure above
zero, except for Cooperation Incentive. The analogous Defection Incentive is not nearly
as e�ective, as shown in �gure 7.16. Interestingly enough, the results for the Cooperation
Incentive parameter di�er to a signi�cant degree between the di�erent network topologies,
which cannot be said for most of the con�gurations of the model. Additionally, there is often-
times a trade-o� between morality and stability for these results. For example, the increased
morality on the one-dimensional lattice comes with a lower stability measure (see �gure 7.17).
On the bounded-degree network, we see a proportionally weaker e�ect on both measures.

Figure 7.15: Baseline results for the Prisoner’s Dilemma.
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Figure 7.16: Comparison of Cooperation Incentive and Defection Incentive with regards
to morality.

Figure 7.17: In�uence of the Cooperation Incentive on stability and morality on the one-
dimensional lattice.
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7.3.4 Stag Hunt
For the Stag Hunt, the baseline result is maximum morality at maximum stability. While the
Initial Moral Mean completely determines the result on the fully connected network, this
doesn’t happen anymore for other topologies. Low values for the parameter can still have a
strong e�ect on some topologies, though, as shown in �gure 7.18. While the learning rules Im-
itate Best and Imitate Probability generally lead to high morality results, Imitate Average some-
times leads to lower morality measures. Best Response, however, is extremely detrimental to
morality in the Stag Hunt. As shown in �gure 7.19, it consistently sets the mean of the morality
result around 0.5, while producing very high stability results. Risk Dominance only has a no-
ticeably e�ect for the one-dimensional small-world network. As mentioned before, the morality
results for the Beta parameter of the one-dimensional small-world network show that small-
world properties are comparatively bad for the emergence of morality in the Stag Hunt. Both
behaviours are shown in �gure 7.20.

Figure 7.18: Baseline results for the Stag Hunt.
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Figure 7.19: In�uence of the Learning Rule on stability and morality in the Stag Hunt.

Figure 7.20: In�uence of the Risk Dominance and Beta parameters on one-dimensional small-
world networks in the Stag Hunt.
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7.3.5 Bargaining Subgame
In the Bargaining Subgame, the baseline result is maximum morality at maximum stability
(see �gure 7.21). Similar to the Stag Hunt, the Best Response learning rule is very detrimental
to morality. The corresponding stability measure is much lower, though, and hovers around
0.5. For this game, the small-world networks result in noticeably worse morality measures.
They also have a much higher variance in their results compared to when being used in other
games. Speci�cally the one-dimensional small-world networks exhibit unique behaviour (see
�gure 7.22). When using the latter topology, the results are strongly a�ected by the Popula-
tion Size (stability drastically decreases with larger values), the learning rule (Imitate Best is
worse for morality than Imitate Probability and Imitate Average) and Mutation Probability
(no monotonic decrease in morality like usual). As mentioned before, the Beta parameter of
the one-dimensional small-world network shows a negative impact of strong small-world prop-
erties on the morality measure (see �gure 7.23). In the Bargaining Subgame, this e�ect is at its
most extreme.

Figure 7.21: Baseline results for the Bargaining Subgame. Also negative impact of the Best
Response learning rule.
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Figure 7.22: In�uence of the Population Size on one-dimensional small-world networks in the
Bargaining Subgame.

Figure 7.23: In�uence of the Beta parameter on one-dimensional small-world networks in the
Bargaining Subgame.
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7.3.6 Ultimatum Subgame
For the Ultimatum Subgame, the baseline result is low morality and medium to high stability
(see �gure 7.24). Compared to the other games, the baseline result is not as accumulated at
the extremes. There is more variability towards the center of the scale for both the morality
and stability measures. In general, it is very hard to signi�cantly increase the morality result.
The maximum value among the tested con�gurations is around 0.3. While increasing the Mu-
tation Probability typically moves the results away from the baseline for the other games,
it has the opposite e�ect in the Ultimatum Subgame (see �gure 7.24). As with both the Stag
Hunt and the Bargaining Subgame, the Best Response learning rule has a negative impact on
morality. The other learning rules do not exhibit this behaviour and share the same baseline.
The one-dimensional small-world network has the same unique behaviour for the Population
Size parameter as in the Bargaining Subgame. Increasing its value results in a sharp decline in
the stability result (see �gure 7.25). To a lesser extent, this is also true for the two-dimensional
small-world network. The Ultimatum Subgame is the only game where the Neighborhood
of the two-dimensional lattice makes any noticeable di�erence. The morality result is higher
for smaller neighborhoods (N4 and M8, see �gure 7.25). A similar e�ect can be observed for
the one-dimensional lattice and both small-world topologies, but to a smaller extent and with
a decrease in stability accompanying the increase in morality. The Beta parameter of the one-
dimensional small-world network doesn’t quite show the parable seen in the Stag Hunt and
Bargaining Subgame. Instead, it has its maximum at the lower � and thus lower ! values, cor-
responding to more lattice-like topologies (see �gure 7.26).

Figure 7.24: Baseline results for the Ultimatum Subgame. Also inverse in�uence of the Muta-
tion Probability compared to other games.
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Figure 7.25: In�uence of the Population Size on stability on the one-dimensional small-world
network, and of the Neighborhood on morality on the two-dimensional lattice, in the Ultima-
tum Subgame.

Figure 7.26: In�uence of the Beta parameter on one-dimensional small-world networks on both
the stability and morality measures in the Ultimatum Subgame.
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Chapter 8

Discussion

This chapter discusses the model and the results of the sensitivity analysis with reference to
The Structural Evolution of Morality (Alexander 2007), as well as future research on the topic of
this paper in the area of agent-based modelling. Section 8.1 discusses the �ndings of the anal-
ysis in the context of Alexander’s theory and compares the results to Alexander’s experiments
wherever possible. Section 8.2 presents some ways for future work to build upon the model
and the analysis.

8.1 Findings

This section discusses the �ndings of the sensitivity analysis described in section 7.3 in the
context of Alexander’s theory, the Structural Evolution of Morality. Remember that as a result
of the one-factor-at-a-time methodology used for the sensitivity analysis (described in section
7.1), the �ndings are restricted to the in�uence of one parameter at a time.

8.1.1 Practical Insights

There are a number of practical insights about the model. One hypothesis of the model was that
the fully connected network topology could serve as a substitute for the replicator dynamics
in agent-based models. This topology turns out to be a reasonably good approximation of the
replicator dynamics. There are only two issues that came up with the results. First, in the
Stag Hunt, the limited population size might have lead to a deviating tipping point between
the two equilibria for Stag and Hare with regards to the initial distribution of strategies. While
the replicator dynamics dictate that the population needs at least 50% Stag players to reach the
moral equilibrium, the agent-based model results in a value somewhere between 50% and 75%.
Second, in the Bargaining Subgame, the results of the fully connected network are the opposite
of the replicator dynamics, whereby the former leads to minimum morality and the latter leads
to maximum morality among the population. This deviation is removed when one activates
mutation with a small Mutation Probability or uses the learning rule Imitate Probability.
Given these results, the fully connected network seems to be a good approximation of the results
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under structural constraints, except for the Bargaining Subgame without stochastic e�ects. This
network topology can thus be viewed as a step between the replicator dynamics with in�nitely
large populations, and the other social network topologies with structural constraints.

Based on the results of the sensitivity analysis, some of the parameters turn out to have no
practically relevant impact on the results on their own. This includes the Population Size and
the Learning Distance in general, as well as the Neighborhood and Wrap Around of lat-
tices. For the Learning Distance, we can imagine that it might have a noticeable impact when
using games with more than 2–8 strategies, as the probability that every available strategy is
part of an agent’s neighborhood then rises with higher distances. Which neighborhood is used
for a lattice, and whether it wraps around at the edges, presumably doesn’t make a di�erence
when the population is large enough. The takeaway here is that—as long as the combination
of one of these parameters with other parameters does not have an important in�uence that is
missed by analyzing one parameter at a time—these parameters can be removed from the model
for increased simplicity and better performance.

8.1.2 Structural Constraints
The results of the sensitivity analysis indicate that the emergence of morality is still mostly
determined by the shape of the interpersonal decision problem. Interestingly, which social net-
work topology is used only has a signi�cant impact when moral behaviour is not already the
norm. For both the Stag Hunt and the Bargaining Subgame, the interactions on networks with
structural constraints (i.e. not the fully connected network) generally lead to the desired out-
come of Stag and Demand 5 being the dominant strategies. The only way these results can be
reliably and signi�cantly overturned is by using the learning rule Best Response. This is the case
for all network topologies. Thus, the speci�c topological constraints do not have a strong in�u-
ence on the results of the Stag Hunt and the Bargaining Subgame. In the Prisoner’s Dilemma
and the Ultimatum Subgame, however, the analysis is more interesting. Here, the baseline re-
sult for structurally constrained populations is the undesired outcome of most agents playing
Defect or S1 (Gamesman)/S4 (Mad Dog). The in�uence of the speci�c network topology is sig-
ni�cant in both games. For the Prisoner’s Dilemma, the Cooperation Incentive parameter
provides the only way to signi�cantly increase cooperation among the population. This ef-
fect is strongest when using lattices or the fully random network. In the Ultimatum Subgame,
the one-dimensional lattice and the one-dimensional small-world network provide the highest
chance for moral behaviour to emerge.

8.1.3 Cooperation Incentive
Increasing the Cooperation Incentive, i.e. o�ering a much higher payo� for cooperation
compared to defection while keeping the shape of the interactions in place, is the only way that
cooperation in the Prisoner’s Dilemma can emerge in the simulations. This generally conforms
to Alexander’s results: He explicitly mentions that speci�c payo� matrices are necessary for
cooperation to emerge on lattices (Alexander 2007, pp. 72–75), small-world networks (ibid.,
p. 83) and bounded-degree networks (ibid., p. 89). In the case of bounded-degree networks, the
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e�ect of the payo� matrix is lower compared to other topologies (ibid., p. 89), which coincides
with the results of the sensitivity analysis: The morality result for Cooperation Incentive =

5.0 on social networks is indeed lowest for bounded-degree networks. Interestingly, the result
for the fully random network is almost as good as that for the lattices.

8.1.4 Best-Response Reasoning

The Best Response learning rule causes interesting behaviour in both the Stag Hunt and the
Bargaining Subgame, where it drastically worsens the morality results. In the case of the Stag
Hunt, this behaviour has been analyzed in depth by Alexander. When using Best Response, the
Stag equilibrium can only be reached when Stag is risk dominant (ibid., pp. 121–122). While
this is theoretically guaranteed to happen in the limit as long as mutation is enabled (ibid.,
p. 126), it can take prohibitively long in practice (ibid., p. 128). Correlated mutation, i.e. using
a higher Mutation Distance, can make the convergence to the Stag equilibrium much more
likely (ibid., pp. 128–131). In the case of the sensitivity analysis, Best Response was only used in
combination with the nominal parameters, which included neither the case where Stag is not
risk dominant, nor the case where mutation is enabled. Interestingly, the Best Response learning
rule also has a strong e�ect on the Bargaining Subgame. Here, moral behaviour emerges in
even fewer cases than in the Stag Hunt. This con�guration was only analyzed by Alexander on
two-dimensional lattices (ibid., pp. 181–182). The sensitivity analysis uncovers that this result
generalizes to all network topologies.

8.1.5 Small-World Networks

Small-world networks are often described as good approximations of true social network topolo-
gies, because their low average path lengths between two arbitrary vertices models the small
degree of separation between two arbitrary people in the real world very well (Easley and Klein-
berg 2010). Given that many people have strong moral intuitions about trust and fairness, one
would expect that such network topologies are particularly conductive for the emergence of
moral behaviour in the Stag Hunt and the Bargaining Subgame. The results of the sensitivity
analysis, however, paint the exact opposite picture.

In the Bargaining Subgame, and to a lesser extent in the Stag Hunt, one-dimensional small-
world networks exhibit a negative in�uence on the morality result. The extent of this negative
impact is highest when the network has an ! measure that is close to zero. As mentioned
in section 7.2, ! is a quantitative metric in the range [−1, 1] which measures the small-world
property of a graph. When ! is close to zero, this means a graph has maximal small-world
properties. As ! decreases to -1, the graph looks more like a regular lattice, and as it increases
to 1, it looks more like a random network. The center of the spectrum describes the small-
world property, whereby a regular graph is augmented by few additional random edges, which
lower the average path length between two arbitrary vertices. The more the one-dimensional
small-world network actually exhibits strong small-world properties, the harder it is for trust
and fairness to emerge, compared to more lattice-like and more random structures.
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Re�ecting upon these results, one could argue that the unfair division of resources is a
seemingly common behaviour in our modern world. Thus, the strong negative in�uence of
small-world networks con�rms Alexander’s theory, in that fairness did not properly evolve in
human societies which are modelled by small-world networks. However, Alexander attempts
to give an explanation for the strategic basis of the moral intuitions that many people share
(Alexander 2007, pp. 273–275). Whether these intuitions are acted upon once they are in place
is a di�erent question. Still, one could argue that human societies modelled as small-world net-
works are disadvantageous to acting in a fair manner, regardless of whether one has a moral
intuition about fairness or not. In any case, the connection between these results and the de-
scriptive moral behaviour of humans today is worthwhile to investigate further.

8.1.6 Sparse Random Networks

When using bounded-degree networks, theDegree Interval [2, 3] leads to special results. This
particular value moves the morality result signi�cantly away from the baseline in all games
except the Prisoner’s Dilemma. Both degree intervals that are wider (e.g. [3, 8]) as well as
narrow intervals with higher degrees (e.g. [8, 9]), do not exhibit this behaviour. A similar, but
weaker e�ect can be observed for the fully random networks when using an Edge Probability
of 0.004. What special characteristics do these topologies have, that makes them have such a
strong impact on the results?

The answer to this question is frankly unclear. Here, let us focus on the Ultimatum Sub-
game, because in this case the con�guration increases the morality result. When manually
experimenting, one can see that compared to other degree intervals, this con�guration can
more often lead to equilibria in which a sizeable portion of the population plays S7 (Fairman)
while most of the other individuals play S1 (Gamesman). This particular network topology
seems to make it easier for clusters of moral agents to survive. The nature of the interactions
can give some insight into why this might be the case. First, consider that when a Gamesman
plays against a Fairman in both directions, both individuals get a payo� of 5. When a Games-
man is paired against another Gamesman, or when a Fairman plays with another Fairman, the
two players get a payo� of 10 each in both cases. The two strategies are thus balanced out
against each other very well. Second, the degree interval [2, 3] leads to small neighborhoods.
This increases the probability that clusters of Fairman players can survive, because they can
reinforce each other in their strategic choice. They are not connected to many agents with
other strategies that could lead them to change their strategies. Third, the lower connectivity
of the network ensures that other strategies, which can be useful for the stability of Fairman
clusters, are not immediately removed from the population at the beginning of the simulation.
When, for example, an Easy Rider is paired with a Fairman, the former can oftentimes adopt
the strategy of the latter, which in turn increases the size of the Fairman clusters. This provides
a preliminary explanation for the observed behaviour in the Ultimatum Subgame. For further
insights, one would have to investigate the interactions in more detail.
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8.2 Future Work

There are many opportunities for future work to build upon the model and the results of the
sensitivity analysis. This section presents some suggestions.

8.2.1 Model

The model o�ers a number of interesting potential alterations and extensions. In the Prisoner’s
Dilemma, it turned out that changing the numbers in the payo� matrix (while keeping the
shape of the game in place) leads to strong di�erences in the results. The same concept could
be applied to the other games as well. Especially for the Bargaining Subgame and the Ultima-
tum Subgame, it would be interesting to see whether di�erent payo�s lead to di�erent results.
A simple way to test this would be to switch the extent of the payo�s between the two games,
i.e. choosing the strategies Demand 1, Demand 5 and Demand 9 for the Bargaining Subgame, as
well as strategies demanding and accepting portions of 4, 5 and 6 in the Ultimatum Subgame.
It would also be interesting to see whether using the full Ultimatum Game makes any di�er-
ence with regards to the morality and stability results. The Bargaining Subgame turned out to
produce the same results as the full Bargaining Game in a number of experiments (see section
6.2.3). One should test this for the full Ultimatum Game as well. This would require larger
populations, though, as the full Ultimatum Game contains many more strategies.

As we have seen in the cases when the results of the new model were compared to Alexan-
der’s experiments (see chapter 6 and section 7.3), di�erent initializations of the population can
have a strong impact on the dynamics of the interactions. Given this, an interesting avenue for
future work is the incorporation of di�erent kinds of initializations. One particularly promis-
ing approach would be to replicate the concept of the evolutionarily stable state from classic
evolutionary game theory in an agent-based model. In this approach, the whole population
is initialized with the same strategy. Then, a single agent (or a small cluster of agents) is as-
signed a di�erent strategy. This way, it is possible to �gure out whether the common strategy
is evolutionarily stable (i.e. it cannot be taken over by a di�erent strategy).

Focusing on Alexander’s previous work, the model could be extended by adding structural
dynamics through dynamic network topologies. The core idea is to model social networks
as weighted complete graphs, such that the strength of a relationship between two agents can
change over time by adjusting the corresponding edge weights. Alexander’s results for dynamic
networks are quite promising for the emergence of morality (ibid., e.g. 94-100). In order to
keep the ability to compose arbitrary parameters of the model, the structural dynamics should
be implemented for all the static network topologies o�ered so far. That is, when adopting
the model for social network formation used by Alexander (Skyrms and Pemantle 2000), the
network topology which the structural dynamics start from should be freely chosen. Based
on this, one could add the additional features speci�c to dynamic networks which were used
in The Structural Evolution of Morality: uncoupled frequencies for the learning and interaction
processes (Alexander 2007, p. 52), as well as discounting of past interactions (ibid., e.g. 144-145).
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8.2.2 Sensitivity Analysis
For the sensitivity analysis, there are many opportunities for further research as well. Some
of the results are not easily explainable, and warrant a deeper analysis to understand them
better. The Stag Hunt on a fully connected network produced a tipping point between the
two equilibria (all agents playing Stag or all agents playing Hare) that is somewhat di�erent
from the ones delivered by the replicator dynamics (see section 7.3.2). The hypothesis is that
the results would converge to the replicator dynamics when increasing the population size.
This should be investigated. One-dimensional small-world networks have oftentimes lead to
a high variance of the results, as well as producing the counter-intuitive detrimental impact
on morality in the Stag Hunt and the Bargaining Subgame (see section 7.3.1). It would be
interesting to know what causes the special behaviour of this topology, especially considering
that the two-dimensional small-world networks do not behave this way at all. As mentioned
in section 8.1.6, bounded-degree networks with a degree interval of [2, 3] exhibit a very unique
behaviour. While a preliminary attempt at explaining these results for the Ultimatum Subgame
was o�ered, it is not clear why the e�ects can be generalized across the Stag Hunt and the
Bargaining Subgame as well. This speci�c network topology warrants further analysis.

Apart from taking up speci�c �ndings, the analysis can also be improved by using a more
sophisticated methodology for investigating the sensitivity of the di�erent parameters to the
result measures. As mentioned before, the one-factor-at-a-time method can only give insight
into the e�ects of one parameter at a time, but not combinations of parameters. One could
thus use a di�erent method, like the Sobol’ method (Sobol’ 2001), to analyze the sensitivity
of speci�c combinations of parameters. For example, in the Stag Hunt, Alexander’s results
show an important connection between the Best Response learning rule, the Risk Dominance
of the Stag or Hare strategies, and the Mutation Probability and Mutation Distance (see
section 8.1.4). Analyzing the combination of these parameters could provide further insight
into this situation. Another interesting approach would be to see whether any combinations
of parameters in the Prisoner’s Dilemma provide a chance of fostering cooperation, without
adjusting the payo� matrix through the Cooperation Incentive parameter.
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Conclusion

This paper built upon Alexander’s results from The Structural Evolution of Morality (Alexander
2007). Alexander’s analytically derived insights were complimented with a more systematic
approach using numerical methods, in order to �nd out more about the exact conditions which
need to be in place for moral behaviour to emerge. As described in chapter 2, related work in this
area shows that models investigating the emergence of social norms in interpersonal decision
problems oftentimes take di�erent assumptions and use di�erent parameters, which makes it
hard to compare results among such models. Therefore, the approach taken was to create a
new model that mimics Alexander’s original model closely enough to facilitate comparison,
while extending it in ways that allow for easy numerical analysis. The new model is focused
on analyzing arbitrary combinations of games, networks, and other parameters. This makes it
possible to use common methods of analysis from the agent-based modelling literature. After
a short introduction into the theories that the model builds upon in chapter 3, the new model
was described according to the ODD speci�cation in chapter 4. Chapter 5 o�ered solutions to a
number of challenges during the implementation of the model. The quantitative validation of
the model against some of Alexander’s experiments in chapter 6 showed that the two models
produce results that are similar enough in trends to warrant a reasonable comparison. For
the sensitivity analysis of the model reported in chapter 7, the one-factor-at-a-time (OFAT)
methodology was chosen, which analyzes the in�uence of every single parameter on the results.
While the approach is comparatively simple, it can already uncover interesting results and most
importantly guide further analysis of the model.

The discussion of the analysis results in the context of the Structural Evolution of Moral-
ity in chapter 8 o�ered a number of interesting results. The emergence of moral behaviour is
�rst and foremost determined by the shape of the interpersonal decision problem, leading to
a baseline result for each game. Di�erent network topologies can move the results away from
the baseline to di�erent degrees. The one-dimensional lattice is generally most successful at
doing so. The speci�c payo� matrix of the game under investigation can play a big role in
the emergence of moral behaviour, especially so in the Prisoner’s Dilemma, where this is the
only way to consistently create stable equilibria of cooperators. The more sophisticated Best
Response learning rule, which requires individuals to reason counterfactually and stretches the
assumption of bounded rationality, can be very detrimental to the evolution of morality. The
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results of the simulations indicate that this is not only the case for the well-understood Stag
Hunt, but also for the Bargaining Subgame. Small-world networks either don’t impact the re-
sults in any signi�cant way at all, or provide a negative in�uence on the emergence of morality.
Especially in the Bargaining Subgame, the existence of strong small-world properties leads to
signi�cantly weaker moral behaviour among the population. Given that the topology is sup-
posed to mimic real human societies, and that many people have strong moral intuitions about
fairness, this is a surprising result in the context of the Structural Evolution of Morality. Fi-
nally, sparse random network topologies exhibit a very special behaviour which can lead to a
strong positive in�uence on the emergence of morality in the Ultimatum Subgame, where it is
typically hard to foster moral behaviour among the population. Both the model as well as the
sensitivity analysis can be extended and built upon in numerous ways in future work. More
research in this area can lead us to uncover the precise ways moral behaviour can evolve in
populations of boundedly rational individuals engaging in interpersonal decision problems.
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