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Abstract

In this thesis, the most popular theories regarding the evolution of altruistic traits in hu-
mans are put to the test in a series of cross-generational agent-based simulations that mimic
natural selection according to Darwin’s three principles of inheritance, variation, and se-
lection. The focus is put on the environmental circumstances that, according to each of
these theories, may have led to the evolution of altruism. The results show that differ-
ent conditions promote different types of altruism. Altruistic strategies based on group
affiliation and cultural evolution have been the most successful across all environments,
indicating that these strategies are likely to have played a key role in the evolutionary de-
velopment of altruistic traits in humans. Other theories have shown great potential under
more specific circumstances. Kin selection has not developed significantly in low- to mid-
harsh conditions but has been effective under very harsh conditions while altruism based
on the reputation of individual agents has proven to be an extremely effective strategy in
the long run in low- to mid-harsh conditions but has completely fallen apart under very
harsh conditions. It has also been found that the presence of altruism in a population has
led to a considerably better survivability in harsh environments where no survival has
been possible without cooperation. Higher individual altruistic sacrifices, however, have
not improved survivability. Furthermore, it has been found that cheaters in altruistic sys-
tems might lead to the extinction of the whole population. Additionally, the social network
topology developed has been analyzed with results indicating that altruists weaken their
position within their closer social proximity while simultaneously gaining influence on a
global scale.

iii



iv



Zusammenfassung

In dieser Arbeit werden die gängigsten Theorien bezüglich der Evolution altruistischer
Verhaltensweisen beim Menschen in einer Reihe von generationenübergreifenden agen-
tenbasierten Simulationen auf den Prüfstand gestellt, die die natürliche Selektion nach
Darwins drei Prinzipien - Vererbung, Variation und Selektion - nachbilden. Der Schwer-
punkt liegt dabei auf den Umweltbedingungen, die gemäß jeder dieser Theorien zur Evo-
lution des Altruismus geführt haben könnten. Die Ergebnisse zeigen, dass unterschiedliche
Umweltbedingungen verschiedene Arten von Altruismus begünstigen. Altruistische Strate-
gien, die auf Gruppenzugehörigkeit und kultureller Evolution beruhen, waren unter allen
Umweltbedingungen am erfolgreichsten, was darauf hindeutet, dass diese Strategien ver-
mutlich eine Schlüsselrolle bei der Evolution der altruistischen Verhaltensweisen des Men-
schen gespielt haben. Andere Ansätze haben sich unter spezielleren Umweltbedingun-
gen als sehr vielversprechend erwiesen. Die Kin-Selektion hat sich unter niedrigen bis
mittleren Bedingungen nicht signifikant entwickelt, war aber unter sehr schwierigen Be-
dingungen effektiv, während sich Altruismus, der auf dem Ruf einzelner Akteure beruht,
unter niedrigen bis mittleren Bedingungen langfristig als äußerst effektive Strategie er-
wiesen hat, aber unter sehr schwierigen Bedingungen völlig zusammengebrochen ist. Es
wurde auch festgestellt, dass das Vorhandensein von Altruismus in einer Population zu
einer erheblich besseren Überlebensfähigkeit in rauen Umgebungen geführt hat, in denen
ohne Kooperation kein Überleben möglich gewesen wäre. Höhere individuelle Opferbere-
itschaft hat die Überlebensfähigkeit jedoch nicht verbessert. Außerdem hat sich gezeigt,
dass Betrüger in altruistischen Systemen zum Aussterben der gesamten Population führen
können. Darüber hinaus wurde die entstandene Topologie des sozialen Netzwerks analysiert.
Die Ergebnisse zeigen, dass Altruisten ihre Position in ihrem engeren sozialen Umfeld
schwächen, während sie gleichzeitig auf globaler Ebene an Einfluss gewinnen.
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CHAPTER 1

Introduction

”La joie que nous inspirons a cela de charmant que, loin de s’affaiblir comme
tout reflet, elle nous revient plus rayonnante.” [The joy which we inspire has
this delightful property, that, far from growing faint, like other reflections would,
it returns to us more radiant than before.] [19]

When Jean Valjean, the protagonist of Victor Hugo’s 1862 novel Les Misérables, a convict
on the run, is confronted with the choice whether to keep on walking or to risk his life
and carefully crafted cover to help a stranger who had fallen beneath a wagon, he does not
hesitate to choose the latter. And again, a little while later, he risks exposing himself to the
policeman who is looking for him to save an innocent woman from prison. This disregard
for himself and his freedom when others are in need continues from there on, and leads to
exposing himself as the wanted man he actually is in order to save another man’s life. He
is willing to help anyone with no regards whether they have met before or even wronged
him in the past, and he does all this without expectations of receiving any benefits from it.
Jean Valjean is what one would call an “altruist”.

While, of course, Valjean is the product of Hugo’s imagination, this type of selfless be-
havior is certainly not unheard of. It can be observed throughout the history of mankind
and in the realms of animals. Until today, the origins of altruism as an evolutionary occur-
rence have not been fully discovered yet. This work contributes to the evolving area of com-
putational ethics by using a cross-generational agent-based simulation to put the most popu-
lar theories regarding the evolution of altruistic traits in humans to the test. The focus is put
on the environmental circumstances that may have led to the evolution of altruism accord-
ing to each of these theories. The outcomes of this approach are promising. First, differ-
ent environmental conditions promote different types of altruism. Second, altruism leads
to a considerably better survivability of a population in high-cost environments. Third,
higher individual sacrifice does not improve the survivability. Fourth, cheaters destabilize
altruistic systems significantly. Finally, altruists lose local influence while gaining global
influence.

The paper is structured as follows. Chapter 2 gives an overview of the related work in
the area of evolution, with a focus on approaches that employ simulations. In chapter 3,
some theoretical background that this paper builds upon is given, namely theories and re-
search regarding altruism, evolution, and agent-based simulation. Chapter 4 presents the
model that is the basis of this paper, namely its purpose, the concepts, its structure, the

1



2 CHAPTER 1. INTRODUCTION

different submodels, its inputs, and, finally, its outputs. In chapter 5, the implementation
details are addressed, and some key algorithms are presented. Chapter 6 then presents the
results of the exploratory analysis of the outcomes of the simulation for each model. In
chapter 7, the social networks that the agents have formed during the simulations are ana-
lyzed regarding clustering, connectivity, and the position of altruists in the social network.
Chapter 8 discusses the limitations of the used approach, the findings that are derived from
the results, and some suggestions for future work on this topic are laid out. Finally, chap-
ter 9 concludes this paper by summarizing its key points.



CHAPTER 2

Related Work

The emergence of altruism among humans and other species has puzzled researchers for
centuries, from Charles Darwin himself, who sought to solve this evolutionary riddle in The
Descent of Man, and Selection in Relation to Sex [6], all the way to contemporary evolutionary
biologists like Richard Dawkins, who gave his own take on the evolution of altruism in
The Selfish Gene [7]. With empirical studies on evolution being highly impractical, the field
of the study of altruism was in need of new methods to help explore it further. Attempts
were made to formalize cooperative evolution mathematically, as Robert Trivers did in The
Evolution of Reciprocal Altruism [30], allowing for the study of altruism to continue outside
the purely empirical context. One of the first researchers to utilize computers to explore
cooperation strategies and let them compete with each other digitally was Robert Axelrod
in The Evolution of Cooperation [4]. Since then, multiple others have followed his lead, with
the increase in computing power and the availability of new tools allowing for more and
more complex models. Most notably are some works of Herbert Gintis [14, 15] in which
he used simulations to show the theoretical sustainability of some cooperative strategies.
With his publication, The Structural Evolution of Morality [2], J. McKenzie Alexander was
one of the first to utilize agent-based models to investigate the emergence of cooperation
while also considering different social networks topologies; a similar approach to what will
be used in this paper.

However, some have also voiced their concerns regarding the idea to even try to simu-
late the complexity the human decision-making process inherently has, among them Eck-
hart Arnold in his book Explaining Altruism: A Simulation-Based Approach and its Limits [3].
In it, he dismisses most simulations as trivial and even claims for them “not [to be] of great
scientific relevance”[3, p.12]. Yet, he fails to recognize that in science most models rely on
some type of simplification. Simulations should capture important mechanisms and illus-
trate how these mechanisms may have contributed to the occurrence of the phenomena
under investigation by evaluating the efficacy of these mechanisms. [33] This holds true,
especially when it comes to the simulation of evolution, where the possibility to test hy-
potheses rapidly and reliably helps generate an understanding that would otherwise be
hard to attain. Nevertheless, Arnold makes a lot of good points in his book regarding the
creation of a scientific simulation that have found application in the simulation used in this
paper.

3
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CHAPTER 3

Theory and Terminology

In the following chapter, the status quo regarding the research of the evolution of altruism
among humans is laid out. First, in section 3.1.1 the term “altruism” is defined by its char-
acteristics and the different types of altruism that are distinguished in scientific literature
are laid out in section 3.1.2. Then the relevant evolutionary mechanism are covered in sec-
tion 3.2. Finally, the method of agent-based simulation that is used in this paper to explore
the evolution of altruism is addressed in section 3.3.

3.1 Altruism

While altruism in philosophic terms is only referred to as “altruism” if the altruistic action
is done with the conscious intention of helping another, in a biological sense an altruistic
action is evaluated by the consequences that an action has on the reproductive fitness of
the individuals in question. By acting altruistically, an individual reduces its own expected
number of offspring in favor of another individual’s expected number of offspring. Altru-
ism is a commonly observed trait in animals and humans. Vervet monkeys, for example,
give alarms to alert other monkeys to the presence of predators, thus increasing their peers’
chances of survival while drawing the predators’ attention to themselves. Ant workers are
themselves sterile and have no chances of reproducing themselves, effectively having a
reproductive fitness of zero. Yet, they protect and feed their queen at enormous costs to
themselves. [23]

3.1.1 Characteristics of Altruism

For the purpose of this paper, altruism is characterized according to [3, p.21-22] by four
key points according to that all have to be met in order for a behavior to be considered
altruistic:

1. The individual’s behavior benefits another individual.

2. The behavior comes with an associated cost to the acting individual.

3. An equal return of the cost is not guaranteed for the acting individual.

4. The individual is acting of its own free will.

5



6 CHAPTER 3. THEORY AND TERMINOLOGY

3.1.2 Types of Altruism

In scientific literature three main types of altruism are distinguished: kin altruism, recipro-
cal altruism and group selection.

3.1.2.1 Kin Altruism

Kin selection refers to the theory that individuals are more likely to act altruistically to-
wards another individual the closer they genetically are to each other. In the face of genetic
evolution, this makes sense since the closer the individuals genetically are, the more likely
they are to share common genes. Helping a close relative to produce offspring is - in evo-
lutionary terms - nearly as good as raising offspring oneself.

According to Hamilton’s rule, this can be formalized as follows:

r×B >C. (3.1)

In this inequation, r is the genetic distance between the individuals, B is the benefit of
acting altruistically in terms of the number of offspring gained by the recipient and C is
the cost of acting altruistically in terms of the number of offspring lost by the donor. If the
formula holds true, it would be advantageous to the individual to act altruistically. [10]

Example 1. A well-nourished monkey could benefit from feeding his brother’s starving
offspring. Given that the average genetic relatedness between siblings is 0.5, meaning that
they share about 50% of genes, the benefit of feeding the offspring is 1 and the relative cost
of feeding a tiny monkey is rather small, e.g., 0.25. [10]

r×B >C

=⇒ 0.5×1 > 0.25
=⇒ 0.5 > 0.25

Hamilton’s rule holds true, and thus the monkey would gain from acting altruistically,
since the genetic relatedness to its brother’s child outweighs the benefits of keeping the
food to itself.

3.1.2.2 Reciprocal Altruism

Reciprocal altruism refers to altruistic acts that are carried out with the expectation to get
a similar or even better benefit in return. Unlike kin selection, which relies on common
descent as a clue to whether acting altruistically towards an individual is sensible, recipro-
cal altruism relies on different criterions: past behavior and interaction. The past behavior
of another individual provides a cue whether the individual is willing to “pay back” the
altruistic favor at a later time. [28]

According to R. Trivers, founder of the concept of reciprocity, altruism can be formalized
as follows:
The following formula and table are taken from [3, p.71].

1
p2 (∑Bk−∑C j)>

1
q2 ∑Bm, (3.2)
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where p is the portion of altruists,
q is the portion of non-altruists,
Bk is the altruistic benefit an altruist receives,
Bm is the altruistic benefit a non altruist receives, and

C j
represents the cost that an altruist takes upon itself for bestowing an
altruistic act (on either an altruist or a non-altruist).

The idea of this inequation is that the average fitness of an altruist (the left-hand side
of the inequation) must be higher than the average fitness of a non-altruist (the right-hand
side of the inequation) for altruism in a population to prevail. This would occur if the
benefits the non-altruists receive are kept small, which in turn reduces the costs of altruistic
acts. [30] argues that altruists observing the behavior of their peers and only helping those
who they consider to be altruistic themselves would lead to the inequation to hold. Apart
from the past behavior and interactions, another indication to whether the individual is
willing to act altruistically towards another individual could be certain genetic traits that
correlate with the altruistic gene. An exemplification often used in evolutionary biology for
this is the so-called “greenbeard altruism”. The greenbeard effect is a thought experiment
developed by [17] and [7] that illustrates the idea of individuals having a greenbeard as
a signal to others that they carry the altruistic gene. With altruists being able to reliably
distinguish between those who carry the same trait as them and those who do not, the
right-hand side of the inequation would always be zero; thus they should be able to sustain
altruism indefinitely. [5]

However, [3] points out that the inequation does not necessarily only describe reciprocal
altruism but can be seen as a more general inequation of altruism. [3, p.72]

Example 2. In a population of n = 10 individuals, 5 individuals are carrying the altruistic
allele, which means p = q = 0.5. The cost of an altruistic act on the altruistic population
is ∑C j = 1− (0.5(1−∑Bm)), while being equally beneficial to both the altruistic and non-
altruistic population (∑Bk = ∑Bm = 1.5).

The inequation is solved as follows:

1
p2 (∑Bk−∑C j)>

1
q2 ∑Bm

=⇒ 1
0.25

(1.5−1.25)>
1

0.25
=⇒ 1 ≯ 4

Since the average fitness of an altruist is not actually higher than the average fitness of a
non-altruist, the inequation does not hold. Thus, altruism does not prevail in this example.
The consequence of this would be, that, in an environment where altruists act altruistically
towards anyone without any consideration, they would ultimately die out. Plotting this
example (fig. 3.1) shows that the altruistic population can survive as soon as ∑Bm is smaller
than 0.66. Hence, for altruism to be sustainable in this population, the altruists would have
to find a way to deny non-altruists the benefit of altruistic acts at least one third of the time
( Required ∑Bm

Given∑Bm
) by applying strategies like reciprocity.

3.1.2.3 Group Selection

Another highly discussed type of altruism is group selection. Darwin himself best ex-
plained the idea:

“A tribe including many members [. . . ] ready to aid one another, and to
sacrifice themselves for the common good, would be victorious over most other
tribes, and this would be natural selection.” [6, p.166]
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Figure 3.1: Plot for example 2 with the x-axis representing the value ∑Bm

Simply put, groups in which members help each other in times of need and are willing
to sacrifice themselves for the common good are more likely to survive and thereby have
greater reproductive success than groups in which the members are not willing to help
each other. This theory is supported by the fact that, in evolutionary terms, relative fitness
is more important than absolute fitness. Yet, the hypothesis of group selection is not un-
problematic, as it requires some controversial assumptions to hold. For example, it requires
substantial genetic differences between groups and a very limited migration rate between
them, as otherwise the genetic differences between groups could be too insignificant to be
relevant. [31, p.8]

3.2 Evolution

In this paper, the concept of evolution will be used to explain the emergence of altruism
among humans. Three types of evolution are the subject of this paper: genetic evolution,
cultural evolution and gene–culture coevolution.

3.2.1 Genetic Evolution

When referring to the term genetic evolution in the context of this paper, what is implied,
is evolution in a biological, “Darwinian” sense. Biological evolution describes a change in
genetic traits of a population over generations. These changes can occur through mutation
or genetic recombination. Certain alterations in traits lead to a change in the individual’s
fitness and through the process of natural selection such traits might become more or less
predominant within the population. [9]

The fact that all human cultures show some kind of altruistic behavior indicates that the
altruistic trait is at least partly genetically determined.

According to Darwin’s theory, evolution only requires three elements for the process to
work: inheritance, variations and selection. Inheritance is necessary not to lose new, improved
traits over generations, while variations make evolutionary improvements possible by mu-
tating genes. Finally, selection implies that differences in traits matter, either by having a
positive or a negative impact on the fitness of the individual carrying this trait compared
to other individuals. [1]
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3.2.2 Cultural Evolution

“For an understanding of the evolution of modern man we must begin by
throwing out the gene as the sole basis of our ideas on evolution.” [7, p.191]

The theory of cultural evolution tries to quantify the social changes that occur when the
behavior of individuals in a group changes through the influence of other members of the
group. Culture in this instance refers to the behavior adopted by copying observed or
taught behavior of others. It is assumed that the same core principles of Darwinianism
can explain cultural evolutionary processes, since there are sufficient similarities between
cultural development processes and evolution in nature to warrant such a transfer. The
aforementioned elements inheritance, variations, and selection are still required. Yet, they
take a different form than in the genetic biological sense. Inheritance can take place, e.g.,
through learning or imitation, while variations would, for example, occur when learnings
are not understood correctly. The third component, selection, is harder to specify in cultural
evolution than in its biological counterpart. However, it can be assumed that individuals
want to adapt behaviors that they regard as successful and reject those that they do not. [3,
p.40-44]

3.2.3 Gene–Culture Coevolution

Gene-culture coevolution is the process of genetic evolution and cultural evolution influ-
encing each other in a continuous feedback loop. Genetic changes can lead to cultural
changes that in turn influence genetic evolution via modifications of the population struc-
ture and an altered selection pressure and vice versa (see fig. 3.2).

An example for this kind of coevolution is the tolerance or intolerance of lactose in
different cultures. While the majority of adult humans cannot digest milk, in certain cul-
tures the opposite can be observed. A probable explanation for this phenomenon is that
the lactose digestion gene has evolved in response to the history of domesticating cows in
these civilizations. In northwest Europe, India and western Africa, there is a long-standing
history of the domestication of cattle and consumption of milk. So, the majority of the pop-
ulation in these regions has the ability to digest lactose. In contrast, the far east regions of
the world have barely any history of milk ingestion and the lactose gene is rarely found.
Statistical work has shown, that the history of the domestication of cattle and consumption
of milk is the best predictor for the presence of the lactose gene. [25, p.191-192] In retro-
spective, it is of course hard to tell which came first: the culture of regularly ingesting milk
or the evolution of the lactose gene. However, it is clear that both have thrived side by side
and given rise to each other, with effects lasting to this day.

Regarding the evolution of altruism, gene-culture coevolution is believed to be the most
likely explanation of how the altruistic trait has been able to evolve in human society. [12,
31] It unifies the theories of kin altruism, reciprocal altruism and group selection while it
mitigates its controversial issues (see section 3.1.2.3) by considering the possibility that al-
truism is not only genetically determined but also culturally. Cultural changes in behavior
driven by intergroup conflicts that manifest more prosocial norms and punishment of indi-
viduals that do not follow these norms would lead to genetic evolution naturally selecting
for cooperative and altruistic behavior. [31]
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Figure 3.2: Processes of gene–culture coevolution. Source: [32]
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Intergroup competition

Adaption of cultural norms to promote
in-group cooperative/altruistic behavior

Natural selection for cooperative/altruistic traits

leads to

promote each other over generations

Figure 3.3: How altruism could have evolved by means of gene–culture coevolution.

3.3 Agent-Based Social Simulation

Agent-based social simulation unifies three scientific fields: the social sciences, computer
science and statistics. It is a form of simulation based on agents interacting with their
environment and with each other in a way that makes it possible to study their behavior.
The agents are modeled as individuals, in the sense that they have unique identity and
behavior that can be modeled using sets of rules. Crucially, the agents’ behavior can be
determined and altered by direct interactions between them. This modelling technique has
been applied to successfully simulate traffic and evacuation flows, stock development, the
spread of epidemics, and much more. [29]

For the purpose of this paper, two types of simulation will be used to study the emer-
gence of altruism:1

Proof-of-Possibility Simulations are used to prove or disprove the theoretical possibility
of certain phenomena under very specific conditions. The goal is to find parameters un-
der which a phenomenon can occur. Based on the parameters, certain conclusions can be
drawn regarding whether the phenomenon could occur in the real world and under which
preconditions.

Exploratory Simulations are meant to discover new phenomena that are not yet known
to the conductor of the simulation. These simulations are run on a large scale with a variety
of different parameters.

1The terms “Proof-of-Possibility Simulations” and “Exploratory Simulations” were established in [3, p.194]
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CHAPTER 4

Model

While most previous attempts at modeling the evolution of altruism have relied on running
a series of game-theoretical sequences with static agents and static environments, the model
developed for this paper is more focused on the dynamics of evolution. Thus, this model
reflects the evolution of a population over thousands of years and hundreds of generations.
Agents live their lives, find partners, reproduce and ultimately die, leaving their children
to carry their genetic inheritance. This allows for a variety of phenomena to occur that
would not be possible in models that omit the process of evolution. First, in section 4.1 the
purpose of the model is described, and some design concepts are discussed in section 4.2.
Then the different submodels and their respective purpose are listed in section 4.3. Finally,
the different inputs and outputs of the model are described in section 4.4 and section 4.5.

4.1 Purpose

What this model aims at is to mimic the evolutionary processes that have led to altruism
among humans as it occurs in today’s day and age. A variety of inheritable traits relating
to altruistic action are present in the initial model population. Since the evolutionary fit-
ness of a genetic trait is measured in relation to other traits, the different altruistic traits are
compared to a control group composed of non-altruists and unconditional altruists. Based
on the changes in the distribution of the traits among the population over hundreds of gen-
erations, the sustainability of the different traits is benchmarked. The model also supports
complex social networks, which allows for the development of relationships and group
dynamics to be tracked and analyzed.

4.2 Concepts

When designing the model, some core design concepts have been decided on. Namely, the
concept of minimal interference and the law of large numbers.

13
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4.2.1 Minimal Interference

The model is built to minimize outside interference by the modeler. Only some environ-
mental variables and behavioral rules are provided, everything else, including the devel-
opment of the population and social network, develops organically.

4.2.2 Law of Large Numbers

A lot of the underlying processes and mechanisms in this model rely on randomness to
circumvent some inherently hard-to-model real life processes, such as finding food. The
law of large numbers, first proved by mathematician Jakob Bernoulli, states that “as the
number of identically distributed, randomly generated variables increases, their sample
mean (average) approaches their theoretical mean” [11]. Based on this theorem, the number
of iterations the model is run is as high as economically feasible to extract results that are
as meaningful as possible.

4.3 Structure

The model is separated into multiple submodels that model certain processes, as can be
seen in fig. 4.1. Together, the BaseModel, AgingModel, ReproductionModel and
EatingModel are the basis of the simulation by modelling the lifecycle of a population.
The AltruismModel and its submodels allow for altruistic actions to take place under
submodel-specific circumstances.

4.3.1 Population Model

The population model consists of the submodels BaseModel, AgingModel, Repro-
ductionModel and EatingModel. It models all integral parts of an evolving population,
like the lifecycle of agents and the social network that connects them. The initial population
consists of agents of different ages and with no connection to each other. Every step in the
model emulates one year in the life of an agent. In each step, the agent needs to consume
food in order to survive. In the core population model, food must be found by the agent
itself. The amount of food the environment supplies each step is finite, providing a natural
limit to how many agents can live in a given environment. As soon as an agent comes
of age, it searches for a partner. Once two partners have found each other, they have the
possibility to produce offspring in each step. However, this comes at a cost to both their
food supplies. Agents form relationships with their parents, partners, children, and sib-
lings with varying strength, which allows for graph analysis regarding clustering, average
path length, and hub tendencies.
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Figure 4.1: Model structure. Due to the object-oriented nature of the simulation, every
model inherits from its parents models. BaseModel, AgingModel, Reproduction-
Model and EatingModel are responsible for modelling their respective functions in the
population. The models that are children of the AltruismModelmodel the different types
of altruism that are the subject of this paper.
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Figure 4.2: Life cycle of an adult agent.

4.3.2 Altruism Models

The altruism models extend the population model (section 4.3.1) by giving agents the op-
portunity to share some of their food supply with other agents that would otherwise starve.
However, since food is also an important requirement for reproducing, this hurts the giving
agent’s evolutionary fitness significantly. Different types of altruistic agents use different
strategies to determine whether they help another agent in need. The maximum percentage
of its food an agent would be willing to give away each round is determined by a model-
wide parameter. In their respective models, each type of altruism is evaluated regarding its
evolutionary sustainability by pitching it against the control group that consists of agents
that will always give away their food if they get the chance and agents that will never share
their food with anyone.
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4.3.2.1 Greenbeard Model

The greenbeard model is based on the concept of reciprocity (see section 3.1.2.2). Green-
beard altruists will act altruistic towards others they believe to be greenbeards as well (sec-
tion 3.1.2.2) if given the chance. The literal ”greenbeard” itself is of course purely theoret-
ical, since no known correlation between the altruistic gene and any genetic characteristic
that is easily distinguishable does exist. However, it is suggested that humans have the
ability to resolve social dilemmas by being able to identify and interact selectively with
trustworthy partners. [13, p.94] Critics of this theory often argue that even if such a trait
existed, mutations could lead to the eventual evolution of “freeloaders” that, while car-
rying the distinguishable trait of an altruist, don’t act like an altruist, which is, why the
possibility of such mutants is also explored in this paper’s model. [12, p.35]

4.3.2.2 Kin Selection Model

The kin selection model relies on the genetic relatedness between agents to determine
whether they would be willing to help each other in times of need (see section 3.1.2.1).
If more than one agent in the agent’s genetic neighborhood requires help, the agent will
always choose the closest relative to give food to. The minimum level of relatedness that is
required between agents to act altruistically is determined by a model-wide parameter.

4.3.2.3 Reputation Model

In the reputation model, agents carrying the altruistic gene are willing to help those whose
reputation is higher than the average reputation in the population. If an agent acts altruis-
tically, its reputation increases. This model is based on the theory of reciprocity as well.

4.3.2.4 Group Model

At initialization, each agent is randomly assigned to a group. The agents only seek part-
ners in their designated group and pass their group membership on to their children. The
agents are only willing to help those who are part of their group. Based on a model-wide
parameter, migration between groups can take place in each step. Only “bachelors”, agents
that are of age and have no partner, are allowed to migrate.

4.3.2.5 Culture Model

The culture model is based on the group model. Additionally, each group has a culture
value that determines the overall willingness to help each other. This culture value changes
over time depending on how the agents act. The decision whether the agent acts altruisti-
cally or not is heavily influenced by the culture value in their group.

4.4 Inputs

Different models require certain model-wide parameters to be set, which are described in
table 4.1. Each parameter range serves the purpose of covering the various circumstances of
the environment as comprehensively as possible, as well as the preconditions under which
altruistic action may be possible. For example, the child bearing cost parameter determines
how much food is needed to reproduce, thus regulating the harshness of the environment
while level o f sacri f ice determines how generously food is given away by altruistic agents,
thus determining the overall effect of altruism on donors and givers.
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Parameter Description Model

num agents The initial number of agents in the model. Base

li f e
expectancy

Tuple that determines the minimum and the
maximum age an agent can reach. Aging

agent limit
The maximum number of agents the
simulation can have. Reproducing

child bearing
cost

Cost for reproducing in food units paid by
both parents. Reproducing

mutation
chance

Probability of a child taking on a trait
different from the traits of both parents. Reproducing

f ood
multiplicator

Determines the amount of food available at every step
in the environment (num agents× f ood multiplicator). Eating

f inding max
Determines how much food a single agent can possibly
find at each step. Eating

level o f
sacri f ice

The percentage of the available amount of food
an altruistic agent is willing to give away at
each step.

Altruism

f ake
greenbeards

Determines if “fake” greenbeards are part of
the simulation (see section 4.3.2.1). Greenbeard

min
relationship

The minimum relationship strength required for a
kin selection agent to act altruistically. Kin selection

group number Initial number of groups in the simulation. Group

migration rate
Chances of an agent migrating to a different group
at each step. Group

Table 4.1: Model input parameters.

4.5 Outputs

The model produces a variety of outputs, some at the end of the model execution and some
at each step. A full list of output parameters can be found in table 4.2. These outputs are
used in chapter 6 to analyze the sustainability of different altruistic strategies.
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Parameter Description Model

total agents Number of agents per step. Base

agent types Number of agents per step by agent type. Base

agent
neighbors Average number of neighbors per agent type. Base

f ood
distribution

Distribution of agents above and below the median amount
of food units. Eating

f ood
distribution
by type

Average amount of food units per agent type. Eating

trivers values
Calculated fitness values for altruists and
non-altruists according to eq. (3.2). Altruism

average
reputation Average agent reputation. Reputation

agent groups Number of agents per group. Group

agent
neighbors
by group

Average number of graph neighbors per agent group. Group

groups culture Culture values per group. Culture

Table 4.2: Model output values.



20 CHAPTER 4. MODEL



CHAPTER 5

Implementation

The source code for the simulation, including instructions on how to run the different models, can
be found here: https://github.com/koerners/thesis-simulation.

For the implementation of the simulation Python 3.8.10 has been chosen. Some no-
table additional packages include mesa [20], which provides a framework for agent-based
simulation, as well as networkx [16], which is used for the network components of the
simulation. For analyzing the generated data the packages pandas1, scipy2 and mat-
plotlib3 have been used. For a more in-depth analysis of the network graph, the soft-
ware Cytoscape4 has also been of great use. The computational power required to run the
simulation in multiple different configurations and iterations for hundreds of agent gener-
ations has made it impractical to use a single computer. Instead, Simple Linux Utility
for Resource Management (slurm) has been used to distribute the computational
workload onto clusters provided by the Institute of Informatics at LMU Munich.

In the following chapter, the implementations of some key components of the simula-
tion are covered, and some key algorithms are presented. In section 5.1 the implementation
of the core life cycle model is shown while section 5.2 presents the implementations for the
various types of altruistic agents. Finally, section 5.3 gives an overview of the verification
practices utilized to ensure that the simulation is working as intended.

5.1 Life Cycle

The life cycle of a single agent has been implemented according to section 4.3.1, as can
be seen in algorithm 1. The life expectancy of an agent is determined by taking a ran-
dom number between the minimum and maximum model-wide li f e expectancy parameter.
While the life expectancy is not reached, the agent has to find food to survive. The logic
of food finding can be seen in algorithm 2. It is mainly defined by a model wide param-
eter, f inding max, which in conjunction with the parameter child bearing cost regulates the

1https://pandas.pydata.org/
2https://scipy.org/
3https://matplotlib.org/
4https://cytoscape.org/

21

https://github.com/koerners/thesis-simulation
https://pandas.pydata.org/
https://scipy.org/
https://matplotlib.org/
https://cytoscape.org/


22 CHAPTER 5. IMPLEMENTATION

overall harshness of the environment. In each step, the agent must consume one unit of
food to survive. The chances of finding x ∈ {0,1,2, . . . , f inding max} food units each round
are 1

f inding max+1 . Therefore, in an environment with f inding max = 3 the chances of an agent
getting no (0) food units, assuming that there is still some left, are 1

4 . Food is also the lim-
iting factor when it comes to reproducing (algorithm 3) as agents not only have to find a
suitable partner but also have to have a certain amount of food, determined by the model
wide parameter child bearing cost, which is deducted from the agent’s food resources when
procreating. If the agent and its partner meet the requirements to reproduce, the result-
ing offspring randomly inherits the altruistic trait of one parent. If the model parameter
mutation chance is set, the child can also mutate to a different type of agent that is present in
the model. In this case, the mutant always becomes a different type than any of the parents,
with the probability determined by the parameter.

At the end of each step, the agent has the option to act altruistically. At this point, the
behavior diverges between agents according to their respective altruistic traits.

Algorithm 1 The agent life cycle.

Require: parameters marked by * are set by the model.
1: is alive← true
2: age← 0
3: f ood← 0
4: partner← None
5: li f e expectancy← random(minAge∗,maxAge∗)
6: while is alive do
7: f ood← f ood +FINDFOOD() ▷ see algorithm 2
8: if age≥ 18 then
9: if partner then

10: REPRODUCE(partner) ▷ see algorithm 3
11: else
12: partner← FINDPARTNER()
13: end if
14: end if
15: age← age+1
16: f ood← f ood−1
17: ALTRUISTICACT( f ood) ▷ see algorithm 4
18: if age > li f e expectancy or f ood < 0 then
19: is alive← f alse
20: end if
21: end while

Algorithm 2 Determining the amount of food units agents acquire per step.

Require: parameters marked by * are set by the model.
1: function FINDFOOD
2: return RANDOM(0, f inding max∗)
3: end function
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Algorithm 3 Reproducing agents.

Require: parameters marked by * are set by the model.
1: function REPRODUCE(partner)
2: if f ood > child bearing cost∗ then
3: if partner f ood > child bearing cost∗ then
4: if RANDOM(0,1) ≤ mutation chance∗ then
5: child← non parent type ▷ The child mutates to a type different than the

parents
6: else
7: child← RANDOM(trait, partner trait) ▷ The child inherits the altruistic

trait of one of the parents
8: end if
9: f ood← f ood− child bearing cost∗

10: partner f ood← partner f ood− child bearing cost∗
11: end if
12: end if
13: end function

5.2 Altruistic Behavior

The underlying calculation of altruistic behavior is implemented as shown in algorithm 4.
In each step, the maximum sacrifice an agent would be willing to make is determined. This
value is calculated as shown in algorithm 5 and depends on the model wide parameter level
o f sacri f ice as well as the agent’s own food supply. While the agent still has food to give to
someone else, it looks for agents that have no food left and would otherwise starve at the
end of the step. If the trait-specific conditions defined in the IsWillingToHelp(peer) functions
(algorithms 6 to 11) hold true, the agent gives one food unit to its peer. The benefit of an
altruistic action is defined as one (1). Thus, the cost of an altruistic action can be considered
as

1
max(1,child bearing cost)

(5.1)

since the donor hurts its own reproductive fitness by giving away food.

Algorithm 4 Altruism mechanisms.

Require: parameters marked by * are set by the model.
1: function ALTRUISTICACT(food)
2: max sacri f ice← DETERMINEMAXSACRIFICE() ▷ see algorithm 5
3: for max sacri f ice do
4: for peer in agents do
5: if peer f ood < 1 then
6: if ISWILLINGTOHELP(peer) then ▷ see algorithms 6 to 11
7: peer f ood← peer f ood +1
8: f ood← f ood−1
9: end if

10: end if
11: end for
12: end for
13: end function
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Algorithm 5 Determining the maximum amount of food an altruist is willing to give.

Require: parameters marked by * are set by the model.
1: function DETERMINEMAXSACRIFICE
2: max sacri f ice← 0
3: if level o f sacri f ice∗= 1 then
4: max sacri f ice← f ood
5: else
6: max sacri f ice← level o f sacri f ice∗ × f ood
7: end if
8: return MAX(1,max sacri f ice)
9: end function

5.2.1 Unconditional

The unconditional altruist does not differentiate between agents when it comes to helping
them. Accordingly, its IsWillingToHelp function (algorithm 6) will always return true.

Algorithm 6 Altruistic behavior of unconditional altruists.

1: function ISWILLINGTOHELP(peer)
2: return true
3: end function

5.2.2 Greenbeard

Greenbeard altruists check whether their peers are greenbeard altruists as well, and only
help them if they are.

Algorithm 7 Altruistic behavior of greenbeards.

1: function ISWILLINGTOHELP(peer)
2: return peer is greenbeard
3: end function

5.2.3 Kin Selection

The logic of decision (algorithm 8) for the kin selection model is slightly more complicated,
as it also considers Hamilton’s Rule (see section 3.1.2.1). Kin altruists only iterate through a
list of their relatives when looking for agents they want to help. The relatedness parameter
r for different kinds of relationships is set as shown in table 5.1.

Relationship r

Partner 1
Sibling 2
Child↔ Parent 3

Table 5.1: Relatedness values of different relationships.

When using the benefit and cost values defined in section 5.2 Hamilton’s rule solves as
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follows:

r×B >C

=⇒ r×1 >
1

max(1,child bearing cost)

=⇒ r >
1

max(1,child bearing cost)

Thus, limiting the parameters in the simulation to r ∈ {1,2,3} and child bearing cost ∈
{2,3,4, . . .} ensures that Hamilton’s rule holds true for any interaction between relatives.
For the purpose of the simulation, a model wide parameter min relationship can be set to
determine the minimum relatedness an agent has to have with another one to help it. In any
case, the agent will always help the agent in need with the highest relatedness parameter r
first.

Algorithm 8 Altruistic behavior of kin selection agents.

Require: parameters marked by * are set by the model.
1: function ISWILLINGTOHELP(peer)
2: if relationship≥ min relationship∗ then
3: if peer is closest relative in need then
4: return true
5: end if
6: end if
7: return f alse
8: end function

5.2.4 Reputation

The implementation of the reputation model is comparatively straightforward. Each agent
starts with a reputation of zero, which is increased with each altruistic act. For each in-
teraction, the average population reputation is calculated and compared to the reputation
of the agent that requires help. Constraining the reputation to positive integers leads to
a stepwise increase in average reputation, giving plenty of chance for other agents to also
increase their reputation before being affected by a change in the average reputation.

Algorithm 9 Altruistic behavior of reputation agents.

Require: parameters marked by * are set by the model.
1: function ISWILLINGTOHELP(peer)
2: return peer reputation≥ average reputation∗
3: end function

5.2.5 Group

Group altruists determine whether to help another agent based on group affiliation. For
the implementation, this only requires a simple equality check. Agents are randomly dis-
tributed into different groups at the model initialization and inherit their group to their
children. Based on the migration rate parameter, agents can also migrate between groups
under certain circumstances (section 4.3.2.4).
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Algorithm 10 Altruistic behavior of group agents.

1: function ISWILLINGTOHELP(peer)
2: return peer.group = group
3: end function

5.2.6 Culture

The determining factor for the culture agent’s altruistic decision is its groups’ culture of
cooperation, which is a value between zero and one that represents the likelihood of an
agent helping another one in the same group. The different groups start out with different
initial culture values, which then change based on the agents’ actions. Acting altruistically
slightly increases the culture value and vice versa.

Algorithm 11 Altruistic behavior of culture agents.

Require: parameters marked by * are set by the model.
1: function ISWILLINGTOHELP(peer)
2: if peer.group = group then
3: if RANDOM(0,1)≤ group culture∗ then
4: return true
5: end if
6: end if
7: return f alse
8: end function

5.3 Verification

To ensure the correctness of the implementation, standard software verification practices
have been used. This includes unit tests with at least 95% coverage as well as the use
of a linter to catch subtle bugs early on, which is especially important since Python is
dynamically typed. All used packages are well established and tested. Furthermore, each
implemented model has been manually verified to ensure it produces plausible data.



CHAPTER 6

Exploratory Analysis

In this chapter, the results that the different simulations produce with different parameters
are analyzed. First, in section 6.1, the applied methodology for running and analyzing the
simulations is described. Then, in section 6.2.1 the results of the benchmark model with
only unconditional altruists and non-altruists are assessed. The results of the other models
with the varying altruistic strategies are evaluated in sections 6.2.2 to 6.2.6.

6.1 Methodology

Each model has been run with every possible set of combinations of the parameters listed in
table 6.1. The explicit parameter values used have been chosen to represent environments
of varying harshness, while also altering the disposition of the altruists to act altruistically.
To satisfy the requirements of the law of large numbers (see section 4.2), every simulation
has been run for up to twenty times with different seeds for each set of parameters. For the
analysis, the runs with the same parameters but with different seeds have been averaged.
The number of steps, or “years” in the context of the model, has been set to 5,000. Depend-
ing on the li f e expectancy parameter, this results in a total of 90 to 180 generations, which
has proven sufficient for the purpose of this simulation.

27
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Parameter Values Model

num agents {100} Base

li f e expectancy {(25, 35), (60, 70)} Aging

agent limit {5,000} Reproducing

child bearing cost {0, 2, 4, 6} Reproducing

mutation chance {0, 0.05} Reproducing

f ood multiplicator {5} Eating

f inding max {2, 3} Eating

level o f sacri f ice {0.2, 0.5, 0.8, 1.0} Altruism

f ake greenbeards {True, False} Greenbeard

min relationship {1, 2, 3} Kin selection

group number {2, 4, 6} Group

migration rate {0.0, 0.05, 0.15} Group

Table 6.1: Used parameter values by submodel. A range of values is assigned to each
parameter that are then used for the simulations. It was found that the parameters num
agents and f ood multiplicator do not influence the results of the models in any relevant
way; thus only one value has been assigned to each one.

6.2 Results

To isolate the relevant factors and parameters of each of the models, the correlations of
all inputs and outputs have been calculated for each one. Based on these correlations,
plots have been created to investigate the influence of especially significant parameters.
The following section summarizes the most relevant results. The full set of generated
plots can be accessed here: https://github.com/koerners/masterthesis-data/
tree/master/results/simulation.

6.2.1 Benchmark

The benchmark model is used to set a baseline for the results of the other models. It only
contains the control group consisting of unconditional altruists and non-altruists. The re-
sulting correlation matrix (table A.1) shows significant correlations as to the parameter
child bearing cost. Plotting the total number of agents in the simulation for each possible
child bearing cost value from table 6.1 results in fig. 6.1. It clearly shows that, while the
population thrives with a low child bearing cost, it struggles with higher ones, ultimately
leading to extinction.

https://github.com/koerners/masterthesis-data/tree/master/results/simulation
https://github.com/koerners/masterthesis-data/tree/master/results/simulation
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Figure 6.1: Total number of agents over time, with different values for child bearing cost.
The population does not manage to survive in the two harshest environments.

An interesting observation can be made regarding the parameter child bearing cost when
looking at the distribution of the different types of agents (fig. 6.2). At a low cost, the uncon-
ditional altruists go extinct in less than 75 steps, while they are able to survive considerably
longer in the high-cost environment. However, the unconditional altruists were unable to
prevail in the long run with any of the tested configurations. The implications of this will
be discussed in section 8.2.

(a) child bearing cost = 0 (b) child bearing cost = 6

Figure 6.2: Distribution of types of agents by child bearing cost for the first 500 steps. Purple:
non-altruists; green: unconditional altruists. Unconditional altruists survive considerably
longer under harsher conditions (b).

6.2.2 Greenbeard Model

The results of the greenbeard model show how powerful altruism can be if no one is able to
take advantage of altruists. Vice versa, it shows how easily the presence of cheaters can lead
to the extinction of whole populations, as shown by the negative correlations (table A.2)
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between the allow f ake greenbeards parameter and the f inal agents, average f itness altruists
and average f itness non altruists values. In fig. 6.3 this difference between cheaters (fake
greenbeards) being present and being absent is especially obvious. The presence of fake
greenbeards in harsher environments leads to the swift extinction of the population as a
whole, while their absence leads to the real greenbeards taking over the population and
establishing a stable population that even survives the harshest of environments.

(a) allow f ake greenbeards = True (b) allow f ake greenbeards = False

Figure 6.3: Distribution of types of agents with child bearing cost = 6 and fake greenbeards
present (a) and absent (b) during the first 500 steps. Purple: non-altruists; green: uncon-
ditional altruists; orange: real greenbeards; yellow: fake greenbeards. If fake greenbeards
are present in the simulation, the population will go extinct in less than 500 steps. If fake
greenbeards are absent, the population and especially the real greenbeards will prosper.

Figure 6.4: Total number of agents, with different values for child bearing cost and no fake
greenbeards present. The population is thriving in all environments.
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Figure 6.5: Total number of agents, with different values for child bearing cost and fake
greenbeards present. The population cannot survive in the two harshest environments.

6.2.3 Kin Selection Model

The kin selection model shows how altruism directed towards genetic relatives can lead
to the sustainability of populations even in the harshest environments. As can be seen in
fig. 6.6 the kin selection agents only provide a small but stable part of the overall population
in low-cost environments. This is to be expected especially for child bearing cost = 0 since
the constraints of Hamilton’s rule as defined in section 5.2.3 don’t hold true. In harsher
environments, however, the kin selection agents prevail and oust the other types of agents.
An interesting observation regarding the min relationship parameter can be observer in
fig. 6.7. The higher the relationship threshold before an agent is willing to help the other,
the better the sustainability of kin selection altruists. This is also indicated by the positive
correlation of min relationship and the average f itness altruists (table A.3).
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(a) child bearing cost = 0 (b) child bearing cost = 6

Figure 6.6: Distribution of types of agents by child bearing cost for the first 5,000 steps.
Purple: non-altruists; green: unconditional altruists; dark green: kin selection altruists. Only
being a minority of the population in the low-cost environment, the kin selection altruists
are the only agent type to prevail in the high-cost environment.

(a) min relationship = 1 (b) min relationship = 3

Figure 6.7: Distribution of types of agents by min relationship. Purple: non-altruists; green:
unconditional altruists; dark green: kin selection altruists. A higher value leads to a larger
number of kin altruists.

6.2.4 Reputation Model

The results of the reputation model indicate that informed altruism has a considerable im-
pact on the sustainability of altruistic traits. The data demonstrates that altruism based
on reputation not only makes altruism sustainable but makes it thrive in low to medium-
cost environments (fig. 6.11). However, in the environment associated with the highest
cost for reproducing (fig. 6.8 b), the population will die out after only a few generations.
An interesting observation regarding the average reputation of the agents is that a higher
life expectancy not only increases the average reputation of the agents (fig. 6.9), but also
that if the overall population has a higher life expectancy, reputation-based altruists are
more likely to possess more food compared to their non-altruistic counterparts (fig. 6.10).
Counterintuitively, the level o f sacri f ice parameter does not seem to have any effect on the
average reputation of the agents (fig. 6.9). Furthermore, the level o f sacri f ice does not seem
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to correlate with any other parameters (table A.4). Another key finding of the model is
the positive effect of the presence of the reputation altruists on the overall development of
the population. Compared to the benchmark model where the population does not man-
age to survive in the two second-harshest environments (fig. 6.1), the population of this
model manages to survive in all but the harshest environment through the presence of the
reputation agents. (fig. 6.11).

(a) child bearing cost = 0 (b) child bearing cost = 6; first 500 steps.

Figure 6.8: Distribution of types of agents by child bearing cost. Purple: non-altruists; green:
unconditional altruists; red: reputation altruists. The reputation-based altruists take over
the majority in the low-cost environment but don’t prevail in the highest cost one.

(a) by li f e expectancy (b) by level o f sacri f ice

Figure 6.9: Average reputation for the first 5,000 steps. While a higher li f e expectancy leads
to an overall higher reputation, the level o f sacri f ice does not seem to affect it.
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(a) li f e expectancy = (25,35) (b) li f e expectancy = (60,70)

Figure 6.10: Average food units per agent type by li f e expectancy. Purple: non-altruists;
green: unconditional altruists; red: reputation altruists. With a higher li f e expectancy rep-
utation altruists surpass non-altruists regarding the amount of food units they possess on
average.

Figure 6.11: Total number of agents in the reputation model over time, with different val-
ues for child bearing cost. The population manages to survive under all but the harshest
conditions.

6.2.5 Group Model

Altruism based on group affiliation turns out to be a highly effective strategy. The results
show the group altruists reliably taking over the majority of the population in environ-
ments of all harshness (fig. 6.12). An interesting observation is that there always tends to
be one group that takes over the majority after only a few generations (fig. 6.13). A finding
regarding the inequality among agents is that the distribution of food among agents in low-
cost environments is considerably more uneven than in high-cost environments (fig. 6.14).
This could be explained by the fact that the group altruists are more likely to take over
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the absolute majority of the population in high-cost environments; thus the food units are
more evenly distributed since they are willing to share among each other.

(a) child bearing cost = 0 (b) child bearing cost = 6

Figure 6.12: Distribution of types of agents by child bearing cost for the first 500 steps.
Purple: non-altruists; green: unconditional altruists; blue: group altruists. Group altruists
thrive in all environments and are the only type to survive in high-cost environments.

(a) group number = 3 (b) group number = 5

Figure 6.13: Distribution of agent groups by group number. In every configuration one
group takes over the majority of population in a short time.
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(a) child bearing cost = 0 (b) child bearing cost = 6

Figure 6.14: Food distribution based on the median, by child bearing cost. Purple: agents
who have more food than the median; turquoise: agents who have a below-median amount
of food. In low-cost environments, the amount of food is unevenly distributed among
agents. In high-cost environments, the amount of food is distributed evenly.

6.2.6 Culture Model

The results of the culture model show that altruism influenced by culture is one of the most
effective strategies discussed in this paper. Culture agents not only take over the major-
ity of the population in the low-cost environments but also thrive in the high-cost ones
(fig. 6.15). The initial helping culture of the groups highly influences their development.
The group with the highest initial helping culture takes over the majority in only a short
time (fig. 6.16). This in turn improves the chances of survival for every group member in
the high-cost environments. The helping culture values of groups with a low initial help-
ing culture value tend to gradually decline, while a higher initial value tends to stay stable
over generations (fig. 6.17). A stabilizing factor to the helping culture value seems to be
the migration rate. If migration between groups is encouraged, the initial fluctuation as
well as the decline of culture values tend to be reduced. Culture agents also tend to have a
significantly better developed social network compared to their peers (fig. 6.18).
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(a) child bearing cost = 0 (b) child bearing cost = 6

Figure 6.15: Distribution of types of agents, by child bearing cost for the first 500 steps.
Purple: non-altruists; green: unconditional altruists; turquoise: culture altruists. The culture
agents constitute the majority in any configuration. In the harshest environment, the cul-
ture agents are the only type to survive.

Figure 6.16: Group distribution with group number = 5. The group with the highest initial
helping culture (indicated by the digits behind the group initials) comprises the majority
of the population after only a few generations.
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(a) migration rate = 0.0 (b) migration rate = 0.15

Figure 6.17: Altruism culture per group, by migration rate. Migration stabilizes the culture
within the groups.

Figure 6.18: Average network connections per agent type with group number = 5. The cul-
ture agents have a significantly more developed social network compared to their peers.
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Network Analysis

In addition to the analysis of the exploratory results, the social networks that the agents
have formed during the simulations are analyzed. Parameter values that yielded promis-
ing results in section 6.2 have been isolated, and the models were run with them for 500
steps. The results of this analysis regarding clustering and connectivity are summarized in
section 7.1. Furthermore, the relationship between the number of altruistic acts an agent
has committed and its position in the social network has been analyzed. The complete
series of generated networks can be explored interactively here: https://koerners.
github.io/masterthesis-data/.

7.1 Path Length, Clusters, and Hubs

For the analysis of the network, the metrics of characteristic path length, network clustering
coefficient and network heterogeneity are integral. The characteristic path length is defined
as the expected distance between two connected agents in a network. It is calculated for
the graph G = (V,E) as follows:

l(G) =
1

|V | ∗ (|V |−1) ∑
s∈V

∑
t∈V\{s}

σst , (7.1)

where σst is the number of edges in a shortest path between nodes s and t. In the case of
an unconnected graph, the equation is modified to sum over all connected node pairs. [27]

The network clustering coefficient of an undirected network gives an overall indication
of the clustering in a network. It is defined as the average of the clustering coefficient
of all nodes in the network, where the clustering coefficient of a node n is the number of
edges between the neighbors of n relative to the maximum number of edges that could exist
between the neighbors of n. This can be formalized for the graph G = (V,E) as follows:

cc(G) =
1
V ∑

n∈V

2en

Nn−1
, (7.2)
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where Nn is the number of neighbors of n, and
en is the maximum number of edges that could exist between

the neighbors of n. [21]

The final figure, the network heterogeneity, is an indication as to the tendency of the
network to contain hubs. According to [8] the network heterogeneity for a graph G can be
formalized as:

h(G) =

√
variance(c)
mean(c)

, (7.3)

where c is the connectivity distribution, where the connectivity of an agent n is equal to the
number of directly connected agents.

The results of the network analysis are summarized in table 7.1. One interesting obser-
vation has been made regarding the relationship between the number of agents in a net-
work and the expected distance between two connected agents. As can be seen in fig. 7.1,
the path length increases at a rate of 1.05 with every added 100 agents until it reaches
approximately 6.5 where it converges. Interestingly, this is in line with the small-world
phenomenon, which states that any two people in the world are connected through a max-
imum of about six other people. [2, p. 45-46] The fact that this phenomenon occurs by
itself indicates that the model might be a good approximation for real social networks. The
outliers in the data visualized in fig. 7.1 tend to be populations that are about to go extinct,
which suggests that the growth rate stated beforehand is a good indicator for a healthy
social network.

Figure 7.1: Relationship between the number of agents on the network and the character-
istic path length. With every increase of 100 agents, the path length increases at a rate of
about 1.05 until it converges at approximately 6.5.

The visual inspection of networks with distinct values for the clustering coefficient and
heterogeneity reveals interesting details. The reputation model at step 100 has a relatively
low clustering coefficient while having a rather high heterogeneity. Looking at the corre-
sponding graph (fig. 7.2) reveals a network of agents that is far spread, but the subnetworks
are well-connected through hubs. The opposite value combination with a high clustering
coefficient and low heterogeneity can be observed at step 100 of the group model (fig. 7.3).
The cluster of group agents in the upper left is highly interconnected with little tendency
to hubs, which is a result of its interconnectivity. High clustering is also given at step 200 of
the kin selection model. The visualization (fig. 7.4) reveals one fully connected network of
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Step Nodes Avg.
neighbors

Characteristic
path length

Clustering
coefficient Heterogeneity

Benchmark 100 303 6.9 4.5 0.62 0.39
200 375 5.7 5.8 0.62 0.42
300 100 2.3 2 0.26 0.5
400 20 3.6 1.1 0.9 0.14
500 1 - - - -

Greenbeard 100 59 3.5 5.4 0.5 0.44
(with fake) 200 2 - - - -

300 0 - - - -

Greenbeard 100 287 6.2 5.1 0.65 0.41
(without fake) 200 388 4.9 6.8 0.55 0.42

300 380 5.42 6.1 0.57 0.39
400 379 5.1 6.4 0.58 0.41
500 383 5 7 0.6 0.39

Kin selection 100 32 2.7 3.9 0.49 0.53
200 47 5.3 3.5 0.78 0.4
300 61 5.78 3.5 0.65 0.45
400 116 5.5 4.3 0.63 0.43
500 223 5.3 5.2 0.63 0.43

Reputation 100 56 3.1 4.1 0.3 0.64
200 14 2.7 2.7 0.6 0.32
300 6 2 1.3 0.58 0.35
400 0 - - - -

Group 100 124 6.2 4.2 0.75 0.35
200 287 6.4 5 0.65 0.39
300 348 5.1 7.2 0.64 0.42
400 360 5 7.5 0.62 0.38
500 361 5.4 6.8 0.61 0.38

Culture 100 87 5.6 2.9 0.72 0.4
200 172 5.9 4.6 0.66 0.4
300 386 4.9 6.2 0.52 0.37
400 375 4.8 6.6 0.56 0.37
500 392 5.2 6.7 0.59 0.4

Table 7.1: Network characteristics of all models for the first 500 steps with child bearing
cost = 6, li f e expectancy = (60,70), mutation chance = 0.05, f inding max = 3, level o f
sacri f ice = 0.5, min relationship = 1, group number = 5, and migration rate = 0.05. The term
average neighbors indicates the average connectivity of a node in the network. Character-
istic path length gives the expected distance between two connected nodes. The clustering
coefficient is the average of the clustering coefficients for all nodes in the network. The
heterogeneity reflects the tendency of a network to contain hub nodes. [21]
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agents, with smaller clusters spread throughout it. An example of average values for clus-
tering and heterogeneity is the greenbeard model without fake greenbeards at step 500.
Visually (fig. 7.5), the network resembles a well-developed network with few but strong
hubs with smaller branches reaching out.

Figure 7.2: Network of the reputation model at step 100 with child bearing cost = 6, li f e
expectancy = (60,70), mutation chance = 0.05, f inding max = 3, and level o f sacri f ice = 0.5.
Purple: non-altruists; green: unconditional altruists; orange: reputation agents. Diamond-
shaped nodes exhibit hub-tendencies.

Figure 7.3: Network of the group model at step 100 with child bearing cost = 6, li f e
expectancy = (60,70), mutation chance = 0.05, f inding max = 3, level o f sacri f ice = 0.5, group
number = 5, and migration rate = 0.05. Purple: non-altruists; green: unconditional altruists;
blue: group altruists. Diamond-shaped nodes exhibit hub-tendencies.
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Figure 7.4: Network of the kin selection model at step 200 with child bearing cost = 6, li f e
expectancy = (60,70), mutation chance = 0.05, f inding max = 3, level o f sacri f ice = 0.5, and
min relationship = 1. Purple: non-altruists; green: unconditional altruists; dark green: kin
selection altruists. Diamond-shaped nodes exhibit hub-tendencies.

Figure 7.5: Network of the greenbeard model with no fake greenbeards at step 500 with
child bearing cost = 6, li f e expectancy = (60,70), mutation chance = 0.05, f inding max = 3, and
level o f sacri f ice = 0.5. Purple: non-altruists; green: unconditional altruists; orange: real
greenbeards. Diamond-shaped nodes exhibit hub-tendencies.
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7.2 Connectivity of Altruists

To analyze the position that altruists have in a social network regarding their connected-
ness, the number of altruistic acts of the agents has been put in relation to their neighbor-
hood connectivity (fig. 7.6) and betweenness centrality (fig. 7.7). The neighborhood con-
nectivity is used as a metric for the semi-local connectedness of the agents. It is defined as
the average connectivity of all the neighbors of agent n and can be formalized as:

NCn = ∑
k∈N(n)

N(k)
N(n)

, (7.4)

where N(n) is the set of neighbors of agent n. [26]

The betweenness centrality is used to measure the global connectedness of agents. The
betweenness centrality of agent n can be defined as:

Cb(n) = ∑
s ̸=n̸=t

σst(n)
σst

, (7.5)

where s and t are agents different from n,
σst denotes the number of shortest paths from s to t, and
σst(n) is the number of σst that n is a part of. [21]

The analysis of the semi-local connectedness of altruists, as shown in fig. 7.6, indicates
that the more often an agent has acted altruistically, the less likely it is to inhabit a key po-
sition within its closer environment. In all examined networks, the correlation between the
number of committed altruist acts and the neighborhood connectivity is negative. How-
ever, when examining the global position of altruistic agents, the opposite can be observed
(fig. 7.7). The more altruistic actions an agent has committed, the more likely it is to have
an influential position within the global network. This effect is especially noticeable in the
greenbeard (fig. 7.7 a) and culture models (fig. 7.7 c), but also to a lesser degree in the kin
selection model (fig. 7.7 b) and group model (fig. 7.7 d).
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(a) greenbeard model (without fakers) (b) kin selection model

(c) culture model (d) group model

Figure 7.6: The neighborhood connectivity of agents and their altruistic acts for the first 500
steps with child bearing cost = 6, li f e expectancy = (60,70), mutation chance = 0.05, f inding
max = 3, level o f sacri f ice = 0.5, min relationship = 1, group number = 5, and migration rate =
0.05. The neighborhood connectivity of an agent n is defined as the average connectivity
among all neighbors of the agent n. [21] The number of altruistic acts correlates negatively
with the neighborhood connectivity across all models.
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(a) greenbeard model (without fakers) (b) kin selection model

(c) culture model (d) group model

Figure 7.7: The betweenness centrality of agents and their altruistic acts at step 500 with
child bearing cost = 6, li f e expectancy = (60,70), mutation chance = 0.05, f inding max = 3,
level o f sacri f ice = 0.5, min relationship = 1, group number = 5, and migration rate = 0.05. In
all but the kin selection model the correlation is positive.
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Discussion

In this chapter, the findings of this paper’s work are presented in section 8.2 and sugges-
tions for further research into this topic are provided in section 8.3. But before that, the
limitations of the used approach are discussed in section 8.1.

8.1 Limitations

Using simulations as a scientific method has its own considerable drawbacks. The nature
of simulations dictates that the modeler has to make assumptions regarding the modelled
system and omit parts of the systems that are not deemed relevant. Some notable limita-
tions are the following:

1. Randomness is a significant factor for almost all integral parts of the simulation. This
is to circumvent the underlying complexity of real life processes that are not consid-
ered essential to this model. To mitigate this partially, the simulation has been run
many times with different seeds.

2. In some places, the simulation leaves the possibilities for agents wide open, e.g., when
it comes to the age of the partners they can choose. In other places, the agents are re-
stricted quite heavily. This degree of restriction has been influenced by the modeler’s
opinion regarding what processes might be important for the system in question and
which are negligible. This kind of opinionated development is unavoidable to some
degree. It should, however, be taken into account when reviewing the findings.

3. The available computing power has somewhat limited the number of possible param-
eters testable in the available amount of time. On a four-core processor, some models
have taken up to a week of continuous calculation to complete, even with heavy op-
timizations regarding their performance. Thus, not all parameters have been tested
for their full range.

4. Especially in the social sciences, models are evaluated regarding their reproducibility
in the real world. The model in its current form can most likely never be evaluated in
this way. Evolution has been happening over the course of thousands of years, and
it’s impossible to go back to the beginning of society when altruism has most likely
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evolved and have people fill out questionnaires about whom they would save from
starvation and whom they would let die. However, it is the point of simulations and
scientific models in general to open up possibilities where other scientific methods
cannot be applied. In physics, systems under investigation are regularly stripped
down to their most fundamental parts and assumptions have to be made in order to
formalize real-world phenomena into models.

I most certainly do not claim having done justice to the complexity of human evolution
and decision-making in the roughly 2,500 lines of code that this simulation consists of.
Nevertheless, I hope to have captured its most essential mechanisms and dynamics. It is
still important to stress that any findings and conclusions drawn from the results of the
model are not necessarily transferable to the real world and always have to be considered
in the context of this specific model.

8.2 Findings

All the presented findings have to be considered under the pretense of the model used in
this paper with all its limitations and assumptions, especially but not limited to those listed
in section 8.1.

8.2.1 Different Conditions Promote Different Types of Altruism

The results show that theories of altruism based on group affiliation and cultural evolution
have been the most successful across the different conditions they have been tested under.
Other types of altruism have shown great potential under more specific circumstances: Kin
selection does not develop significantly in low- to mid-harsh conditions but is rather effec-
tive under very harsh conditions. While the reputation strategy has performed brilliantly
under nearly all circumstances it’s been presented with, it has completely failed to do so
in the harshest environment. A likely explanation for this is that there simply hasn’t been
enough time for the reputation mechanisms to develop due to the harshness of the envi-
ronment. This indicates that strategies that work “out of the box” like kin selection where
the relationship between agents has been clear from the beginning and therefore help has
been distributed without delay, are in the short term more powerful when it comes to the
survival in harsh environments.

8.2.2 Altruism Leads to a Considerably Better Survivability in Harsh En-
vironments

In very harsh conditions, it is not possible for a population to survive if there are no altruists
present at all. This leads to the conclusion that the evolution of altruism has most likely
been a product of harsh environments where populations could not have survived without
helping one another.

8.2.3 Higher Individual Sacrifice Does Not Improve the Survivability

While the results show that altruism can be a highly effective strategy, it does not seem to
matter too much whether altruists are willing to sacrifice only a little of what they have,
or, if they are willing to sacrifice all that they have. On the contrary, if altruists are willing
to sacrifice everything they have, they are not able to contribute to the gene pool, which
leads to altruists dying out. Thus, the population is unable to sustain itself in harsher
environments. A lower level of individual sacrifice with a high portion of altruists proves
to be the most effective combination for long-term success in harsh environments.
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8.2.4 Cheaters Destabilize Altruistic Systems Significantly

The results of the greenbeard model (section 6.2.2) demonstrate how easy it is for freeload-
ers or cheaters to destabilize an otherwise well-functioning system if the system itself can-
not adapt to these cheaters. Very stable systems might tolerate a certain number of cheaters,
but if their number rises to a critical level, the system collapses. This effect is similar to the
herd-immunity effect in the case of diseases, where a small percentage of the population
without immunity can take down the whole system by providing hosts for mutations and
blocking health care resources. Research regarding how the issue of cheaters could have
been resolved through the evolution of altruistic punishment has been conducted, e.g., in
[24].

8.2.5 Altruists Lose Local Influence While Gaining Global Influence

The network analysis indicates that altruists weaken their semi-local influence while gain-
ing it on a global scale. This could be due to altruists strengthening the global network
through their sacrifices, while weakening their semi-local connectedness. This leads to
them having a weak semi-local position while on a global scale, they are highly influential.

8.3 Future Work

For an even better understanding of the presented model, the possibility of an “exhaus-
tive” simulation could be considered. [22] An exhaustive simulation could include a much
wider parameter value range, which the scope of this project, its time constraints and lim-
ited available computing power have made impractical to run the simulation with. Without
the constraints of time and computing power, the network analysis could also be extended
to cover a much wider parameter range than in this paper. Furthermore, the network could
be made to react dynamically to altruistic actions, e.g., by creating and modifying links be-
tween the donor and receiver. Unfortunately, this idea had to be abandoned in this project
due to the limited computing power. Also, some further modifications to the model itself
could be made incrementally, e.g., to make certain processes like the finding of a partner
more realistic. However, an endeavor like this could lead down a path of trying to simulate
processes that lack the empirical research that is required to abstract them to a reasonable
degree. Furthermore, the presented findings could be compared comprehensively to real-
life data gathered by evolutionary biologists.
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CHAPTER 9

Conclusion

This thesis reports on using a cross-generational agent-based simulation to put the most
popular theories regarding the evolution of altruistic traits in humans to the test and con-
tributes to the evolving area of computational ethics. Chapter 2 presented the literature re-
garding the evolution of altruistic traits and the existing simulation-based approaches to
this topic. It also discussed the objections of those who do not agree with this approach.
Accordingly, the presented model was developed to complement existing models while
incorporating the criticism of others. After introducing the theoretical background for this
paper in chapter 3, the newly developed model and its submodels were described in chap-
ter 4. The presented model consisted of a population model that mimics a population of
up to 5,000 agents that live, eat, reproduce, and die in environments of varying harshness
over the course of hundreds of generations. This population model then was extended by
different submodels that incorporate different altruistic strategies according to the theories
that were discussed in chapter 3. In chapter 5, the implementation of the model and the
most relevant algorithms were presented. The results that this model has produced were
then analyzed in chapter 6 focusing on comparing the relative evolutionary development
of benchmark genes and a gene that employs the submodel specific altruistic strategy. In
chapter 7, the social networks the agents have formed during the simulations were ana-
lyzed regarding their small-world-properties, clustering, hub tendencies and the influence
altruists have over the network. In chapter 8, the limitations of the approach that was used,
which were mostly those one would expect from a simulation-based approach to such a
complex topic, were discussed.

The findings of this thesis, described in section 8.2, can be summarized as follows.
First, different environmental conditions promote different types of altruism. Group- and
culture-based approaches have been the most successful across environments of varying
harshness while kin selection and reputation-based altruism have shown high potential,
but only under more specific environmental circumstances. Second, altruism leads to a
considerably better survivability in high-cost environments. With effective altruistic strate-
gies, populations have been able to survive and even thrive under conditions, where pop-
ulations without sophisticated strategies have not been able to. Even individuals without
altruistic strategies have been able to survive in high-cost environments if altruists with ef-
fective strategies were present in the population. Third, higher individual sacrifice does not
improve survivability. In none of the experiments any improvement regarding the develop-
ment of the population or traits has been noticeable when comparing different individual
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levels of sacrifice as long as everyone has been willing to contribute at least a minimum.
Fourth, cheaters destabilize altruistic systems significantly. The fake greenbeards have reli-
ably contributed to the extinction of populations by pretending to be altruistic and thereby
“cheating” the system. Finally, altruists lose local influence while gaining global influence.
A significant loss of local influence has been noticeable with the increase of altruistic acts an
agent has committed, while simultaneously a rise in its global influence has been observed.
The model, as well as the analysis, can be extended in multiple ways in the future, some of
which are discussed in chapter 8.

Had Jean Valjean, Victor Hugo’s figure cited in the introduction of this thesis, kept walk-
ing past the man under the wagon, had he decided to stay silent when he saw the injustice
done to others, his life could have played out very differently. Maybe he could have gotten
married and would have had children of his own. But instead, he shared the fate of the
unconditional altruists this thesis considers, with his self-compassion subordinate to his
altruism ultimately leading to his demise without having passed down his genetic inheri-
tance. However, his actions have led to numerous lives being spared; thus he has in fact,
like the altruists in this model, improved the overall survivability of his kind in the harsh
and miserable environment that Hugo has painted around him. In the end Valjean’s great-
est foe describes him as “a benevolent malefactor, merciful, gentle, helpful, [. . . ] preferring
to ruin himself rather than to ruin his enemy, saving him who had smitten him, kneeling on
the heights of virtue, more nearly akin to an angel than to a man” [18]. He and his altruism
probably inspired others, giving him a cultural, if not genetic, inheritance.



APPENDIX A

Correlation Data

53



54 APPENDIX A. CORRELATION DATA

cb
c

fa
fm

lo
s

l
m

c
af

df
af

a
af

na

ch
ild

be
ar

in
g

co
st

(c
bc

)
1.

0*
**

-0
.8

4*
**

0.
0

0.
0

0.
0

0.
0

0.
55

**
*

0.
45

**
*

-0
.5

**
*

fin
al

ag
en

ts
(f

a)
-0

.8
4*

**
1.

0*
**

0.
2*

**
0.

0
0.

02
0.

0
-0

.6
1*

**
-0

.5
2*

**
0.

62
**

*
fin

di
ng

m
ax

(f
m

)
0.

0
0.

2*
**

1.
0*

**
0.

0
-0

.0
0.

0
0.

31
**

*
-0

.0
2

0.
29

**
*

le
ve

l
of

sa
cr

ifi
ce

(l
os

)
0.

0
0.

0
0.

0
1.

0*
**

-0
.0

0.
0

-0
.0

-0
.1

5*
**

-0
.0

1
lif

ee
xp

ec
ta

nc
y

(l
)

0.
0

0.
02

-0
.0

-0
.0

1.
0*

**
-0

.0
0.

14
**

*
-0

.0
2

0.
03

m
ut

at
io

n
ch

an
ce

(m
c)

0.
0

0.
0

0.
0

0.
0

-0
.0

1.
0*

**
-0

.0
-0

.3
8*

**
0.

45
**

*
av

g
fo

od
di

st
ri

bu
ti

on
fa

ct
or

(a
fd

f)
0.

55
**

*
-0

.6
1*

**
0.

31
**

*
-0

.0
0.

14
**

*
-0

.0
1.

0*
**

0.
41

**
*

-0
.3

2*
**

av
g

fit
ne

ss
al

t(
af

a)
0.

45
**

*
-0

.5
2*

**
-0

.0
2

-0
.1

5*
**

-0
.0

2
-0

.3
8*

**
0.

41
**

*
1.

0*
**

-0
.7

7*
**

av
g

fit
ne

ss
no

n
al

t(
af

na
)

-0
.5

**
*

0.
62

**
*

0.
29

**
*

-0
.0

1
0.

03
0.

45
**

*
-0

.3
2*

**
-0

.7
7*

**
1.

0*
**

Ta
bl

e
A

.1
:C

or
re

la
ti

on
s

fo
r

th
e

be
nc

hm
ar

k
m

od
el

.

af
g

cb
c

fa
fm

lo
s

l
m

c
af

df
af

a
af

na

al
lo

w
fa

ke
gr

ee
nb

ea
rd

s
(a

fg
)

1.
0*

**
-0

.0
-0

.1
7*

**
-0

.0
0.

0
-0

.0
0.

0
0.

41
**

*
-0

.2
6*

**
-0

.2
6*

**
ch

ild
be

ar
in

g
co

st
(c

bc
)

-0
.0

1.
0*

**
-0

.7
3*

**
-0

.0
0.

0
0.

0
0.

0
0.

53
**

*
0.

32
**

*
0.

1*
**

fin
al

ag
en

ts
(f

a)
-0

.1
7*

**
-0

.7
3*

**
1.

0*
**

0.
35

**
*

0.
0

0.
07

**
*

-0
.0

-0
.6

**
*

-0
.3

2*
**

0.
22

**
*

fin
di

ng
m

ax
(f

m
)

-0
.0

-0
.0

0.
35

**
*

1.
0*

**
0.

0
0.

0
0.

0
-0

.1
8*

**
-0

.0
1

0.
25

**
*

le
ve

l
of

sa
cr

ifi
ce

(l
os

)
0.

0
0.

0
0.

0
0.

0
1.

0*
**

0.
0

-0
.0

-0
.0

3*
*

-0
.0

9*
**

0.
01

lif
ee

xp
ec

ta
nc

y
(l

)
-0

.0
0.

0
0.

07
**

*
0.

0
0.

0
1.

0*
**

0.
0

0.
08

**
*

-0
.0

1
0.

1*
**

m
ut

at
io

n
ch

an
ce

(m
c)

0.
0

0.
0

-0
.0

0.
0

-0
.0

0.
0

1.
0*

**
0.

02
*

-0
.2

6*
**

0.
27

**
*

av
g

fo
od

di
st

ri
bu

ti
on

fa
ct

or
(a

fd
f)

0.
41

**
*

0.
53

**
*

-0
.6

**
*

-0
.1

8*
**

-0
.0

3*
*

0.
08

**
*

0.
02

*
1.

0*
**

-0
.0

4*
*

-0
.0

5*
**

av
g

fit
ne

ss
al

t(
af

a)
-0

.2
6*

**
0.

32
**

*
-0

.3
2*

**
-0

.0
1

-0
.0

9*
**

-0
.0

1
-0

.2
6*

**
-0

.0
4*

*
1.

0*
**

0.
07

**
*

av
g

fit
ne

ss
no

n
al

t(
af

na
)

-0
.2

6*
**

0.
1*

**
0.

22
**

*
0.

25
**

*
0.

01
0.

1*
**

0.
27

**
*

-0
.0

5*
**

0.
07

**
*

1.
0*

**

Ta
bl

e
A

.2
:C

or
re

la
ti

on
s

fo
r

th
e

gr
ee

nb
ea

rd
m

od
el

.



55

cb
c

fa
fm

lo
s

l
m

r
m

c
af

df
af

a
af

na

ch
ild

be
ar

in
g

co
st

(c
bc

)
1.

0*
**

-0
.7

8*
**

-0
.0

0.
0

-0
.0

-0
.0

0.
0

0.
5*

**
0.

33
**

*
-0

.0
3*

**
fin

al
ag

en
ts

(f
a)

-0
.7

8*
**

1.
0*

**
0.

32
**

*
-0

.0
1

0.
12

**
*

-0
.0

1
-0

.0
-0

.5
2*

**
-0

.3
5*

**
0.

25
**

*
fin

di
ng

m
ax

(f
m

)
-0

.0
0.

32
**

*
1.

0*
**

0.
0

-0
.0

0.
0

-0
.0

0.
34

**
*

0.
14

**
*

0.
27

**
*

le
ve

l
of

sa
cr

ifi
ce

(l
os

)
0.

0
-0

.0
1

0.
0

1.
0*

**
-0

.0
0.

0
0.

0
-0

.0
-0

.0
4*

**
-0

.0
2*

lif
ee

xp
ec

ta
nc

y
(l

)
-0

.0
0.

12
**

*
-0

.0
-0

.0
1.

0*
**

-0
.0

0.
0

0.
06

**
*

-0
.1

**
*

0.
1*

**
m

in
re

la
ti

on
sh

ip
(m

r)
-0

.0
-0

.0
1

0.
0

0.
0

-0
.0

1.
0*

**
0.

0
0.

06
**

*
0.

14
**

*
0.

04
**

*
m

ut
at

io
n

ch
an

ce
(m

c)
0.

0
-0

.0
-0

.0
0.

0
0.

0
0.

0
1.

0*
**

-0
.0

1
-0

.2
3*

**
-0

.0
8*

**
av

g
fo

od
di

st
ri

bu
ti

on
fa

ct
or

(a
fd

f)
0.

5*
**

-0
.5

2*
**

0.
34

**
*

-0
.0

0.
06

**
*

0.
06

**
*

-0
.0

1
1.

0*
**

0.
47

**
*

0.
15

**
*

av
g

fit
ne

ss
al

t(
af

a)
0.

33
**

*
-0

.3
5*

**
0.

14
**

*
-0

.0
4*

**
-0

.1
**

*
0.

14
**

*
-0

.2
3*

**
0.

47
**

*
1.

0*
**

0.
04

**
*

av
g

fit
ne

ss
no

n
al

t(
af

na
)

-0
.0

3*
**

0.
25

**
*

0.
27

**
*

-0
.0

2*
0.

1*
**

0.
04

**
*

-0
.0

8*
**

0.
15

**
*

0.
04

**
*

1.
0*

**

Ta
bl

e
A

.3
:C

or
re

la
ti

on
s

fo
r

th
e

ki
n

se
le

ct
io

n
m

od
el

.

cb
c

fa
fm

lo
s

l
m

c
af

df
af

a
af

na
ar

ch
ild

be
ar

in
g

co
st

(c
bc

)
1.

0*
**

-0
.8

1*
**

-0
.0

0.
0

0.
0

0.
0

-0
.1

5*
**

-0
.0

7*
**

-0
.4

2*
**

-0
.5

9*
**

fin
al

ag
en

ts
(f

a)
-0

.8
1*

**
1.

0*
**

0.
28

**
*

-0
.0

0.
08

**
*

0.
0

0.
17

**
*

0.
16

**
*

0.
48

**
*

0.
79

**
*

fin
di

ng
m

ax
(f

m
)

-0
.0

0.
28

**
*

1.
0*

**
-0

.0
0.

0
0.

0
-0

.2
**

*
0.

26
**

*
0.

08
**

*
0.

4*
**

le
ve

l
of

sa
cr

ifi
ce

(l
os

)
0.

0
-0

.0
-0

.0
1.

0*
**

0.
0

-0
.0

0.
02

0.
01

-0
.0

2
0.

03
lif

ee
xp

ec
ta

nc
y

(l
)

0.
0

0.
08

**
*

0.
0

0.
0

1.
0*

**
0.

0
-0

.2
6*

**
-0

.1
3*

**
-0

.1
5*

**
0.

26
**

*
m

ut
at

io
n

ch
an

ce
(m

c)
0.

0
0.

0
0.

0
-0

.0
0.

0
1.

0*
**

-0
.0

4*
0.

13
**

*
0.

36
**

*
0.

07
**

*
av

g
fo

od
di

st
ri

bu
ti

on
fa

ct
or

(a
fd

f)
-0

.1
5*

**
0.

17
**

*
-0

.2
**

*
0.

02
-0

.2
6*

**
-0

.0
4*

1.
0*

**
-0

.0
1

0.
31

**
*

0.
02

av
g

fit
ne

ss
al

t(
af

a)
-0

.0
7*

**
0.

16
**

*
0.

26
**

*
0.

01
-0

.1
3*

**
0.

13
**

*
-0

.0
1

1.
0*

**
-0

.0
3

0.
44

**
*

av
g

fit
ne

ss
no

n
al

t(
af

na
)

-0
.4

2*
**

0.
48

**
*

0.
08

**
*

-0
.0

2
-0

.1
5*

**
0.

36
**

*
0.

31
**

*
-0

.0
3

1.
0*

**
0.

26
**

*
av

g
re

pu
ta

ti
on

(a
r)

-0
.5

9*
**

0.
79

**
*

0.
4*

**
0.

03
0.

26
**

*
0.

07
**

*
0.

02
0.

44
**

*
0.

26
**

*
1.

0*
**

Ta
bl

e
A

.4
:C

or
re

la
ti

on
s

fo
r

th
e

re
pu

ta
ti

on
m

od
el

.



56 APPENDIX A. CORRELATION DATA

cb
c

fa
fm

gn
lo

s
l

m
r

m
c

af
df

af
a

af
na

ch
ild

be
ar

in
g

co
st

(c
bc

)
1.

0*
**

-0
.6

5*
**

-0
.0

-0
.0

0.
0

-0
.0

0.
0

-0
.0

0.
79

**
*

0.
1*

**
0.

04
**

*
fin

al
ag

en
ts

(f
a)

-0
.6

5*
**

1.
0*

**
0.

5*
**

-0
.0

2
0.

01
0.

14
**

*
0.

02
-0

.0
-0

.8
1*

**
0.

32
**

*
0.

34
**

*
fin

di
ng

m
ax

(f
m

)
-0

.0
0.

5*
**

1.
0*

**
-0

.0
-0

.0
-0

.0
0.

0
0.

0
-0

.2
6*

**
0.

6*
**

0.
37

**
*

gr
ou

p
nu

m
be

r
(g

n)
-0

.0
-0

.0
2

-0
.0

1.
0*

**
0.

0
0.

0
0.

0
-0

.0
0.

02
-0

.0
4*

*
-0

.0
2

le
ve

l
of

sa
cr

ifi
ce

(l
os

)
0.

0
0.

01
-0

.0
0.

0
1.

0*
**

0.
0

-0
.0

-0
.0

-0
.0

5*
**

0.
07

**
*

0.
02

lif
ee

xp
ec

ta
nc

y
(l

)
-0

.0
0.

14
**

*
-0

.0
0.

0
0.

0
1.

0*
**

0.
0

-0
.0

0.
01

0.
09

**
*

0.
08

**
*

m
ig

ra
ti

on
ra

te
(m

r)
0.

0
0.

02
0.

0
0.

0
-0

.0
0.

0
1.

0*
**

-0
.0

-0
.0

1
0.

03
*

0.
02

m
ut

at
io

n
ch

an
ce

(m
c)

-0
.0

-0
.0

0.
0

-0
.0

-0
.0

-0
.0

-0
.0

1.
0*

**
0.

06
**

*
-0

.0
2

0.
43

**
*

av
g

fo
od

di
st

ri
bu

ti
on

fa
ct

or
(a

fd
f)

0.
79

**
*

-0
.8

1*
**

-0
.2

6*
**

0.
02

-0
.0

5*
**

0.
01

-0
.0

1
0.

06
**

*
1.

0*
**

-0
.0

7*
**

-0
.0

4*
**

av
g

fit
ne

ss
al

t(
af

a)
0.

1*
**

0.
32

**
*

0.
6*

**
-0

.0
4*

*
0.

07
**

*
0.

09
**

*
0.

03
*

-0
.0

2
-0

.0
7*

**
1.

0*
**

0.
3*

**
av

g
fit

ne
ss

no
n

al
t(

af
na

)
0.

04
**

*
0.

34
**

*
0.

37
**

*
-0

.0
2

0.
02

0.
08

**
*

0.
02

0.
43

**
*

-0
.0

4*
**

0.
3*

**
1.

0*
**

Ta
bl

e
A

.5
:C

or
re

la
ti

on
s

fo
r

th
e

gr
ou

p
m

od
el

.

cb
c

fa
fm

gn
lo

s
l

m
r

m
c

af
df

af
a

af
na

ch
ild

be
ar

in
g

co
st

(c
bc

)
1.

0*
**

-0
.6

6*
**

0.
0

0.
0

-0
.0

-0
.0

0.
0

-0
.0

0.
78

**
*

0.
1*

**
0.

02
fin

al
ag

en
ts

(f
a)

-0
.6

6*
**

1.
0*

**
0.

47
**

*
-0

.0
4*

**
0.

01
0.

14
**

*
0.

04
**

*
0.

0
-0

.8
1*

**
0.

29
**

*
0.

34
**

*
fin

di
ng

m
ax

(f
m

)
0.

0
0.

47
**

*
1.

0*
**

0.
0

0.
0

0.
0

-0
.0

0.
0

-0
.2

7*
**

0.
56

**
*

0.
36

**
*

gr
ou

p
nu

m
be

r
(g

n)
0.

0
-0

.0
4*

**
0.

0
1.

0*
**

0.
0

0.
0

0.
0

0.
0

0.
04

**
*

-0
.0

6*
**

-0
.0

4*
**

le
ve

l
of

sa
cr

ifi
ce

(l
os

)
-0

.0
0.

01
0.

0
0.

0
1.

0*
**

0.
0

0.
0

0.
0

-0
.0

5*
**

0.
05

**
*

0.
02

lif
ee

xp
ec

ta
nc

y
(l

)
-0

.0
0.

14
**

*
0.

0
0.

0
0.

0
1.

0*
**

-0
.0

0.
0

0.
0

0.
07

**
*

0.
08

**
*

m
ig

ra
ti

on
ra

te
(m

r)
0.

0
0.

04
**

*
-0

.0
0.

0
0.

0
-0

.0
1.

0*
**

0.
0

-0
.0

3*
*

0.
07

**
*

0.
04

**
m

ut
at

io
n

ch
an

ce
(m

c)
-0

.0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
1.

0*
**

0.
05

**
*

-0
.0

2
0.

42
**

*
av

g
fo

od
di

st
ri

bu
ti

on
fa

ct
or

(a
fd

f)
0.

78
**

*
-0

.8
1*

**
-0

.2
7*

**
0.

04
**

*
-0

.0
5*

**
0.

0
-0

.0
3*

*
0.

05
**

*
1.

0*
**

-0
.1

**
*

-0
.0

6*
**

av
g

fit
ne

ss
al

t(
af

a)
0.

1*
**

0.
29

**
*

0.
56

**
*

-0
.0

6*
**

0.
05

**
*

0.
07

**
*

0.
07

**
*

-0
.0

2
-0

.1
**

*
1.

0*
**

0.
29

**
*

av
g

fit
ne

ss
no

n
al

t(
af

na
)

0.
02

0.
34

**
*

0.
36

**
*

-0
.0

4*
**

0.
02

0.
08

**
*

0.
04

**
0.

42
**

*
-0

.0
6*

**
0.

29
**

*
1.

0*
**

Ta
bl

e
A

.6
:C

or
re

la
ti

on
s

fo
r

th
e

cu
lt

ur
e

m
od

el
.



Bibliography

[1] Christoph Adami. Simulating evolution: how close do computer models come to reality?
6.10.2019. URL: https://theconversation.com/simulating-evolution-
how-close-do-computer-models%5C-come-to-reality-57538 (visited on
10/08/2021).

[2] J. McKenzie Alexander. The structural evolution of morality. 1. publ., transferred to dig-
ital printing. Cambridge [u.a.]: Cambridge Univ. Press, 2009. ISBN: 978-0-521-87032-0.

[3] Eckhart Arnold. Explaining altruism. A simulation-based approach and its limits. eng.
Vol. Bd. 11. Practical philosophy. Heusenstamm: Ontos-Verl., 2008. 310 pp. ISBN:
9783868380071.

[4] Robert M. Axelrod. The evolution of cooperation. eng. rev. ed. New York, NY: Basic
Books, 2006. 241 pp. ISBN: 0-465-00564-0. URL: http://www.loc.gov/catdir/
enhancements/fy0834/2008297795-b.html.

[5] Laurence Belcher and Philip Madgwick. Where does altruism come from? Discovery of
’greenbeard’ genes could hold the answer. 14.11.2020. URL: https://theconversati
on.com/where-does-altruism-come-from-discovery-of-greenbeard-
%5C%20genes-could-hold-the-answer-123208 (visited on 11/30/2021).

[6] Charles Darwin. The descent of man and selection in relation to sex. eng. Digitally print.
vers.; [Nachdr. der Ausg.] London 1871. Vol. 1. Cambridge library collection. Cam-
bridge: Cambridge Univ. Press, 2009. 423 pp. ISBN: 9781108005098.

[7] Richard Dawkins. The selfish gene. eng. 2. ed., 30th anniversary ed. Oxford: Oxford
Univ. Press, 2009. 360 pp. ISBN: 0199291144.

[8] Jun Dong and Steve Horvath. “Understanding network concepts in modules”. eng.
In: BMC Systems Biology 1.1 (2007). Journal Article Research Support, N.I.H., Extra-
mural Research Support, Non-U.S. Gov’t, p. 24. ISSN: 1752-0509. DOI: 10.1186/
1752-0509-1-24. eprint: 17547772. URL: https://bmcsystbiol.biomedcen
tral.com/articles/10.1186/1752-0509-1-24.

[9] Encyclopedia Britannica. Evolution. URL: https://www.britannica.com/scien
ce/biology/Evolution (visited on 01/27/2022).

[10] Encyclopedia Britannica. Hamilton’s rule. URL: https://www.britannica.com/
science/Hamiltons-rule (visited on 11/05/2021).

[11] Encyclopedia Britannica. Law of large numbers. URL: https://www.britannica.
com/science/law-of-large-numbers (visited on 01/04/2022).

57

https://theconversation.com/simulating-evolution-how-close-do-computer-models%5C-come-to-reality-57538
https://theconversation.com/simulating-evolution-how-close-do-computer-models%5C-come-to-reality-57538
http://www.loc.gov/catdir/enhancements/fy0834/2008297795-b.html
http://www.loc.gov/catdir/enhancements/fy0834/2008297795-b.html
https://theconversation.com/where-does-altruism-come-from-discovery-of-greenbeard-%5C%20genes-could-hold-the-answer-123208
https://theconversation.com/where-does-altruism-come-from-discovery-of-greenbeard-%5C%20genes-could-hold-the-answer-123208
https://theconversation.com/where-does-altruism-come-from-discovery-of-greenbeard-%5C%20genes-could-hold-the-answer-123208
https://doi.org/10.1186/1752-0509-1-24
https://doi.org/10.1186/1752-0509-1-24
17547772
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-1-24
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-1-24
https://www.britannica.com/science/biology/Evolution
https://www.britannica.com/science/biology/Evolution
https://www.britannica.com/science/Hamiltons-rule
https://www.britannica.com/science/Hamiltons-rule
https://www.britannica.com/science/law-of-large-numbers
https://www.britannica.com/science/law-of-large-numbers


58 BIBLIOGRAPHY

[12] Ernst Fehr and Urs Fischbacher. “Human Altruism – Proximate Patterns and Evolu-
tionary Origins”. In: Analyse & Kritik 27 (2005). URL: https://www.semanticsc
holar.org/paper/Human-Altruism-%E2%80%93-Proximate-Patterns-
and-Origins-Fehr-Fischbacher/907b7f8ec5f385e9a07081f79100ccdd
d22d8904.

[13] Robert H. Frank. “Altruists with Green Beards: Still Kicking?” In: Analyse & Kritik
27.1 (2005), pp. 85–96. DOI: 10.1515/auk-2005-0104.

[14] Herbert Gintis. “Strong reciprocity and human sociality”. eng. In: Journal of theoretical
biology 206.2 (2000). Journal Article Research Support, Non-U.S. Gov’t, pp. 169–179.
ISSN: 0022-5193. DOI: 10.1006/jtbi.2000.2111. eprint: 10966755.

[15] Herbert Gintis et al. “Explaining altruistic behavior in humans”. In: Evolution and
Human Behavior (2003). URL: https://www.semanticscholar.org/paper/
Explaining-altruistic-behavior-in-humans-Gintis-Bowles/8ba6b
4fa72b4809732cf61265088ba9d2e1a9b31.

[16] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in Science
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