
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

CONCURRENT
PROGRAMMING: CONCEPTS

AND LANGUAGES

Raphael Hagl

Master’s thesis

Supervisor Prof. Dr. François Bry

Date of submission 21 June 2022

2

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

Munich, 21 June 2022 Raphael Hagl

i

ii

Abstract

Developing reliable software is a hard task and concurrent programming is even more so.
Concurrency entails a whole new level of complexity. In multithreaded environments the
execution paths of separate threads may be interleaved in incalculable ways. This may lead
to unexpected and faulty behavior.

Regardless of the system under consideration, concurrency almost certainly plays an
integral role in many computing applications and handling it is always challenging. This
holds true in particular for large software systems where lots of different code pieces are
executed concurrently, likely interwoven with each other in incalculable ways. Moreover,
as concurrency becomes inevitable for ever-growing software projects, code bases tend to
get cluttered, testability decreases, and they become hard to maintain and even harder to
extend.

Furthermore, while concurrent programming techniques like locks eliminate certain
failure scenarios, they may introduce other errors, such as deadlocks and livelocks. Con-
current programming done wrong can be hazardous for the performance of a program.

This thesis aims at addressing the need for a comprehensive introduction to concurrent
programming. Many concepts like locks, atomic operations and semaphores are discussed
in detail. Practical challenges that may arise when designing and implementation concur-
rent software are also covered.

Afterwards, concurrent programming features of several languages are laid out and
demonstrated through several code examples. This work emphasizes the fact that different
concepts and techniques of concurrent programming are related to and especially useful in
combination with each other.

iii

iv

Acknowledgments

First and foremost, I want to thank Prof. Dr. François Bry who made this thesis possible.
He was of great support along the way, and always had an open ear to my problems and
ideas. I also want to thank Bagrat Ter-Akopyan for his great help in improving the structure
of this thesis and keeping me on track when my focus went astray. Special thanks go to
Maximilian Weber for his commitment for proofreading my work despite being completely
foreign to the subject.

This work is dedicated to my sons, Matthias and Tobias, and my wife, Diana. I am
grateful for their love, support and understanding.

v

vi

Contents

1 Introduction 1

2 Concepts of concurrent programming 3

2.1 Foundations . 4
2.2 Concurrent programming primitives . 6
2.3 Synchronization . 8
2.4 Semaphores . 9
2.5 Models and patterns in concurrent programming 9

2.5.1 Message passing . 10
2.5.2 Main-Subordinate . 11
2.5.3 Producer-Consumer . 12
2.5.4 Actor model . 13

3 Practical challenges of concurrent programming 15

3.1 A Messenger - an introductory example . 15
3.2 Potential for errors . 17

3.2.1 Safety . 17
3.2.2 Liveness . 19

3.3 Decision-making . 20

4 Languages 23

4.1 Java . 24
4.1.1 Thread . 24
4.1.2 Foundations . 25
4.1.3 Locks . 30
4.1.4 Creating and managing tasks . 33
4.1.5 Concurrent collections by example . 34
4.1.6 Scala . 37

4.2 Rust . 38
4.2.1 Fearless concurrency . 39
4.2.2 Running code in threads . 39
4.2.3 Reference counting . 39
4.2.4 Locks . 40
4.2.5 Ordering of atomic operations . 41
4.2.6 Send and Sync . 42
4.2.7 Message passing . 42
4.2.8 A task scheduler . 43

vii

viii CONTENTS

4.3 JavaScript . 48
4.3.1 Event loop . 48
4.3.2 Promise . 50

4.4 Go . 51
4.4.1 Goroutines . 52
4.4.2 Channels . 52
4.4.3 Channel-based primitives . 54
4.4.4 Message routing topologies . 55

4.5 A comparison of the languages . 56

5 Conclusion 59

5.1 Concurrent by design . 59
5.2 Outlook . 60

Bibliography 61

CHAPTER 1

Introduction

Consider the underground railroad system of a big city. It consists of many underground
stations interconnected by rails. A lot of trains are driven separately on various of these
railways. At each station passengers may get on and off a train. Due to fixed scheduling
plans, passengers know — with some uncertainty caused by unexpected delays — the
departure times of the underground trains on a respective line. This enables them to find
the apparently best route through the underground railroad system from one station to
another. Sometimes — especially during rush hours — it can occur that a specific train is
too crowded for more passengers to enter. Thus, they either have to wait for the next train
or decide whether to take a different route which might be a better option than waiting.

While being independent of one another in the outer areas, most railways are joined
with others when getting closer to the city center. At these spots underground trains are
sometimes obliged to wait for a prior train to leave before they can reach the next station.
Usually the train driver is made aware of that via specific traffic sings.

Such an underground system is a highly distributed concurrent system. What does this
mean? At an abstract level, train stations can be seen as individual nodes with the rails
building pathways of communication between them. There are two kinds of acting enti-
ties: First, on a large scale, the trains running on the underground system. Their behavior
becomes concurrent whenever two or more trains compete for the entrance to a same station,
that is the joining points of the rails. Second, on a smaller scale, there are the people using
the trains to travel. Here concurrency is involved in scenarios where passengers compete
for a place on a train. In general, concurrency is the overlapping of activities (driving into
the next station or taking place on a train) performed by different acting entities (trains or
passengers) within the same system.

Motivation

Regardless of the system under consideration, concurrency almost certainly plays an inte-
gral role in many computing applications and handling it is always challenging. This holds
true in particular for large software systems where lots of different code pieces are exe-
cuted concurrently, likely interwoven with each other in incalculable ways. The craftsman-
ship of concurrent programming is still not well understood among many software devel-

1

2 CHAPTER 1. INTRODUCTION

opers1. Moreover, as concurrency becomes inevitable for ever-growing software projects,
code bases tend to get cluttered, testability decreases, and they become hard to maintain
and even harder to extend.

The reasons for this phenomenon are manifold, but can be traced to a general lack of
knowledge transfer regarding this topic. At many universities concurrent programming
and its related concepts are only briefly touched upon [LW11]. Other kinds of education,
like trainings at companies or online courses, do not suffice to widespread a competence
in concurrent programming. Concurrent programming is treated shabbily, little to no at-
tention is paid on this topic. A lot of research regarding concurrent programming has
been conducted in the past decades, but most of it has not reached out of academia to
real-world enterprise development. There is profound literature on specific concepts of
concurrent programming, especially about concurrent collections [MS96, ZS05, HHL+07,
HSY04, SLS09, SS04]. Yet, educational work seldom deals with the topic as a whole [Tur13],
showing how to put these pieces together — specifically in the context of already large and
complex software projects.

This state of affairs is understandable because, concurrency entails high intrinsic com-
plexity. Various code segments possibly interact concurrently with each other in uncount-
able ways. Manifold issues can arise during the interleaving of executions2.

Thus, it is no wonder that — more often than not — software developers shun concur-
rent programming altogether whenever possible.

Contribution

This thesis aims at addressing the need for a comprehensive introduction to concurrent
programming. It has been conceived as sort of cook book. While dealing with concurrent
programming, questions like the following may arise:

• When is a non-blocking solution preferable?

• When do simple atomic operations suffice?

• How to gracefully handle faults in concurrent executions?

• How to efficiently join different paths of concurrent execution?

To answer these and other questions regarding concurrent programming, the concepts
of concern are examined in a non-isolated fashion, clarifying their relations with each other
and emphasizing the respective scenarios in which to use either of them.

This work is structured as follows: Following this introduction, Chapter 2 clarifies ter-
minology used throughout the thesis and gives a detailed explanation on important con-
cepts of concurrent programming. Chapter 3 lays out practical challenges for concurrent
programming. Chapter 4 discusses concurrent programming techniques in different lan-
guages. Carefully constructed and handwritten code examples illustrate the respective
topics. Chapter 5 concludes this thesis.

1I do not intend to tread on someone’s toes, but experience has shown just that.
2See Chapter 3

CHAPTER 2

Concepts of concurrent programming

This chapter explains important concepts of concurrent programming and describes how
to distinguish it from parallel and asynchronous programming. For better understanding,
the chapter also bridges back to the introductory example of the underground system as it
depicts a lot of the concepts and building blocks of concurrent systems.

We think of threads, when we think of parallelism, and we think of threads, when we think of
asynchrony.1 Concurrent, parallel and asynchronous programming are distinct. Nonethe-
less, they often get confused with each other. This state of affairs is understandable, because
from a practical point of view, these methodologies are usually closely entangled. The fol-
lowing gives a short definition of each and points out in which ways they intercorrelate.

Concurrent programming Depending on the language and/or framework in use, there
are different units of execution. They may be named processes, operating system as well
as so-called green threads, tasks, promises, futures, subroutines and others [Erb12]. The
preferred term used throughout this thesis is task.

Concurrent programming deals with all kinds of task overlapping. As Alan Turon de-
scribes it, concurrent programming is the management of sharing and timing [Tur13]. This state-
ment synthesizes the primary duties of a developer concerned with concurrent program-
ming: (1) resources have to be shared among different tasks, (2) the sharing has to be timed
correctly, that is, scenarios where the overlapped execution of tasks may lead to a faulty
behavior of the program must be avoided.

Tasks running concurrently do not necessarily have to be executed in parallel. In fact,
before the dawn of multicore processors, every program — and as well each task within a
program — on a machine was executed by one and the same core.

Parallel programming Parallel programming utilizes computational resources of the un-
derlying machine to execute several computations simultaneously. Concurrency is not nec-
essary to achieve parallelization. Different tasks might run completely independent of one
another. This holds especially for hardware parallelization. For instance, hyperscaling
CPU’s have several ALU’s built-in that enable simultaneous computations directly on the
hardware.

1Venkat Subramaniam, Devoxx UK, 2018

3

4 CHAPTER 2. CONCEPTS OF CONCURRENT PROGRAMMING

However, simultaneous task executions might as well overlap, that is run concurrently.
For the soundness of a parallelized program, choosing the proper technique of concurrent
programming is vital.

Asynchronous programming Since async/await have been introduced to many popular
programming languages, such as C#, Rust or JavaScript, asynchronous programming has
become prominent in the software developer community. When code is run asynchronously,
it will be executed some time in the future. This usually involves querying a database, com-
municating with an external API, reading from a file or executing another program. If the
resulting value is mandatory for further progress in the program, these asynchronous tasks
have to be awaited.

Asynchrony does not necessarily entail concurrency, but asynchronous tasks might run
concurrently - and they might as well be parallelized2.

[...] interesting applications of concurrency involve the deliberate and controlled mutation of
shared state [JGF96]. Concurrent programming is all about properly guarding shared mu-
table state. Essentially, state represents the specific value configuration of data structures
in a program. The fundamental job of imperative programs is the management of its state.
In object-oriented programming languages, state is typically expressed by objects and their
properties. Due to the manifold issues regarding state changes3, purely functional pro-
gramming languages prevent state from being mutable, which then in turn entails a hit on
practicality [FC12].

Due to its non-deterministic characteristics, concurrent programming is particularly dif-
ficult. Concurrency overturns the sequential view on a program, which is the intuitive way
of approaching and understanding code.

2.1 Foundations

Usually, the creation of tasks utilizes threads4 in one way or another. Therefore, a compre-
hension of a thread’s life cycle is important to fully understand the usage of techniques in
concurrent programming. Figure 2.1 illustrates the different states a thread can assume.
Once a thread is ready, it can be executed. The scheduler grants each thread a time slot on
the processor [TB14]. Once the time is over, another thread gets the chance to execute. This
so-called context switch is quite costly [LDS07]. A running thread might get blocked. This is
the case when explicitly set to sleep or when a lock cannot be acquired. After the timeout or
when the respective lock is released again, the thread once again becomes ready. A thread
can also be in waiting. This usually occurs when the thread is waiting for another thread to
terminate, to join. After all the work is done, a thread assumes the state terminated.

While some concepts of concurrent programming seem to be completely independent
of thread state, others are obviously closely related. Nonetheless, keeping in mind the
different states a thread can assume is always helpful when having to decide on which
concept to rely on for a certain task. The following sections give a detailed introduction to
different techniques used for concurrent programming.

2In node.js several asynchronous calls can be executed simultaneously.
3Recall the infamous The loop is running infinitely because I did not consequently update dependent variables.
4Not every programming language supports threads. This will be discussed in Chapter 4

2.1. FOUNDATIONS 5

Figure 2.1: States of a Thread

Atomicity

Atomicity originates from database systems and is part of the ACID [GMUW09] proper-
ties every database transaction should adhere to. In an atomic operation either all or none
of the included statements are executed. From the viewpoint of an external observer, ev-
erything inside an atomic operation seems to happen at once. It cannot be divided into
smaller pieces and is therefore atomic. Care has to be taken as to which operations are ac-
tually atomic. Statements like counter += 1 might seem to be atomic, when in fact they are
not. They consist of three separate operations: (1) load the current value of a variable, (2)
calculate the new value, (3) write it back.

Mutual exclusion

Recall the introductory example of the underground system. At two points the acting enti-
ties, trains and passengers, compete for limited shared resources: (1) stations where several
underground lines are joined, (2) places on a train. These are called critical sections. Con-
current programming has to ensure that only one task at a time can enter such a critical
section. This is mutual exclusion. Figure 2.2 shows three concurrent tasks competing for a
critical section: Guard protects the entrance to the critical section so that only one task at a
time can enter it. Once the current task has finished, Release signals the guard that another
task may now enter.

Interleaving and reordering

Every thread and thus every task running within it is granted some execution time on a
processor (core). Therefore, it is possible that the execution of a running task is stopped
amidst carrying out a function body, right after the last atomic operation that fits into the
time slot. Another task might then continue its work at a similar spot within the code,
resulting in an interleaved execution of the respective tasks.

Listing 2.1 shows a fraction of a Runnable implementation in Java5. Consider tasks A
and B both running this code. A might just have been suspended while performing the add
method in line five. As this is a compound operation, the call to it may not have returned
yet.

The statement in line six does not build upon the result of the prior one. Line five and
six are therefore technically independent and might be reordered by the compiler to in-
crease performance. It is possible that generatedValuesCount has already been incremented,

5Java language features are discussed in Section 4.1

6 CHAPTER 2. CONCEPTS OF CONCURRENT PROGRAMMING

Figure 2.2: Critical section

even before add was called. Thus, relying on the order of statement execution to ensure
soundness of a program in a concurrent environment is not advisable.

Listing 2.1: Reordering of independet statements
1 public void run () {
2 . . .
3 var newValue = . . . ;
4 . . .
5 values . add (newValue) ;
6 generatedValuesCount ++;
7 . . .
8 }

2.2 Concurrent programming primitives

There are many higher-level data structures and functionalities dealing with concurrency
issues. Several of them are based upon the same set of — usually hardware supported —
programming primitives. These operations are formally defined as functions over shared
memory registers. They enable more complex atomic actions beyond mere read and write
operations.

Test-and-set-bit

Probably the simplest routine among concurrent programming primitives is the test-and-
set-bit. The value of the underlying register can either be 0 or 1. Algorithm 1 illustrates
the technique. When test-and-set is called, the value of the shared register is set to 1. Its
previous value is returned which can than be tested by the caller.

Testing the resulting value can serve as guard for a critical section. When test-and-
set returns 1, the section is locked. Calling code can now actively wait for it to return 0
again6. It spins around the register’s value and is therefore called spin lock. This is shown

6This is often referred to as busy-waiting

2.2. CONCURRENT PROGRAMMING PRIMITIVES 7

Algorithm 1 Test-and-set-bit
function TEST-AND-SET(r: Register)

temp r
r 1
return temp

end function

function RESET(r: Register)
r 0

end function

in Listing 2.2. Resetting the register releases the lock.

Listing 2.2: Spin lock

. . .
while (t e s t −and− s e t (r) == 1) { / * wa i t * / }
/ * e n t e r c r i t i c a l s e c t i o n * /
. . .
/ * r e l e a s e * /
r e s e t (r)
. . .

Compare-and-swap

In theory, the simplistic test-and-set-Bit alone suffices to guarantee mutual exclusion. How-
ever, there is a more versatile primitive to achieve this, compare-and-swap. It also operates on
a shared register that can assume an arbitrary finite number of values of an arbitrary data
type. The function takes two more arguments, the currently expected value (also referred
to as the witness) and a new value the register should be set to. The semantics is straight-
forward: Compare, whether the register holds the expected value. If so, set the register to
the new value. Otherwise, the value of the register remains unchanged. Afterwards, return
the old value. The depicted implementation is shown in Algorithm 2.

Like test-and-set-bit, compare-and-swap can be used to establish a spin lock. In con-
trast, it gives rise to use and test against various values. This enables a sort of state machine,
where specific concurrent operations can be handled differently. For example, differentiat-
ing between read and write operations becomes fairly easy7.

Algorithm 2 Compare-and-swap
function COMPARE-AND-SWAP(r: Register, expected: Value, new: Value)

temp r
if r == expected then

r new
end if

return temp
end function

7An example implementation

8 CHAPTER 2. CONCEPTS OF CONCURRENT PROGRAMMING

Read-Modify-Write

While compare-and-swap provides a flexible way of atomically updating a single value, it
does not suffice in situations where compound operations are needed to calculate the new
value for a shared register. The primitive read-modify-write shown in Algorithm 3 serves
this purpose. Instead of a concrete value, it expects a function as argument that uses the
current value of the underlying register to calculate its new value. The given function is
expected to have no side effects.

Algorithm 3 Read-Modify-Write
function READ-MODIFY-WRITE(r: Register, f: Function)

temp r
r f (temp)
return temp

end function

There are other current programming primitives, like swap which unconditionally ex-
changes the old with the new value and returns the former, or fetch-and-add working on
numeric values adding the given number to the present value. Regardless of the primitive
in use, the foundation always is the same, atomicity.

2.3 Synchronization

Synchronization is used in asynchronous environments. To synchronize asynchronously
running tasks is to structure and sequence their behavior at certain points. It reduces non-
determinism to a bearable degree.

Originally, synchronization stems from multi-threading. In the realm of threads, it
serves two main purposes. On the one hand, is joining the execution paths of several
co-dependent tasks. This is usually the case when some tasks have to wait for others to
make progress or to terminate [BD80]. On the other hand, synchronization is also used to
guard critical sections. The former section has shown how to achieve mutual exclusion by
using a spin lock. Yet, there is another sort of locks, synchronization locks, also referred to as
mutex. The usage is illustrated in Listing 2.3. They handle locking per thread. Whenever a
task running within one thread successfully acquires the lock to a guarded section, every
other thread attempting to acquire it, blocks. For that matter these locks and data structures
utilizing them are called blocking. Notably, many synchronization locks are reentrant. When
a thread already owns a lock, it can acquire it once again8.

Listing 2.3: Synchronization lock
DECLARE lock
. . .
lock . acquire () {
/ * e n t e r c r i t i c a l s e c t i o n * /
. . .
} / * a u t o m a t i c r e l e a s e * /
. . .

This is the traditional view on synchronization. In a modern, asynchronous system
synchronization is primarily involved when a program’s progress depends on the result of
an asynchronous task. The resulting value has to be awaited.

8https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

2.4. SEMAPHORES 9

2.4 Semaphores

Perhaps the most fundamental technique used in concurrent programming is the Semaphore
[Dij68]. The term originates from mechanical signaling systems used on railways to notify
train drivers about whether they can go on or have to stop the train temporarily and wait
until signaled. Additionally, some semaphores can indicate that a train’s speed should be
throttled.

In concurrent programming a semaphore is a data type associated with a counter (a
non-negative integer) and provides two operations: (1) wait decrements the counter, (2)
signal increments it. The counter represents the number of permits a semaphore can grant
at a time. The operation wait often expects a positive integer as argument telling how
many available permits have to be waited for. A semaphore data type is illustrated in
Algorithm 4.

Algorithm 4 Semaphore
Semaphore

counter
function WAIT(permits: Integer)

wait until permits available
counter := counter� permits

end function

function SIGNAL
counter := counter+1

end function

The use cases for semaphores are manifold. Mutual exclusion can be achieved by al-
lowing only 1 permit at a time. Calling wait acquires the lock, signal releases it. They
also enable fine-grained coordination of different tasks. When several tasks are required to
progress up to a certain point, one can simply wait for all of them to call signal on a shared
semaphore.

While semaphores provide an elegant mechanism to deal with different kinds of con-
currency-related challenges, they are seldom used in modern projects [PTF+15]. This might
be due to a lack of knowledge about the possibilities semaphores come with, but also be-
cause there are higher-level programming models and abstractions enabling developers to
achieve similar results — often in a simpler fashion. The most common and useful models
and patterns are discussed in the following section.

2.5 Models and patterns in concurrent programming

Over the last decades, computer scientists have always come up with principles, patterns
and models to simplify programming in general, to reduce code complexity and to ease the
implementation and understandability of control flow, data structure creation and adapta-
tion. The Factory design pattern [GHJV95], the Inversion of control principle [Mar96, Rob22],
or the Model-View-Control scheme [Fow02, HSD10] have made the lives of developers easier.

The discipline of concurrent programming makes no exception to this. All the models
discussed in this section follow a common conception: Reduce code segments managing
concurrency as much as possible and encapsulate them into a small set of well-developed
data structures. This leads to cleaner, better understandable and less error-prone programs
that are even more capable of taking advantage of the powers concurrent programming
entails.

10 CHAPTER 2. CONCEPTS OF CONCURRENT PROGRAMMING

2.5.1 Message passing

The key in making great and growable systems is much more to design how its modules communicate
rather than what their internal properties and behaviors should be.9

The standard way of establishing task intercommunication is by sharing mutable data
structures between them. While this can be safely achieved in a concurrent environment
through locking techniques, there is an alternative, message passing [Buo21]. A message is
an abstract data container of arbitrary content, ranging from simple numbers and strings to
complex objects. Tasks communicate by exchanging messages. They might send the result
of a computation to another task further processing the data, notify that specific progress
has been made, or request data. This is remarkably useful for concurrent programming,
because the implementation of each individual task does not need to worry about mutual
exclusion on shared mutable state. This only holds true if the messages sent are immutable.
Message passing scales also very well to distributed systems, as primary communication
mechanism stays the same [Sin97, SS84]. By operating through an abstract message passing
routine, sending messages to tasks located on the same node appears to be indifferent from
sending them to remote tasks.

Data transfer between tasks can either be handled in two different fashions: (1) syn-
chronously [Hoa78], where the sender waits until the message was received, (2) asyn-
chronously [MK06], where the sender simply continues after the send process has been
triggered. Synchronous message passing is only sensible in situations where the sender
has to ensure that the message was received right away. This may include a direct answer
from the receiver.

Usually, asynchronous message passing is preferable, because it decouples actions of
sending and receiving tasks and does not obstruct the sender from further progress. In an
asynchronous scenario, messages are enqueued and the receiver processes them sequen-
tially in the order they arrived. When a task receives messages from several senders, it is
unknown which message reaches the task first. Thus, developers should not depend on
any order [LBL+16]. Task communication via message passing is illustrated in Figure 2.3.
Note that a task that is the receiver to other sending tasks can likewise send messages.

Channels

Data transfer in message passing is realized via channels. A channel is associated with two
functions, send and receive. Depending on the language or library at hand, channels either
connect one sender and one receiver (one-to-one) or several senders to one receiver (many-to-
one). Languages like Ada [86512] do even support selective receive on multiple channels.
Each possible channel is guarded by a boolean expression. They are tested sequentially
in the given order and the first channel which’s guard evaluates to true is chosen. The
principal of selective receive is depicted in Listing 2.4.

Listing 2.4: Selective receive
s e l e c t

when guard i do v <− chan i
when guard j do v <− c h a n j

end

Message passing and shared state

There is still broad consensus that message passing and sharing state are opposing models
[KL94]. But this is a false dichotomy. It has already been proven that these models are

9https://wiki.c2.com/?AlanKayOnMessaging

2.5. MODELS AND PATTERNS IN CONCURRENT PROGRAMMING 11

Figure 2.3: Message passing

equivalent [ABND95]. Thus, they can be expressed by one another [DGFG03, Tur13]. Re-
search gives evidence that combining message passing and shared state can improve the
performance of a concurrent software system [MNM14]. Moreover, by utilizing the best of
both worlds, this hybrid approach raises fault tolerance, simplifies handling of asynchrony,
reduces the need for synchronization points, enhances scalability of the software, and alle-
viates concurrency issues [Nie07, ABDC+18]. Due to recent developments in the hardware
sector, such as Remote Direct Access Memory [KKA14], it is especially of interest for multi-
processor intercommunication architectures built upon distributed shared memory clusters
[FXL03, CWG09, KJA+02].

2.5.2 Main-Subordinate

Main-Subordinate was formerly known as master-slave. The latter expression has, for obvi-
ous reasons, fallen out of fashion with historically conscious programmers10. Depending
on the literature at hand, it might be termed differently, e.g. Supervisor-Worker [MK06]. The
principle idea of the main-subordinate pattern is simple: There is one main unit telling an
arbitrarily large amount of subordinates what to do next [Bus95]. Once a subordinate unit
has finished the work, it reports the results of the performed computations to the main unit.
Figure 2.4 illustrates these relations. A command sent by the main unit can contain data of
various types.

A software system utilizing the main-subordinate pattern benefits from increased mod-
ularization. It can be used to partition heavy workload into smaller chunks. These are
then distributed by the main unit to the respective subordinates. This approach enables
developers to run subtasks of divide-and-conquer algorithms [Dix22] concurrently and in
parallel. There are several frameworks for conveniently implementing this methodology
[Lea00, NS08]. They automatically assign subtasks — also referred to as jobs — to different
threads, ensuring (close to) optimal usage of the systems computational resources. Thus,
developers can focus on an algorithms’ logic.

10https://linux.slashdot.org/story/20/07/11/2037250/the-linux-team-approves-new-neutral-terminology

12 CHAPTER 2. CONCEPTS OF CONCURRENT PROGRAMMING

Figure 2.4: Main-Subordinate

Especially in cases where the execution times of tasks might differ markedly, making
use of main-subordinate can come in handy. It makes dynamic configuration of a task,
such as setting a timeout or assigning it to a specific thread pool in, fairly easy. It is also
useful in situations where several solutions to a problem exist, all optimized for certain
cases at the expense of others [BPR22]. Main-subordinate enables orchestrating the various
solutions such that each can benefit from intermediate results of the others.

Some systems, like databases and multimedia applications, use it to replicate data of
parts of or of the system as whole. Each replication represents a subordinate [Str14, SG97].
Main-subordinate is by design well-suited for distributed software systems. Technologies
like REST and GraphQL make communication between main and subordinates a breeze.
When a subordinate node fails, it can most likely be reloaded by the main, but in case of
failure on the main node, failover protocols like leader election have to be employed[Str14].

2.5.3 Producer-Consumer

Another way of compartmentalizing software is the Producer-Consumer pattern. A producer
executes arbitrary calculations — this may likely include calls to remote APIs — to produce
data. A consumer is handed over the data to do other processing on in. Producers and
consumers can be related to each other in any way possible: (1) one-to-one, (2) one-to-
many, (3) many-to-one, and (4) many-to-many.

Usually, queues are used to pass data from producers to consumers [SLS09]. In an
implementation following this convention, access to the queue, that is, placing data in and
retrieving it from the queue, is the only place where synchronization in involved. Great
effort has been put in the design and implementation of concurrency-ready queues [MS96].
They guarantee thread-safe, efficient data handling.

Alternatively, a producer-consumer system can be implemented via messages. This
might increase flexibility of the software. But these two approaches are hardly distinct.
As depicted before, message passing also involves queues most of the time. In fact, a dis-
tributed producer-consumer system is likely using remote message queues to pass data
from producers to consumers. Figure 2.5 illustrates the described scheme.

2.5. MODELS AND PATTERNS IN CONCURRENT PROGRAMMING 13

Figure 2.5: Producer-Consumer

Publisher-Subscriber

The Publisher-Subscriber pattern is a special case of producer-consumer. Under arbitrary
circumstances, a publisher propagates data to its subscribers. By subscribing to a publisher,
a subscriber consigns the way of passing data to it. This process is also referred to as
registration. By default, a subscriber registers one of its procedures which is being called
upon publish. Usually, one producer manages subscriptions of several subscribers. At the
same time, a subscriber might register to different publishers.

Subscriptions can also be cancelled. This is an integral part of the pattern, as it allows
subscribers to only receive published data conditionally, being in a certain state of progress.
Dynamically subscribing and unsubscribing extends flexibility of the whole system.

Event-based systems An event is the notification that something has happened. Usually
but not exclusively, they are triggered due to user interactions. Events can simply notify
of certain state changes, but they may also carry arbitrary data. Event-based systems can
elegantly be implemented via the publisher-subscriber pattern. For instance, this is how
JavaScript’s native events are handled11. To trigger an event, the publisher refers to its
respective subscriptions.

2.5.4 Actor model

The Actor model is a mathematical theory of computation that treats “Actors” as the universal
primitives of concurrent digital computation [Hew77]. The previously described patterns were
all designed with Von Neumann computer architectures [OAE07] and with mostly object-
oriented programming [GHJV95] in mind. The Actor model, however, is a completely inde-
pendent computational model of its own. Actors are the fundamental units of computation.
As Carl Hewitt puts it, an actor embodies 3 essential elements [HBS73]:

11See Section 4.3

14 CHAPTER 2. CONCEPTS OF CONCURRENT PROGRAMMING

• The capability of processing

• A storage to keep the internal state

• The capability of communication

One ant is no ant.12 The same holds for actors. One actor alone is hardly capable of
achieving anything. They come in systems.13 Within these systems an actor can do one
of the following: (1) create other actors, (2) send messages to actors it is connected with,
(3) designate how to handle the next message received [Hew10]. These actions could be
executed concurrently. A sample Actor model is illustrated in Figure 2.6. As portrayed, an
actor may send messages to itself.

Figure 2.6: Actor model

In terms of actors, being connected to each other
means that an actor knows the address of the other
one, and vice versa. This could be a concrete memory
address, but also a network address or any other way
allowing to refer to an actor. The address should not
be confused with the identity of an actor. In fact, one
address could refer to several actors at the same time.
Furthermore, many addresses could likely belong to
one and the same actor.

Message passing in the Actor model

The theory of the Actor model does not specify how
messages are exchanged between actors. Message
passing is simply taken as fundamental part of the
Actor model [Hew10]. Technical aspects like mes-
sage queues and channels are completely left aside. Nonetheless, the behavior of message
passing in the Actor model is well-defined. Messages are sent asynchronously, thus, actors
do have to wait until a message is received. Delivery of messages happens on best effort
basis, meaning a message is received at most once. It may take arbitrarily long to send a
message to an actor. One cannot make any assumptions on the order of message delivery.
It is possible to send two messages A and B sequentially, with B received before A.

Modularity and concurrency

Actors do solely interact via message passing and messages are processed sequentially.
These properties make the Actor model appealing for concurrent programming, as well
as distributed systems. Moreover, due to its inherent modularity the Actor model is well-
suited for composing large, flexible structures [Agh86]. For instance, Producer-Consumer or
Main-Subordinate can easily be simulated by the Actor model.

[...] I’ll say that in a nutshell, the actor approach is about the future of computing [Akm90].

12Edward O. Wilson, https://de.wikipedia.org/wiki/Edward O. Wilson, accessed 16. May 2022
13Hewiit, Meijer and Szyperski: The actor model, https://www.youtube.com/watch?v=7erJ1DV Tlo, accessed

03. March 2022

CHAPTER 3

Practical challenges of concurrent programming

The previous chapter explained principles, routines and methodologies that can be em-
ployed in concurrent programming. Throughout the descriptions, it is stated at several
points how challenging concurrent programming can get. This chapter covers challenges
developers have to face when implementing software systems involving concurrency. It
is thereby divided into three main parts. First, an example of such a system is portrayed
showcasing several scenarios of concurrent programming. It is followed by a section dis-
cussing correctness and concrete errors which may arise during execution of concurrently
running tasks. The third section is dedicated to decision-making, which in this context
means deciding between different techniques depending on the needs of the problem at
hand.

To simplify matters, this chapter often uses the term resource. A resource denotes shared
state like the instance of a data structure, a file on the system, a task control structure, such
as a lock or semaphore, or even a network port.

3.1 A Messenger - an introductory example

A lot of applications people use on a daily basis incorporate concurrency. It is pretty likely
to find messenger programs among these applications. Consider such a messenger like the
one portrayed in Figure 3.1. One can write messages in groups as well as to a single person.
Besides regular text, messages can also contain markup and whole files. It is possible to
reply to a message from a group chat in a separate thread. Therefore, another chat view is
opened to the side. Typically, views for Options or Tools are provided via modal windows.

An implementation of the depicted application involves concurrent programming at
several places. In fact, without it, the user experience would be anything but great. The
following paragraphs shed light on that.

Responsive user interface Graphical user interfaces, usually simply referred to as UI, al-
ways imply concurrency. To understand why that is the case, image the whole application
to be executed in a single thread. Whenever user interactions trigger longer running ac-
tions, e.g. logging in, sending a message, loading a file, or choosing some customizations,
the UI would seem to be frozen. Clicking a button or a menu item would appear to have
no effect. Thus, to establish reasonable interaction of the user with the application, such

15

16 CHAPTER 3. PRACTICAL CHALLENGES OF CONCURRENT PROGRAMMING

Figure 3.1: Messenger application

operations have to run in background tasks. Users should not notice anything about the
heavy lifting that is going on behind the scenes. The only thing they should see are the
effects resulting from the completion of those tasks, like a changed color theme or the next
message appearing in the chat history.

For these reasons, UI frameworks usually run the graphical user interface and all its
related updates in a separate thread. This keeps the UI responsive.

Message input The primary intention of a messenger application is the exchange of mes-
sages. Especially those applications to be used in companies want to enable the user to
draw from ample opportunities. Therefore, messages can (and will) contain arbitrarily
formatted text, code snippets, audio and video material and files like images. They are
backed by complex data structures which are, for obvious reasons, subject to change. Dif-
ferent tasks may concurrently interact with and alter these data structures. For instance,
consider a file being loaded. Modern UIs will likely add a placeholder to indicate the file is
still being processed. While this proceeds, the user can also continue to write. Furthermore,
the user might switch back and forth between several unfinished messages.

Receiving messages The interconnectedness to other people using the same messenger
adds another layer of complexity which entails even more concurrency. One might receive
multiple messages in several groups from different peers at the same time. The data struc-
tures backing the respective chat histories have to manage concurrent access, while the UI
also has to be kept up to date. Mutual exclusivity for writing operations must be granted

3.2. POTENTIAL FOR ERRORS 17

and separate tasks working in the same context have to be made aware of changes. Other-
wise, messages might get lost or the appearance on the UI might be inconsistent.

Persistence On top of everything mentioned beforehand comes data storage. All the in-
formation the application constitutes must be persisted. Data only relevant to the particular
instance of the application are stored locally. Everything else, including chat histories, in-
formation about users and logged material, is usually kept on a remote server. Server appli-
cations and databases are themselves subject to concurrency as they interact with hundreds
of thousands local of systems.

3.2 Potential for errors

Synchronization errors [...] are among the most difficult programming errors to detect, reproduce,
and eliminate [BLR02]. Developing software is a difficult task. Even more so is the develop-
ment of correct concurrent software. Correctness in terms of concurrency goes beyond the
proper implementation of semantics. It is divided into two topics, safety and liveness. The
following sections give an overview of them and explain related error potentials.

3.2.1 Safety

A safety property is one which states that something will not happen [Lam77]. In concurrent pro-
gramming, all safety properties refer to the interleaved executions of concurrently running
tasks. Regardless of the scheduling and suspension of tasks and the order in which they en-
ter certain (critical) sections, all performed actions have to take effect with their respective
invariants upheld.

The safety property used most often for concurrent programs is linearizability [HW90].
A data structure is linearizable if each invocation of its operations appears to take effect
instantaneously at some point. Thus, it is possible to construct a sequential history of op-
eration invocations which is equivalent to the concurrent history and results in the same
state the data structure currently assumes.

Several possibilities to violate the safety properties of a concurrent program are dis-
cussed subsequently.

Data races

Recall the characteristic of atomic operations: Their execution is not interruptible and there-
fore everything happening inside them appears to take effect at once. Atomicity is an in-
dispensable property of programming primitives like compare-and-swap discussed in Sec-
tion 2.2. Yet, most operations are not atomic. Thus, a task can be suspended amidst their
execution and several tasks might also execute them simultaneously.

Consider the algorithm illustrated in Algorithm 5. It uses an external function, Create-
Tasks, to spawn as many new tasks as is defined in numTasks. Each task runs the Incre-
ment function which loops numCycles times. In each iteration the variable counter is incre-
mented. The expected result, namely, the final value of counter is given by the equation
4⇥1000 = 4000.

Note that counter is shared among the tasks. Since the statement counter += 1 is not
atomic, two tasks, A and B, might now load the same value for it, say 20. Loading is
done locally, thus each task holds a copy of the respective value. A and B both increment
the fetched value and they both write back 21. This is called a data race. Effectively, one
increment step is lost.

18 CHAPTER 3. PRACTICAL CHALLENGES OF CONCURRENT PROGRAMMING

Using the atomic operation fetch-and-add would suffice to get rid of data races in this
simple case. More complex scenarios require additional synchronization techniques. In
general, compound operations executed on shared state in a concurrent environment have
to be guarded properly.

Algorithm 5 Data races in non-atomic operations
DECLARE FUNCTION CreateTask
INITIALIZE

const numTasks := 4
const numCycles := 1000
counter := 0

function INCREMENT
for i=0,..., numCycles do

counter+= 1
end for

end function

for i=0, ..., numTasks do

CreateTask(Increment)
end for

Deadlocks

Separate concurrent operations might acquire the same resources in different order. This
can lead to deadlocks. Listing 3.1 and Listing 3.2 depict such a situation: Task A tries to
acquire lockA first, and subsequently also tries to acquire lockB. Task B does the same con-
versely. Both hold a lock the other one needs to proceed. Thus, no further progress can be
made by either of the tasks.

Listing 3.1: Deadlock - Task A
// acquire lockA
lockA . acquire ()
. . .

// acquire lockB
lockB . acquire ()
. . .

// r e l e a s e the locks
lockB . r e l e a s e ()
lockA . r e l e a s e ()

Listing 3.2: Deadlock - Task B
// acquire lockB
lockB . acquire ()
. . .

// acquire lockA
lockA . acquire ()
. . .

// r e l e a s e the locks
lockA . r e l e a s e ()
lockB . r e l e a s e ()

Deadlock detection Boyapati, Lee and Rinard [BLR02] give a formal definition of dead-
locks: A deadlock occurs when there is a cycle of the form: 8i 2 {0..n� 1}, Threadi holds
Locki and Threadi is waiting for Locki+1 mod n.

A simple code examination would reveal the obvious deadlock potential in the exam-
ple above. More complex cases involving cycles of resource acquisition, however, make
the analysis much harder. To detect deadlocks, several algorithms have been developed
[Elm86]. Essentially, concurrent resource acquisition is represented by a directed graph
and deadlock detection algorithms search for cycles within these graphs.

3.2. POTENTIAL FOR ERRORS 19

Deadlock avoidance Deadlock detection algorithms are employed in a running system
to recover from deadlocks. This, however, enforces that either, operations are abortable,
or that the system can release a resource held by a task, suspend it, and later on reassign
ownership of the resource to the task before its execution continues.

Deadlock recovery entails overhead, may not be feasible to achieve and is often not
even necessary. Recall one of the primary intentions of the concurrent programming mod-
els discussed in Section 2.5, centralizing and encapsulating concurrent interactions. This
significantly reduces deadlock potential. Another way good software design can aid to
eliminate deadlock occurrences is by conceptualizing concurrent operations as closed and
as compact as possible. Avoid holding several resources at the same time, if practicable.

Visibility

Threads can cache values of shared variables locally. Thus, updates made by other threads
(and tasks running within them, respectively) may not be visible. For this concern, pro-
gramming languages usually provide mechanisms to ensure a consistent view on shared
data. In Java, for instance, a variable may be declared volatile [GBB+06]. Values of these
variables are not being cached thread-locally.

This is often referred to as weak synchronization. While it ensures visibility of updates
among threads, it doesn’t prevent data races.

3.2.2 Liveness

You get safety alone by doing nothing at all1. Safety alone doesn’t suffice for a program to be
correct. Liveness properties stipulate, that something good happens [AS85]. This means
that a task eventually performs its specified operations. Violation of liveness properties can
lead to one of the following problems.

Starvation A task is said to starve if it does not succeed to acquire a specific resource at
all. Although quite unlikely, with an unlucky scheduling, a spin lock might loop forever.
This is the case when compare-and-swap returns unsuccessful each time.

Livelocks A livelock occurs when several tasks try to get out of each other’s way. They
repeatedly backoff from their current work in order for the other tasks to proceed. List-
ing 3.3 and Listing 3.4 illustrate a naive deadlock recovery strategy. Both tasks, A and B,
try to acquire the second lock. When this attempt fails, they both release the respective
other lock and restart from the top. Thus, they get stuck in an endless loop as the break
condition is never reached.

Livelocks are similar to deadlocks and, indeed, one could argue that deadlocks do also
belong to liveness instead of safety. Yet, Alpern And Schneider [AS85] rank deadlock-
freedom among safety properties. This makes sense, because tasks in a deadlock do not
progress at all. Nothing beyond the attempt of acquiring the resource is happening. Tasks
stuck in a livelock on the hand still proceed in some sense. After successfully acquiring
lockA, Task A could still execute arbitrarily many other statements before attempting to
acquire lockB.

1Michel Scott, Nonblocking data structures, Summer school on Practice and Theory of Distributed Computing
(SPTDC), July 2019, St. Petersburg

20 CHAPTER 3. PRACTICAL CHALLENGES OF CONCURRENT PROGRAMMING

Listing 3.3: Livelock - Task A
done = f a l s e
while (! done) {

// acquire lockA
lockA . acquire ()
. . .

// t r y to acquire lockB
success = lockB

. tryAcquire ()
i f (! success) {

lockA . r e l e a s e ()
continue

}
. . .
done = true

}

Listing 3.4: Livelock - Task B
done = f a l s e
while (! done) {

// acquire lockB
lockB . acquire ()
. . .

// t r y to acquire lockA
success = lockA

. tryAcquire ()
i f (! success) {

lockB . r e l e a s e ()
continue

}
. . .
done = true

}

Levels of liveness

There are three levels of liveness in a software system, defining to which degree a program
or specific algorithm adheres to liveness properties:

• Starvation-free: Every operation is guaranteed to complete in a bounded number of
steps [Her96].

• Livelock-free: An operation is guaranteed to complete in a bounded number of steps
[Her96].

• Obstrcution-free: If an operation gets to run all by itself, it is guaranteed to complete
in a bounded number of steps [HLM03].

Most of the time, livelock-free or even obstrcution-free approaches suffice for regular
applications. Especially the latter can sometimes be implemented amazingly simple and
elegant [Sco13]. Starvation-free data structures introduce overhead due to their rigid guar-
antees regarding execution time and latency. Yet, in some cases, software has to grant
starvation-freedom. Consider a commercial real-time trading system. Asset courses, like
for stocks or foreign exchange, might change in millisecond intervals. Professional traders
rely on almost instantaneous updates within their trading software.

3.3 Decision-making

Choosing the right operations and data structures for the task at hand is a vital part of
software development. The best choice for one situation may be insufficient for another. It
can have a great impact on code complexity and performance. Concurrent programming
makes no exception to this.

Guaranteeing safety and liveness properties is only one side of the coin. In order to
develop a scalable concurrent program, it is also important to understand which synchro-
nization technique to prefer in which scenario.

3.3. DECISION-MAKING 21

Blocking and Non-blocking data structures Concurrent data structures incorporating
synchronization can roughly be divided into two sorts: The first are blocking data struc-
tures [Sco13]. They block a thread when an operation cannot be executed at the time of
invocation. This is the case when an attempt to acquire a lock fails or when other condi-
tions are not met, for instance, when the maximum internal capacity is reached.

The second are non-blocking data structures [SS04]. As the name implies, these do not
block threads. They use atomic primitives to guard critical sections and notify the caller
when an operation cannot be carried out. Non-blocking solutions are preferable in systems
that schedule many tasks within threads. Blocking the whole thread would either prevent
every task associated to it to be suspended or would require to reassign them to other
threads2. Context switching should also be considered. The higher the expected costs are,
the better it becomes to use non-blocking data structures.

Blocking data structures on the other hand are well-suited for specific Producer-Consumer
implementations. Consider a scenario with many producers and only one consumer. A
queue is used to transfer data. To avoid running short on memory the queue has a max-
imum capacity. It is therefore called a bounded queue. Once the limit is reached, blocking
the producers can be advantageous.

Instead of going solely one way or the other when choosing a concurrent data struc-
ture, there is also an alternative. Some implementations use a hybrid approach: They pro-
vide both blocking and non-blocking operations. The exemplary code fragment shown in
Listing 3.3 makes use of this approach. The call of lockA.acquire() is a blocking operation.
Invoking lockB.tryAcquire() on the other hand is non-blocking. Data structures employing
the hybrid approach can take advantage of the benefits of both techniques. It also increases
reusability.

Number of threads An intricate part of the implementation of concurrent software is the
decision on how many threads to create. This depends on two factors: (1) the number
of processor cores, (2) the blocking factor. The latter describes the ratio between compu-
tational operations on the CPU and I/O bounded operations. For computational inten-
sive tasks only a few threads should be used, whereas for I/O intensive tasks many more
threads may be created.

As a rule of thumb, the number of threads to be used can be estimated as follows:
numT hreads numCores÷ (1�blockingFactor) with 0 blockingFactor < 1

Message passing and shared state - revisited As already discussed in Section 2.5.1, the
conviction that message passing and shared state are opposing concepts is a false dichotomy.
Software systems can benefit from utilizing both. Frequent read and write operations on
simple data structures are likely to perform better on shared state. Versatile synchroniza-
tion structures, such as read-write locks, can even increase this advantage. Furthermore, it
might also be simpler to implement.

Message passing on the other hand improves the code structure through enhanced
modularization. With proper abstractions, the difference between communication within
the same node and among several nodes in a distributed environment can be neglected.
This methodology is often used in sophisticated actor model implementations.

2See Section 4.4

22 CHAPTER 3. PRACTICAL CHALLENGES OF CONCURRENT PROGRAMMING

CHAPTER 4

Languages

In order to demonstrate concurrent programming, I have chosen four languages due to
different characteristics and specialities in handling concurrency. First up is Java as it is
one of the most widely used programming languages nowadays. Its standard library pro-
vides highly sophisticated concurrent data structures. The second one is Rust, a systems
programming language. Besides being fascinating of its own, it is especially interesting for
concurrent programming due to its ownership model.

JavaScript was chosen as third language to stress the fact that single-threaded languages
also involve concurrency. Furthermore, JavaScript’s Promise type enables simple handling
of asynchronous programming. Go is the last language discussed. It has the Actor model
built-in and is therefore a great choice when implementing a highly concurrent system.

Blueprints like the Consumer-Producer pattern or the Actor model build a solid founda-
tion for concurrent programming. Still, the language is use poses specific implications on
the way software is written. Likewise, does the runtime — and, if given, specifications
of hardware resources. Thus, these models should always be taken with a grain of salt.
For instance, while the Actor model in theory simply assumes message passing as given, a
concrete implementation has to use some sort of intermediary data structure.

Furthermore, concurrent programming is not solely about Safety and Liveness. It also in-
corporates the creation and lifecycle management of tasks. Many programming languages
approach this similarly. The section on Java covers foundations of multi-threading in detail.
The other sections focus on aspects the respective language adds to concurrent program-
ming.

For each of the selected languages, in regard to their respective characteristics, one or
several substitutes can be found. Programming languages like C#, Julia or Elixir (and many
others) do also provide great concurrent programming features. However, since discussing
several languages with similar approaches to concurrent programming would bloat this
chapter without adding much value, these alternative languages will not be featured.

While all data structures and operations are discussed thoroughly, and the correspond-
ing examples are explained in detail, a decent understanding of the respective language is
advantageous.

23

24 CHAPTER 4. LANGUAGES

4.1 Java

By the time of this writing, Java ranks among the most popular programming languages1.
It is an object-oriented, general purpose programming language. In the last decade, ad-
vanced programming techniques like lambda expressions2 or method references found
their way into the language, and it progressed rapidly overall.

Within the package java.util.concurrent, Java provides highly sophisticated concurrent
data structures. Many of them employ higher-order functions. To support these, Java intro-
duces the notion of functional interfaces. A functional interface declares a single method.
This way, calling code can simply supply a lambda expression to fulfill the implementation
of such an interface.

Listing 4.1 depicts the declaration and usage of the functional interface Callable. It de-
clares a single method, call, which returns an instance of the given data type. Instead of
providing a concrete or anonymous implementation for it, a lambda expression denoted
by an arrow is used. Note that functional interfaces are usually annotated with @Function-
alInterface.

Listing 4.1: Callable
@ F u n c t i o n a l I n t e r f a c e
public i n t e r f a c e Cal lab le<V> {

V c a l l () ;
}
. . .
i n t execute (Cal lab le<Integer> c a l l a b l e) { . . . }
var execut ionResul t = execute (() −> 1) ;
. . .

The following sections discuss concurrent programming in Java thoroughly. At the
end a brief introduction to Scala’s concurrency features is given, as Scala is a functional
programming language executed on the JVM.

4.1.1 Thread

The foundation of concurrent programming in Java builds the class Thread. Each instance
of a thread is directly coupled with an operating system thread. The class Thread provides
various methods to retrieve information about it and to handle its lifecycle. The state a
thread currently assumes, for instance, can be obtained by calling getState. While a thread
can also have a name, identification should usually be done via the getId method which
returns a thread’s unique identifier.

Runnable At the very core of code execution within a thread lies the interface Runnable.
It declares a single method, void run(); , and is therefore a functional interface. The class
Thread implements Runnable. Yet, without an external implementation, the thread ob-
ject will execute nothing. Hence, on thread instantiation, a Runnable can be supplied as
argument. Listing 4.2 illustrates this. Upon creation, a thread assumes the state NEW (cor-
responding to ready). To begin executing a thread, one simply calls start on it. The thread
then assumes the State Runnable (corresponding to running).

Listing 4.2: Instantiation of a thread with a Runnable
. . .
var thread = new Thread (() −> { . . . }) ;

1https://www.tiobe.com/tiobe-index/
2The lambda calculus is, indeed, not new at all.

4.1. JAVA 25

thread . s t a r t () ;
. . .

Thread interruption Already in the early days of the Java programming language3, the
method stop of Thread has already been deprecated. And for good reasons: Invoking stop
on a thread will cause the thread to terminate immediately, aborting the execution of what-
ever operation it performed. This may lead to an inconsistent state of the respective data
structures the thread was operating on4.

This entails unbearable error potential. Thus, a cooperative approach has to be used
in order to properly interrupt threads. Consider two threads, A and B. Thread A wishes
to shut down Thread B. Instead of abnormally aborting its execution, A politely tells B to
finish. Once B notices the intended interruption, it may clean up its state and gracefully
return.

In Java, there are two standard ways of achieving this. On the one hand, it can be
achieved via a thread’s lifecycle. By calling interrupt on the thread, a simple flag within the
thread’s state is set. The thread can obtain whether it should interrupt its current execution
through the method isInterrupted. A thread noticing an intended interrupt may throw an
InterruptedException. This approach is primarily suited for library code.

On the other hand, interrupting threads within client code might be much simpler to
handle. Global (at least in a thread’s context) instances of configuration variables can be
checked occasionally to see whether a thread should terminate its execution. Likewise,
arbitrarily many other state changes may be indicated.

Groups and security Threads can be collected in groups. This is done through the class
ThreadGroup. A ThreadGroup can contain threads and other instances of ThreadGroup.
This way, they build tree structures. Grouping threads eases handling and lifecycle man-
agement of the contained threads. For instance, the method interrupt can be invoked on the
whole group.

A ThreadGroup constrains access to the threads it contains: Only threads within the
same group may interact with each other. A thread can obtain whether it is allowed to
modify another thread by calling the method checkAccess. Limiting the access to threads can
increase the security of a system. Certain critical operations may be restricted to threads in
a specific ThreadGroup and thus inaccessible to threads outside the group.

4.1.2 Foundations

Synchronization

Every object in Java has an intrinsic lock. It is acquired through the keyword synchronized.
A failed attempt to acquire this lock blocks the current thread. All threads blocked by the
lock are kept in a queue and one after another is unblocked whenever the lock is released
again. The order in which threads will be unblocked, however, is non-deterministic and
can therefore not be relied upon. The acquisition of an object’s intrinsic lock is depicted in
Listing 4.3.

Listing 4.3: Intrinsic object lock
. . .
Object lock = new Object () ;
. . .

3The stop-method is deprecated since Version 1.2
4https://docs.oracle.com/javase/7/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

26 CHAPTER 4. LANGUAGES

synchronized (lock) {
. . .

}

Associated with the intrinsic lock of an object are the methods wait, notify, and notifyAll.
They can be used to further limit access to shared state. If certain conditions are not met,
wait can be invoked to set the current thread into the WAITING state. Calling notify wakes
up a single thread, notifyAll wakes up all threads waiting on the same object.

Intrinsic locks can be used to grant mutual exclusion on critical sections. Combined
with conditional waiting, concurrent data structures can be implemented that do not only
block when a lock cannot be acquired, but also conditionally.

Consider a Producer-Consumer scenario. Producers and consumers need an intermediate
to transfer data. To avoid running short on memory, a buffer of limited size can be used.
Due to the limited capacity, threads attempting to put an element into a full buffer have to
wait until space is available again. Likewise, threads attempting to take an element from an
empty buffer have to wait as well. An implementation of such a buffer is given in Listing
4.4.

Listing 4.4: BoundedBuffer
public c l a s s BoundedBuffer<T> {

private f i n a l T [] b u f f e r ;
private i n t head , t a i l , count ;

public BoundedBuffer (i n t c a p a c i t y) {
t h i s . b u f f e r = (T []) new Object [c a p a c i t y] ;

}

public synchronized void put (T element) throws InterruptedExcept ion {
while (t h i s . count == t h i s . b u f f e r . length)

wait () ;
t h i s . b u f f e r [t a i l] = element ;
t h i s . t a i l ++;
t h i s . t a i l %= t h i s . b u f f e r . length ;
t h i s . count ++;
n o t i f y A l l () ;

}

public synchronized T take () throws InterruptedExcept ion {
while (t h i s . count == 0)

wait () ;
T element = t h i s . b u f f e r [head] ;
t h i s . b u f f e r [head] = null ;
t h i s . head ++;
t h i s . head %= t h i s . b u f f e r . length ;
t h i s . count − −;
n o t i f y A l l () ;
return element ;

}
}

The class BoundedBuffer5 is based on a single array. The variables head and tail are used
as ring counters, pointing to the first and last index respectively where elements can be
found within the array. BoundedBuffer provides the thread-safe methods put and take to
interact with the underlying array. Instead of an additional object, the intrinsic lock of the

5This implementation is inspired by Java Concurrency in Practice, Bryan Goetz, Chapter 14. [GBB+06]

4.1. JAVA 27

instance itself is used to guard the methods. Declaring a method synchronized is syntactic
sugar for wrapping the whole method body into a synchronized block.

Both methods employ the strategy of conditional waiting. While the buffer is full or
empty, respectively, the method wait is invoked. The loop is necessary because threads
may wake up spuriously, that is, for no comprehensible reason. Thus, re-evaluating the
condition on which the thread was set to wait is inevitable. Usually, however, a thread
wakes up due to being notified. A thread waiting in the put method will react upon the call
to notifyAll within the take method and vice versa.

Thread execution lifecycle

Some operations in the Java standard library, such as wait, rigidly examine whether the
current thread was interrupted. In that case, they throw an InterruptedException and reset
the interrupted flag of the respective thread. In the context of the class BoundedBuffer from
Listing 4.4, handling an interrupt does not make sense. Thus, the exception is propagated
upwards. Calling code should take further action when a thread interruption occurs. It is
bad practice to swallow the exception. Logging it does also not provide any benefit to the
running system. At least, client code can set the interrupted flag again. This enables code
further up the call stack to cancel the respective task gracefully.

Listing 4.5 depicts a scenario in which a consumer thread uses an instance of Bounded-
Buffer to continuously retrieve new elements. It catches an occurring InterruptedException,
polls the current thread and resets its interrupted flag. Furthermore, the consumer reccur-
ingly checks whether to continue its work through the running flag6. The main thread
occasionally examines the interrupted state of the consumer thread. The combination of
thread state with custom control instructions enables fine-grained control over the execu-
tion lifecycle of threads.

Listing 4.5: Reacting on interruption
. . .
v o l a t i l e boolean running = t rue ;
var boundedBuffer = new BoundedBuffer (c a p a c i t y) ;
. . .
var consumerThread = new Thread (() −> {

while (running) {
t r y {

var nextElement = boundedBuffer . take () ;
databaseServ ice . wri te (nextElement) ;

} catch (InterruptedExcept ion i e) {
Thread . currentThread () . i n t e r r u p t () ;

}
}

}) ;
consumerThread . s t a r t () ;
. . .
while (t rue) {

. . .
i f (consumerThread . i s I n t e r r u p t e d ())

running = f a l s e ;
. . .

}

6Note that running is declared volatile. This ensures visibility among threads.

28 CHAPTER 4. LANGUAGES

Concurrent control flow using semaphores

The semaphore, as mentioned in Section 2.4, is one of the most fundamental concurrency
control structures. With the class Semaphore Java provides a profound implementation.
Semaphores take a similar route towards synchronization as do objects with their intrinsic
lock paired with conditional waits.

However, Semaphores span another area of concurrent programming, concurrent con-
trol flow. Consider an algorithm that finds all occurrences of a specific element in an array.
The array is expected to be large. Thus, the algorithm uses multithreading to parallelize
the computation. The array is split into several chunks of about equal size. Each part is
then traversed by a different thread. A sample implementation is given in Listing 4.6.

Listing 4.6: The method searchOccurrences
public s t a t i c <T> i n t searchOccurrences (

T [] items , T searchTerm , i n t numThreads) throws InterruptedExcept ion
{

var numOccurrences = new AtomicInteger (0) ;
var readySem = new Semaphore (0) ;

var workerPool = new ArrayList<Runnable > () ;
f i n a l i n t numItems = items . length / numThreads ;
var las tExc lus iveEnd = 0 ;
for (i n t i = 1 ; i < numThreads ; i ++) {

f i n a l i n t s t a r t = las tExc lus iveEnd ;
las tExc lus iveEnd += numItems ;
workerPool . add (createSearchWorker (

items , searchTerm ,
s t a r t , las tExclus iveEnd ,
numOccurrences , readySem)) ;

}
/ / C r e a t e t h e l a s t worker wi th t h e r ema in ing i t e m s
workerPool . add (createSearchWorker (

items , searchTerm ,
lastExclusiveEnd , items . length ,
numOccurrences , readySem)) ;

for (var worker : workerPool) {
new Thread (worker) . s t a r t () ;

}

readySem . acquire (numThreads) ;
return numOccurrences . get () ;

}

The static method searchOccurrences expects the array, items, and the element, searchTerm,
to be searched for. The third parameter, numThreads, indicates how many threads to use.
A list of instances fulfilling Runnable – further referred to as workers — is built through
the helper method createSearchWorker, discussed below. Besides the array and the search
element, it expects the start and end index of the respective array part. Indices are simply
computed by using the last exclusive end index as the next start index. Adding up the
number of items gives the next exclusive end index. It further expects instances of an
AtomicInteger and a Semaphore. In the main thread, the semaphore is used to wait on the
completion of each worker by invoking acquire(numThreads). This method call might throw
an InterruptedException.

AtomicInteger is one of several data structures in Java which provide atomic operations.
The instance numOccurrences is used by the workers to collect the number of occurrences

4.1. JAVA 29

found. Due to its atomicity, no further mechanism if needed to grant mutual exclusion.
The method createSearchWorker returns an instance of Runnable via a lambda expression.

The range from the start to the end index is traversed. For every occurrence of the search
element the atomic operation getAndIncrement is invoked. As the name implies, it returns
the current value and increments the internal value. The result is of no particular value7

here.
The last step is to release the semaphore. Note that the code is enclosed in a try-finally

clause. This ensures release of the semaphore in case of an exception being thrown. Oth-
erwise, a thread might not release the semaphore and the program would not terminate.
It is advisable to use this approach whenever working with data structures that are held
exclusively by a thread and need to be released in some way.

Listing 4.7: The method createSearchWorker
private s t a t i c <T> Runnable createSearchWorker (

T [] items , T searchTerm ,
i n t s t a r t , i n t end ,
AtomicInteger numOccurrences , Semaphore readySem

) {
return () −> {

t r y {
IntStream . range (s t a r t , end)

. forEach (index −> {
i f (i tems [index] . equals (searchTerm)) {

numOccurrences . getAndIncrement () ;
}

}) ;
} f i n a l l y {

readySem . r e l e a s e () ;
}

} ;
}

Exception handling

Being simple and straightforward, the implementation of createSearchWorker is correct. Yet,
this only holds when the start and end indices are correct, that is, they are inside the array’s
bounds. If this is not the case, calling items[index] will eventually throw an IndexOutOf-
BoundsException. Note that the respective thread will terminate abruptly.

To handle uncaught exceptions thrown by separate threads, developers can specify
an UncaughtExceptionHandler. This interface declares a single method, uncaughtException,
which expects an instance of Thread and one of Throwable. Throwable is the base class for all
errors and exceptions in Java. An UncaughtExceptionHandler can be registered per thread
via the method setUncaughtExceptionHandler. Listing 4.8 illustrates this. Through setDe-
faultUncaughtExceptionHandler a default exception handler can be specified which is used
when no other handler has been defined for the respective thread.

Listing 4.8: Specifying an UncaughtExceptionHandler
for (var worker : workerPool) {

var t = new Thread (worker) ;
t . setUncaughtExceptionHandler ((thread , throwable) −> {

i f (throwable instanceof IndexOutOfBoundsException)
System . e r r . p r i n t l n (”Thread ” + thread . get Id ()

7Pun intended.

30 CHAPTER 4. LANGUAGES

+ ”was crea ted with wrong i n d i c e s . ”) ;
}) ;
t . s t a r t () ;

}

4.1.3 Locks

Several lock implementations can be found in the Java standard library. They are all block-
ing data structures. The Basis for these implementations is the interface Lock. The declared
methods are depicted in Listing 4.9. Implementations of Lock provide a more versatile
way of synchronization than synchronized does. Locks can be chained in arbitrary order
which allows fine-grained control over shared resources. With tryLock and its overload,
non-blocking operations are provided. Using lockInterruptibly will release the lock when
the thread holding it is interrupted. This makes the implementation of cancellable tasks
easier.

Listing 4.9: The Lock inteface
void lock () ;
void l o c k I n t e r r u p t i b l y () ;
boolean tryLock () ;
bo l lean tryLock (long timeout , TimeUnit timeUnit) ;
void unlock () ;

The class ReentrantLock is perhaps the most commonly used implementation. As the
name implies, the lock allows the thread currently holding it to reacquire it.

Read-write lock

A Readers-Writer scenario involves shared state which is read by arbitrarily many readers,
but only mutated by a single writer. For instance this approach is beneficial when a global
configuration data structure is read regularly by several threads, but only occasionally writ-
ten to.

Read-write locks are optimized accordingly. Multiple readers can acquire the lock at the
same time, but only if no writer is present. The writer on the other can acquire the lock
when not a single reader holds it.

StampedLock provides a sophisticated implementation. A writer acquires the lock via the
method writeLock. Analogously, readers acquire it through readLock. Optimistically locking
for a read is possible with tryOptimisticRead.

Each of the acquire operations returns a number of type long, called stamp, which rep-
resents the state of the acquisition. To verify the validity on an optimistic read, the method
validate is called on the stamp. The lock is released by supplying the stamp to the method
unlock.

Listing 4.10: Optimistic read
var stampedLock = new StampedLock () ;
. . .
var stamp = stampedLock . tryOptimist icRead () ;
var running = c o n f i g u r a t i o n . applicat ionRunning () ;
i f (! stampedLock . v a l i d a t e (stamp)) {

stanp = stampedLock . readLock () ;
t r y {

running = c o n f i g u r a t i o n . applicat ionRunning () ;
. . .

} f i n a l l y {

4.1. JAVA 31

stampedLock . unlock (stamp) .
}

}
. . .

In a program scheduling many tasks on one and the same thread, one might prefer a
non-blocking lock. This way, only a single task is blocked instead of the thread which in-
creases throughput of the system as a whole. Furthermore, providing a data structure that
encapsulates access to the shared resource in a readers-writer manner can rapidly simplify
client code.

Listing 4.11: NonblockingReadWriteLock
public c l a s s NonblockingReadWriteLock<TValue>{
s t a t i c f i n a l i n t WRITE STATE = −1;
s t a t i c f i n a l i n t EMPTY STATE = 0 ;
private f i n a l AtomicInteger l o c k S t a t e ;
private f i n a l Supplier<TValue> readOperation ;
private f i n a l Consumer<TValue> writeOperat ion ;

public NonblockingReadWriteLock (
Supplier<TValue> readOperation ,
Consumer<TValue> writeOperat ion

) {
t h i s . l o c k S t a t e = new AtomicInteger () ;
t h i s . readOperation = readOperation ;
t h i s . writeOperation = writeOperation ;

}
public TValue read () {

t r y {
var done = f a l s e ;
while (! done) {

var previousValue = t h i s . l o c k S t a t e . getAcquire () ;
i f (previousValue == WRITE STATE)

continue ;
done = t h i s . l o c k S t a t e . getAndUpdate ((currentValue) −> {

i f (currentValue == WRITE STATE) return WRITE STATE ;
return currentValue + 1 ;

}) != WRITE STATE ;
}
var value = t h i s . readOperation . get () ;
return value ;

} f i n a l l y {
t h i s . l o c k S t a t e . decrementAndGet () ;

}
}
public void write (TValue value) {

t r y {
var done = f a l s e ;
while (! done) {

i f (t h i s . l o c k S t a t e . getAcquire () != EMPTY STATE)
continue ;

done = t h i s . l o c k S t a t e . compareAndSet (EMPTY STATE, WRITE STATE) ;
}
t h i s . writeOperation . accept (value) ;

} f i n a l l y {
t h i s . l o c k S t a t e . s e t (EMPTY STATE) ;

}

32 CHAPTER 4. LANGUAGES

}
}

Listing 4.11 gives an implementation. NonblockingReadWriteLock is based on a single
AtomicInteger, the lockState. The semantic of the state is straightforward. As long as lockState
assumes 0, the lock is not held. -1 indicates exclusive access to a writer. Any positive value
stands for the number of readers currently holding the lock.

A spin lock based on compare-and-set and read-modify-write, here getAndUpdate, is used to
grant mutual exclusion. To reduce contention on lockState, the current value is polled, and
is checked upon whether the lock even can be acquired. Note that the method getAcquire
of AtomicInteger is used. This ensures that subsequent calls are not reordered prior to this
statement. As mentioned in Section 2.1, the order of statements in code is subject to change
due to compiler optimizations.

NonblockingReadWriteLock encapsulates read and write operations. Reading a value is
defined by the instance of Supplier given. Supplier declares a single method, T get (); which
returns a value of the respective type. The interface Consumer declares a single method,
void accept(T t ;) . The given instance represents write operations on the underlying data
structure. Confined in such a way, resources can be shared easily and safely across the
application.

Try-with-resources on locks

Like the implementation in Listing 4.7 already illustrated, locks like ReentrantLock have a
downside. A thread holding the lock is also obliged to release it.

Similarly, file handles and database connections have to be closed. With the try-with-
resources statement, Java simplifies this open-close lifecycle. The try operator expects in
instance of AutoCloseable. This interface declares a single method, void close (); . When the
try block returns, the close is automatically invoked.

While searching for whether it is possible to handle instances of Lock the same way, I
stumbled across a surprisingly simple solution: A custom implementation extends Reen-
trantLock and implements AutoCloseable. Thus, it can be subject to try-with-resources.

The implementation8 is given in Listing 4.12. By calling the method open, the lock is
acquired. The automatically invoked method close releases the lock.

Listing 4.12: CloseableReentrantLock
public c l a s s CloseableReentrantLock

extends ReentrantLock implements AutoCloseable {
public CloseableReentrantLock open () {

t h i s . lock () ;
return t h i s ;

}
@Override
public void c l o s e () {

t h i s . unlock () ;
}

}
. . .
var c = new CloseableReentrantLock () ;
t r y (var c loseableLock = c . open ()) {
. . .
}

8Found on stackoverflow, https://stackoverflow.com/a/11000458, accessed 30. May 2022.

4.1. JAVA 33

4.1.4 Creating and managing tasks

Java provides several facilities for the creation and management of asynchronous tasks.
This section gives a compact introduction. Concrete use cases are shown in the subsequent
section.

Future

The foundation for asynchronous computations in Java is the interface Future, depicted in
Listing 4.13. Through the methods cancel and isCancelled, instances fulfilling Future repre-
sent cancellable tasks. How cancellation is handled differs between implementations.

The method isDone provides a soft mechanism to check whether the computation has
already finished. Using get to retrieve the result, on the other hand, lets the current thread
wait until the computation completes. Additionally, the retrieval can be given a timeout.
Should the result not be available once the specified time span has elapsed, a TimeoutExcep-
tion is thrown.

Listing 4.13: The Future interface
i n t e r f a c e Future<V> {

boolean cance l (boolean mayInterruptIfRunning) ;
V get () ;
V get (long timeout , TimeUnit uni t) ;
boolean i sCance l l ed () ;
boolean isDone () ;

}

ExecutorService

Hand in hand with Future goes ExecutorService. This interface pairs creation and execution
of asynchronous tasks with termination management. In order to run a task, the method
submit is provided which takes an instance of Callable and returns a Future. An overload of
submit expects an instance of Runnable instead. While instances of Runnable do not provide
a value upon completion, the associated Future is still useful for completion checks and
cancellation.

An executor service is of particular interest when many tasks are to be executed. The
method invokeAll takes a collection of Callable instances and runs them all. With isTermi-
nated one can check whether all tasks have completed. To wait for the completion of tasks,
awaitTermination is used. This method takes a timeout as parameter and will return false
when not all tasks have completed before the specified time span has elapsed.

Executor services implementing ScheduledExecutorService make it possible to delay task
execution or to schedule tasks periodically.

In general, executor services can be divided into three different groups: (1) single-
threaded executors, (2) multithreaded executors with a fixed number of threads, (3) multi-
threaded executors with an unbounded number of threads.

To create instances of ExecutorService, one should refer to the class Executors. It provides
static convenience functions to instantiate different kinds of executor services. An executor
service using a fixed number of threads can be crated via newFixedThreadPool or newSched-
uledExecutor, respectively. Using newSingleThreadExecutor creates an executor service oper-
ating on a single thread (newSingleThreadScheduledExecutor instantiates the scheduling pen-
dant).

Calling newCachedThreadPool creates an executor service using arbitrarily many threads.
Each task is scheduled to a separate thread, run immediately. A cache of already created
threads enables thread reusage. Whenever a cached thread is idle for 60 seconds, it is

34 CHAPTER 4. LANGUAGES

terminated and removed from the cache. This scheduling approach is viable for scenarios
where many short-running tasks have to be run as soon as possible.

CompletableFuture

The class CompletableFuture provides a versatile implementation for Future. Its capabilities
lie far beyond those of other implementations. CompletableFuture, as the name implies,
can be completed. To do so, the method complete is called. It takes a concrete value and
completes the task.

Instances can be chained, combined and composed in various ways. Furthermore, Com-
pletableFuture provides several static functions to conveniently create instances. The usage
is depicted in Listing 4.14. A predefined number of tasks is created using the static function
supplyAsync. It takes an instance fulfilling Supplier. The helper, aggregate, is already com-
pleted, its value is available instantaneously. Through thenCombine, the computation results
of each worker are collected and aggregated one by one. The method expects another Com-
pletableFuture and a function to process both results. The overall result is retrieved through
join.

Listing 4.14: CompletableFuture
Lis t<CompletableFuture<Integer>> workers =

IntStream . range (0 , numTasks)
. mapToObj (i −> CompletableFuture . supplyAsync (() −> i))
. c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

var aggregate = CompletableFuture . completedFuture (0) ;
for (var worker : workers) {

aggregate = aggregate
. thenCombine (worker , (l e f t , r i g h t) −> l e f t + r i g h t) ;

}
var r e s u l t = aggregate . j o i n () ;

Note that the usage of thenCombine resembles the reduce operation in a typical Collection
Pipeline9 of the form filter-map-reduce. And in fact, CompletableFuture supports arbitrary
pipelines which make asynchronous programming a breeze.

4.1.5 Concurrent collections by example

The Java standard library provides numerous concurrent collections, blocking and non-
blocking alike. They all have their application. Yet, it is out of the scope of this work to
discuss each of them.

The following examples showcase two particularly interesting data structures, Concur-
rentHashMap and ConcurrentLinkedQueue.

Counting occurrences

Recall the algorithm, searchOccurrences, from Listing 4.6. The number of occurrences for
a given element was requested. The requirements have changed. Now the number of
occurrences for each unique element have to be retrieved. Thus, a mapping from elements
to their count is needed. In a concurrent environment, ConcurrentHashMap is a great choice.
Due to fine-grained locking it provides highly concurrent read and write access.

Changes to the existing algorithm are quite simple: instead of atomically increment-
ing a shared number, the count of each element is collected and updated in a map. The

9See https://martinfowler.com/articles/collection-pipeline/, accessed 24. May 2022.

4.1. JAVA 35

functionality of a worker is given in Listing 4.15. Simply checking whether an element is
already present in the map and acting accordingly is not possible in this scenario as it might
result in race conditions. To illustrate this, consider two tasks, A and B, both finding out
simultaneously that the current item is not yet present in the map. Now both would put
the element as key and 1 as value into the map which results in a lost update.

Listing 4.15: The method createSearchWorker
private s t a t i c <T> Runnable createSearchWorker (T [] items ,

i n t s t a r t , i n t end , Map<T , Integer> elementsToOccurrences) {
return () −> {

IntStream . range (s t a r t , end)
. forEach (index −> {

var item = items [index] ;
var previous = elementsToOccurrences . putIfAbsent (item , 1) ;
i f (previous != null)

elementsToOccurrences
. computeIfPresent (item , (key , value) −> value + 1) ;

}) ;
} ;

}

To avoid race conditions, the task first attempts to put a completely new key-value pair.
The method putIfAbsent returns null if the specified key was not already associated with
a value. Otherwise, the current value is returned. When the put attempt fails, the key is
already present in the map and the current value associated with it must be incremented.
Again, retrieving the current value, calculating the new value and putting it into the map is
not applicable due to race conditions. In this situation, the method computeIfPresent comes
to the rescue. It allows to aggregate the current value to create a new mapping.

The updated implementation of searchOccurrences is given in Listing 4.16. The method
takes an additional parameter, awaitTime, denoting the time to wait for termination. Note
that semaphore is not used anymore. Instead, the facilities of executor services are utilized.
AtomicInteger is replaced by ConcurrentHashMap.

The workers are created in the same fashion as before. Only now, an executor service of
a fixed size is used to run the workers and await their termination.

Listing 4.16: The method searchOccurrences
public s t a t i c <T> Map<T , Integer> searchOccurrences (

T [] items , i n t numTasks , long awaitTime
) throws InterruptedExcept ion {

var elementsToOccurrences =
new ConcurrentHashMap<T , Integer > () ;

var workerPool = new ArrayList<Runnable > () ;
f i n a l i n t numItems = items . length / numTasks ;
var las tExc lus iveEnd = 0 ;
for (i n t i = 1 ; i < numTasks ; i ++) {

f i n a l i n t s t a r t = las tExc lus iveEnd ;
las tExc lus iveEnd += numItems ;
workerPool . add (createSearchWorker (

items ,
s t a r t , las tExclus iveEnd ,
elementsToOccurrences)) ;

}

workerPool . add (createSearchWorker (

36 CHAPTER 4. LANGUAGES

items ,
las tExclusiveEnd , items . length ,
elementsToOccurrences)) ;

var e x e c u t o r S e r v i c e = Executors . newFixedThreadPool (numTasks) ;
for (var worker : workerPool)

e x e c u t o r S e r v i c e . submit (worker) ;
e x e c u t o r S e r v i c e . awaitTermination (awaitTime , TimeUnit .SECONDS) ;
e x e c u t o r S e r v i c e . shutdownNow () ;

return elementsToOccurrences ;
}

Message passing

While all sorts of collections have their application, queues play an integral role in con-
current programming. The different implementations of ExecutorService all use a queue to
manage threads internally.

Likewise, they are incorporated as intermediary data structure for Producer-Consumer
scenarios, as a bag containing tasks in a Supervisor-Worker implementation, or for channels.

While some other languages support message passing via channels, Java uses them
solely within the package java.nio (new I/O). Implementations are package-private and
thus cannot be applied to client code.

However, message passing is a versatile approach to concurrent programming. Thus, a
data structure providing asynchronous message passing facilities is highly appreciable.

Listing 4.17: TaskCommunicationChannel
public c l a s s TaskCommunicationChannel<T> {

private f i n a l Queue<T> messageQueue ;
private f i n a l Queue<CompletableFuture<T>> r e g i s t e r e d R e c e i v e s ;

public TaskCommunicationChannel () {
t h i s . messageQueue = new ConcurrentLinkedQueue <>();
t h i s . r e g i s t e r e d R e c e i v e s = new ConcurrentLinkedQueue <>();

}
public CompletableFuture<T> r e c e i v e () {

var nextMessage = t h i s . messageQueue . p o l l () ;
i f (nextMessage == null) {

var newRegisteredReceive = new CompletableFuture<T> () ;
t h i s . r e g i s t e r e d R e c e i v e s . add (newRegisteredReceive) ;
return newRegisteredReceive ;

}
return CompletableFuture . completedFuture (nextMessage) ;

}
public void send (T message) {

var r e g i s t e r e d R e c e i v e = t h i s . r e g i s t e r e d R e c e i v e s . p o l l () ;
/ / A p r i o r r e c e i v e c o u l d not be s e r v e d .
i f (r e g i s t e r e d R e c e i v e != null) {

r e g i s t e r e d R e c e i v e . complete (message) ;
return ;

}
t h i s . messageQueue . add (message) ;

}
}

4.1. JAVA 37

An implementation for an asynchronous channel is given in Listing 4.17. The idea is
straightforward: An asynchronous data structure is non-blocking per definition. Thus,
waiting operations are prohibited. This gives rise to the notion of a pending receive. A
receive operation on the channel is pending as long as no message was sent to the channel
to reply to it.

The implementation is based upon two queues, one storing incoming messages, the
other one pending receives. Both are instances of ConcurrentLinkedQueue. This is a fantastic
implementation of a non-blocking queue algorithm described by Scott and Michael [MS96].

Instead of a concrete value, the method receive returns a CompletableFuture. As a wrapper
for asynchronous computations, it represents the message and the pending receive at the
same time. If polling the next message from the message queue succeeds, a completed
instance containing the polled message is returned. Otherwise, an empty CompletableFuture
is first registered, then returned.

The method send on the other hand, first checks whether a prior receive is still pend-
ing. If so, it is served. Otherwise, the message queue is appended. Any thread can help
out other threads in completing pending receives — a common feat of non-blocking data
structures.

4.1.6 Scala

Scala is a programming language combining object-oriented and functional programming
paradigms. Scala is designed to seamlessly integrate with Java functionality. Java libraries
can be called from Scala code. Furthermore, Scala uses the same class path and runs on the
JVM.

Values in Scala are immutable by default. As opposed to purely functional program-
ming languages, it is possible to explicitly declare variables and object properties as muta-
ble. Nonetheless, Scala encourages developers to rely on immutable objects primarily. For
instance, immutable collections are simply available just like everything contained in the
Java package java.lang. Mutable collections in the other hand have to explicitly be imported
from the scala.collection.mutable package.

Immutable state is thread-safe by design which is why Scala is useful for concurrent
programming.

Future in Scala

Similar to Java, Scala provides Future for light weighted concurrent tasks. Despite the
name, due to the fact that futures in Scala are composable in various ways, they do re-
semble Java’s CompletableFuture. Listing 4.18 illustrates this. Two futures of type integer,
task1 and task2 are created. Via the for ... yield statement, they are combined into a single
instance. Finally, the resulting value is used in the callback supplied to onComplete. Note
that errors are also handled this way.

Listing 4.18: Futures in Scala
import s c a l a . concurrent . Future
import s c a l a . concurrent . ExecutionContext . I m p l i c i t s . g loba l
import s c a l a . u t i l .{ Fai lure , Success}

val task1 : Future [I n t] = Future {
/ / E x e c u t e c o m p u t a t i o n

}
val task2 : Future [I n t] = Future { . . . }
val r e s u l t =

for

38 CHAPTER 4. LANGUAGES

res1 <− task1
res2 <− task2

yield

(res1 + res2)

r e s u l t . onComplete {
case Success (value) => handleResult (value)
case F a i l u r e (e r r) => handleError (e r r)

}

Futures are executed in an ExecutionContext. With ExecutionContext.global Scala pro-
vides a default implementation sufficient for most use cases. In special scenarios, a Java
ExecutorService can be transformed into an ExecutionContext using the function fromExecu-
tor. Listing 4.19 illustrates how to run a future in a FixedThreadPool.

Listing 4.19: Transforming an ExecutorService
import j ava . u t i l . concurrent . Executors ;

val execut ionContext = ExecutionContext . fromExecutor (
Executors . newFixedThreadPool (l i m i t : I n t))

val task : Future [I n t] = Future { . . . } (execut ionContext)

4.2 Rust

Rust is a systems programming language. It combines low-level facilities with high-level
zero cost abstractions. Zero cost means they add no runtime overhead. For several years in
a row, it has been the most loved programming language among developers10. And for good
reason: The rigid memory safety properties it grants render most memory related issues,
such as use-after-free, void. Many data types in the standard library enable pipeline actions
which makes composition and error handling a breeze11.

Unlike Java, the Rust standard library is rather sparse regarding concurrent data struc-
tures. There simply are no concurrent collections, executor services or light-weight task
implementation like CompletableFuture. The upcoming sections describe why concurrent
programming in Rust is a charm, nonetheless.

A word on asynchronous programming Rust does incorporate async/await to extend pos-
sibilities for asynchronous programming. However, it can be difficult to bring synchronous
and asynchronous code together [Ros17]. A synchronous function, for instance, cannot di-
rectly call an asynchronous one. To work reasonable with the language features, external
libraries have to be included12.

Support for asynchronous programming in Rust is rapidly evolving. Thus, the current
state of development cannot be perceived as stable and is therefore not included in this
thesis.

Yet, asynchronous programming as an element of software design does not depend on
specific language or runtime features. The fundamental idea is always the same: The value
of an asynchronous computation will eventually be available at some point in the future.
This is why many languages, including Java and Rust, call the handle for that value Future.
The closing example in Section 4.2.8 showcases how asynchrony can be achieved through
synchronous mechanisms.

10https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-language-love-dread
11For a thorough introduction to Rust, please refer to https://doc.rust-lang.org/book/
12https://rust-lang.github.io/async-book/01 getting started/03 state of async rust.html

4.2. RUST 39

4.2.1 Fearless concurrency

From the very beginning, one of Rust’s major goals was to prevent concurrency problems.
While seemingly unrelated, memory safety guarantees combined with a highly expres-
sive type system inhibit concurrency related issues. Sharing data between threads is con-
strained. Thus, potentially erroneous operations on shared state cannot be performed at
all.

Rusts compiler will report violations of thread-safety. This is what the Rust community
calls fearless concurrency.

Ownership and borrowing

A data item in Rust has a single owner. This might be the instance of a struct, a func-
tion, or simply a code block. The owner decides how to use the data. Usage, however,
is constrained: At a point, there can be arbitrarily many immutable references, but exclu-
sively only one mutable reference. Passing references to other functions or data structures
is called borrowing. Ownership can also be transferred. Data is then said to be consumed.
Once an owner goes out of scope, the contained data can no longer be used and the associ-
ated memory is freed.

The notion of shared state is directly incorporated into the language. The fact that only
a single piece of code can mutate data, prevents data races altogether.

4.2.2 Running code in threads

A new thread is created by the function spawn. It takes a closure as argument which is run
in the thread. It returns a JoinHandle. As the name implies, it can be used to join the thread,
that is, to wait on its execution to finish.

Threads in Rust can return a value. This is depicted in Listing 4.20. The specified clo-
sure calculates and returns the sum from 0 to 10 (exclusively). The resulting value can be
retrieved by calling join on the join handle. An instance of type Result is returned, which
either contains the computed value or an error. The latter is only the case when the exe-
cution of the respective thread led to an unrecoverable error. In Rust terms: it panicked. In
this simple scenario, the thread will always return normally. Thus, it is safe to retrieve the
value via unwrap.

Listing 4.20: Spawning a thread
use std : : thread : : spawn ;
. . .
l e t n = 1 0 ;

l e t handle : JoinHandle<i32> = spawn (move | | {
return (0 . . n) . sum () ;

}) ;
l e t r e s u l t = handle . j o i n () . unwrap () ;

. . .

Due to its simplicity, it is tempting to spawn threads all over the place. In case of many
short-lived operations that are expected to return early, it might be fine to do so. Nonethe-
less, each thread created is associated exclusively to an operating system thread.

4.2.3 Reference counting

Smart pointers in Rust simplify the usage of references and data. The smart pointer Rc
— reference counted — employs reference counting to allow for multiple quasi-owners.
To share the data it points to, a clone is created. Rc keeps track of all of its clones via an

40 CHAPTER 4. LANGUAGES

internal counter. Memory is only freed when the last clone goes out of scope. In order to
handle this, Rust provides the Drop trait. Implementing data structures alter the way in
which their data is dropped.

The usage of Rc is depicted in Listing 4.21. By calling the associated function clone, a
new clone is created which is then consumed by the construction of an instance of a custom
data type. Note that Rc allows only immutable access to its contained data.

Listing 4.21: The smart pointer Rc
use std : : r c : : Rc ;
. . .
l e t rc = Rc : : new (1) ;
l e t r c c l o n e = Rc : : c lone (& rc) ;
l e t cus tom struc t = CustomStruct : : new(r c c l o n e) ;
. . .

Instances Rc cannot be shared across different threads13. To do so, Arc is needed. Atom-
ically reference counted, that is. Atomicity of reference counting makes it possible to safely
share Arc among threads.

Listing 4.22 illustrates a typical scenario. A clone of an Arc instance, a c, is handed over
to another thread. Notice the move operator preceding the closure. Its effects are as follows:
Ownership of the clone is transferred to the code running within the created thread, it is
moved. Thus, the reference a c is invalidated for its originating context and can no longer
be used.

Listing 4.22: Move Arc to new thread
use std : : sync : : Arc ;
. . .
l e t a = Arc : : new (1) ;
l e t a c = Arc : : c lone (&a) ;
l e t t = spawn (move | | {

l e t val = a c . a s r e f () ;
. . .

}) ;
. . .

4.2.4 Locks

While Arc enables data sharing among threads, it does not provide mutable access to the
contained data. Another layer has to aid in an additional control structure providing mu-
tual exclusion of involved threads. The Rust standard library provides two implementa-
tions of locks: Mutex, which is shorthand for mutual exclusion, and RwLock, an implemen-
tation of read-write lock. Both are blocking data structures.

At first, this might seem rather meager — especially when coming from a language like
Java which provides a vast amount of varying implementations. But, indeed, the combina-
tion of Arc with either of them suffices to fulfill many synchronization scenarios.

The beauty of locks in Rust is that they contain data to which mutually exclusive access
shall be granted. Thus, upon lock acquisition, a handle to the internal data is returned. This
handle lets the owner access the data according to the requested access rights.

Common usage of Mutex is illustrated in Listing 4.23. A new instance, guarding a single
integer, is put inside an instance of Arc. The clone is moved to the other thread where the
lock can be acquired. Calling lock blocks the current thread until the mutex is acquired and
then returns a MutexGuard, the handle. Once this handle is dropped, the lock is released.

13See Section 4.2.6

4.2. RUST 41

Thus, no additional unlocking is needed. Notice the similarity between this and Java’s
try-with-resources shown in Listing 4.12.

Listing 4.23: Combination of Arc and Mutex
use std : : sync : : { Arc , Mutex}
. . .
l e t mutex = Arc : : new(Mutex : : new (1)) ;
l e t mutex c = Arc : : c lone (&mutex) ;
l e t handle = spawn (move | | {

* mutex c . lock () . unwrap () += 1 ;
}) ;
. . .

RwLock works quite similar. Instead of lock, it provides the methods read and write for
reading and writing operations. RwLock follows standard semantics of read-write locks.
The handle returned by read only allows immutable access.

Poisoned locks The methods described above do actually return an instance of Result
which contains, upon success, the concrete handle. An error is only given when a thread
panicked amidst holding a lock. The lock is then said to be poisoned. The resulting error
contains a handle to the inner data of the lock which raises the opportunity to potentially
restoring a correct state.

In addition to the blocking versions of lock acquisition, non-blocking operations are
also provided. Mutex has the function tryLock which only succeeds when the lock is free.
Analogously, RwLock provides try read and try write. A simple use case is depicted in List-
ing 4.24.

Listing 4.24: RwLock::tryRead
use std : : sync : : RwLock ;
. . .
l e t rw lock = RwLock : : new (1) ;
. . .
i f l e t Ok(val) = rw lock . t r y r e a d () {

h a n d l e s t a t e (* val)
}
. . .

4.2.5 Ordering of atomic operations

In the module std::sync::atomic Rust provides many data structures supporting atomic oper-
ations, such as AtomicBool and AtomicUsize. Unlike their counterparts in Java, each atomic
operation has to be given one or more orderings. An ordering, defined by the enum Or-
dering, specifies the relationship between separate calls. The five members are as follows:
(1) Relaxed poses no ordering constraints, (2) Release has the effect that every prior call will
be executed before this call, (3) Acquire ensures that every subsequent call is executed after
this call, (4) AcqRel acts for loading operations like Acquire and for storing one’s like Release,
(5) SeqCst14 is a combination of all other orderings.

Just like in ReadWriteLock shown in Listing 4.11, Acquire should be used to load data at
the beginning of a critical section. Analogously, Release goes hand in hand with (re)storing
at the end. SeqCst poses the strongest constraints on reordering. If every atomic operation
were to use it, there would be a single history of calls that every thread would agree on.

14Sequentially Consistent

42 CHAPTER 4. LANGUAGES

4.2.6 Send and Sync

Marker traits form a special class of traits in Rust. They do not declare any methods. Types
implementing marker traits ensure the compiler to encompass specific properties.

The marker traits Send and Sync enforce implementing types to adhere to concurrency
properties in two ways: Send requires the implementing type to be safely transferrable be-
tween threads. The vast majority of Rust’s types, including many members of the standard
library, are Send. Yet, some types cannot allow to be sent to another thread. For instance,
if a clone of a Rc was transferred from thread A to thread B, both A and B could concur-
rently alter the reference counter. This is solved by Arc due to the atomicity of its internal
reference counter.

Sync, on the other hand, requires that the implementing type can safely be referenced
by several threads. Again, Rc is not Sync. An immutable reference suffices to clone a Rc.
Thus, the reference counter can likewise be mutated concurrently.

Types that consist solely of other types that are Send or Sync, are also considered to be
Send or Sync, respectively. Custom types are most seldom required to implement them on
their own. However, constraining generic types with either marker trait is almost certainly
required when approaching concurrent programming in Rust on a broader scale.

4.2.7 Message passing

Rust encourages developers to employ message passing for concurrent programming. Via
the function std::sync::mpsc::channel15, a channel can be created. The channel is divided into
a Sender and a Receiver. Multiple senders can exist, but only a single receiver is allowed.

Listing 4.25 illustrates common usage of the channel. The sending end is moved into
another thread, wherein it sends a message by calling send. The originating thread calls
recv on the receiving end. The thread will block until a message is available. The method
recv returns a Result which will only contain an error when all corresponding senders have
hung up, that is, when they were dropped.

Listing 4.25: Channel
use std : : sync : : mpsc : : channel ;
use std : : thread ;
. . .
l e t (sender , r e c e i v e r) = channel () ;
l e t handle = thread : : spawn (move | | {

sender . send (1) . expect (”Broken channel . ”) ;
}) ;
i f l e t Ok(message) = r e c e i v e r . recv () {

. . .
}

Receiver provides several methods for receiving messages. With try recv, an optimistic
non-blocking approach can be employed. Additionally, to the reason recv might return an
error, try recv will also fail when no message is available.

The function sync sender creates a SyncSender which blocks when the channel’s internal
buffer is full. In addition to the send method, it also provides a non-blocking alternative,
try send.

Regardless of whether the channel is synchronous or not, the respective send methods
fail when there is no receiver to send messages to. Furthermore, try send will also return an
error where send would block.

15mpsc stands for multi-producer, single-consumer.

4.2. RUST 43

4.2.8 A task scheduler

Threads in Rust can be used as tasks possibly returning a value. However, spawning many
threads executing computationally intensive work will slow down the application due to
overuse of the systems resources and is therefore highly discouraged. Furthermore, man-
aging a thread’s lifecycle, such as joining it, can be quite tedious. Thus, a data structure
similar to Java’s ExecutorService is appreciable. By combining the techniques discussed in
the previous sections, it becomes fairly easy to implement custom concurrent data struc-
tures. Throughout this section, the implementation of a simple task scheduler is laid out.

The specification of abilities and properties of the scheduler are as follows: (1) the sched-
uler is easy to use, including the creation of tasks, (2) tasks may return a value, (3) the cur-
rent state of a task can be polled, (4) arbitrary many tasks may be scheduled, (5) the sched-
uler should internally manage a configurable number of threads, called worker threads, (6)
the scheduler enables proper shutdown.

Listing 4.26: Job
pub type Job<T> = Box<dyn Send + FnMut () −> T>;

Rust has great support for higher-order functions. This gives rise to a simple mechanism
for specifying the work a task has to execute. In Listing 4.26, the generic type alias Job is
defined. The type has to be a function that supports mutable operations and returns a value
of the given generic type. But it must also be Send, as otherwise it cannot be submitted to
a worker thread. The smart pointer Box ensures that the function resides on the heap.
Therefore, its size is known at compile time which simplifies matters.

The result of a job will be available at some point in the future. To retrieve the result and
to check a task’s current state, a handle on the task is handed over to client code. Listing 4.27
shows the generic structure Task that contains both state and result. For obvious reasons, an
instance of Task is shared by multiple threads. Thus, both fields are wrapped in an Arc. The
result is represented by an optional value, as it is only available upon completion. While
result is guarded by a Mutex, schedule state uses RwLock because the state is expected to be
read often.

The optional result value alone does not suffice to fully represent the state of execution.
Therefore, ScheduleState defines three states a task can assume, Pending, which is the default
value, Running, and Finished.

Listing 4.27: Task
#[der ive (Clone , Copy , Par t ia lEq , Debug)]
pub enum ScheduleState {

Pending ,
Running ,
Finished

}

impl Defaul t for ScheduleState {
fn default () −> S e l f { ScheduleState : : Pending }

}

pub s t r u c t Task<T> {
s c h e d u l e s t a t e : Arc<RwLock<ScheduleState >>,
r e s u l t : Arc<Mutex<Option<T>>>

}

Admittedly, retrieving the result inside an Arc and guarded by a Mutex is tricky. The

44 CHAPTER 4. LANGUAGES

current thread must be the exclusive owner of a given Task instance. Otherwise, unwrap-
ping Arc will fail. The method try get, shown in Listing 4.28, consumes the instance, returns
either the result or itself as error type.

This is a common pattern in Rust. The associated function Arc::try unwrap does exactly
the same. It consumes the Arc, returning the respective instance on failure, that is, when
the reference counter is greater than 1.

Calling Mutex::into inner or the read operation on RwLock will only ever result in an error
when a thread holding the respective lock panics. However, both locks are encapsulated
and will solely be acquired through the methods of Task. Thus, they will never be poisoned.
Once a task assumes the state Finished, the result is guaranteed to be available.

Retrieving the current state of a task is done via the method state.

Listing 4.28: Retrieving result and state of a task
pub fn t r y g e t (s e l f) −> Result<T , S e l f> {

i f ScheduleState : : F inished != * s e l f . s c h e d u l e s t a t e . read () . unwrap () {
return Err (s e l f) ;

}
match Arc : : try unwrap (s e l f . r e s u l t) {

Ok(mutex val) => {
Ok(Mutex : : i n t o i n n e r (mutex val)

/ / The l o c k i s n e v e r p o i s o n e d
. unwrap ()
/ / S i n c e t h e s t a t e i s FINISHED , a v a l u e i s p r e s e n t
. unwrap ())

} ,
Err (arc) => Err (Task { r e s u l t : arc , . . s e l f })

}
}

pub fn s t a t e (& s e l f) −> ScheduleState {
* s e l f . s c h e d u l e s t a t e . read () . unwrap ()

}

Note the resemblance to Java’s CompletableFuture. Once a job has finished, the result
will be set. Hence, the task is completed. The code for setting state and result is given in
Listing 4.29. While the methods set state and set result both use an if let clause matching
the positive case, since the lock is never poisoned, acquiring it will always succeed (the
current thread might, however, block until the lock is released by another thread).

Calling the associated function Task::new creates an instance with default values. Sched-
uleState implements the trait Default to support this operation. The method clone utilizes
the reference counting of Arc to construct a new instance with the exact same content. Note
that none of these functions is part of the public interface.

Listing 4.29: Lifecycle methods of Task
fn new () −> S e l f {

Task {
s c h e d u l e s t a t e : Defaul t : : default () ,
r e s u l t : Defaul t : : default ()

}
}
fn s e t s t a t e (& s e l f , s t a t e : ScheduleState) {

i f l e t Ok(mut c u r r e n t s t a t e) = s e l f . s c h e d u l e s t a t e . wri te () {
* c u r r e n t s t a t e = s t a t e

}

4.2. RUST 45

}
fn s e t r e s u l t (& s e l f , r es : T) {

i f l e t Ok(mut c u r r e n t r e s u l t) = s e l f . r e s u l t . lock () {
* c u r r e n t r e s u l t = Some (re s) ;

}
}

fn clone (& s e l f) −> S e l f {
Task {

s c h e d u l e s t a t e : Arc : : c lone (& s e l f . s c h e d u l e s t a t e) ,
r e s u l t : Arc : : c lone (& s e l f . r e s u l t)

}
}

Job and Task build the foundation of interaction between the scheduler and client code.
Jobs and tasks have a one-to-one relationship. The structure TaskHandle shown in List-
ing 4.30 represents this characteristic. It owns exactly one task and one job. This interme-
diary data structure is necessary, because FnMut cannot be cloned. Thus, TaskHandle is the
exclusive owner of the job.

Task, on the other hand, has to be available on separate threads. Composing the data
structures this way is therefore inevitable.

Listing 4.30: TaskHandle
s t r u c t TaskHandle<T> {

task : Task<T> ,
job : Job<T>

}

Functions provided by TaskHandle manage the lifecycle of a Task. Usage is straight-
forward: The associated function new expects a Job and creates a new instance of Task.
Listing 4.31 depicts the implementation.

As the name implies, the method execute runs the actual work. Before and afterwards,
the task’s state is set respectively. Once the job is finished, the returned value is set as result
of the task.

A separate handle to the internal Task instance can be retrieved through the method task.
It is later on used to conveniently create the instance handed over to client code.

Listing 4.31: Methods of TaskHandle
fn new(job : Job<T>) −> S e l f {

TaskHandle {
task : Task : : new () ,
job

}
}
fn execute (&mut s e l f) {

s e l f . task . s e t s t a t e (ScheduleState : : Running) ;
l e t r e s u l t = (s e l f . job) () ;
s e l f . task . s e t r e s u l t (r e s u l t) ;
s e l f . task . s e t s t a t e (ScheduleState : : F inished)

}
fn task (& s e l f) −> Task<T> {

s e l f . task . c lone ()
}

The implemented data structures so far pave the way for simple task handling. What is
now left is the actual scheduler. Scheduling a new task is to submit it to a worker thread.

46 CHAPTER 4. LANGUAGES

Thus, the scheduler needs a mechanism to communicate with its worker threads. Message
passing via Rust’s channels comes in handy.

Listing 4.32 shows the structure Scheduler. For each thread, it keeps a pair consisting of
its join handle and the sending part of a channel. The latter transfers instances of TaskHandle
to the respective thread. Via the boolean flag running, the scheduler indicates its threads
to terminate. Thread-safety is granted due to atomicity. The number current idx is later on
used to determine the thread to submit the next task to.

Listing 4.32: Scheduler
pub s t r u c t Scheduler<T> {

handles senders : Vec<(JoinHandle <()> , Sender<TaskHandle<T>>)>,
running : Arc<AtomicBool> ,
c u r r e n t i d x : us ize

}

The amount of threads to use internally should be configurable. Therefore, the instanti-
ation of a Scheduler expects a number. The code is shown in Listing 4.33. A list of JoinHandle
Sender-pairs is built. Only a single instance of AtomicBool is used throughout the different
threads. These are created by calling the associated function create threads. The first argu-
ment is the receiving end of the respective channel. The second argument is the running
flag.

Due to the fact that instances of TaskHandle are sent to separate threads, the generic type
is constrained to be Send and ’static. The latter indicates that the type itself stays valid for
the application’s lifetime. This is necessary, because a thread might outlive its originating
context.

Upon creation, each thread first blocks which is done via thread::park. It is said to be
parked. This saves CPU system resources. Once unparked, a thread continuously checks
whether to keep running. The non-blocking operation try recv on the channel is preferable
in this scenario, as calling recv would block the thread until another message is available.
Every message sent, indeed, simply represents the next task to execute. The encapsulation
within TaskHandle makes this a breeze.

Listing 4.33: Creating a new Scheduler
pub fn new(num threads : us ize) −> S e l f {

l e t mut handles senders = Vec : : wi th cap a c i ty (num threads) ;
l e t running = Arc : : new(AtomicBool : : new(t rue)) ;
for in 0 . . num threads {

l e t (sender , r e c e i v e r) = channel : : <TaskHandle<T>>();
l e t handle = S e l f : : c r e a t e t h r e a d (r e c e i v e r , Arc : : c lone (&running)) ;
handles senders . push ((handle , sender)) ;

}
Scheduler {

handles senders ,
running ,
c u r r e n t i d x : 0

}
}

fn c r e a t e t h r e a d (r e c e i v e r : Receiver<TaskHandle<T>>,
running : Arc<AtomicBool>

) −> JoinHandle<()> {
spawn (move | | {

thread : : park () ;
while running . load (Ordering : : Acquire) {

i f l e t Ok(mut n e x t t a s k) = r e c e i v e r . t r y r e c v () {

4.2. RUST 47

n e x t t a s k . execute ()
} e lse { thread : : park () }

}
})

}

The worker threads are set up and ready. In order to schedule a task, one simply calls
the method schedule on the scheduler. The implementation is given is Listing 4.34. The
scheduler does not employ a specialized algorithm for scheduling. Instead, current idx is
used as ring counter to sequentially retrieve the next thread to submit the task to.

A new TaskHandle is created supplying the given job. After creating the Task clone
handed to client code, the task handle is sent to the respective thread.

Listing 4.34: Scheduling a task
pub fn schedule (&mut s e l f , job : Job<T>) −> Task<T> {

l e t (handle , sender) = s e l f . handles senders
. get (s e l f . c u r r e n t i d x) . unwrap () ;

handle . thread () . unpark () ;
s e l f . c u r r e n t i d x += 1 ;
s e l f . c u r r e n t i d x %= s e l f . handles senders . len () ;
l e t task handle = TaskHandle : : new(job) ;
l e t task = task handle . task () ;
sender . send (task handle) . expect (”Broken channel ”) ;
task

}

The last requirement still outstanding is proper shutdown. Due to the fact that each
thread cycles around running, setting it to false suffices to halt their execution. The method
invoke termination shown in Listing 4.35 does exactly that. Afterwards, it unparks each
thread to guarantee their termination. A currently running task will be executed nonethe-
less.

Shutting down the scheduler is finally done by calling join on it. This will join the
execution path of every contained thread, collecting possible errors along the way in a list.
If any error occurred, this list is returned. Otherwise, the result is an empty Ok, simply
indicating success.

Listing 4.35: Shutdown the scheduler
pub fn invoke terminat ion (& s e l f) {

s e l f . running . s t o r e (fa lse , Ordering : : Release) ;
for (handle ,) in s e l f . handles senders . i t e r () {

handle . thread () . unpark () ;
}

}

pub fn j o i n (s e l f) −> Result < () , Vec<Box<dyn Any + Send>>> {
l e t mut r e s u l t s = Vec : : new () ;
for (handle ,) in s e l f . handles senders {

i f l e t Err (e r r o r) = handle . j o i n () {
r e s u l t s . push (e r r o r) ;

}
}
i f r e s u l t s . is empty () {

Ok (())
} e lse { Err (r e s u l t s) }

}

48 CHAPTER 4. LANGUAGES

The scheduler implementation discussed above combines the advantages of different
concurrent programming techniques. Atomic operations, message passing and mutual ex-
clusion on shared state cooperate with each other which eventually leads to simple, scalable
concurrent code.

4.3 JavaScript

JavaScript is a dynamically typed, single-threaded programming language. As opposed to
Rust, it hardly poses any constraints on sharing and mutating states. JavaScript is asyn-
chronous by design which makes it interesting for concurrent programming.

Nowadays, developing JavaScript applications without the node.js16 runtime is unthink-
able. Thus, this section approaches the discussed topics as if node.js were a native compo-
nent of JavaScript. Node.js is strongly optimized for I/O operations which is why it is
gaining popularity for server-side applications. While the main program runs on a single
thread, external operations like calling operating system routines can be parallelized.

4.3.1 Event loop

Functions in JavaScript are first-class citizens. In fact, while classes are supported, func-
tions are the foundation of JavaScript code. After all, JavaScript is primarily designed as a
scripting language for dynamic web applications. Short scripts are used to manipulate the
HTML DOM, create animations, handle user invoked events and fetch data from external
sources.

Higher-order functions are prominently used throughout development leading to highly
asynchronous software. Listing 4.36 shows the usage of the function setTimeout. It expects
two arguments, a function, referred to as callback, and a timeout specified in milliseconds.
The callback is executed after the given timespan has elapsed. Calling setTimeout returns
a handle to the timer. Through clearTimeout the execution of the specified callback can be
canceled.

Listing 4.36: The timer function setTimeout
const t imer = setTimeout (() => {

. . .
} , 100)
. . .
i f (shutdown)

clearTimeout (t imer)

JavaScript takes a radically different approach to concurrency than multithreaded lan-
guages do. A single thread, called event loop, runs all the regular JavaScript code. Each
statement creates a new frame on the Call Stack. In each iteration, the event loop executes
every frame on the call stack one after another. This is depicted in Figure 4.1.

Calling long-running, asynchronous functions, such as reading and writing files or in-
teracting with the network would usually block the current thread. In a single-threaded
environment consistently updating the user interface, blocking would have a devastating
impact on the usability. Thus, JavaScript handles these operations differently: The execu-
tion takes place externally, in a separate thread pool. Each operation expects a callback
which is triggered upon completion.

16https://nodejs.org/

4.3. JAVASCRIPT 49

Figure 4.1: JavaScript’s Event loop

These callbacks can be seen as asynchronous tasks. They are not executed immediately,
but are stored in a queue. The event loop polls the queue for new functions to execute once
the call stack is empty. This approach enables progress throughout the whole application.

Listing 4.37: Register an event listener
. . .
Element . addEventListener (’ c l i c k ’ , () => { a l e r t () })
. . .

The name event loop stems presumably from JavaScript’s native event system. These
events are triggered by user interactions with the UI. To react on an event, a listener has to
be registered via the function addEventListener, shown in Listing 4.37. It expects the type
of event (encoded as string) and a callback to be run when the event was triggered. The
respective callback is, again, enqueued and executed once polled by the event loop.

As a consequence of the asynchronous nature the event loop entails, the order of ex-
ecution is non-deterministic. Recall the function setTimeout. The given callback should
apparently be run once the timeout is over. This is, however, not the case. Instead, it is sent
to the event queue. Therefore, the given timespan is only the minimum delay.

Error handling in asynchronous functions Especially when external resources are in-
volved, things can go abroad. Consider trying to read a file which does not exist, or the
current user is not allowed to access. This attempt will obviously result in an error.

To handle occurring errors, the supplied callback usually expects —besides the result of
a successful execution — a nullable object representing the error. Listing 4.38 illustrates a
scenario where the client code first examines whether any error occurred. If so, a function
is called to handle it properly. Otherwise, the result is processed as intended.

50 CHAPTER 4. LANGUAGES

Listing 4.38: Reading a file
import f s from ’ f s ’ ; / / im por t f i l e sys t em u t i l s from node

f s . r e a d F i l e (’ ./ t e x t . t x t ’ , (err , data) => {
i f (e r r) {

handleError (e r r)
} e lse {

processF i leContent (data)
}

})

4.3.2 Promise

With the built-in type Promise, JavaScript provides a versatile mechanism to handle asyn-
chronous functions. As the name implies, it promises that the resulting value of a compu-
tation will be available at some point in the future. To construct a new promise, a function
is supplied which takes two arguments: resolve and reject. A successful Promise is said to
resolve, a failing one to reject. Listing 4.39 illustrates the creation of a new instance.

Listing 4.39: Constructing a Promise
const dbConnection = new Promise ((resolve , r e j e c t) => {

. . .
i f (f a i l u r e)

r e j e c t (’ Fa i l ed to connect ’)
e lse

r e s o l v e (connect ion)
})

Working with Promise is convenient. Several asynchronous function calls can be chained
together, using the previous result. In Listing 4.4017 the response of an HTTP request is han-
dled this way. The method then expects the result of the preceding asynchronous operation,
constructing yet another instance of Promise. Retrieving the actual data from the request,
that is, calling response.json is also asynchronous and hence processed via the second then.

Similar to synchronous code, errors are handled through the catch method.

Listing 4.40: Promise chain
import f e t c h from ’ node− f e t c h ’ ; / / node − f e t c h i s a s e p a r a t e module

f e t c h (” ht tps :// j sonplaceho lder . typicode . com/posts /1”)
. then (response => {

i f (! response . ok) {
throw new Error (’ Request f a i l e d . ’)

}
return response . j son ()

})
. then (r e s u l t => handleResult (r e s u l t))
. catch (e r r => handleError (e r r)) ;

Combining the callback approach to asynchronous functions with promises may lead
to overly complex code and unexpected behavior. It is, however, quite simple to transform
a traditional function into a Promise. Listing 4.41 shows how this is done for setTimeout.

17https://jsonplaceholder.typicode.com/ provides a REST API to retrieve mock data. This is useful for rapid
prototyping.

4.4. GO 51

Instead of the function to be run after the timeout, resolve is supplied as callback. Through
chaining, the respective function is still executed once the timespan has elapsed.

Listing 4.41: Promisification
new Promise (r e s o l v e => {

setTimeout (resolve , 100)
}) . then (deferredFunct ion ())

Async/await Chaining promises is a fine way of handling asynchronous function calls,
as each succeeding invocation of then runs once the previous result is available. Yet, some-
times it might be necessary to wait for a Promise to resolve. This is achieved via the keyword
await. It suspends execution until the asynchronous operation has finished.

As shown in Listing 4.42, this approach resembles a synchronous programming style.
Error are handled by a regular try-catch block. However, using await is only permitted in
functions declared as async.

Listing 4.42: Async/await
async func t ion getData (u r l) {

const response = await f e t c h (u r l)
i f (! response . ok)

throw new Error (’ Request f a i l e d . ’)
return await response . j son ()

}
. . .
t r y {

const data = await getData (u r l)
handleResult (data)

} catch (e r r) {
handleError (e r r)

}

Parallel execution JavaScript provides several functions to run different asynchronous
functions in parallel. One of which is Promise.all. It expects an iterable object of promises,
such as an array, and parallelizes their execution. A single promise is returned which re-
solves once all the supplied promises have resolved, resulting in an array containing the
respective result values. Listing 4.43 illustrates the usage.

The function Promise.any works analogously, but it resolves with the value of the promise
that resolves first.

Listing 4.43: Promise.all
const r e s u l t s = await Promise . a l l ([

getData (ur l1) ,
getData (ur l2) ,
getData (ur l3)

])
r e s u l t s .map(re s => handleResult (re s))

4.4 Go

Go is an imperative, general purpose programming language. Due to its low-level facilities,
it is suited for system programming. Object-oriented programming is partially supported
through interfaces.

52 CHAPTER 4. LANGUAGES

First and foremost, however, Go is renowned for its scalable concurrency model. Green
threads, light weighted tasks, build the foundation of concurrent programming in Go.
These so called goroutines are scheduled onto a thread pool by the runtime system. Go’s
scheduler is highly sophisticated. For instance, when a thread blocks due to a longer last-
ing external operation, goroutines associated to it might be re-scheduled to other threads18.

In the Go developer community, there is a typical proverb: Don’t communicate by sharing
memory, share memory by communicating. Goroutines do primarily communicate via message
passing which is supported by built-in channels.

Conventional synchronization While message passing and constructs built on top of it
suffices for synchronization purposes in most cases, sometimes conventional synchroniza-
tion mechanisms are still necessary. For instance, mutual exclusion on a cache accessed
concurrently must be upheld nonetheless. Go provides several concurrent data structures
in the sync package. Atomic operations on integer types are given in the sync/atomic pack-
age.

Usage of data structures, such as Mutex or WaitGroup (similar to semaphores) is straight-
forward and does not significantly differ from other languages. Hence, they are not dis-
cussed in this work.

4.4.1 Goroutines

As mentioned above, goroutines are light weighted tasks. Built into the language, creating
them is simple. As illustrated in Listing 4.44 a goroutine is a regular function scheduled via
the keyword go. It is also possible to run an anonymous closure as goroutine. The closure
is run right after its declaration.

Many concurrent operations in Go are blocking. However, it is the goroutines that
block, not the threads they are scheduled on. This increases throughput of the software as
a whole.

Listing 4.44: Channel as a semaphore
func task () {

/ / long −running work
}
func main () {

go task ()
go func () {

/ / Do work in a c l o s u r e
} ()
. . .

}

Goroutines combined with channels encompass all the capabilities of the actor model:
Goroutines can create other goroutines, send messages, handle received messages accord-
ingly and store their local state.

4.4.2 Channels

Like goroutines, channels are directly built into the language, represented by the type chan.
A channel in Go is statically typed, meaning only messages of the specified type can be
sent and received.

18Dmitry Vyukow held an excellent talk on the Go scheduler at the Hydra conference in 2019
(https://www.youtube.com/watch?v=-K11rY57K7k, accessed 27. February 2022).

4.4. GO 53

Listing 4.25 depicts a simple Go program using a channel to retrieve the result from a
separate task. A channel for integer values is created through the call make(chan int). The
function task, scheduled as goroutine, expects an integer channel. The input parameter is
defined as chan which indicates a channel only used for sending. It is said to be send-
only. Analogously, a channel annotated with le f tarrowchan is receive-only. The result of the
computation is received from the channel via c.

Listing 4.45: Sending message via channels
import ”fmt”
func task (c chan<− i n t) {

. . .
c <− r e s u l t

}

func main () {
c := make (chan i n t)
go task (c)
var r e s u l t = <−c
fmt . P r i n t l n (” Resul t ” , r e s u l t)

}

Channels in Go are synchronous by default. Thus, send and receive operations will
block until the counterpart is executed. Nonetheless, it is possible to create a bounded
channel which uses a buffer to store incoming messages. Sending is therefore asynchronous
as long as the buffer’s capacity is not reached. Listing 4.46 shows how to create an asyn-
chronous channel. In addition to the channel type, the function make also takes an optional
argument of type integer specifying the size of the buffer.

Listing 4.46: Creating an asynchronous channel
c := make (chan int , s i z e)

Closing a channel When a channel has served its purpose, that is, all intended messages
have been sent, it is reasonable to shut it down. To do so, the function close is called on
the respective channel. This, however, should only be done by the sender, because sending
on a closed channel will result in an error. Receiving a message actually returns a tuple
consisting of the concrete value and a boolean flag telling whether the channel is still alive.
For convenience, the second part can be omitted. Closing a channel will send a specific
tuple containing the null value of the respective type and false.

Listing 4.47: Iterating receive
func task (c chan<− i n t) {

for i := 0 ; i < 1 0 ; i ++ {
. . .
c <− p a r t i a l R e s u l t

}
c l o s e (c)

}

func main () {
c := make (chan i n t)
go task (c)
var r e s u l t = 0
for number := range c {

r e s u l t += number

54 CHAPTER 4. LANGUAGES

}
. . .

}

Shutting down a channel is often paired with an iteration over received messages. The
for ... range expression can be used on channels, as illustrated in Listing 4.47. A goroutine
sends partial results during each iteration. Once it is done, it closes the channel. The range
over the channel in main will continue until it receives the close message. This ensures the
receiver that no more messages will be sent.

Selecting channels With select Go provides a mechanism to choose a channel to receive
from or to send to. It works quite similar to a switch statement. The first channel holding
a message is selected. Should none of the channels be ready, select blocks until one of
the channels becomes available. Sample code is given in Listing 4.48. To avoid blocking
altogether, a default case can be specified.

Listing 4.48: The select statement
chanA := make (chan i n t)
chanB := make (chan i n t)
. . .
s e l e c t {
case fromA := <−chanA :

. . .
case fromB := <−chanB :

. . .
}

4.4.3 Channel-based primitives

Channels are a versatile tool for concurrent programming. Using several channels in com-
bination allows for fine-grained control flow. Consider, for instance, a scenario wherein
goroutine A can only progress further once goroutine B is ready. B notifies A, indicating to
continue its work. Listing 4.49 sketches the code for this. Typically, simple notifications are
represented by a blank struct, because they are zero-sized which means their values do not
consume memory.

Listing 4.49: Notification via channels
type T = s t r u c t {}

func A(ready <−chan T) {
. . .
<− ready
/ / Cont inue work

}
func B (ready chan T) {

/ / Per form p r e p a r a t i o n s
ready <− s t r u c t {}{}

}

The channel ready is used to transfer the notification from goroutine B to goroutine A
which will block until it is notified. It is a standard means to use synchronous channels to
discontinue goroutines at a certain point.

Note the resemblance to the concept of a semaphore. Go’s common library, indeed,
provides several programming primitives based on channels. One of which is the function

4.4. GO 55

Figure 4.2: Fan-out Figure 4.3: Funnel

After from the time package. It expects an argument of type time.Duration and returns a
channel. Once the specified timespan has elapsed, an internally scheduled goroutine sends
on this channel.

After can be used to receive from a channel with timeout. Listing 4.50 illustrates this.
The function receive takes a receive-only channel and the respective timeout duration. It
returns a tuple containing the data and a boolean flag indicating whether the receive was
successful before the timeout. The select statement is used to race between receiving from
inputChannel and After.

Listing 4.50: Receive with timeout
import ” time ”

func r e c e i v e (
inputChannel <−chan int ,
t imeout time . Duration ,

) (int , bool) {
s e l e c t {
case input := <−inputChannel :

return input , t rue

case <− time . After (timeout) :
return 0 , f a l s e

}
}

func main () {
c := make (chan i n t)
r e s u l t , ok := r e c e i v e (c , 2* time . Second)
. . .

}

4.4.4 Message routing topologies

Channels can be seen as streams of data. Some goroutines are therefore used to route the
data along. Two common topologies are Fan-out and Funnel, illustrated in Figure 4.2 and
Figure 4.3.

Fan-out is used to distribute data from one channel to multiple other channels. This
approach is useful for load balancing when data is created frequently but processing it
takes longer. Funnel, on the other hand, converges the data flow from several channels into
a single one. Consider a scenario where multiple channels are used to notify about the
occurrences of an event which are all handled at one place. Here, Funnel comes in handy.
The code for both functions is given in Listing 4.51.

56 CHAPTER 4. LANGUAGES

Listing 4.51: Fan-out and funnel
func fanout (input <−chan int , outputA , outputB chan<− i n t) {

for data := range input {
s e l e c t {
case outputA <− data :
case outputB <− data :
}

}
}

func funnel (inputA <−chan int , inputB <−chan int , output chan<− i n t) {
for {

s e l e c t {
case data := <−inputA :

output <− data
case data := <−inputB :

output <− data
}

}
}

4.5 A comparison of the languages

The different programming languages discussed in this chapter all employ their own no-
tion of concurrent programming. Some approaches are quite alike, while others differ
strongly. This section compares the concurrent programming features of these languages.

Multithreading In Java and Rust, threads are created explicitly by providing a function
executed in the respective thread. The Thread class in Java is, however, more versatile
than its counterpart in Rust and allows for extended control over the thread. Furthermore,
threads in Java can be separated into different groups which provides an additional layer
of security.

JavaScript is single-threaded. Nonetheless, external function calls, such as network op-
erations, are executed outside the event loop in a thread pool. Also, the execution of several
promises can be parallelized.

Go is implicitly multithreaded. While developers do not create threads on their own,
goroutines are scheduled onto a pool of threads by Go’s runtime system.

Tasks With Future and CompletableFuture Java provides an object-oriented approach to
light weighted tasks. Custom data structures providing similar functionalities are easily
implemented in Rust.

In JavaScript tasks are created via Promise and callbacks. Goroutines are Go’s built-in
task facility.

Language support for concurrent programming The keyword synchronized is the stan-
dard way of ensuring mutual exclusion in Java. Declaring a variable as volatile makes
changes to it visible among separate threads. Rust’s ownership model and the marker
traits Send and Sync provide a high level of thread safety.

Channels for message passing are directly built into Go. They are the primary mecha-
nism to interact between and to synchronize goroutines.

4.5. A COMPARISON OF THE LANGUAGES 57

Advanced standard library support Java’s standard library is high in concurrent data
structures. Among them are several lock implementations suited for different scenarios,
blocking and non-blocking collections of all kinds and base implementation on top of
which custom synchronization facilities can be developed. Atomic operations on primi-
tive data types, arrays and references are also provided.

Rust only includes a few concurrent data structures into the standard library. This is
due its concept of fearless concurrency and the fact that Rust binaries are intended to be as
small as possible.

Likewise, Go provides a rather limited set of concurrent data structures and operations.
However, channels already cover many synchronization needs.

58 CHAPTER 4. LANGUAGES

CHAPTER 5

Conclusion

This thesis has aimed to explain concurrent programming in a simple, understandable
manner. A broad variety of concepts used in concurrent programming was discussed, rang-
ing from thread states, atomic operations, interleaved execution and synchronization mech-
anisms to advanced techniques and models like message passing, the Producer-Consumer
pattern or the actor model. A profound understanding of these concepts is vital for the
development of concurrent software.

Further, this work has pointed out potentials for errors when dealing with concurrency.
Solving one problem, mutual exclusion on shared state for instance, can lead to other prob-
lems like deadlocks and performance issues.

Concrete approaches to concurrent programming in several programming languages
were laid out with an emphasis to show the application of several concepts in combination.
All these languages have their strengths and weaknesses and none is superior to the others,
but are respectively suited for specific needs.

This thesis has shown that the combination of atomic operations, shared state and mes-
sage passing can alleviate the complexity concurrency entails.

5.1 Concurrent by design

Concurrency is not simply a runtime property of a program, it is about design. Indeed,
the principal mechanisms of dealing with concurrency should be manifested into the ar-
chitecture of a software system. It is important to reason about synchronization, safety and
liveness and when to use a certain technique or data structure.

In a properly designed concurrent software architecture, concurrent programming fa-
cilities should be viewed upon as low-level features implemented into the core of the ap-
plication. This encompasses synchronization, visibility of state updates among threads, as
well as the prevention of deadlocks and livelocks. As shown at several places in this work,
abstraction and encapsulation can work wonders here.

Likewise, the creation and lifecycle management of tasks is equally important. Proven
design patters, such as the Factory, Builder or Fluent Interface are well suited to create tasks
in specific contexts. Higher-order functions in general are very useful for concurrent pro-
gramming. But they are especially beneficial when used for pipelines on tasks to compose

59

60 CHAPTER 5. CONCLUSION

them and handle their results, as well as potential errors. A great example for this approach
is the Java class CompletableFuture.

A primary aspect of high quality software architecture is the testability of each com-
ponent a program is built of. Using non-responding programming facilities like Java’s
Runnable makes testing difficult. It is therefore preferable to define tasks as simple func-
tions returning a value. This way the results of concurrent operations can be tested quite
simple in isolation.

5.2 Outlook

Much has been said about concurrent programming in this work and much is left to be said.
There are many other programming languages employing their own notion of concurrent
programming. Elixir, for instance, has the actor model integrated even deeper than Go.
Julia brings its very own task model with it. Pure functional languages like Haskell entail
other benefits for dealing with concurrency due to immutability of state.

Many third-party libraries do also provide extended support for concurrent program-
ming. The library Akka supplies an implementation of the actor model for Java. With su-
pervision [Lev84], Akka goes even beyond the actor model. A supervisor in this sense keeps
track of subordinate actors and employs recovery strategies when they throw exceptions.

Applications like Hadoop employ the MapReduce pattern on a large scale [MJ15, DG08].
This enables processing huge amounts of data on server clusters in a fairly simple pipeline
of operations.

Bibliography

[86512] ISO/IEC 8652:2012. International organization for standardization: Ada.
Technical report, International Organization for Standardization, 2012.

[ABDC+18] Marcos K. Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez
Petrank, and Sam Toueg. Passing messages while sharing memory. In Proceed-
ings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
’18, page 51–60, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message-passing systems. J. ACM, 42(1):124–142, 1995.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA, 1986.

[Akm90] Varol Akman. Book review: Actors: A model of concurrent computation in
distributed systems. AI Magazine, 10(4), 1990.

[AS85] Bowen Alpern and Fred Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 10 1985.

[BD80] Randal Bryant and Jack Dennis. Concurrent programming. In Operating Sys-
tems Engineering, pages 426–451, 1980.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types
for safe programming: Preventing data races and deadlocks. ACM Confer-
ence on Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA), 37(11):211–230, 2002.

[BPR22] Federico Bergenti, E Panegai, and G Rossi. A master-slave architecture to in-
tegrate sets and finite domains in java. Presented at CILC’06 – Convegno Italiano
di Logica Computazionale, Bari, 2022.

[Buo21] Enrico Buonanno. Functional Programming in C#. Manning Publications, 2
edition, 2021.

[Bus95] Frank Buschmann. The master-slave pattern. In Pattern-oriented Software Ar-
chitecture, pages 133–142, 1995.

[CWG09] Martin J Chorley, David W Walker, and Martyn F Guest. Hybrid message-
passing and shared-memory programming in a molecular dynamics applica-
tion on multicore clusters. COMPUTING APPLICATIONS The International
Journal of High Performance Computing Applications, 23:196–211, 2009.

61

62 BIBLIOGRAPHY

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[DGFG03] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Shared
memory vs message passing. Technical report, I&C - School of Computer and
Communication Sciences, 2003.

[Dij68] Edsger W. Dijkstra. Cooperating sequential processes. The Origin of Concurrent
Programming, pages 65–138, 1968.

[Dix22] Andrew Dixon. Divide and Conquer, pages 37–40. Auerbach Publications, 2022.

[Elm86] Ahmed K. Elmagarmid. A survey of distributed deadlock detection algo-
rithms. SIGMOD Rec., 15(3):37–45, sep 1986.

[Erb12] Benjamin Erb. Concurrent programming for scalable web architectures.
Diploma thesis, Institute of Distributed Systems, Ulm University, 2012.

[FC12] Scott Frame and John Coffey. A comparison of functional and imperative pro-
gramming techniques for mathematical software development. Journal of Sys-
temics, Cybernetics and Informatics, 2:1–4, 2012.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman, Amsterdam, Boston, MA, USA, 2002.

[FXL03] Vincent W Freeh, Jin Xu, and David K Lowenthal. Hybrid messaging pass-
ing in shared-memory clusters. Technical report, Department of Computer
Science, University of Georgia, 2003.

[GBB+06] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and
Tim Peierls. Java Concurrency in Practice. Addison-Wesley Longman, Amster-
dam, 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley Longman, Amsterdam, Reading,
MA, 1995.

[GMUW09] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database sys-
tems - the complete book. Pearson Education, 2 edition, 2009.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. IJCAI, pages 235–245, 1973.

[Her96] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13, 03 1996.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages. Ar-
tificial Intelligence, 8:323–364, 1977.

[Hew10] Carl Hewitt. Actor model of computation: Scalable robust information sys-
tems, 2010.

[HHL+07] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William Scherer,
and Nir Shavit. A lazy concurrent list-based set algorithm. Parallel Processing
Letters, 17:411–424, 2007.

BIBLIOGRAPHY 63

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free syn-
chronization: Double-ended queues as an example. Proceedings - International
Conference on Distributed Computing Systems, pages 522– 529, 06 2003.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21:666–677, 1978.

[HSD10] Andreas Holzinger, K.H. Struggl, and Matjaž Debevc. Applying model-view-
controller (mvc) in design and development of information systems: An ex-
ample of smart assistive script breakdown in an e-business application. ICE-B
2010 - ICETE The International Joint Conference on e-Business and Telecommunica-
tions, pages 1 – 6, 2010.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack
algorithm. In Proceedings of the Sixteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’04, page 206–215, New York, NY, USA,
2004. Association for Computing Machinery.

[HW90] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condi-
tion for concurrent objects. ACM Transactions on Programming Languages and
Systems, 12:463–, 07 1990.

[JGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
haskell. Conference Record of the Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 295–308, 1996.

[KJA+02] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-
Hong Lim. Integrating message-passing and shared-memory: Early experi-
ence. ACM SIGPLAN Notices, 28:54–63, 2002.

[KKA14] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using rdma
efficiently for key-value services. SIGCOMM Comput. Commun. Rev.,
44(4):295–306, 2014.

[KL94] A. C. Klaiber and H. M. Levy. A comparison of message passing and shared
memory architectures for data parallel programs. In Proceedings of the 21st An-
nual International Symposium on Computer Architecture, ISCA ’94, page 94–105,
Washington, DC, USA, 1994. IEEE Computer Society Press.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, SE-3(2):125–143, 1977.

[LBL+16] Yuheng Long, Mehdi Bagherzadeh, Eric Lin, Ganesha Upadhyaya, and
Hridesh Rajan. On ordering problems in message passing software. In Pro-
ceedings of the 15th International Conference on Modularity, MODULARITY 2016,
page 54–65, New York, NY, USA, 2016. Association for Computing Machinery.

[LDS07] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context
switch. In Proceedings of the 2007 Workshop on Experimental Computer Science,
ExpCS ’07, pages 2–es, New York, NY, USA, 2007. Association for Computing
Machinery.

[Lea00] Doug Lea. A java fork/join framework. In Dennis Gannon and Piyush Mehro-
tra, editors, Proceedings of the ACM 2000 Java Grande Conference, San Francisco,
CA, USA, June 3-5, 2000, pages 36–43. ACM, 2000.

64 BIBLIOGRAPHY

[Lev84] Henry Levy. Early Capability Architectures, pages 41–64. University of Wash-
ington Computer Science and Engineering, 12 1984.

[LW11] Christopher J Lieb and Craig Wills. Concurrent programming in education:
Time for a change. Technical report, Polytechnic Institute, Worcester, 2011.

[Mar96] Robert C. Martin. The dependency inversion principle. C++ Report, 8:61–66,
1996.

[MJ15] Seema Maitrey and C. K. Jha. Mapreduce: Simplified data analysis of big data.
Procedia Computer Science, 57:563–571, 2015.

[MK06] Jeff Magee and Jeff Kramer. Concurrency: State Model and Java Programs. John
Wiley & Sons, New York, 2 edition, 2006.

[MNM14] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Safe and efficient
data sharing for message-passing concurrency. In COORDINATION, 2014.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In James E. Burns and
Yoram Moses, editors, Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, Philadelphia, Pennsylvania, USA, May 23-26,
1996, pages 267–275. ACM, 1996.

[Nie07] Piotr Nienaltowski. Practical framework for contract-based concurrent object-
oriented programming. Doctoral thesis, ETH Zurich, 2007.

[NS08] Stefan Näher and Daniel Schmitt. A framework for multi-core implementa-
tions of divide and conquer algorithms and its application to the convex hull
problem. Proceedings of the 20th Annual Canadian Conference on Computational
Geometry, CCCG 2008, 2008.

[OAE07] Felix Ogban, Iwara Arikpo, and Idongesit Eteng. Von neumann architec-
ture and modern computers. Global Journal of Mathematical Sciences Vol. 6,
No. 2, 2007, Page 97: ISSN 1596-6208 Indexed and abstracted on AJOL (UK):
http://www.ajol.info, Vol. 6, No. 2, 2007, Page 97, 2007.

[PTF+15] Gustavo Pinto, Weslley Torres, Benito Fernandes, Fernando Castor, and
Roberto S.M. Barros. A large-scale study on the usage of java’s concurrent
programming constructs. Journal of Systems and Software, 106:59–81, 2015.

[Rob22] Martin Robillard. Introduction to Software Design with Java, chapter 8, pages
195–242. Springer, 2022.

[Ros17] Kevin Rosendahl. Green threads in rust. Master’s thesis, Stanford University,
Computer Science Department, 2017.

[Sco13] Michael Scott. Shared-memory synchronization. Synthesis Lectures on Com-
puter Architecture, 8:1–221, 2013.

[SG97] Sahiba Sheikh and R. Ganesan. Replication of multimedia data using master-
slave architecture. COMPSAC ’97. Proceedings., The Twenty-First Annual Inter-
national, pages 66 – 70, 1997.

[Sin97] Pradeep K. Sinha. Distributed Operating Systems: Concepts and Design. Wiley-
IEEE Press, 4 edition, 1997.

BIBLIOGRAPHY 65

[SLS09] William N. Scherer, Doug Lea, and Michael L. Scott. Scalable synchronous
queues. Communications of the ACM, 52:100–108, 2009.

[SS84] Richard D. Schlichting and Fred B. Schneider. Using message passing for dis-
tributed programming: Proof rules and disciplines. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 6:402–431, 1984.

[SS04] William Scherer and Michael Scott. Nonblocking concurrent data structures
with condition synchronization. In DISC, volume 3274, pages 174–187, 2004.

[Str14] Robbie Strickland. Cassandra High Availability. Packt Publishing, Open Source,
2014.

[TB14] Andrew S. Tanenbaum and Herbert Bos. Modern operating systems. Educa-
tion, 2:1137, 2014.

[Tur13] Aaron Turon. Understanding and expressing scalable concurrency. Doctoral
thesis, Faculty of the College of Computer and Information Science, North-
eastern University, Boston, Massachusetts, 2013.

[ZS05] Marco Zennaro and Raja Sengupta. Distributing synchronous programs us-
ing bounded queues. In Proceedings of the 5th ACM International Conference
on Embedded Software, EMSOFT ’05, page 325–334, New York, NY, USA, 2005.
Association for Computing Machinery.

	Introduction
	Concepts of concurrent programming
	Foundations
	Concurrent programming primitives
	Synchronization
	Semaphores
	Models and patterns in concurrent programming
	Message passing
	Main-Subordinate
	Producer-Consumer
	Actor model

	Practical challenges of concurrent programming
	A Messenger - an introductory example
	Potential for errors
	Safety
	Liveness

	Decision-making

	Languages
	Java
	Thread
	Foundations
	Locks
	Creating and managing tasks
	Concurrent collections by example
	Scala

	Rust
	Fearless concurrency
	Running code in threads
	Reference counting
	Locks
	Ordering of atomic operations
	Send and Sync
	Message passing
	A task scheduler

	JavaScript
	Event loop
	Promise

	Go
	Goroutines
	Channels
	Channel-based primitives
	Message routing topologies

	A comparison of the languages

	Conclusion
	Concurrent by design
	Outlook

	Bibliography

