
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

AUTOMATIC SEMANTIC
CATEGORIZATION OF IMAGE

ANNOTATIONS GENERATED BY
GAMES WITH A PURPOSE

Nicola Greth

Masterarbeit
Aufgabensteller Prof. Dr. François Bry
Betreuer Prof. Dr. François Bry,

Martin Bogner

Abgabe am 30.04.2019

2

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 30.04.2019 Nicola Greth

i

ii

Abstract

ARTigo is a web platform which collects semantic annotations on digitized artwork us-
ing Games with a Purpose. The platform’s goal is to provide a large database of tagged
artwork, which can be retrieved by search engines for art historic purposes. Most of ART-
igo’s games follow the model of the ESP Game by Luis von Ahn. In this type of game two
players are presented with the same image and try to enter tags the other player might also
use to describe it. By this approach, only tags that are entered by both players indepen-
dently are validated.

While the current version of ARTigo already contains a huge amount of tags there is
only few knowledge about their relations or semantic groups. For this reason, the collected
data is enhanced with each tag’s cleaned version as well as its lexical and semantic cat-
egories. Therefore, a Semantic Categorization Pipeline is implemented in Python for the
three languages German, English and French. An evaluation of samples of the resulting
categories shows their correctness at around 70% for all three languages.

As the platform has been in operation since 2008 it has encountered some problems with
the underlying technology and the performance of the servers. Therefore, during this thesis
the three main games ARTigo Game, ARTigo Taboo and Combino are reimplemented with
JavaScript technology and combined with the functionality of the Semantic Categorization
Pipeline. New features, like the usage of cleaned tags, spell checking and tag corrections
are presented.

iii

iv

Zusammenfassung

ARTigo ist eine Web-Plattform, die mit Hilfe von Games with a Purpose semantische An-
notationen (Tags) von digitalisierten Kunstwerken sammelt. Das Ziel der Plattform ist
es, eine große Datenbank annotierter Kunstwerke zur Verfügung zu stellen, welche von
Suchmaschinen für kunsthistorische Zwecke abgefragt werden kann. Die meisten Spiele
der ARTigo Plattform basieren auf dem ESP Spiel, welches von Luis von Ahn entwick-
elt wurde. Bei diesem Ansatz wird zwei Spielern jeweils dasselbe Kunstwerk präsentiert.
Die Spieler versuchen dieses mit Tags zu versehen, welche der Gegenspieler ebenfalls
eingegeben hat. Durch dieses Konzept werden nur Tags, die von beiden Spielern eingegeben
wurden, validiert.

Obwohl die aktuelle Version von ARTigo bereits eine große Menge an Tags gesammelt
hat, gibt es nicht viele Informationen über die Zusammenhänge der Tags untereinander
oder semantische Gruppen, die diese bilden. Aus diesem Grund werden die gesammelten
Daten um die bereinigte Version jedes Tags sowie seiner lexikalischen und semantischen
Kategorien erweitert. Eine Pipeline zur semantischen Kategorisierung wird in Python
für die Sprachen Deutsch, Englisch und Französisch implementiert. Die Evaluation einer
Stichprobe der daraus resultierenden Kategorien zeigt deren Korrektheit bei circa 70% für
alle drei Sprachen.

Da die Plattform seit 2008 in Betrieb ist, ist sie einigen Problemen mit der zugrun-
deliegenden Technologie und der Performanz der Server ausgesetzt. Aus diesem Grund
sollen die drei Spiele ARTigo Game, ARTigo Taboo und Combino während dieser Arbeit
mit modernster JavaScript Technologie neu implementiert und mit der Funktionalität der
semantischen Kategorisierungs-Pipeline verknüpft werden. Zusätzliche Features, wie die
Benutzung der bereinigten Tags, eine Rechtschreibprüfung sowie der Möglichkeit zur Ko-
rrektur von Tags werden vorgestellt.

v

vi

Acknowledgments

I would first like to thank Prof. Dr. François Bry and Martin Bogner for their outstand-
ing support of this thesis and the possibility to collaborate in the context of the ARTigo
project. I highly appreciate that you led me in the direction of Semantic Categorization,
which turned out to be a great topic for my master’s thesis, and always had an open ear for
my questions and concerns.

I also want to express my gratitude to all members of the teaching and research unit
for Programming and Modelling Languages for all of their helpful advice, comments and
ideas during my presentations that also contributed a great deal to the success of my thesis.

Finally, I would like to thank my friends and family, especially my brother Peter, who
have supported me through the months of implementing and writing this thesis, brew a
lot of Coffee for me and motivated me tremendously.

vii

viii

Contents

1 Introduction 1
1.1 Human Computation . 2

1.1.1 Unconscious contribution . 2
1.1.2 Monetary reward . 3
1.1.3 Organizational and social incentives . 4
1.1.4 Interest in science . 4

1.2 Games with a Purpose and ARTigo Project . 4
1.3 Motivation and structure of thesis . 6

2 Related Work 9
2.1 Games with a Purpose . 9

2.1.1 ESP Game . 11
2.1.2 Peekaboom . 12
2.1.3 Verbosity . 13
2.1.4 TagATune . 14
2.1.5 Urbanopoly . 15
2.1.6 Foldit . 16

2.2 Automatic Image Annotation . 17
2.2.1 TagProp . 17
2.2.2 FastTag . 17
2.2.3 Classification of artwork . 18
2.2.4 Challenges in Automatic Image Annotation 19

2.3 Semantic categorization . 19
2.3.1 SemTag . 20
2.3.2 ClassTag . 20

3 Semantic categorization of tags 23
3.1 Semantic Categorization Pipeline . 23

3.1.1 Preprocessing . 25
3.1.2 Lexical category . 26
3.1.3 Named Entity Recognition . 26
3.1.4 Semantic relation . 27
3.1.5 Postprocessing . 28
3.1.6 Autocorrection and recursion . 29
3.1.7 Database model . 29
3.1.8 Open questions and difficulties . 31

3.2 Evaluation of the collected semantic categories 32

ix

x CONTENTS

3.2.1 Tag and category data . 32
3.2.2 Sources of error for missing categorization results 36
3.2.3 Evaluation of categorization data . 40

4 ARTigo ESP Games 43
4.1 ARTigo Game . 43
4.2 ARTigo Taboo . 45
4.3 Combino . 45
4.4 Bot opponent . 46
4.5 Shortcomings of the current implementation 47

5 Implementation 49
5.1 New features . 49

5.1.1 Bot types . 49
5.1.2 Cleaned tag . 50
5.1.3 Spell check and tag corrections . 51

5.2 Software stack . 53
5.3 Database model . 55
5.4 Implementation of server and client . 56

5.4.1 Server . 56
5.4.2 Client . 60

6 Conclusion and Outlook 63

Appendix 66

A Evaluation 67
A.1 Sources of error (samples 1 & 2) . 68

A.1.1 German tags (all) . 68
A.1.2 German tags (validated) . 69
A.1.3 English tags (all) . 69
A.1.4 English tags (validated) . 69
A.1.5 French tags (all) . 70
A.1.6 French tags (validated) . 70

A.2 Correctness of categories (sample 3) . 71
A.2.1 German cleaned tags . 71
A.2.2 English cleaned tags . 71
A.2.3 French cleaned tags . 72

Bibliography 73

CHAPTER 1

Introduction

In the last decades, the power of computers has increased enormously. What previously
lasted months for humans to calculate can now be done in seconds using computing power.
The approximation of the mathematical constant pi, for example, has been of interest even
before christ. Archimedes approximated three of its decimal places correctly in 250 before
christ. In 480 after christ Tsu Ch’ung Chi, a chinese mathematician, was able to estimate
seven correct decimal places. William Shanks calculated 707 decimal places in 1874, which
took him fifteen years, however only 527 of them were later deemed correct. But with the
uprise of computer technology in the 1950s thousands and later millions of decimal places
could be approximated, for example by Jean Guilloud and Martin Bouyer, who were the
first to find over a million of pi’s decimal places [BBBP97]. In 1997, IBM’s system Deep
Blue won a chess game against the russian grandmaster Garry Kasparov, simply by fol-
lowing mathematical rules and calculating the best moves. Even in the field of Artificial
Intelligence (AI), major accomplishments have been achieved. In 2011, IBM’s computer
system Watson beat the two best human players in the television quiz show Jeopardy, for
which it had to understand spoken questions in natural language, associate and interpret
information and understand irony, jokes or wordplay. Computers are outperforming hu-
mans in many situations like quick responses, multi-tasking or storing huge amounts of
data [COC13, Mar11, Tho10]. However, there are still some matters, especially in the area
of AI, that computers cannot yet accomplish on their own: The most important abilities
for which humans stand out against computers are intuition, creativity, perception and a
general understanding of the world. Where computers have to rely on computing every
possible solution of a given task and ranking those by statistical confidence values, humans
can simply use their basic understanding of concepts and cognitive capabilities to come up
with the correct solution. Additionally, humans tend to notice extraordinary characteristics
and scrutinize what they see, whereas computers are only focused on the task they were
given [Sav12]. For example during the project Zooniverse that uses humans to identify
objects in astronomical images, a new galaxy was found by a participant, who spotted and
questioned a mysterious glow [COC13, Sav12, vA06].

1

2 CHAPTER 1. INTRODUCTION

1.1 Human Computation

Human Computation can be defined as “multi-agent information processing systems in
which humans participate as computational elements” [Mic13b] or “systems that combine
humans and computers to solve large-scale problems that neither can solve alone” [vA]. It
therefore describes the research area that utilizes human intelligence in solving computa-
tional problems that computer algorithms are not yet able to solve independently [LvA11].

An adjacent domain to Human Computation is Crowdsourcing, which stands for “out-
sourcing to crowds”. In Crowdsourcing, a given task is split into smaller pieces and is
distributed to multiple people, who each work on their piece of the task. The idea of col-
laborating to achieve a result that would not have been attainable when working alone, has
been widely used in other domains as well. [LP13, Mic13b] In many areas like biology or
system theory it is known as Swarm Intelligence or Emergence and can be witnessed for ex-
ample in ants identifying their best way to their food source by working together through
pheromone communication [BDT99]. Famous crowdsourced projects are Wikipedia, Flickr
or the recommendation system of Amazon. All of these examples for Crowdsourcing could
also be examples for Human Computation, as many projects in Human Computation also
require a large number of people, but there is a major difference between the two fields.
Crowdsourcing does not focus on the computation, the type of task the group members
handle is not the main element. But in Human Computation the task has to be computa-
tional [Mic13a]. A computational task arises from a scientific problem that is partitioned
into elemental components and can be solved by following specific directions. Human
Computation also requires a cooperation of human and computer systems, the assignment
therefore has to include at least one human and one computer and can develop either in the
direction of crowdsourcing including at least on computer or in the direction of Machine
Learning with human control. A crowdsourcing project, where people work on a task that
does not require any form of computer interaction or is not computational would not be
considered Human Computation [COC13, LvA11, Mic13a].

There are different incentives for people to spend their free time on Human Computa-
tion. While Citizen Science is mostly achieved by altruism, interest in science or learning
[RBG+13, JKS+16], Games with a Purpose motivate people with the opportunity to play
a game, have fun and rise up in high scores. Other projects like reCAPTCHA give pur-
pose to an already existing activity and platforms like Amazon Mechanical Turk simply
pay its workers small amounts of money for their time [LA17]. Examples for the different
incentives will be presented in detail in the following sections.

1.1.1 Unconscious contribution

One example for the supremacy of humans are CAPTCHAs. CAPTCHAs are widely used
to prohibit bots from accessing web pages like registration forms or online polls. For exam-
ple in November 1999, an online poll about the best graduate school in computer science
was outwitted by students of the schools in question and became a battle between voting
bots. To assure the legitimacy of online polls, it therefore has to be made certain that only
humans are allowed to vote. CAPTCHA stands for “Completely Automated Public Tur-
ing Test to Tell Computers and Humans Apart” and serves as a challenge that humans can
solve, while computers cannot. As the name states, CAPTCHAs are similar to the Turing
Test, where a human judge has to distinguish a human and a computer by asking ques-
tions. The difference to the Turing Test is that the judge in the case of CAPTCHAs is the
distinguishing method and it is not based on questions but on human perception. There
are different types of CAPTCHAs. The most common CAPTCHAs are distorted images

1.1. HUMAN COMPUTATION 3

of text that the user should recognize and enter. These forms of CAPTCHAs are based on
the still existing challenges of Optical Character Recognition (OCR), which is the field of
digitizing text from images, for example from scanned books. Other types of CAPTCHAs
are based on the recognition of visual patterns, for example shapes or typing numbers from
a distorted sound clip [vAB05, vABL04].
In 2008, Luis von Ahn estimated that every day around a hundred million CAPTCHAs
were typed by people around the globe, which summed up to hundreds of thousands of
wasted human hours per day. But since CAPTCHAs were effectively distinguishing be-
tween bots and humans it was unthinkable to refrain from using them, Luis von Ahn and
his team came up with the concept of reCAPTCHA, to convert those wasted human hours
to something useful. Since CAPTCHAs were solving challenges of OCR, they decided to
use real scanned words that OCR could not recognize correctly. However, to maintain the
original purpose of CAPTCHAs the typed word had to be verified. Therefore reCAPTCHA
provides the user with two words, one unknown scanned word and a control word. If the
control word is typed properly, the unknown word is assumed to be valid as well, since the
user has no knowledge about which word is chosen as control word. When multiple users
agree on the same word for an unrecognizable word, its transcription is saved [vAMM+08].
By using reCAPTCHA, as of October 2015, around 25 million books have been successfully
scanned. In 2009 reCAPTCHA has been acquired by Google, which added other challenges
as well. In 2012 Google used reCAPTCHA to transcribe house numbers or other street signs
from images to enhance data in Google Maps [Hav15]. Additionally in 2014, Google started
to use reCAPTCHA to train its algorithms in the field of Artificial Intelligence which makes
the user select all similar images to a given object on a grid, for example with the instruc-
tion Click on all images that show cats! [O’M18]. Figure 1.1 shows examples for an original
reCAPTCHA task and a reCAPTCHA task including street signs.

Figure 1.1: reCAPTCHA [Hav15]

1.1.2 Monetary reward

In many scientific projects, experiments or evaluations are quite expensive and time in-
tensive. Data has to be collected from a large set of participants to make sure that the
results are statistically reliable and those participants and their experimenters have to be
paid. In 2005 Amazon therefore started its Mechanical Turk market to use crowdsourcing
for tasks, which were costly in terms of labor. Mechanical Turk is a service that allows re-
searchers, called requesters, to get results quickly and inexpensive by getting their users,
called workers, to complete micro-tasks which can be rewarded by a small monetary re-
ward. A requester’s task has to be split into micro-tasks, called Human Intelligence Tasks
(HITs), that should be easy and completable in a few minutes. Because of the short duration
of those tasks, their rewards are also as low as one cent up to one dollar per HIT. Crowd-
sourcing research on platforms like Amazon Mechanical Turk has a lot of advantages for
scientists. Experiments can be performed across different cultures, countries and levels of
population, but can also be restricted to a specific demographic group. Studies also show
that with a good task design and pre-tests to identify suspect workers, the results on Ama-

4 CHAPTER 1. INTRODUCTION

zon Mechanical Turk are comparable to results achieved in real-life studies or experiments
[KCS08, PCI10]. While Amazon Mechanical Turk has a lot of advantages for requesters,
their workers have to face a lot of drawbacks. While many workers only participate in
HITs because it is fun or a good pastime, for others Amazon Mechanical Turk actually is
their primary source of income. A recent study shows that the median hourly wage of a
worker is about as low as two dollars an hour which is far below the federal minimum
wage in America, where most of the workers live [HAM+18, PCI10, Sem18].

1.1.3 Organizational and social incentives

With Amazon Mechanical Turk and reCAPTCHA, the tagged images were provided by the
system. The social tagging system Flickr follows a different approach. With Flickr, users
can upload their personal self-taken pictures and tag them for their own organizational
or social incentives while enjoying the possibilities of a social network with their friends.
Additionally, only the image owners are able to tag their images, which leads to a set of tags
that, instead of the image’s content, focuses more on the event, time, location or persons in
context with the image, for example wedding, 2006, New York or Susanna. Flickr uses the tags
for their public image retrieval search as well as for navigational or organizational purposes
[MNBD06, Bö08]. Flickr has grown to contain billions of photos and is an important source
for knowledge retrieval [Fli]. For example by analyzing the geographical labels and tagging
patterns of photos of Flickr users, events and their locations can be extracted. Additionally,
Flickr provides a large dataset of tagged images that could be used as training data for
supervised learning algorithms in the field of computer vision [KNA+07].

1.1.4 Interest in science

As Flickr has shown, there can be large differences in how people tag images depending on
the context of the tagging task. For example in museums the artwork is described with tags
by their curators, which in many cases deviates from the way a museum’s visitor would
depict an artwork. The perspective of curators refers to a greater extent to the meaning of
the artwork, while the visitor’s perspective would rather name the content it can visibly
observe in the artwork. To improve the communication between the museum and its visi-
tors, a collaboration between nine art museums in America, called Steve.museum, united
to research and develop social tagging tools to reconnect the visitor and the museum’s col-
lections. The project followed a constructivist education theory approach, in which the
visitor could construct its own meaning of the artwork and connect with it on a personal
level. The visitor’s tags would additionally add value for the museum by expanding their
perspectives. Between 2006 and 2008, Steve.museum collected around 36.000 terms, of
which approximately 86% were not previously present in the museum’s documentation
[CCH+06, HH10, TW06].

1.2 Games with a Purpose and ARTigo Project

There are multiple ways to motivate people to contribute to science. However, paying
people even at very low rates to perform complex tasks would still be highly expensive.
Moreover to trust in their sense of duty or joy to contribute to scientific accomplishments
might also not suffice to motivate enough people to complete complex tasks in a limited
amount of time. Because of this, Luis von Ahn came up with a different idea similar to
his reCAPTCHA project - to have people make a contribution without them even knowing
about it, simply by playing a game and therefore giving them an incentive to collaborate
[Sav12, vA06, vAB05]. Games with a Purpose (GWAPs) combine entertainment with a

1.2. GAMES WITH A PURPOSE AND ARTIGO PROJECT 5

meaningful use of the human brainpower that goes beyond the capabilities of comput-
ers [vAB05, vAD08]. As stated by game designer Jane McGonigal on a TED Talk in 2010
three billion hours are being spent each week by people on the whole planet playing video
games [McG11]. If even a small percentage of those hours could be invested into science,
a huge amount of problems could be solved. Human-Computer-Interaction researchers
have proven that having fun while using interfaces and integrating gamification elements
is an important factor in designing applications besides the application’s main function-
ality [Shn04, vAB05]. According to Malone [Mal81], major elements for enjoyable user
interfaces are challenge, fantasy and curiosity. Challenge provides an uncertain outcome,
but users might be able to vary their own degree of difficulty. Additionally there has to be
feedback for the user to evaluate his process in achieving the goal. Fantasy offers the user
to go on adventures, live out his emotions or personality traits or socialize with other peo-
ple. Curiosity contributes to a level of complexity that is interesting and arousing but not
too complex to comprehend [Mal81, Shn04]. In GWAPs, enjoyable elements are included
by using features like scores, skill levels, highscores or timed response. Additionally, most
of the games are played with a partner, who provides a feeling of connectedness and so-
cializing. However, in the design of a GWAP it is not sufficient to simply add gamification
elements to any scientific task. The task should be integrated directly into the game itself
and should also be split into smaller fragments to limit the time commitment for the game
and to run within the human attention span. The player should not be asked to perform
the given task, the result should rather be a side effect of a fun game [vAD08].

One platform for Games with a Purpose is ARTigo. ARTigo has been developed by the
research project play4science in 2008 with the purpose of collecting different types of tags
for images of artwork and providing a search engine in the field of arts. In the last decades,
the science of art like other sciences has gone through the process of digitization. As in liter-
ature, where the main focus is the digitization of books to an electronic readable form with
the help of OCR methods, the goal in the science of art is to create digital representations of
artwork. In digitized books it is possible to search for titles, authors, topics or even specific
objects. However, a huge database of images of artwork might still include information
about the artist, title or year of creation, but it would never be possible to search for images
depicting a dog or images that contain the color red. To create a search engine in the area
of arts it is therefore of utmost importance to obtain additional information on the image,
called tags. Tags can be distinguished into surface tags, which describe what the player
can see in the image, for example objects or deep semantic tags, which offer more abstract
information like emotions the player connects with the image [BS16, Koh11, WBBL13].

The ARTigo platform contains more than 65,000 images of artwork from museums or
collections, which were tagged with around 300,000 unique tags by July 2018. ARTigo
offers different types of Games with a Purpose that work together and build the ARTigo
Gaming Ecosystem. Description games build the basis of the ecosystem as they collect
general tags for images without any restrictions. An example is ARTigo Game, where two
players are presented with an image and have to enter tags the other player might also use
to describe it. ARTigo Game is based on the idea of the ESP Game by Luis von Ahn, which
will be presented in chapter 2. Building on the surface tags collected by description games,
diversification games aim at gathering deep semantic tags. For example, ARTigo Taboo of-
fers the same gameplay as ARTigo Game but prohibits the players from using surface tags
by displaying tags, which the players are not allowed to use. Finally, integration games
establish relations between tags from all types of games, for example with the game Com-
bino. Combino provides the players with an image and all tags, that have previously been
gathered. The players have to connect tags that the other player might have also combined,
for example the tags red and dress if the image depicts a woman wearing a red dress [BS16].

6 CHAPTER 1. INTRODUCTION

The relations between ARTigo’s game types are presented in Figure 1.2.

Figure 1.2: ARTigo Gaming Ecosystem [BS16]

1.3 Motivation and structure of thesis

While the current ARTigo version has already gathered a large amount of tags in its databa-
se, there is only little information about the links between the tags or their semantic classifi-
cation. Therefore, the first goal of this thesis is to enhance the collected data by determining
each tag’s semantic category. For this purpose, a Semantic Categorization Pipeline is imple-
mented in Python for the three languages German, English and French and the resulting
categories are analyzed. This additional information could also be used to improve AR-
Tigo’s search function with semantic categories like animals or shapes and implement novel
game ideas.

As ARTigo has been running since 2008 it has encountered some problems. As the cur-
rent version of the ARTigo gaming platform is implemented with the Seam Framework1,
which has not been maintained since 2012, the platform either has to be upgraded to Java
Server Faces 2 or reimplemented. Furthermore, the implementation of new games is cum-
bersome as knowledge about the Seam Framework decreases and its usage is unintuitive
for most users. Additionally, the current ARTigo server faces stability and maintenance
issues, which leads to recurring unavailability of the ARTigo platform. Finally, in the last
decade new user devices, for example smartphones or tablets, have appeared. In 2017
around 63% of all visits in the United States originated from mobile devices whereas only
37% derived from desktop computers [Eng18]. Therefore, the second goal of this thesis will
be to reimplement the three main games on the platform, ARTigo Game, ARTigo Taboo and
Combino with state-of-the-art JavaScript software as basis for future game ideas. The new
version should also allow easy and straightforward expandability to improve the process
of adding future games to the platform.

In the current chapter, a general introduction to Human Computation and Games with
a Purpose was given and the ARTigo project was introduced. Additionally motivation and
scope of this thesis were defined. In chapter 2 the related work on Games with a Purpose,
Automatic Image Annotation and Semantic Categorization is outlined: After explaining
the different types of Games with a Purpose, exemplary projects in the field of Image Tag-
ging and other areas are examined closer. In contrast to gathering tags for images with a
Human Computation approach, three projects on Automatic Image Annotation are layed
out. To further analyze the collected tags, two concepts on the Semantic Categorization of
tags and their challenges are presented. Chapter 3 introduces the Semantic Categorization
Pipeline and its resulting categories. Furthermore, the correctness of the categories as well

1http://seamframework.org/Seam3/Home.html

1.3. MOTIVATION AND STRUCTURE OF THESIS 7

as sources of error for missing categorization results are examined. ARTigo’s three main
games ARTigo Game, ARTigo Taboo and Combino are presented in chapter 4. The con-
cept of the reimplementation with JavaScript software, its software stack and additional
features are explained in chapter 5. Finally, the thesis’ conclusion is drawn and an outlook
to future projects is given in chapter 6.

8 CHAPTER 1. INTRODUCTION

CHAPTER 2

Related Work

In this chapter, a closer look is paid at the types of Games with a Purpose and its most
important projects. In the second part of this chapter, a brief overview of concepts of Au-
tomatic Image Annotation as an alternative to Human Computation is presented. Finally,
different approaches to Semantic Categorization are explained.

2.1 Games with a Purpose

Games with a Purpose were first introduced by Luis von Ahn. He describes three types of
two-player GWAPs, based on the method to verify the results: Output-Agreement Games,
Inversion-Problem Games and Input-Agreement Games. In Output-Agreement Games the
players are presented with the same input, for example an image. If both players inde-
pendently come up with the same output, for example a describing tag, at some point
in the game, the output is validated [vAD08]. Figure 2.1 shows an example for Output-
Agreement.

Figure 2.1: Output-Agreement (Own representation based on [vAD08], using [Bri])

9

10 CHAPTER 2. RELATED WORK

While both players are given the same symmetric task in Output-Agreement Games,
Inversion-Problem Games have at least two different asymmetric assignments. The first
player is given an input, for example an object, for which he provides an output, for exam-
ple a description of the object. If the second player can guess the original input based on
the first player’s output, the input is validated [vAD08]. Figure 2.2 presents an example of
an Inversion-Problem.

Figure 2.2: Inversion-Problem (Own representation based on [vAD08])

In Input-Agreement Games the players are presented with an input that might or might
not be identical, for example an image. Both players have to find out if their input is the
same by exchanging descriptions which is then used as output of the game if both players
agree that their input is identical based on their descriptions [vAD08]. Figure 2.3 shows an
example for Input-Agreement.

Figure 2.3: Input-Agreement (Own representation based on [vAD08], using [Bri])

2.1. GAMES WITH A PURPOSE 11

In all of the above types of GWAPs, it is necessary to have two users playing together
which ensures the validity of the results and the enjoyment of the game. However, it
can not be guaranteed that there is an even number of players in the game at every time.
Therefore, most of the GWAPs include pre-recorded game rounds that are replayed when
a player cannot be matched. Since the actions of the recorded player are retaken including
their exact times there is no way to distinguish the pre-recorded session from a real player.
Additionally, there are also GWAPs that can be played by more than two players [vAB05].

Games with a Purpose do not only offer a fun incentive but also ensure the validity
of the tags with the different game types. However, since all game types depend on the
users, it is important to consider cheating attempts. In many GWAPs free communication
between the two players is not allowed and words that are entered are restricted for let-
ters, are spell-checked and looked up in a dictionary. Besides the pairing of two players is
random and considers IP addresses, to ensure that players are not at the same place. Ad-
ditionally results are only be persisted if they were achieved by a number of people that
exceeds a given threshold [vAB05]. Table 2.1 provides an overview of the GWAPs that will
be examined further in the following subchapters.

Game Game Type Output
ESP Game Output-Agreement Tags of objects in images
Peekaboom Inversion-Problem Locations of objects in images
Verbosity Inversion-Problem Common-sense knowledge facts
TagATune Input-Agreement Tags of sound clips
Urbanopoly Output-Agreement Geographical data
Foldit Other Analysis and Reshaping of Proteins

Table 2.1: Games with a Purpose

2.1.1 ESP Game

Images are used by many applications on the web and almost every web page contains one
or more images. However, statistics for example for Flickr show that not even half of its im-
ages are labeled properly [CZW13]. Labeled images are necessary for image search engines
to find the correct pictures and filter out inappropriate content as well as for accessibility
purposes like screen readers for blind or visually impaired persons. The ESP Game by Luis
von Ahn aims to provide tags for most objects in an image. The goal for the players of the
ESP game is to agree with their partner on words for each image by anticipating what their
partner will type [vAB05].

Gameplay The ESP Game uses symmetric gameplay with Output-Agreement, where
both players have the same task to accomplish. Both players have two and a half minutes
to agree on as many images as possible. Each image is shown to both players, who can enter
as many guesses for this image as possible. If both players have entered the same word they
receive points and continue to the next image. Bonus points can be achieved with agreeing
on fifteen images in a round. The gained points are displayed with a thermometer on each
player’s screen. To not only produce general terms but a variety of specific words and to
increase challenge, taboo words are added to the images. Those are terms that the image
has already been tagged with that the players are not allowed to guess anymore. When an
image has received too many taboo words or has been passed on repeatedly by players it
will be taken out of the game, as it has been labeled sufficiently [vAB05, vAD04]. Figure
2.4 shows a player’s screen during the ESP Game.

12 CHAPTER 2. RELATED WORK

Purpose Labels are created when both players agree on a term for an image. Since
the players are connected randomly and have no possibility of communicating outside of
the game, they have to enter meaningful terms that describe the image in order to receive
points. Additionally, a good label threshold X is used, to make sure that the labels are ac-
curate for the image: to assign a label to an image, this label must have been agreed on by
at least X player couples [vAB05].

Figure 2.4: The ESP Game [vAB05]

After two years, the ESP Game had collected over a million labels for around 300,000
images. For evaluation, a small sample of the tagged images was compared to manually
tagged images and tagged labels of a probe of images were checked by humans. It was
shown that the produced labels were in fact meaningful. Luis von Ahn anticipated that if
the game was published on a popular gaming site and was played by five thousand people
at each point of the day for six months all images on Google Images could be labeled with
six words each [vAB05, vAD04].

2.1.2 Peekaboom

While the ESP Game provides information about which objects can be found in an im-
age, Peekaboom aims to locate those objects in the image. Peekaboom uses tagged images
from the ESP Game and further improves the collected data by adding location information
[vAB05].

Gameplay Peekaboom is an Inversion-Problem Game, where the second player vali-
dates the first player’s output by tracing back the first player’s original input. The first
player, called Boom, can see an image and a related word that is located somewhere in the
image. The second player can only see a blank screen. Boom can reveal sections of the
image to the second player, called Peek, allowing Peek to guess which word was shown to
Boom. Boom also has the possibility to grade Peek’s suggestions with hot or cold and ping
a specific area of the revealed part of the image to distinguish this specific area from the
rest of the object e.g. to point to the nose of a face instead of the whole face. Additionally,

2.1. GAMES WITH A PURPOSE 13

Boom can also supply Peek with hint cards about the relation between the image and the
wanted word, for example Verb or Related Noun. If Peek can name the object, both players
score and switch their roles. The Usage of hint cards also adds points because hints help to
assess how word and image relate to each other. Additionally, in bonus rounds that appear
after successfully finishing four images in a normal game round, both players can see im-
ages and have to click on an object. The points the players receive for each image depend
on how closely their clicks are located to each other, which requires the players to click in
the objects center [vAB05, vALB06]. Figure 2.5 shows the screens of both players for the
word cow.

Purpose If Peek correctly guesses the word that Boom was supposed to reveal, it veri-
fies the location of the object in the image. When overlaying revealed areas from multiple
players for a specific object in an image, the object’s boundaries can be found. The results
also provide information about how the object relates to the image and how important
the specific object is for this image. Furthermore, it can sort out bad image-word pairs and
therefore increase the data’s quality. The object’s locations can then be used to fill databases
to train computer algorithms or to improve image search results [vAB05, vALB06].

Figure 2.5: Peekaboom [vAB05]

2.1.3 Verbosity

Verbosity, another game by Luis von Ahn, does not aim at tagging images but at generating
a database for common-sense facts. Facts like grass is green may be trivial for humans, but
is necessary to determine for computers to improve in the field of AI. Verbosity is based
on the party game Taboo that asks players to paraphrase terms without using taboo words
[vAB05, vAKB06].

Gameplay Similar to Peekaboom, Verbosity also is an asymmetric Inversion-Problem
Game. The first player, called Narrator, has to explain a given word to the second player,
called Guesser. To explain the word, the Narrator has to fill sentence templates, for exam-
ple is a kind of or is used for. If the Guesser concludes the correct word, both players get
points. Similar to Peekaboom, the narrator can state if a guess is hot or cold. A game round
of Verbosity takes six minutes and players switch roles after each word [vAB05]. Figure 2.6
shows the narrator’s screen for the word eye.

14 CHAPTER 2. RELATED WORK

Purpose The facts that led the Guesser to the correct conclusion are stored in a knowl-
edge database. By using sentence templates the type of information can be stored in cat-
egories like spatial data or purpose and natural language processing can be avoided [vAB05].

Figure 2.6: Verbosity [Wel08]

2.1.4 TagATune

TagATune is the first Input-Agreement Game and is not focused on images but on music.
In 2009 Law and von Ahn [LvA09] attempted to use the ESP Game approach to tag sound
clips, but soon realized that agreeing on tags for sound clips is far more difficult than for
images and thus decreases the fun aspect of the game.

Gameplay TagATune’s goal is for the players to decide whether the sound clips they
were both listening to are identical or different. For this purpose, both players can hear a
sound clip and tag it, for example with the genre of the music, the number of artists, their
instruments or the provoked emotions. Both players can see the other player’s tags. If the
players agree correctly on whether or not they heard the same clip, they gain points. A ma-
jor difference to the previous games is that the entered text is not restricted, since there is
no other way to score than to describe the music, but postprocessing is applied to remove
spelling errors or communication tags. Similar to Peekaboom there are bonus rounds in
TagATune as well. In those rounds, the players observe three sound clips and have to agree
which one differs most from the others.

Purpose Tags from TagATune are persisted whenever the players agree on identical
or different clips. The evaluation showed that the most frequent tags use genre, the artist’s
instruments or descriptions of the music. Other frequent tags were of communicative func-
tion, like same, diff or negation tags like no vocals to state a difference when the partner was
tagging singing. In the bonus rounds additional data on the similarity of music is gathered
which could provide a lot of training data for music recommendation systems. Moreover,
the data from bonus rounds can then be used to pair more similar sound clips in the regular
rounds which could lead to more specific tags and a greater challenge.

2.1. GAMES WITH A PURPOSE 15

Figure 2.7: TagATune [LvA09]

2.1.5 Urbanopoly

As tagging the world of art was for the longest time only done by curators, tagging or
measuring the real world belonged to cartographers, geographers or city inspectors. The
first approach to crowdsourced location tagging was done by the OpenStreetMap project
in 2004 which made use of the emerging GPS technology and collected data about any-
thing that can be depicted on a map worldwide. The goal of OpenStreetMap is to offer
free access to geographic information for everyone by crowdsourcing the collection of the
geo-data to volunteers with GPS devices [HW08, Deu]. To validate, correct and enhance
the OpenStreetMap data, in 2012 an italian research group [CCC+12] created Urbanopoly,
an app-based Game with a Purpose inspired by the board game Monopoly.

Gameplay Each player in Urbanopoly acts as a landlord and has the goal to buy venues.
For this purpose the player has a starting budget and can receive a daily bonus as a reward
for logging into the app regularly. Players can acquire venues if they are free, otherwise
they have to hope for a good outcome in the wheel of fortune which could either be a
monetary reward or a punishment, but also a chance to steal a venue from the current
occupant. Figure 2.8 shows multiple screens of the Urbanopoly app.

Figure 2.8: Urbanopoly [CCC+12]

16 CHAPTER 2. RELATED WORK

Purpose The purpose of Urbanopoly is achieved through challenges on the venues, that
the player would like to acquire. There are three types of challenges: Data Collection tasks,
Data Validation tasks and Data Ranking tasks. For the collection of data, the player has
to create an advertisement poster which will be rated by its current landlord and contains
basic facts on the venue. Data validation can either be achieved by quizzes or ratings on
the venue. Quizzes are also used for the ranking of data, the player could for example
choose the best image of the building. Urbanopoly follows an Output-Agreement game
type, where the gathered data is aggregated and outliers are removed.

2.1.6 Foldit

Foldit is an online game in the area of molecular biology, that was released in 2008. Players
can rearrange a protein’s structure with the goal to find their most compact form. Pro-
teins are formed by chains of amino acids which then fold up into compressed forms to
ensure its stability. The final form of a protein, for example as part of a disease, is very
important for its examination and potentially finding a cure. While it is also a longsome
option to calculate every possible solution with computing power, the human abilities of
puzzle-solving and intuition are predetermined to achieve results in a shorter period of
time [Sav12, Cur15, fol].

Gameplay Foldit presents the players with three-dimensional single proteins, as pre-
sented in Figure 2.9. When new players start the game, they have to practice on 32 tutorial
proteins that show the most important concepts of protein folding, for example to clear
clashes of acids, minimize the protein’s energy or achieve the best distance between back-
bones to help non-chemists understand how to play the game. Points are distributed for
each protein, the lower the energy the more points a player can receive. While Foldit has a
competitive aspect by creating the protein with the lowest energy, it also supports collabo-
rative work on proteins and allows communication between the players [Cur15, fol].

Figure 2.9: Foldit [Cur15]

2.2. AUTOMATIC IMAGE ANNOTATION 17

Purpose Foldit solves two major challenges in the treatment of diseases. On the one
hand it helps to analyze proteins and as a result find treatments for diseases. On the other
hand it helps to create unknown proteins that can be used for cures as well. Some typical
diseases in this field are the HIV virus that consists to a great part of proteins and repro-
duces through the creation of other proteins or cancer that can evolve because humans’
own proteins are flawed [Cur15, fol].

2.2 Automatic Image Annotation

As shown in the previous section, there are many excellent approaches to tag images man-
ually with methods of Human Computation. However, statistics of 2017 show that 90
millions of photos were uploaded each day to Instagram alone [Bag18] which again raises
a demand for automatic tagging of images. Automatic Image Annotation can be classi-
fied into five general categories [CZF+18]. First, generative model-based methods aim at
maximizing the generative likelihood of image features and label words from the training
data. The training data can be based on tagged image data from Human Computation
approaches. Nearest neighbor model-based approaches assume that similar images also
share similar labels. Therefore, algorithms try to find the nearest neighbor images to the
input image and then use their tags as label output for the input image. Discriminative
model-based concepts trace image annotation back to a multi-label classification problem.
To solve this problem multiple binary classifiers have to be trained for a set of training
labels, which can then be applied to the input image. A novel approach in Machine Learn-
ing, the use of neural networks, which are based on the human brain, is employed in deep
learning-based methods. Finally, tag completion-based approaches have a different fo-
cus. They assume that manually tagged training data is incomplete and concentrate on
filling in missing tags and correcting the training data. In the following, the fundamentals
of two exemplary state-of-the-art algorithms for Automatic Image Annotation will be in-
troduced. TagProp is an example for generative model-based methods, whereas FastTag is
based on a discriminative model-based concept. Additionally, a study by Saleh and Elgam-
mal [SE16] which examines the best visual features and metrics especially for the prediction
of an artwork’s style, genre and artist will be presented.

2.2.1 TagProp

TagProp, which is short for Tag Propagation, uses a nearest neighbor approach. The model
was created by Guillaumin et al in 2009 [GMVS09]. The classifier examines training data
images similar to its given input image and maximizes the likelihood of the neighbor’s
image tags belonging to the input image as well. All neighbor images are weighted based
on their distance to the input image. Additionally fifteen features like color histograms,
which focuses on the distribution of colors or bag-of-visual-words, which tries to identify
objects in the image, were applied. TagProp outperformed other approaches by far and
reached precision values of 32% to 46% and recall values of 27% to 42% depending on
the tested data set. However, its runtime of O(n2) makes it impractical for large data sets
[CZW13, DVJ18].

2.2.2 FastTag

Another approach was presented in 2013 by Chen, Zheng and Weinberger [CZW13]. Their
system FastTag yields comparable results to TagProp, but can be trained and applied in
much less time. Additionally, it is also able to work with sparse training data, for example
images with only a small number of tags. FastTag’s approach is to connect two classifiers

18 CHAPTER 2. RELATED WORK

with co-regularization. The first classifier predicts tags for the given image by analyzing its
characteristics, while the second classifier tries to extend those results by finding additional
tags that might be associated. All tags that can be employed by the first classifier result
from the training tags that were available during the training phase with manually tagged
image data. FastTag was evaluated using data from the ESP Game and two other data
sets. It received very similar Precision, Recall and F1 values to TagProp, which surpasses
other methods. However, TagProp’s training time for sets with a higher number of images
lies within hours, whereas FastTag’s training finished within minutes. Nonetheless, results
from TagProp and FastTag also show that at the current state of research in Automatic
Image Annotation there is still a lot to achieve and Human Computation methods are the
superior choice for now.

2.2.3 Classification of artwork

While TagProp and FastTag aim at annotating images by describing their content, other
systems try to forecast an image’s style, genre or artist. In 2016 Saleh and Elgammal [SE16]
analyzed different visual features and metrics especially for artwork and used the best
combinations to propose the system depicted in Figure 2.10.

Figure 2.10: Classification of style, genre and artist of artwork [SE16]

Visual features can be divided into low-level and high-level features. Low-level features
are general features that describe the gist, a viewer of the artwork recognizes, whereas
high-level features refer for example to the objects in the image. Low-level gist features
are based on perception and use dimensions like naturalness or roughness. The results
showed that high-level features by the name of Classeme-features work best on all three
classification categories. Saleh and Elgammal also tested different metrics to measure the
similarity of paintings and concluded that a combination of different features together with
using Large-Margin Nearest-Neighbor (LMNN) metric learning produced the best perfor-
mance. LMNN tries to find the k same-class-nearest neighbors to the training image, while
maximizing the distance to neighbors from a different class. Overall the results revealed
that style classification is the most difficult task, because many of the style categories, for
example Minimalism and Color field paintings, look very similar and are hard to distinguish.
Additionally, high-level object recognition features reach its limits for more abstract styles
like cubism, surrealism or expressionism.

2.3. SEMANTIC CATEGORIZATION 19

2.2.4 Challenges in Automatic Image Annotation

However, the automatic annotation of images with computer vision algorithms is still an
evolving field that does not yet reach the precision of Human Computation approaches.
Most models use supervised Machine Learning algorithms, which rely on valid training
data. However, the training data could have missing or irrelevant labels, it could only be
labeled sparsely or could provide many common labels, which appear for multiple im-
ages. This imbalance of tags is a major problem for nearest neighbor algorithms, as labels
which are used frequently have a higher probability to be chosen as output label than labels
which are only used for a few images. Additionally, especially in the area of artwork, the
differences in the styles of images are a challenge for Machine Learning algorithms. For
example the tags flower and red were used in the ARTigo ecosystem to describe a picture of
a cup with flowers, textitMaandkopje by an anonymous artist, the drawing of a flower, Tulp
Grand Roy de France by artist Jan Vincentsz. van der Vinne and even a painting of a red vase
with white flowers by Claude Monet, Stilleben mit Chrysanthemen. Those three very differ-
ent images with the same tags are presented in figure 2.11. The other way around, similar
images for example in the field of abstract art could lead to very different tags, according
to the subjective perception of each individual observer [CZF+18].

Figure 2.11: Images tagged with red and flower [Images from ARTigo Game]

2.3 Semantic categorization

With the different approaches to image tagging huge amounts of tags have been and will
be created. However, tags from different systems may describe different categories of infor-
mation. While tags from the ESP Game focus more on the content that is displayed in the
image, tags from Flickr aim at describing the event, time, location or type of camera that
are connected to the image. Additionally, even when focusing on tags from the ESP Game
there are multiple categories of tags that players employ, for example persons or objects
displayed in the image, colors or painting techniques used to create the image, additional
information on the creation of the image like its artist, date of origin or even emotions the
players connect to the image. Therefore the Semantic Categorization of the player’s tags
will provide valuable information about the image and possible semantic groups and estab-
lish new potential for search engines. Furthermore, it is fundamentally important to help
computers understand the meaning and content of documents and therefore automatically
extract their semantic groups and categories [DEG+03, OSvZ09].

20 CHAPTER 2. RELATED WORK

Currently, the main approach in Semantic Categorization relies on the use of knowl-
edge bases, external databases with structured information about the input data. A major
problem for any system in this field is the disambiguation of homonyms, for example the
word bank, which could represent either a credit institute or a seating-accommodation. In
the following subchapters two systems, SemTag and ClassTag, will be presented and their
approach on disambiguation will be explained [OSvZ09, RAPM04].

2.3.1 SemTag

SemTag is a system in the field of unsupervised learning for automatic semantic tagging
of large corpora, that follows a knowledge-based approach by including the TAP ontol-
ogy. The TAP ontology offers information on objects from different categories like sports,
music or authors including their taxonomy. With the help of the TAP ontology SemTag
aims at equipping documents on the web with semantic annotations. Its algorithm works
in three steps. First, the source documents are scanned for labels from the TAP ontology.
All existing labels are persisted with their context words, which are the ten next words,
that are written on each side of the label word. In the second step, a disambiguation al-
gorithm called Taxonomy-Based Disambiguation (TBD) is applied to the whole document.
For knowledge-based approaches there are two main sources of ambiguity: On the one
hand, some labels might have different meanings in the ontology, like Bush, which could
be linked to two presidents of the United States of America, a beer company or even a rock
music band. On the other hand, some labels might exist in the ontology, however might
not have been meant in this way. For example Rihanna could relate to the famous vocal-
ist, but could also relate to any other female person by that name. To disambiguate both
cases SemTag employs a similarity function including the label’s context to calculate the
similarity of each taxonomy node to the ambiguous label and accordingly the similarity
of the taxonomy node to references outside the TAP ontology. Finally, the disambiguated
labels are connected to their respective TAP object and persisted in the database includ-
ing all associated metadata. As of 2003, SemTag had been used on millions of web pages
and could provide a label bureau, which is an online server, that can be queried to request
information about a specific label [DEG+03, UCI+06].

2.3.2 ClassTag

Another knowledge-based approach is employed by ClassTag, which uses structural pat-
terns from the Wikipedia corpus and lexical data from WordNet to categorize Flickr tags
[OSvZ09]. Wordnet is a lexical resource for the English language, which provides meaning
and hypernyms of words, that can be used as category information. The ClassTag system
consists of a classifier for Wikipedia articles, which is used by a pipeline to map Flickr tags
to WordNet categories. An overview of the ClassTag system pipeline can be found in Fig-
ure 2.12.

To classify Wikipedia articles, ClassTag applies a binary Support Vector Machine (SVM)
to each potential WordNet category. The features for the classifier are based on structural
patterns of the Wikipedia articles. Each Wikipedia article is then classified by each SVM
and receive the category with the highest confidence output value by the respective SVMs.
In the second step, Flickr tags and Wikipedia articles are connected with each other. With
the help of the classifier, the Wikipedia articles and therefore the Flickr tags can then be
matched to the respective WordNet category. Since the classification outputs a confidence
value for each category, ClassTag does not have to deal with a great amount of ambiguity.
Additionally, outlier mappings were defined as less than 5% of mappings from an anchor

2.3. SEMANTIC CATEGORIZATION 21

label to an article, which is removed before the classification takes place. A main advan-
tage of ClassTag is its transferability to other languages as Wikipedia is present in many
languages and translations with the help of Wikipedia’s Interlanguage links could be ap-
plied [OSvZ09].

Figure 2.12: ClassTag [OSvZ09]

22 CHAPTER 2. RELATED WORK

CHAPTER 3

Semantic categorization of tags

The previous version of ARTigo has already collected over 300,000 tags in the languages
German, English and French for around 65,000 works of art as of July 2018 and has also
created around 47,000 relations between tags with the game Combino. However, there is
no information about the semantic classification of tags or which other tags might belong to
the same category. The collection of this additional semantic information could also be used
to find synonyms among the tags of each picture or to determine the correct meaning of
homonyms. Furthermore, this additional semantic information offers a lot of input data for
future game ideas, which will be discussed further in chapter 6. In this chapter, the design,
implementation and an analysis of the results of the Semantic Categorization Pipeline are
presented.

3.1 Semantic Categorization Pipeline

To determine the semantic categories of a tag it has to pass through a newly created Se-
mantic Categorization Pipeline, which will be explained in the following subchapters. The
pipeline is written in Python, which is predestined for the processing of natural languages,
because of its popular and well-documented library Natural Language Toolkit (NLTK).
This Semantic Categorization Pipeline is called every time a new tag is added to incorpo-
rate the categorization into future games or give players feedback on typing errors like Did
you mean ...?. Additionally, to categorize and analyze all preexisting tags up to July 2018 a
Onetime Load was created. The Onetime Load loops over all preexisting tags from table
tag, receives each tag’s categories from the Semantic Categorization Pipeline and stores se-
mantic categories and their subcategories in their respective tables.

An overview of the proposed Semantic Categorization Pipeline is shown in Figure 3.1.
At the beginning each tag is processed into a cleaned, singular and lemmatized form with-
out punctuation characters. Additionally, multiple-word tags are split into a list of single
words. Those steps are necessary to ensure that the subsequent tools are able to process the
tag correctly. Second, the lexical category of the tag is retrieved. The subsequent steps of the
pipeline are only executed if the tag is a noun, adjective, adverb or verb. Otherwise the Se-
mantic Categorization Pipeline stops and returns an empty result list. Afterwards, named
entities in the tag are determined by Named Entity Recognition algorithms and their pos-

23

24 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

sible categories location, organisation or person are retrieved. The main step of the Semantic
Categorization Pipeline is the determination of the semantic relation. In this step the APIs
of ConceptNet.io, Wikidata and WordNet are called to identify the tag’s hypernyms via dif-
ferent relations and save them as categories. In the Postprocessing step invalid categories
are rejected or shortened and duplicates are removed. This is necessary as the API out-
put does not necessarily correspond to a valid category. Finally, if all of the previous steps
did not result in categories, the tag might include a typing error. Therefore, autocorrection
is used and the Semantic Categorization Pipeline is called once more with the corrected
tag. Table 3.1 gives a summary of all tools used in the Semantic Categorization Pipeline
per pipeline step and language. All steps of the Semantic Categorization Pipeline and all
employed tools will be presented in detail in the following subchapters.

Figure 3.1: Semantic Categorization Pipeline

German English French
Preprocessing
Tokenization NLTK NLTK NLTK
Lemmatization GermaLemma WordNetLemmatizer FrenchLefffLemmatizer
Lexical Category Stanford PosTagger NLTK PosTagger Stanford PosTagger
Named Entity Stanford NER Stanford NER Spacy NER
Recognition
Semantic Relation Wikidata Wikidata Wikidata

ConceptNet.io ConceptNet.io ConceptNet.io
WordNet

Postprocessing Stanford PosTagger NLTK PosTagger Stanford PosTagger
AutoCorrection PySpellChecker PySpellChecker PySpellChecker

Table 3.1: Usage of tools per step and language

3.1. SEMANTIC CATEGORIZATION PIPELINE 25

3.1.1 Preprocessing

In the first layer of the Semantic Categorization Pipeline each tag is processed into a cleaned
singular form of itself. This step is necessary since ARTigo games do not provide any form
of input validation. However, some steps in the Semantic Categorization Pipeline require
singular nouns and cannot process punctuation characters or multiple-word tags. Addi-
tionally, as the ARTigo games have a countdown the users are trying to type as fast as
possible and are therefore submitting typing errors and additional characters, for example
woman# as the number sign is close to the enter key. With the help of regular expressions,
all punctuation characters are removed. Since numbers provide semantic information like
the year of the creation of a work of art or even titles of artwork like 4 Schmetterlinge und
3 Raupen (four butterflies and three caterpillars), a painting of Gabriel von Max which is
displayed in Figure 3.2, they are not removed.

Figure 3.2: 4 Schmetterlinge und 3 Raupen [Image from ARTigo Game]

In the second step, the tag is tokenized with the help of Python’s NLTK [BKL09]. Since
there are no restrictions on the tag input for ARTigo players, it is also possible and rea-
sonable to enter multiple-word tags, for example Mona Lisa. Nevertheless, steps like the
identification of the lexical category or the Named Entity Recognition of a tag are only able
to work with single word tags, whereas other steps in the Semantic Categorization Pipeline
require the whole tag as a semantic unit. The tokenization of a tag results in a list of the
single words the tag consists of, which takes into account language specifics and is more
sophisticated than simply splitting the tag at each space character.

The last part of the preprocessing is the lemmatization of plural to singular for noun
tags. This step requires the lexical category of a tag and is therefore occuring after the
second layer of the Semantic Categorization Pipeline. However, thematically it belongs to
the preprocessing step and will therefore be discussed in this subchapter. Lemmatization
describes the conversion of a word into its basic form, which would also be stored in a dic-
tionary. The lemmatization step is considered not necessary for verbs or adjectives, as those
will mostly be entered in their basic form during the ARTigo games, whereas players often
enter nouns in both singular and plural to gain more points. An example for the prepro-
cessing would be the tag gestures which would be transformed into the cleaned tag gesture.
Unfortunately, since the three languages German, English and French use very different
forms of inflection there is no single tool that will lemmatize all three languages. Therefore,
three separate tools are used to perform the lemmatization of a tag: WordNetLemmatizer
(NLTK) [BKL09] for English tags, GermaLemma1 for German tags and FrenchLefffLemma-
tizer2 for French tags.

1https://github.com/WZBSocialScienceCenter/germalemma
2https://github.com/ClaudeCoulombe/FrenchLefffLemmatizer

26 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

3.1.2 Lexical category

The second layer of the Semantic Categorization Pipeline is the classification of lexical cat-
egory or part of speech of each tag. The lexical category is required for the lemmatization
of the tags and additionally allows the Semantic Categorization Pipeline to stop the eval-
uation if a tag is not a noun, verb, adjective or adverb and therefore does not possess a
semantic category. The previous example tag gestures would be recognized as a noun and
therefore allowed to be evaluated by the pipeline. For English words, the part-of-speech
tagging (PosTagging) algorithm of NLTK [BKL09] and for German and French words the
PosTaggers of Stanford University3 are used to determine a tag’s lexical category. As those
tools only work with single words, the tokenized tag list is used to determine each sin-
gle word’s PosTag, for example present tense verb (VBP) for the English verb discuss or
noun (NN) for the English noun discussion. The resulting PosTags is then converted into
the five more general PosTags noun, verb, adjective, adverb or stopword. A stopword in
this context is anything else than the other four categories and will not be evaluated in the
following layers of the Semantic Categorization Pipeline.

For multiple-word tags an additional logic to determine the whole tag’s lexical category
was applied. If all single words of the tag have the same PosTag it is used as the whole
tag’s lexical category as well. If the tag includes at least one noun the whole tag’s lexical
category is noun as well, because the other words are only further describing the noun. For
example the multiple-word tag sleeping man would consist of the PosTags verb and noun or
the multiple-word tag old man would consist of the PosTags adjective and noun, however,
the overall tag’s lexical category would be noun in both cases. Any other combination of
PosTags like for example verb and adjective or adjective and adverb do not make sense
and should therefore not be analyzed further. For this reason any other combinations of
PosTags are declared as stopwords.

3.1.3 Named Entity Recognition

APIs that produce semantic relations between tags are mostly based on resources like dic-
tionaries or thesauri and therefore cannot handle proper names. However, since the name
of the artist like Leonardo da Vinci or artwork like Mona Lisa or even recognizable places like
Italy clearly belong to the semantic categories name and place, it is important to categorize
named entities as well. For German and English tags the Named Entity Recognition (NER)
tool of Stanford University4 was used to produce the three categories location/Ort, orga-
nization/Organisation and person/Person. For French tags another NER tool called Spacy5

provided the tags lieu, organisation and personne. Since NER algorithms require single words
as well, the tokenized tag list was used to obtain the NER category of each single word in
the tag. For multiple-word tags the NER category was only chosen if every word in the tag
produced the same NER category. For example New York would be identified as a location
as the NER algorithm would select New as the beginning of a location and York as the end
of a location. However, the tag New York skyline would not be chosen as a location, as skyline
does not refer to a named location.

3https://nlp.stanford.edu/software/tagger.shtml
4https://nlp.stanford.edu/software/CRF-NER.shtml
5https://spacy.io/usage/linguistic-features

3.1. SEMANTIC CATEGORIZATION PIPELINE 27

3.1.4 Semantic relation

The main step of the Semantic Categorization Pipeline is the determination of each tag’s
semantic categories from semantic relations with the help of knowledge bases or graphs.
The previous example tag gestures would in this case receive categories like nonverbal com-
munication and motion. One knowledge graph that combines miscellaneous sources and
offers its service in ten core languages including German, English and French is Concept-
Net.io6. ConceptNet.io was considered the best alternative because it already combines its
own data with it’s competitors like WordNet, Wiktionary and DBPedia and offers many re-
lations for a lot of languages. To determine the semantic category of a tag ConceptNet’s API
was called and the results of its Is-a-Relation were considered as categories. As Concept-
Net uses many sources including free text input a filter on trusted sources like WordNet,
Wiktionary, DBPedia and Open Mind Common Sense Initiative’s Template 2 was applied.
Unfortunately, the resulting categories are returned in lowercase, which provided some
problems for the Postprocessing step, where among other things the PosTags of category
words were used to determine the quality of a category. However since the PosTagging al-
gorithms, especially for the German language, are to some extent based on case information
all words in result categories from ConceptNet for the German language are capitalized, for
example the result category astronomisches objekt (astronomical object) is capitalized to As-
tronomisches Objekt. The capitalization of all German words might lead to some mistakes in
the PosTagging of adjectives, verbs or adverbs as well, but since there is no sensible way to
determine the case without PosTagging and as it is more important to correctly identify ex-
isting nouns, those mistakes are condoned to escape from this vicious cycle. Furthermore,
some categories for the English language were returned with and without a leading article
like a plant and plant, which was cleaned up to one category without article.

The second knowledge base that was used in the Semantic Categorization Pipeline is
Wikidata7, which offers most of Wikimedia’s data in a structured way. Results can be re-
trieved with SPARQL queries to Wikidata’s webservice. The most relevant relations that
connect entities in Wikidata are the Subclass-Of- and Instance-Of-Relations. The Subclass-
Of-Relation describes a hierarchy of items and allows to find the superclass of a tag, which
is equivalent to its category. For example, the Subclass-Of-Relation of paint brush would be
brush or writing implement. However, there are many items of Wikidata that do not have a
Subclass-Of-Relation, because they rather are entities of a specific category. For example,
Mona Lisa or New York would be instances of the categories human or city, but are not a
subclass of it. Therefore, since the Instance-Of-Relation still provides the category of those
entities, it is also utilized. Unfortunately, Wikidata at times returns also some erroneous
results like Q-Numbers, which are the identifiers of the items or Wikidata category pages,
which are removed from the Semantic Categorization Pipeline results.

If neither ConceptNet nor Wikidata could provide any category results, there is another
approach to determine the semantic category of a tag via its hypernyms. NLTK’s tool Word-
Net [BKL09] provides the meaning of a tag, called synset and allows to retrieve a synset’s
hypernyms or superclasses. However, there are some limitations in the use of WordNet:
On the one hand, WordNet is only available for English tags, which limits its usefulness for
the Semantic Categorization Pipeline. On the other hand, it is very difficult to determine
the correct categories from all of WordNet’s data. For each tag there are multiple synsets
and all of those synsets have a list of hypernyms, which have synsets and hypernyms them-
selves. For example, the tag dog owns among other things the synsets dog and cad. Synset
dog connects, for example, to the hypernyms canine and domestic animal. In the hierarchy of

6http://conceptnet.io/
7https://www.wikidata.org/wiki/Wikidata:Main Page

28 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

canine, the next hypernym is carnivore, then placental and after some intermediate steps the
root hypernym entity. As most words somehow lead to the root hypernym entity, it is un-
feasible to determine at which layer in the hierarchy the algorithm should stop. Depending
on the accuracy of a tag it might make sense to look way up the hierarchy of hypernyms or
to simply use the current layer of hypernyms. Because of those constraints, WordNet data
is only queried if an English tag did not receive any category from Named Entity Recogni-
tion, ConceptNet or Wikidata and only the first synset and the first layer of hypernyms are
considered as valid categories.

As ConceptNet.io, Wikidata and WordNet each have their disadvantages, combined
they provide meaningful and valid category information. While ConceptNet.io and Wiki-
data offer their service for many languages, WordNet is limited to the English language.
Indeed, even if ConceptNet.io offers its service for many languages the amount of results
is still much higher for English than for German or French words. Additionally, Wikidata
and WordNet’s API are very stable, while ConceptNet.io indicated some stability issues
and even a downtime for more than three days during the run of the Onetime load. A
deeper analysis of the performance of the Semantic Categorization Pipeline also revealed
that ConceptNet.io is taking up almost 60% of the overall time. Furthermore, Concept-
Net.io’s results in lowercase as well as the different output styles of their combined sources,
for example the return categories plant and a plant, complicate the postprocessing. On the
other hand, ConceptNet.io’s API is very easy to query by simply adding the parameters to
the request URL, while Wikidata uses SPARQL queries, which are not intuitive and pre-
sume a basic understanding of the SPARQL language. Although WordNet’s usage is also
very simple, its structure of synsets with a chain of hypernyms complicate the task to find
the correct categories. Against this, ConceptNet.io and Wikidata’s output in JSON format
lightens the workload. The output quality of WordNet and ConceptNet.io - after filtering
on trusted sources - is convincing. Wikidata, unfortunately, sometimes returns erroneous
results like Q-Numbers or Wikidata category pages. Finally, a main advantage for Con-
ceptNet against the other tools is the combination of many trusted sources like Wiktionary
or DBPedia. An overview of all advantages and disadvantages is presented in table 3.2.

ConceptNet.io Wikidata WordNet
Stability - + +
Performance - + +
Language offer + + -
Language quality - + +
Query simplicity + - +
Output simplicity + + -
Output quality + - +
Combination of different sources + - -

Table 3.2: Advantages and disadvantages of semantic relation tools

3.1.5 Postprocessing

All category results from Named Entity Recognition, ConceptNet and Wikidata or alter-
natively from WordNet are gathered in one result list, which has to pass through some
Postprocessing steps before it is returned to the server and written into the database tables.
The Postprocessing consists of two parts: First, invalid categories are rejected or shortened
and second, duplicate categories from the shortening process or from different sources are
removed. Since category data is retrieved from APIs with various sources, some result cat-
egories would still not be considered valid categories by a human, like a relatively easy form

3.1. SEMANTIC CATEGORIZATION PIPELINE 29

of art or usually, which are two examples of results from the Is-a-Relation of the English tag
painting by ConceptNet. Therefore, some simple rules were experimentally developed to
filter for more relevant categories.

To select or shorten correct categories, PosTagging is applied to all words in the resulting
category. If the category only consists of one word and this word is a noun then it is consid-
ered a correct category. However if the category consists of more than one word, it might
still be a correct category. If the multiple-word category contains exactly one noun and no
stopwords it might either be of the form adjective+noun like nonverbal communication or
verb+noun like painted image. In this case the category is shortened and only the noun is
saved as result category. For example the previous category, nonverbal communication which
was found for the tag gestures, is shortened to the category communication. The original re-
sult category is however still persisted as subcategory of the shortened category for future
usecases. Compound nouns like oil painting are also considered as valid nouns. For exam-
ple, the category antique oil painting is processes as category oil painting with subcategory
antique oil painting. While compound nouns in German and English are build by simply
combining nouns, for French tags compound nouns might however include prepositions
like nom de famille or groupe de musique. Therefore, another case was build that considered
categories for French tags that include exactly two nouns and one stopword as correct as
well. All other multiple-word categories are removed from the results list because they are
mostly likely not category terms but rather phrases which are not considered valid.

3.1.6 Autocorrection and recursion

If no category was found in the Semantic Categorization Pipeline the tag might not have
been a correct word. Therefore, in the case of an empty result list, autocorrection is applied
and the most suitable correction is sent through the Semantic Categorization Pipeline re-
cursively. After the Semantic Categorization Pipeline has been called recursively it will not
autocorrect the already corrected tag again but return its results even if they are empty. For
the autocorrection of all three languages the tool PySpellChecker8 was used. A correction
was calculcated with a Levenshtein distance of one, which means that exactly one letter in
the word might be substituted, removed or added, for example the tag trea might be cor-
rected to the word tree. If the autocorrection does not find a fitting word or the recursion
does not produce a result list as well the Semantic Categorization Pipeline would return an
empty list to the JavaScript Server and the results would not be persisted in the respective
database tables.

3.1.7 Database model

All information about the semantic categorization are persisted in five new database ta-
bles. The original tag id from the existing table tag is connected to its cleaned tag id
with the help of table tag cleaned tag. The cleaned tag consists of the cleaned name of
the tag after the Preprocessing and its lexical category and language. It is stored in ta-
ble cleaned tag. Table cleaned tag semantic category stores the connection between each
cleaned tag and its respective semantic categories via their ids. The semantic categories
itself can be found in table semantic category, where semantic category ids are mapped to
the name and language of each semantic category. To preserve the hierarchy between tags
a third table semantic category hierarchy was added, which secures the relation between
the ids of cleaned tag, semantic category and semantic subcategory. Those subcategories
are not saved in cleaned tag semantic category, as this table should only store the main

8https://github.com/barrust/pyspellchecker

30 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

categories of each tag. However, if the subcategories would be needed for future game
ideas or evaluations, they could be easily joined to their respective tags. An example for
a hierarchy between tags would be the tag gestures, which is categorized as communication
with subcategory nonverbal communication or the tag axe, which is categorized as tool with
the subcategories heraldic tool and cutting tool. An example for the table structure for the
semantic categorization of tag gestures can be found in Tables 3.3, 3.4, 3.5, 3.6 and 3.7.

id tag id cleaned tag id
31419 2001511369 30642

Table 3.3: Content of table tag cleaned tag for tag gestures

id cleaned tag name lexical category language
30642 gesture noun en

Table 3.4: Content of table cleaned tag for tag gestures

id cleaned tag id semantic category id
60834 30642 1886
60835 30642 16149
60836 30642 5121
60837 30642 3669
60838 30642 2011

Table 3.5: Content of table cleaned tag semantic category for tag gestures

id semantic category name language
1886 communication en
2011 motion en
3669 indication en
5121 action en
9968 visual communiation en

14708 human action en
15291 nonverbal communication en
16149 user interface en

Table 3.6: Content of table semantic category for tag gestures

id cleaned tag id semantic category id semantic sub category id
3846 30642 1886 15291
3847 30642 5121 14708
3848 30642 1886 9968

Table 3.7: Content of table semantic category hierarchy for tag gestures

3.1. SEMANTIC CATEGORIZATION PIPELINE 31

3.1.8 Open questions and difficulties

The Semantic Categorization Pipeline provides fitting category results, however there are
still some problems that could not be addressed in the scope of this thesis. While noun tags
receive many result categories, there are significantly less results for tags of other parts of
speech. Especially for German or French tags there are little to none results for adjectives or
verbs from ConceptNet. Some results do not make any sense, for example the German ad-
jective klein (little) has very strange results in the ConceptNet Is-a-Relation like many small
letters like a or b or unreasonable categories like käsepappel (mallow) or zittergras (quaking-
grass). Additionally, the amount and quality of results varies within the languages, which
will also be further discussed in chapter 3.2. Since for parts of the Semantic Categorization
Pipeline there are different tools for each language, the quality of the tool mainly influences
the quality of the results. Furthermore, since ConceptNet and Wikidata are continuing to
expand their knowledge, the Semantic Categorization Pipeline is highly dependend on
their continued accuracy and the quality inspection of their source contributors. This is
especially problematic for the identification of the PosTag since many subsequent steps are
based on it. One main problem with the PosTagging is the lowercase output of Concept-
Net for German tags, which was solved by capitalizing all results from ConceptNet for the
German language. However, with this solution the PosTagger recognizes capitalized adjec-
tives as nouns and considers German categories like Ausdauernde Pflanze (perennial plant)
or Gefährliche Pflanze (dangerous plant) as compound nouns. In the Postprocessing steps
those compound nouns are then considered as correct categories and are not shortened to
Pflanze (plant) with its respective subcategories. For the Onetime load another problem oc-
curs in the table tag itself. The first part of the tag table is persisted in upper case, which
leads to a loss of information about the case and leads to inferior results of the PosTagging
and therefore decreases the quality of the whole Semantic Categorization Pipeline.

Another main question is to decide which category is the best describing category of a
tag. With the current version a tag can and should have many categories and the meaning
of homonyms is not resolved. Filters were applied on the result categories in the Postpro-
cessing step and a hierarchy of categories was implemented to select only valid categories.
However this still results in a huge amount of semantic categories. A solution could be to
implement Machine Learning algorithms and determine probabilistically how good each
category is and how good it fits to its respective tag. Higher weights could be given to
art specific category terms. However since most of the players are not art experts them-
selves, it might also make sense to keep collecting more general categories. Additionally,
homonyms could be resolved by considering other tags that were inserted for the same
work of art as context and disambiguating based on those tags.

The final difficulty is the performance of the Semantic Categorization Pipeline. As it
calls APIs for ConceptNet and Wikidata and has to process a lot of data with Classifiers like
for Named Entity Recognition or PosTagging, the Semantic Categorization Pipeline takes
around thirty seconds for each tag that results in categories, which is too long for a real-time
game. Tags which are stopwords only take ten seconds. A deeper analysis revealed that
almost 60% of the time is consumed by the call to ConceptNet.io. In the current version,
all newly added tags are categorized and persisted in the background and do not affect
the performance of the game itself. However, the computation of the categories of over
300.000 preexisting tags took around three months on a single workstation. Additionally,
for future game ideas that would use real-time category information, a duration of thirty
seconds per tag would be too long. A solution to enhance performance would be to store
the ConceptNet and Wikidata knowledge data locally to request its information without
network overload.

32 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

3.2 Evaluation of the collected semantic categories

To evaluate the results of the Semantic Categorization Pipeline a Onetime Categorization
Load was created which processed all existing tags in table tag over the course of around
three months. As table tag includes all tags entered by any player at any time it is impor-
tant to distinguish between all tags and validated tags. A tag is validated if it has been
entered for the same resource by at least two players. At first, a general overview into the
existing tag and gathered category data is given. Then, different samples of 50 tags per lan-
guage are analyzed in detail. The first sample of 50 tags is used to evaluate the correctness
of missing categorization and its sources of error for not-categorized tags. As many tags in
the first sample are incorrect tags, the second sample is based only on validated tags. In
a third sample a closer look is given to the correctness of the resulting categories. All tags
and categories of the different samples are listed in the appendix.

3.2.1 Tag and category data

Up to July 2018, 317903 unique tags were collected in table tag. Out of these tags, 35% were
collected before 2011 when the tags were still persisted in upper case while the remaining
65% were stored in the original case the player used. The language which is most often used
is German, which covers 77% of tags, followed by English with 17% and French covering
6%. 28% of all tags are multiple-word tags. Out of all tags, 39136 (12%) are considered vali-
dated. Out of those validated tags, 71% were collected in upper case before 2011 and 29% in
original case. The significant difference in the numbers of all tags compared to the number
of validated collected tags arises from multiple factors. First, it is easier to find matching
tags between two players when all tags are converted to upper case as this removes the
factor case from the possible distinctions. Second, the best way to score points in ARTigo’s
games is to use surface tags, which describe objects visible in the artwork, because they do
not require prior knowledge and show a high probability to be entered by both player and
opponent. Therefore, it follows that the biggest share of validated tags is found in the first
phase of the game as it gets harder to find new matching tags, which do not exist in the
database yet. The distribution of tags into the different languages is similar to the distribu-
tion for all tags: 69% of all validated tags are German, 23% English and 8% French. 10%
of all validated tags are multiple-word tags. This distribution of tags is shown in Figure 3.5.

16% of all tags and 44% of all validated tags were classified with semantic categories.
24204 semantic categories and 3486 category hierarchies were collected. The cleaned ver-
sion of a tag was used to find categories - on average, one tag was assigned to one cleaned
tag. However, it is also possible that more than one tag is assigned to a cleaned tag, for ex-
ample for tags in singular and plural or tags with different case. A maximum of twelve tags
was assigned to the cleaned tag woman. Those twelve tags varied in the use of grammatical
number and punctuation like women´, #woman or womens. For validated tags, a maximum
of three tags was assigned to the same French cleaned tag musicien (musician), which only
varied in the use of grammatical number and grammatical case. Those respective tags are
MUSICIEN, MUSICIENS and MUSICIENNE. Out of the collected semantic categories, two
categories were assigned to one cleaned tag on average. The maximum number of cate-
gories per cleaned tag was found for the German cleaned tag HUND (dog) with a count
of 48 categories. The ratio of collected categories per language showed that only 4% of
all German tags received categories against 19% of all French and 18% of all English tags.
Accordingly, for the 12616 categories collected for validated tags, the ratio of collected cat-
egories per language showed 25% of all validated German tags categorized as well as 50%
of all English and 44% of all French tags. These results might suggest the categorization

3.2. EVALUATION OF THE COLLECTED SEMANTIC CATEGORIES 33

working more comprehensively for English and French tags. Reasons for this behavior
could be the high relevance of case for German tags which could lead to a misclassification
especially for tags collected in upper case until 2011. However, the exact sources of error
for samples for all three languages are evaluated in detail in the following subchapter. A
closer look into the category hierarchies revealed maximum 50 hierarchies for one category.
In this case, the French category langues (languages) was connected to different languages,
for example langues indo (indo-european languages), langues italo (italo-romanic languages)
or langues brittoniques (britonnic languages). On average, 2 hierarchies were stored per cat-
egory and 7% of all categories were found in a hierarchy. 10% of all hierarchies were found
for German tags, 62% for English and 28% for French tags. The coverage of categories is
shown in Figures 3.3 and 3.4.

Figure 3.3: Coverage of categories for tags

Figure 3.4: Percentage of tags with category per language

34 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

Figure 3.5: Distribution of tags

The collected data from the Semantic Categorization Pipeline also includes the lexical
category of a cleaned tag. This lexical category can either be noun, adjective, adverb or verb.
All other lexical categories are reassigned to the category stopword and excluded from the
evaluation as they are most likely not a word which could be categorized. As expected,
the most prominent lexical category out of all collected cleaned tags are nouns with 92%
for German, 90% for English and 84% for French cleaned tags. While for German and
French cleaned tags the second most used lexical category are adjectives with 6% and 9%,
the second most used lexical category for English are verbs with 8%. The exact distribution
of the lexical category per language is shown in Figure 3.6.

3.2. EVALUATION OF THE COLLECTED SEMANTIC CATEGORIES 35

Figure 3.6: Distribution of lexical category per language

The top five collected categories regarding the frequency of their usage revealed the
most-used types of words when tagging artwork in ARTigo’s games. These categories are
presented in Table 3.8. Organization is used as frequent category for all three languages,
followed by person, family name and location which can be found for two out of the three
languages. As Organization, location and person are categories awarded by Named Entity
Recognition, they could be expected to be found in the top five as those three categories are
predetermined while the API could return anything as category. For example for a fifteen-
year old boy the APIs could return young person, adolescent or teenager while Named Entity
Recognition has to use the category person. While the categories person, family name and
location seem reasonable as players might describe the persons and locations they see in the
artwork and perhaps know the name of the artist which is then categorized as family name.
Furthermore, the English category structure and the French category élément provide more
general universal categories for buildings or parts of buildings and specific elements the
user could point out as archs, ornaments or patterns. Even the French categories genre and
profession can be expected. The category genre includes tags for styles or tendencies which
can be seen in the artwork like art sacré (sacred art), féminin (feminine) or portrait (portrait)
and the category profession could be an generic term for what people in the artwork do.
However, discovering the categories organization and gene in the top five categories seems
odd. An examination of the tags which where assigned to the category organization reveals
peculiar tags like ADFJKL, STUBBS or Woman Red Pale. In those sample tags the category
organization was assigned by the Named Entity Recognition tools. A big part of the as-
signed tags were stored in upper case, which could be falsely recognized by the Named
Entity Recognition tools as abbreviations for organizations. Future work could analyze
furthermore if the Named Entity Recognition algorithm in case of the resulting tag organi-
zation should be substituted by alternative knowledge bases. Additionally, a closer look at
the respective cleaned tag names of the English category gene shows many arbitrary com-
binations of letters, like tu, ww or mn, which were falsely identified as genes by Wikidata’s
API. The correctness of the categories’ assignments is further evaluated with sample data
in Chapter 3.2.3.

German English French
Person (person) person organisation (organization)
Organisation (organization) organization profession (occupation)
Familienname (family name) gene lieu (location)
Ort (location) structure élément (element)
Stadt (city) family name genre (genre)

Table 3.8: Top five categories per language

36 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

3.2.2 Sources of error for missing categorization results

As only 16% of all and 44% of all validated tags were classified with semantic categories,
it is important to identify sources of error for the tags without categorization. To discover
these sources of error, samples of 50 tags were analyzed manually per language for all tags
and all validated tags. To eliminate bias, all relevant tag ids for the respective sample were
identified and assigned with a continous row number. The row number has to be added
as the ids of the selected tags are not continous and therefore a source range could not be
retrieved. The range of continous row numbers was then transfered to a Random Number
Generator9 which selected 50 random numbers for each sample set. The corresponding ids
of these numbers were then taken as sample for the evaluation. At first, the sample tags
were examined for being correct or incorrect words. If a tag is not a correct word, like the
misspelled tag tre instead of tree, it would be expected for the categorization not to deliver
category results. Therefore, missing categorization for incorrect tags were considered ap-
propriate. The remaining correct tags were further examined for their sources of error, if
they were not assigned with a category, by processing them through the separate steps of
the Semantic Categorization Pipeline and evaluating the results of each step.

For the first sample of 50 German tags, 36 were not considered correct because of the
misuse of multiple words (20x) like transparente bluse schwarz (transparent black blouse),
spelling errors (12x) like HMMEL, use of the wrong language (1x) like GARDEN or be-
cause they were not considered existing words at all (3x) like ahin. For the second sample
of 50 validated German tags only 10 were not considered correct tags because of the incor-
rect use of multiple words (1x), not being an existing word at all (5x), spelling errors (1x) or
use of the wrong language (3x).

Out of the remaining 14 German tags of the first sample which were considered correct,
seven received categories. The remaining seven correct tags were not assigned with cate-
gories and were, therefore, analyzed further. Six out of seven tags did not use the correct
case with five of them stored in complete upper case. In five out of those six tags with
incorrect case, category results would have been returned if the correct case was provided
to the Semantic Categorization Pipeline. Three of the seven correct tags were provided in
plural, however none of these tags were converted to singular by the preprocessing module
which could also be related to their incorrect case. For one of the three plural tags results
would have been found if the tag would have been converted to singular. As this tag,
FILMSZENEN (scenes in a movie), also belongs to the tags which would have provided
results if the case was corrected, in this example two sources of error, plural and case, have
been found. For the remaining two tags grasüberwachsen (overgrown with grass) and FIN-
GERZEIG (cue) the APIs did not provide category results.

For the second sample of 50 validated German tags, 40 tags were considered correct tags
out of which 20 received categories. Out of a total of 18 tags with incorrect case seven tags
would have been assigned to categories if they were provided in the correct case. Three
tags were stopped from evaluation because they were not recognized as nouns, adjectives,
adverbs or verbs and therefore declared to be a stopword. Otherwise, they would have
been categorized successfully. Two out of the three stopword tags were numbers, which
showed that, unfortunately, numbers were excluded from the evaluation at all. In future
work, numbers should also be allowed as evaluated lexical category and should not be
rejected as stopwords. For the remaining ten tags the APIs did not provide categories.
Figure 3.7 shows the correctness of the missing categorization and the sources of error for
German tags.

9https://www.random.org/integers/

3.2. EVALUATION OF THE COLLECTED SEMANTIC CATEGORIES 37

Figure 3.7: Correctness of missing categorization and sources of error for German tags

In the first sample of 50 tags selected of all English tags, 34 were not considered cor-
rect tags. As for German tags, the reasons are the misuse of multiple words (11x), spelling
errors (16x), use of wrong language (3x) and not being an existing word (4x). The remain-
ing 16 tags were considered correct and ten were assigned with categories. Four of the six
uncategorized tags were stored in incorrect case. Out of those four, two tags would have
been categorized if they were provided in correct case. Three of the remaining uncatego-
rized tags, FOGGY, augustanus and recumbent did not receive results from the APIs. One
tag, mint, should have been categorized, however, there might have been an error in the
categorization at this point in time as no categories were stored for this tag.

For the second sample of 50 validated English tags, ten were not considered correct be-
cause of misuse of multiple words (4x), spelling errors (3x), use of wrong language (2x) and
not being an existing word (1x). Out of the 40 correct tags 29 received category information
while eleven were not categorized. Four out of six tags with incorrect case results would
have been categorized if the correct case would have been provided. One tag was stored
in plural and could not be converted. However, this tag would also not have been catego-
rized if it would have been converted to singular. Three tags, all numbers, were stopped
from evaluation because of their incorrect lexical category stopword. For the remaining four
tags BRUSHSTROKES, damaged, plateware and draconites no categories were returned from
the APIs. The correctness of the missing categorization and the sources of error for English
tags are presented in Figure 3.8.

Finally, two samples were evaluated for French tags. In the sample of all tags only
twelve were considered incorrect. The reasons for their incorrectness are again misuse of
multiple words (3x), spelling errors (6x), use of wrong language (1x) and not being an ex-
isting word (2x). For the sample of validated French tags only four were not considered
correct tags because of misuse of multiple words (1x) and spelling errors (3x).

38 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

For 38 correct tags out of all French tags, 14 received category information. The remain-
ing 24 tags showed incorrect case only seven times. Only one of the tags with incorrect
case would have returned categories if it was converted to its correct case. Four tags were
provided in plural, only one of them was converted to singular by the pipeline. Two of
the tags would have been categorized if the conversion to singular was successful. One
number was stopped from evaluation because it was recognized as a stopword. 16 tags
did not receive results from the APIs. Furthermore, in two cases the APIs did provide re-
sults, however those categories were rejected in the postprocessing as they were falsely not
recognized as nouns. This logic is applied in the postprocessing to reject erroneous cate-
gories like verbs or adjectives as in general categories should be nouns. Two cases were not
categorized because of a bug in the system. Those tags, salle de conseil (assembly hall) and
l’échelle de Jacob (Jacob’s ladder) included the preposition de which was falsely identified
as language code for German as the Semantic Category Pipeline is called through a con-
sole script with the language code as one of the arguments and the tags as the remaining
arguments. Therefore, those tags were also not categorized correctly. Out of the 46 cor-
rect validated tags 36 were categorized successfully. For the remaining ten tags five would
have been categorized with correct case and one if it was provided in singular. A category
for one tag was falsely removed in the postprocessing because of not being recognized as
a noun. The remaining three tags did not receive category information from the APIs. Fig-
ure 3.9 displays an overview of the correctness of missing categorization and the sources
of error for French tags.

Figure 3.8: Correctness of missing categorization and sources of error for English tags

3.2. EVALUATION OF THE COLLECTED SEMANTIC CATEGORIES 39

Figure 3.9: Correctness of missing categorization and sources of error for French tags

Overall, the evaluation of sources of error of the separate languages shows that a big
percentage of tags does not represent valid words which could then be processed by the
Semantic Categorization Pipeline. To provide tags with a higher quality a spell check al-
gorithm with the possibility for the player to delete or correct a tag was added in the new
implementation. With this option the amount of invalid words and spelling errors could be
reduced. The high number of invalid multiple-word tags shows that the instructions of the
game are not clear to all players. A solution for this problem could be to automatically split
multiple-word tags if they are not recognized by the spell checking algorithm. Another
possible solution could be to show an instruction screen with example tags before each
new game session. This could additionally solve the issue of tags which are entered for the
wrong language. The language of the instruction screen could get the player to notice that
there is an option to switch the language.

The analysis of correct tags which were not categorized, however, reveals additional
sources of error. Most frequently, the APIs did not return results for the given tag or the
case of the tag was incorrect. The improvement to store the original case of the tag has
already been implemented in 2011. Additionally, the spell checking algorithm should also
improve the correctness of case for future tags. As the German language depends strongly
on the correct use of case, this could also be an explanation of the categorization’s weak
performance for German tags. Two chances for improvement of the current Semantic Cat-
egorization Pipeline were identified by the evaluation. First, numbers should also be eval-
uated by the APIs and should not be rejected as stopwords. Currently, the preprocessing
stops the evaluation for all tags which are not recognized as nouns, verbs, adjectives or
adverbs. Numbers, which can also be recognized by the Part-of-Speech Taggers, could eas-
ily be added to this list. Second, the language codes should be transfered to the Semantic
Categorization Pipeline at a fixed position in the list of arguments of the console call. With

40 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

this change, French tags including the prepositions de and en would not be misclassified
as German or English tags. The results also show differences in the performance of the
lemmatizers and Part-of-Speech Taggers between the languages. Especially the conversion
to singular and the falsely rejected nouns in the postprocessing for French tags show the
dependency of the results to external tools.

3.2.3 Evaluation of categorization data

To evaluate the correctness of the collected category data, a sample of 50 cleaned tags per
language was examined. Similar to the previous samples, the respective ids were retrieved
from the database, combined with row numbers and 50 cleaned tags were selected with the
help of the Random Number Generator. The 50 cleaned tags resulted in 124 German, 121
English and 122 French categories.

Out of the 124 German categories, seven were assigned the category Person (person)
for an incorrect multiple-word tag, for example Frau Porträt (woman portrait). While in
some cases - as in the previous example - one of the words could be related to a person, for
most of the incorrect tags the category did not make sense, for example for tag GEDREHTE
SÄULEN (rotated columns). For eight cleaned tags, categories were assigned which related
to the cleaned tag but could not be considered valid categories, for example the cleaned tag
Landung (landing) which received the categories Luftfahrt (aviation) and Militär (military).
A more appropriate category for a landing would be for example maneuver in flight, how-
ever, it is correct that landings take place in the field of aviation and military. Out of the re-
maining 109 categories, 85 were regarded appropriate, for example the categories Kaltblüter
(cold-blooded animal), Lebewesen (creature), Tier (animal) and Wirbeltier (vertebrate) which
were correctly assigned to the cleaned tag AMPHIBIE (amphibian). The remaining 24 cat-
egories were considered incorrect, for example the category Esoterik (esotericism) for the
cleaned tag Schwarz (black) or the category Gedicht (poem) for the cleaned tag Segler (sailor).
Figure 3.10 displays an overview of the results of the German categorization.

Figure 3.10: Results of semantic categorization for German tags

3.2. EVALUATION OF THE COLLECTED SEMANTIC CATEGORIES 41

Out of the 50 cleaned tags 43 were assigned the correct lexical category. The remaining
seven cleaned tags received the lexical category noun for verbs and adjectives, for example
Schwarz (black) or SCHÜTTEN (pour), or the lexical category adjective for nouns with low-
ercased first letter like klimazone (climate zone).

The sample of 121 English categories provided three categories for tags which did not
represent a valid word, for example the category approach which was rewarded to the tag
facees. Eight categories were related to the original tag but could not be considered cor-
rect categories like category hearing for tag ear. In two cases the category was identical to
the cleaned tag name which should be disallowed in future applications of the Semantic
Categorization Pipeline as the category of a tag can never be the tag itself. For example
the tag rocket should not receive the category rocket but rather missile or spacecraft. 86 cate-
gories were considered correct, for example the categories organ, structure, sense organ and
plant part for the cleaned tag ear. The remaining 22 categories were considered incorrect,
for example the categories attention, fruit, gene or inflorescence for the cleaned tag ear. These
results are displayed in Figure 3.11.

Figure 3.11: Results of semantic categorization for English tags

44 of the cleaned tags obtained the correct lexical category. The remaining six cleaned
tags received the lexical category noun for verbs and adjectives like engage or the categories
verb and adverb for nouns like gondoliere.

Finally, out of 122 French categories, four were not considered a valid word but re-
ceived category organisation (organization), for example the cleaned tag PROUDHON. In
three cases the category was identical to the cleaned tag name, for example for tag symbole
(symbol). 86 categories were regarded suitable, for example the categories discipline (disci-
pline) and sciences (science) for the cleaned tag géographie (geography). The remaining 29
categories were not considered appropriate, for example the category grade universitaire for
the cleaned tag géographie. These results are displayed in Figure 3.12.

42 CHAPTER 3. SEMANTIC CATEGORIZATION OF TAGS

Figure 3.12: Results of semantic categorization for French tags

Out of the 50 cleaned tags 45 received the correct lexical category. The remaining five
cleaned tags assigned lexical category adjective to numbers, for example 1663, or categories
verb, adjective, and adverb to nouns.

The evaluation has identified the most important sources of errors for the Semantic
Categorization Pipeline and has analyzed if the resulting categories can be considered ap-
propriate for the cleaned tags by examining random samples. The correctness of the cate-
gorization of 68% for German, 71% for English and 70% for French tags in this sample can
be considered as a great start for the Semantic Categorization Pipeline. Additionally, future
work could analyze further if the resulting categories are complete. For this evaluation a
study could be designed which asks participants to categorized a sample of cleaned tags
which were also categorized by the Semantic Categorization Pipeline. The collected study
data could then be used to identify which categories were not provided by the pipeline and
in which areas the pipeline could be enhanced with additional knowledge bases or com-
putational linguistic approaches. One improvement for future applications should be to
disallow the identical tag returned as category. A closer look into those categories revealed
Wikidata’s API as their source. While it seems strange that identical words are related to
themselves via the Subclass-of- or Instance-of-relations those errors can easily be rejected.

CHAPTER 4

ARTigo ESP Games

The second goal of this thesis is the reimplementation of the three main games ARTigo
Game, ARTigo Taboo and Combino, which all follow the model of the ESP Game. All three
games are Output-Agreement Games, however, they differ in the collected types of tags.
While ARTigo Game aims at producing more general surface tags, which can be used as
input for the other two games, ARTigo Taboo gathers deep semantic tags. Finally, Combino
creates relations between the tags accumulated by ARTigo Game and ARTigo Taboo. In this
chapter, the game logic of the three games is presented in detail.

4.1 ARTigo Game

ARTigo Game, the first game of the ARTigo Gaming Ecosystem, presents two players with
the same image of a randomly selected artwork. Both players enter tags they associate with
the image. If both players enter the same tag in a game round they are rewarded with 25
points. If a player enters a tag that was previously persisted in the database in another
game round he still receives five points. Tags that are neither entered by the opponent nor
exist in the database do not give points to the players. A game round of ARTigo Game with
the artwork “Gezicht op kasteel Purmerstein” by artist Abraham de (II) Haen is presented
in Figure 4.1. There is a main difference to the ESP Game: In the ESP Game the players
continue to the next image after their first matching tag and have two and a half minutes to
describe as many images as possible. Players of ARTigo Game, however, have one minute
per image in which their goal is to match as many tags as possible and each game session
is finished after they have dealt with five images. As most ARTigo players have at least a
basic interest in arts they enjoy to examine each artwork closely instead of switching to the
next image after their first matching tag. Additionally, at the end of each game session the
five images and their respective information are presented to the players, as displayed in
Figure 4.2. Since the player’s best strategy is to enter tags that their opponent might also
enter ARTigo Game mostly provides surface tags, which describe what the player can see
in the image, for example displayed objects or persons. [BS16, WBBL13].

43

44 CHAPTER 4. ARTIGO ESP GAMES

Figure 4.1: ARTigo Game (Screenshot from [Prob], significant parts only)

Figure 4.2: Information about images at the end of a game round (Screenshot from [Prob],
significant parts only)

4.2. ARTIGO TABOO 45

4.2 ARTigo Taboo

ARTigo Taboo has a similar game logic to ARTigo Game. As the goal of ARTigo Taboo is
to collect deep semantic tags, taboo tags were added to oblige players to enter new terms.
Taboo tags are the seven most frequently entered tags for each artwork and every language
that have been stored at least two times. In each game round, the image and its taboo tags
are displayed. A player can only enter tags that are not contained in the list of Taboo tags.
Apart from the usage of Taboo tags, its gameplay follows ARTigo Game [BS16, WBBL13].
A game round of ARTigo Taboo presenting the artwork “Schottische Küstenlandschaft” by
artist Hans Gude is displayed in Figure 4.3.

Figure 4.3: ARTigo Taboo (Screenshot from [Proa], significant parts only)

4.3 Combino

While ARTigo Game and ARTigo Taboo collect mostly single tags, like pale, red, skin, vase or
woman, Combino provides information about how the tags relate to each other. In a game
round of Combino the players are presented with an image of the artwork and fifteen tags it
was previously tagged with. The players have to combine two tags by clicking on them. A
possible combination for the above example could be red+vase or pale+skin. The combined
tags are rewarded similar to ARTigo Game. However, as the task of combining tags is more
complex than entering tags, a game round of Combino takes 90 seconds. A player is able to

46 CHAPTER 4. ARTIGO ESP GAMES

request an additional set of fifteen tags as long as this amount of tags is available. As input
tags for Combino can also be already combined tags, it is possible to connect more than
two tags, for example nude+woman+bathing [BS16, WBBL13]. A player’s screen of a game
round of Combino with the painting “The Tub” by artist Edgar Degas shown in Figure 4.4.

Figure 4.4: Combino (Screenshot from [Proc], significant parts only)

4.4 Bot opponent

The three above games can only be played with exactly two players. However, between
2008 and 2014 around 150 persons have played ARTigo each day [BSS15] which leads to
an average of six players per hour over all of ARTigo’s games. Therefore, as a new player
might have to wait a long time to be matched with an opponent with the same language
and game type ARTigo uses a bot opponent. In the beginning of each game round the bot
opponent fetches fifty randomly chosen tags for the given resource and language from the
database for ARTigo Game and ARTigo Taboo. For Combino the bot fetches only fifteen
tags as it takes a longer time to combine tags than to enter them and therefore a smaller
amount of tags is sufficient. At first, an initial delay is given to simulate the bot opponent
examining the image or reading taboo or to be combined tags. In the following, all tags
are played after some delay until the game round is over. All delays can vary in a given
margin to disguise a bot playing as opponent. Table 4.1 shows the amount of tags and the
margin of delay for the respective game types.

Game Type Amount of Tags Initial delay (in seconds) Tag delay (in seconds)
ARTigo Game 50 2 - 4 1,5 - 4,5
ARTigo Taboo 50 4 - 7 1,5 - 4,5
Combino 15 1,5 - 4,5 2,5 - 6,5

Table 4.1: Bot settings per game type

4.5. SHORTCOMINGS OF THE CURRENT IMPLEMENTATION 47

4.5 Shortcomings of the current implementation

As stated in the previous section ARTigo’s games are played on average by around six per-
sons per hour. Therefore, in the current version of ARTigo it is not possible to be matched
against a real opponent. Additionally, players might notice the regularity of the bot op-
ponent’s moves inspite of the delay margin. The current bot logic could be improved by
replaying game rounds by real players - as implemented by the ESP Game - once the system
has collected sufficient game round data. Additionally, if by chance two players connect at
the same time, they should have the chance to play against each other and not be matched
to their bot opponents.

Another improvement could be to allow subsequent scoring for registered users. In
the current version players can only score points for tags which are already present in the
database and can therefore be used by the bot opponent. However, when future players
enter tags the previous player has entered as well they score 25 points while the previous
player, which has entered the tag first, does not receive subsequent points. As the score
data is consulted for the monthly highscore it makes a difference for some registered users
and could even be an incentive to create an account. Therefore, a new feature could be
implemented to update the scores of the user which has entered the matched tag in the
previous game round.

Furthermore, there are some issues with the storage of the tag input in the database. In
the beginning of ARTigo all tags were persisted in the database in upper case. As this lead
to a loss of information, for example to distinguish between the german words for the body
part arm (Arm) and poor (arm), since 2011 the tags are persisted in the originally entered
case. Additionally, in the current version the tag input is not checked or validated. As the
players have to input the tags under time pressure there are many tags with typing errors
or extra characters, for example smakl or small# instead of small. While the players can
enter the tag in the corrected version additionally as well, it would be great if the system
could automatically spell check and correct the entered word. Alternatively, the system
could allow users to correct tags after the input to remove their spelling errors. Finally,
the system also offers the possibility to enter multiple-word tags. This feature is important
for composed words like Mona Lisa or New York, however, some players use this to enter
many non-related tags at once, for which they will not receive any points. Therefore, an
improvement could be to notify the user if he has entered a multiple word tag and give
him the opportunity to split those words into single tags.

48 CHAPTER 4. ARTIGO ESP GAMES

CHAPTER 5

Implementation

The second goal of this thesis is the reimplementation of ARTigo’s three main ESP games
with state-of-the-art JavaScript software to provide a new stable, generic and expandable
gaming platform. Additionally, as concluded in the previous chapter, there are some short-
comings to the current version of ARTigo’s games, which should be improved. Therefore,
at first, the additional features which have been added to the new implementation are pre-
sented. Afterwards, its software stack is introduced and the existing database model is
outlined. A closer look is given to the design of server and client.

5.1 New features

The newly created Semantic Categorization Pipeline provides the potential to enhance the
previous version of ARTigo with linguistic features. Parts of the pipeline, the preprocessing
and autocorrection modules, have been extracted and used to enhance the precision of the
gathered tag data. Additionally, an improved version of ARTigo’s bot opponent has been
created. Those new features are presented in the following subchapters.

5.1.1 Bot types

In the previous version of ARTigo it was not possible to play against a real opponent. While
it makes sense to provide a bot opponent if only one player is waiting to start a game, it
would be a pity if two players could be matched to each other at some time but the system
would not allow it. Therefore, in the new implementation the matching algorithm waits
for six seconds for another player to join the game. If there is no opponent, the player will
be matched to a bot.

Additionally, the existing bot opponent randomly sends some tags which were previ-
ously entered for the given artwork and language by other players. The new implementa-
tion allows the player to choose between two types of bots. The bot which will be chosen by
default is called RandomTagsBot and provides the same logic as the existing bot. The second
type of bot is called ReplayRoundsBot which provides a more realistic game experience by
reenacting previously recorded game rounds for the given artwork and language by real
players as employed in the ESP Game by Luis von Ahn [vAB05].

49

50 CHAPTER 5. IMPLEMENTATION

5.1.2 Cleaned tag

Furthermore, the tag input was not checked or validated in the previous version of ARTigo
apart from removing leading or trailing spaces and disallowing empty words. However, as
the game design compels the player to enter tags under time pressure, typing errors can be
expected. For example, as presented in Figure 5.1, the cleaned tag for the German adjective
schwarz (black) can be mapped to fifteen different spellings in table tag which differ mainly
by the use of punctuation characters. Nonetheless, as punctuation characters and typing
errors are not removed, an entered tag with different punctuation characters could not be
mapped to an existing tag and would therefore not receive any points. Hence, the new
implementation should first transform each entered tag into its cleaned version and use
this cleaned tag to compare with the database’s or the opponent’s tags. Additionally, by
using the preprocessing module of the Semantic Categorization Pipeline to transform the
tag into its cleaned version it should now not be possible anymore to enter the same words
in singular and plural. Previously, if a player would describe an artwork displaying a forest
he could use the tags tree and trees and possibly even receive points for both words. In this
example, however, there is a semantic difference between an artwork showing a single tree
and an artwork displaying many trees. Therefore, this distinction between singular and
plural could invite the player to think about which number of the word is more accurate to
use and therefore enhance the accuracy of the tag input. Moreover, when playing ARTigo
Taboo the player was able to trick the game by entering singular taboo tags in plural or vice
versa and receive points.

Figure 5.1: Spellings of schwarz (black) in the database

Unfortunately, tests on the new feature showed that the call to the preprocessing mod-
ule of the Semantic Categorization Pipeline takes three to four seconds each time a player
enters a new tag and therefore the player has to wait too long for the server’s response
containing the updated tag data to allow for a great gaming experience. Especially when
playing ARTigo Taboo the conversion of all taboo tags to their cleaned version at the be-
ginning of each game round leads to a visible delay in starting the game. An analysis
showed that the conversion of the tag into a cleaned tag itself does not take more than one
second, however, each time the preprocessing module is called by the server for each tag
the lemmatizers and part-of-speech taggers have to be initialized, which takes two to three

5.1. NEW FEATURES 51

seconds. Therefore, entered tags are currently transformed into two cleaned versions. The
cleaned tag resulting from the preprocessing module is fetched in the background allowing
the game to proceed. A second cleaned tag is used to compare the player’s tag against the
database’s and the opponent’s tags during the game round. To ensure an enjoyable gaming
experience only punctuation characters as well as leading and trailing spaces are removed
directly in JavaScript. When a game session is finished, the cleaned tag from the preprocess-
ing module is used to subsequently remove invalid tags from the tag list and recalculate the
player’s score to show the updated tags without their duplicates in the overview of played
resources. If the player has entered a tag in singular and plural only the first version of this
tag is chosen while the other one is discarded. A resources overview with removed tags is
shown in Figure 5.2 with the respective artwork ”Toernooi op de Grote Markt te Brussel”
by an unknown artist.

Figure 5.2: Removal of invalid tags in the resources overview (Screenshot from [Prob],
significant parts only)

5.1.3 Spell check and tag corrections

In addition to the usage of cleaned tags to validate the tag input a spell checking algo-
rithm is added to the new implementation. When the player enters a tag, the algorithm
checks asynchronously if this tag is known. If the tag is unknown it will be underlined in
orange. If the algorithm finds corrections for the misspelled word the tag will be colored
completely in orange and suggested tag corrections will be provided to the player if he
moves the mouse over the respective word. The player, additionally, has the possibility to
remove entered tags which did not receive points yet for example if he identifies a spelling
error. He can then choose to correct the tag into one of the suggested words, delete it or
ignore the warning. This new feature is presented in Figure 5.3.

52 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Spell check feature (Screenshot from [Prob], significant parts only)

To find suggestions for incorrect tags, the autocorrection module from the Semantic Cat-
egorization Pipeline is used. If a tag is “unknown” the autocorrection module suggests a
list of candidates with a Levenshtein distance of at most two which corresponds to one or
two letters in the word being substituted, added or removed. Additionally, the first sug-
gestion provided to the player is the cleaned version of the entered tag as this cleaned tag
will most likely provide the best correction if it is not identical to the original tag and is also
“known”. The resulting list from the autocorrection module is then processed in the order
the candidates were returned by python until three “known” tag corrections are found.
Therefore, the most promising candidates which offer a smaller Levenshtein distance are
evaluated first. If a candidate is a “known” word it will be used as a suggestion. If up to
three tag corrections are found, the tag will be displayed in orange and the user can choose
a correction. If no tag corrections are found, the tag will remain underlined in orange.

To check if a new tag or a tag correction is allowed four possibilities to define “known”
were evaluated. The first option considers a tag “known” if the autocorrection algorithm
recognizes it as a valid word. However, as the autocorrection algorithm does recognize
many words as valid which do not exist in the respective languages this option was dis-
carded. The second possibility considers a tag as “known” if it is persisted as cleaned tag by
the Semantic Categorization Pipeline in the cleaned tag table. Still, with this option some
valid words would be discarded as they do not exist as a cleaned tag for this language.
Third, a tag could be classified as “known” if it was persisted in the tag table for the cur-
rent language and was used by at least two unique players. As the tag table is large enough
after ten years of gathering data this option does only correct words if they are wrong or
infrequent and therefore do not exist in the tag table already. However, this option also
allows all words as tag corrections which are in the tag table including many misspelled
words. One example for a misspelled word acting as a tag correction is shown in Figure
5.3. While the valid correction grass for tag grasss# is also provided, the first suggestion is
grasss as it has a smaller Levenshtein distance to the original misspelled tag and is found
in the tag table. However, as only corrections provided by the autocorrection algorithm
will be checked against the tag table and as it seems more important to only correct words

5.2. SOFTWARE STACK 53

which are actually wrong than to provide correct tag suggestions this option is currently in
use. Additionally, by increasing the number of unique players which should have entered
the tag in the table for the tag to be suggested as a correction, the wrong tag suggestions
could be removed as well. A fourth possibility would be to further restrict the previous
option to consider only tags which were entered for this artwork as valid. However, as
this option would recognize correct words as wrong because they have not been used for
this resource before this option was also discarded. Future research on this topic could also
examine the possibility of combining multiple definitions of “known”. One combination
could be to use the existing definition of “known” only for entered tags and to evaluate tag
corrections based on their existence in the cleaned tag table.

5.2 Software stack

The main goal of the reimplementation is to provide a solution which is stable, generic
and allows the extension of the gaming platform with additional games in future work.
Therefore, the reimplementation of the games uses JavaScript as it is the most popular and
extensively used programming language. Node and Express were chosen to provide scal-
ability, performance and cross-platform support. Server and client were implemented as
separate projects to allow them to run independently on different hosts while communicat-
ing with each other through sockets. Reliable real-time message exchange between client
and server is provided by Socket.io.

To simplify the debugging process, monitor the execution of server and client and iden-
tify potential problems, Winston was added as logger supported by logger middleware
Morgan. Consistent code quality is ensured by the use of linter eslint. Additionally, unit
tests were implemented with the help of Mocha, Chai and Sinon. Mocha is a testing frame-
work for Node which offers the possibilitiy to write tests, which can be run after each code
change. To specify the expected output of the tests in a readable way, an assertion library
is provided by Chai. As the test subject might include calls to the database which should
be avoided or require a specific setup, Sinon supplies simulations to imitate their behavior,
called stubs. The stubbed function acts as a replacement for the original function, which
will not be called. Additionally, the number of calls, their parameters or any return value
of the function can be analyzed or specified.

To persist collected data, ARTigo uses the preexisting PostgreSQL database gwap of the
previous ARTigo platform. Details on this database will be presented in Chapter 5.3. Ac-
cess from the server to the database is provided by Objection and Knex. Objection is an
object-relational mapping tool which allows to access the database directly from Node
without writing SQL statements. Furthermore, it secures the database against attacks like
SQL Injection when using parameter bindings. In addition to Objection, its underlying
query builder Knex allows to specify more complex SQL queries if needed.

The client is build with JavaScript library React. React employs basic reusable compo-
nents which are then composed to build a complex front-end web application. Addition-
ally, React offers create-react-app, a tool which allows to start developing a cross-platform,
cross-browser and cross-device React App without taking care of configuration or depen-
dencies of other tools including Webpack and Babel. To allow the translation of texts in the
three ARTigo games, internationalization library react-intl was added. With this library,
translations between German, English and French are taken from json files.

An overview of the implemented software stack is given in Table 5.1.

54 CHAPTER 5. IMPLEMENTATION

Software Usage

Platform Node1 Both

Framework Express2 Both

Real-time communication Socket.io3 Both
Database PostgreSQL4 Server
Query Builder Knex5 Server
Object-relational mapping Objection6 Server
Logger Winston7 Server
Logger Middleware Morgan8 Server
Linter eslint9 Server

Unit Testing Framework Mocha10 Server
Unit Testing Assertion Library Chai11 Server
Unit Testing Stubs Sinon12 Server
JavaScript Framework React13 Client
React Tool create-react-app14 Client
Internationalization react-intl15 Client
1 https://nodejs.org
2 https://expressjs.com
3 https://socket.io
4 https://www.postgresql.org
5 https://knexjs.org/
6 https://vincit.github.io/objection.js
7 https://www.npmjs.com/package/winston
8 https://www.npmjs.com/package/morgan
9 https://eslint.org
10 https://mochajs.org
11 https://www.chaijs.com
12 https://sinonjs.org
13 https://reactjs.org
14 https://github.com/facebook/create-react-app
15 https://github.com/yahoo/react-intl

Table 5.1: Relevant tables in gwap database

5.3. DATABASE MODEL 55

5.3 Database model

As only three games of the ARTigo gaming ecosystem are reimplemented in the scope of
this thesis while the other existing games should still work with the previous implemen-
tation, the database model has to be kept intact to allow for parallel execution of both
versions. An overview of all relevant tables for the reimplementation in the gwap database
including the new tables is given in Table 5.2.

Table Name Type of game Content
gamesession All All game sessions
gametype All Available game types
gameround All All game rounds
person All Player and artist information
tagging ARTigo Game Mapping of tag to artwork

ARTigo Taboo
tag ARTigo Game All tags

ARTigo Taboo
combination Combino Mapping of combined tag to artwork
combinedtag Combino All combined tags
artresource All General information about artwork
artresourcecache All Temporary storage for upcoming artwork
artresourcetitle All Titles of artwork per language
source All Source of artwork
cleaned tag ARTigo Game Cleaned versions of all tags

ARTigo Taboo
tag cleaned tag ARTigo Game Mapping of tags to cleaned tags

ARTigo Taboo
semantic category ARTigo Game All semantic categories
cleaned tag semantic ARTigo Game Mapping of cleaned tag to semantic category
category ARTigo Taboo
semantic category ARTigo Game Hierarchies for semantic categories
hierarchy ARTigo Taboo

Table 5.2: Relevant tables in gwap database

At first, a new game session is created in table gamesession. It includes a reference to
the game type of the session, for example ARTigo Game. Table gametype defines the differ-
ent types of games with their number of players, number of rounds and round duration.
Each player in the game session is assigned to separate game rounds in table gameround
with a reference to the game session. Therefore, for a complete game session between two
players there will be ten entries in table gameround - five rounds for each of the two players.
The players themselves are stored in table person which also includes information on the
artwork’s creators.

The three reimplemented games ARTigo Game, ARTigo Taboo and Combino offer two
different types of collected data. In ARTigo Game and ARTigo Taboo, the player enters
words, which will be persisted as tags in table tag. Table tagging stores the mapping be-
tween artwork, tag, game round and person with the tagging’s timestamp and score while
table tag stores only the unique tags and their language. For Combino, the players do not
enter new words but combine entries from table tag with each other to create combined
tags. In this setting, table combination accordingly stores the mapping between artwork,

56 CHAPTER 5. IMPLEMENTATION

combined tag, game round and person together with the combination’s timestamp and
score. Differing to the setting of tagging and tag, combination also includes the combined
tag’s language. Table combinedtag offers information on the combined tag’s value, which
is a concatenation of both tags’ names, and references to the tags which where combined.

Information on the artwork which are presented in each game round are stored in tables
artresource, artresourcetitle, artresourcecache and source. Table artresource maps
the artwork to its source and artist and offers additional information on the artwork in-
cluding the name of its respective image on the server. The titles of the artwork in the
different languages can be found in table artresourcetitle with a reference to their re-
spective art resource. An image’s path on the server can be found in table source. To
retrieve a specific art resource for a game round promptly without the player noticing a
delay, table artresourcecache provides a temporary storage for the next art resources to be
played which is refreshed once a certain minimum threshold of art resources for the current
game type is reached.

Additionally, tables cleaned tag, tag cleaned tag, cleaned tag semantic category,
semantic category and semantic category hierarchy have been created to persist the in-
formation gathered by the additional features and the Semantic Categorization Pipeline.
Detailed information on these tables is given in Chapter 3.1.7.

In the previous implementation, only one sequence is used to increment the key ids for
all tables. Therefore, the tables would not have continous ids themselves but one continu-
ous id over all tables. For a new game session id 1 could be given to the game session, ids
2 and 3 to both players, ids 4 and 5 to the first game rounds for both players et cetera. As
this behavior is rather unusual in the design of a database in the previous version several
sequences were added in the reimplementation to allow each table to increment its own id.

5.4 Implementation of server and client

In the new implementation server and client were created in separate projects to allow
them to be executed independently on different hosts. Additionally, the implementation
follows the Model-View-Controller (MVC) paradigm. With this paradigm a strict separa-
tion is ensured between the underlying data model, the view a player can see and interact
with in the browser and the controllers which manage the game logic. This separation,
additionally, ensures easy compatibility with multiple views. The access to the database is
handled by model classes representing the different database tables which are controlled
by the object-relational mapping tool Objection. All other classes of the server constitute
the controllers, which implement the game logic and communicate with model and view.
The view is implemented in the client project and presents all data received from the server
via socket communication. Details on the design of server and client will be explained in
the following subchapters.

5.4.1 Server

The entry point for all communication between server and client is class Communication-
Handler. CommunicationHandler listens for events from the clients and transfers them to
the respective classes. Messages are sent for example to notify the server about new play-
ers, to start or end a game round with the correct game round data or to handle entered
tags. An overview of all communication between client and server is given in Table 5.3.

5.4. IMPLEMENTATION OF SERVER AND CLIENT 57

Message Sender Recipient Reaction of recipient
Request random resource Client Server Retrieve and send random resource
New player Client Server Find game session for player
New tag Client Server Process new tag
Correction Client Server Correct tag
Delete tag Client Server Remove tag
Request more tags Client Server Send additional tags for Combino
Round finished Client Server Start subsequent game round
Disconnect Client Server Inform opponent about end of game
Quit game Client Server Inform opponent about end of game
Onetime Client Server Start onetime categorization load
Highscore Client Server Send highscore data
Random resource Server Client Display random resource
Connected Server Client Display connecting screen
Start gameround Server Client Start game round
Round data Server Client Update game round
Update tags Server Client Update tag list
Error message Server Client Display error message
More tags Server Client Display additional tags for Combino
Resources overview Server Client Display resources overview
User disconnected Server Client Display resources overview
Highscore data Server Client Display highscore

Table 5.3: Communication between client and server

If CommunicationHandler receives a message from the client, he coordinates his response
with GamesManager. For example, for message “new player” CommunicationHandler informs
GamesManager about the new player and waits for GamesManager to tell him about an exist-
ing opponent. If there is an opponent, CommunicationHandler informs the client to start the
game round. If there is no opponent, CommunicationHandler waits for six seconds to allow
GamesManager to find a real opponent. If there is still no opponent after six seconds have
passed, CommunicationHandler asks GamesManager to create a bot according to the bot type
the client chose and informs the client about the start of his game round.

Class GamesManager manages all game sessions currently in play in the ARTigo gam-
ing ecosystem. If CommunicationHandler informs GamesManager about a new player, Games-
Manager tries to find a game slot for the player in a game session with the same game type
and language. If GamesManager can find a game slot, he adds the player to this game session.
Alternatively, he creates a new game session for the player. Additionally, GamesManager
transfers all messages from CommunicationHandler to the correct game session once the
game has started and retrieves data for the highscore from the database.

Game sessions created by GamesManager are managed by class GameSession. Once a
game session is created and persisted in the database, it is connected to its game type re-
trieved by class GameType. GameSession retrieves artwork from ArtResourceManager and
creates new game rounds for this artwork if the game session consists of enough players. If
a game round is finished, GameSession saves the player’s score and tags with the displayed
artwork to send them as resources overview at the end of the game session.

58 CHAPTER 5. IMPLEMENTATION

Each game round of a game session is controlled by class GameRound. The most impor-
tant task of GameRound is the processing of newly entered tags which CommunicationHandler
receives from the client and transfers to the correct game round with the help of GamesManager
and GameSession. Tags can only be added if they have been received in time before the
game round is finished and if they are not empty. If a new tag passes this first test it is con-
verted to its first cleaned version by replacing all punctuation characters. Then, GameRound
checks if the respective player is allowed to enter the cleaned tag by verifying that the
player has not entered the tag previously with the same or different case. If the player is
allowed to enter the tag, it is saved and its score is calculated. Therefore, GameRound checks
if the opponent has entered the cleaned tag before with the same or a different case or if
the tag already exists in the database for this artwork. Additionally, the second cleaned
tag, as calculated by python, is retrieved in the background to allow for the elimination of
tags which were entered in singular and plural at a later time in the resources overview.
If the player’s opponent has also entered the tag, both players’ scores are updated with
twenty-five points. If the opponent did not enter the tag before but it is already present in
the database for this artwork, the player still receives five points. If the tag was rejected
for any of the above reasons the respective error message is distributed to the client via
CommunicationHandler. Other functionality class GameRound offers, is for example to send
game round information including the duration, number of rounds, current round and art-
work at the beginning of each round and to handle the deletion or correction of tags.

To ensure straightforward expandability of the implementation for new games and
avoid duplication of code, inheritance is used. Therefore, additional games can extend
or overwrite the functionality of GameRound to their needs. To add ARTigo Taboo to the
new implementation, it suffices to create a new class TabooGameRound, which expands the
existing methods of class GameRound. To augment the round data which is sent to the client
at the beginning of each game round, TabooGameRound adds a list of taboo tags which the
player is not allowed to enter during the game round. Additionally, to validate the player’s
tag input or possible tag corrections, TabooGameRound checks if a word is contained in the
list of taboo tags before calling the respective methods of the super class GameRound. Like-
wise, CombinoGameRound adds a list of displayed tags to the round data which the client
can choose tags from to combine into a new tag. If the client sends a new tag combination,
CombinoGameRound makes sure both tags are not identical and, therefore, allowed to be com-
bined before calling the respective methods of GameRound.

The players in the game session can either be real humans playing the game in realtime
or one human player and one bot. Class Player represents a human player and stores the
list of tags a player has entered in a game round with methods to update scores and mod-
ify tags. If there is no opponent, a bot is created to allow the human player to start the
game. The player can choose between two bot types, RandomTagsBot and ReplayRoundsBot.
Both bots inherit functionality from class Player and additionally use methods of class
CommunicationHandler to send tags and start or finish game rounds like human players.
RandomTagsBot represents a bot that randomly selects tags which have been used for the
given artwork previously. To simulate a real opponent delays have been added at the be-
ginning of the game round and between each tag. Detailed information on this bot logic,
which has also been used in the previous implementation, has been given in Chapter 4.4.
A different logic is offered by class ReplayRoundsBot which extends RandomTagsBot. This
bot type retrieves previously played game rounds for the given artwork with more than
five taggings which have not been performed by the player himself from the database and
reenacts those rounds’ moves. As the timestamp of each tagging is stored, it is possible to
play each move in the exact second it has been played in the original game round. With
this behavior, the bot acts more human and might not be identified as a bot player as easily.

5.4. IMPLEMENTATION OF SERVER AND CLIENT 59

The displayed artwork is provided to GameSession by ArtResourceManager. This class
offers two ways to retrieve the subsequent artwork. If the game session includes only hu-
man players or one RandomTagsBot, the next artwork is chosen from the prepared cache of
art resources for the given type of game. The chosen art resource is then removed from the
cache. Once the count of art resources for the current game type in the cache falls at the
threshold of ten images, the cache is refreshed in the background. However, if the game
session includes a ReplayRoundsBot, the chosen artwork has to be tagged sufficiently as
ReplayRoundsBot can only reenact game rounds with at least five taggings to ensure some
action happening in the game round and, therefore, entertainment for player. Therefore,
in game sessions with a ReplayRoundsBot, ArtResourceManager retrieves the artwork di-
rectly from the database. As this delays the start of a game round, all artwork of the whole
game session are retrieved at the beginning of the first game round. Therefore, the delay
is only visible at the beginning of the first game round, but the following game rounds
can be started immediately. Another cache might be implemented for game rounds with
ReplayRoundsBot to increase performance in future work.

The entered tags are represented by class Tag, which stores a tag’s language, score, pos-
sible tag corrections and the two versions of its cleaned name. If a tag is new, it is persisted
in the database in table tag and tagging. If the tag existed in the database previously only
its tagging is stored and connected to the existing tag. When a player chooses to correct a
tag the tag itself is only updated in the database if it was created by the current player in the
current game round. If the corrected tag does already exist in the database, the tagging is
updated to use the id of the corrected tag and the previously entered tag is blacklisted. By
blacklisting a tag it will not be considered in any other query and therefore acts as if it was
deleted. If the tag has not been created by the current player, only the tagging is updated
to the corrected tag. If the corrected tag is a new tag itself, it will also be persisted in table
tag.

For Combino, a tag does not represent an entered input value but a combination of two
previously existing tags. This combination is represented by class CombinedTag, which ex-
tends class Tag but almost only varies in the use of the different database tables combinedtag
and combination instead of tag and tagging. A third representation of a tag, TagWith-
Categorization was created to connect the tag with its categorization. This version if cur-
rently used as the default tag version. In this class, a tag is analyzed by the Semantic
Categorization Pipeline if it is a new tag and therefore will be persisted in the database.
If categories are available for a tag, this information is persisted in the semantic catego-
rization tables as described in Chapter 3. Additionally, the Onetime Categorization Load
is offered by class TagWithCategorization which is used to categorize all existing tags in
table tag which had been added to the database before the new categorization feature was
added. The Onetime Categorization Load had to be run before the feature was added as
it will start at the last categorized id in table tag cleaned tag in order to make the Load
interruptable. In batches of a hundred tags it then retrieves categories from python and
stores the results in the semantic database tables.

Figure 5.4 provides an overview of all controller classes used to build the server.

60 CHAPTER 5. IMPLEMENTATION

Figure 5.4: Overview of server’s controller classes

5.4.2 Client

The React client consists of many small components as React favors the use of composition
over inheritance. The new ARTigo App is wrapped in an AppWrapper class which allows to
switch between the languages German, English and French. The class App itself is the root
of a tree of components with branches into the navigation panels as well as the content of
the page. Therefore, App offers methods to transfer information between those branches.

The Home screen of the App is presented in Figure 5.5 displaying the image “Staande
jonge man” by artist Jacob de Gheyn with added colored boxes marking the different com-
ponents. This screen also appears if the user clicks on the ARTigo logo. At the top of the
screen two navigation panels are located, LanguageHeader (blue) at the left and BotHeader
(green) at the right, which both allow for the user to switch between the different lan-
guages and bots. Below LanguageHeader, NavigationHeader (yellow) provides links to the
Impressum and DataPrivacy components. Component SidePanel (grey) displays the AR-
Tigo logo, the NavigationPanel (brown) and the GamesNavigationPanel (pink) in this view.
Navigation-Panel offers links to the components About with information about the ARTigo
Project and its games, Highscore displaying the highscore for all games for the periods cur-
rent day, current month and previous month as well as OneTime which starts the Onetime
Categorization Load. Additionally, it displays icons to redirect the user to ARTigo’s Face-
book and Twitter pages. The main part of the screen is directed by component Content
(red) which in this case displays a random resource with the help of component Resource
(orange) to welcome the user to ARTigo.

Once the user has started a game some components are replaced as shown in Figure
5.6 displaying a round of ARTigo Taboo with the artwork “El Escorial” by artist Juan
B. de Toledo. In the SidePanel component GamesNavigationPanel has been replaced by
RoundDataPanel (purple) displaying all information of the current game round. At the
top of RoundDataPanel, component TabooTags displays the list of taboo tags for this game
round. Below, the Timer component shows a progress bar with the remaining seconds.
At the bottom of RoundDataPanel, the component TagList presents all tags the user entered
with their score. The main part of the screen is again wrapped in component Content which
includes the component Connection. This component creates the socket connection to the
server and shows a connecting screen while the server finds a fitting opponent or bot. Once

5.4. IMPLEMENTATION OF SERVER AND CLIENT 61

Figure 5.5: Home Screen

the game is ready to start component Connection displays component Game which then re-
sumes the communication with the server. Wrapped in component Game are the displayed
Resource as well as the TagForm (light green) which allows the user to enter tags. For Com-
bino, the SidePanel displays the component CombinoRoundPanel which also shows the tags
to be combined and a button to load more tags.

When the game is finished, an overview of all resources in the game session is pre-
sented as displayed in Figure 5.7. Wrapped in Content, the component ResourcesOverview
(turquoise) displays the Resource, a button group to switch between the different resources
as well as its ResourceData (light blue). In the SidePanel to the left, the ResourcesOverview-
Panel (light purple) allows the user to start a new session of the game he just finished.

To ensure the view’s design to be identical to the previous version of ARTigo, similar
stylesheets were used. The switch between the languages is dependent on tool react-intl,
which allows the use of variables in the different components which will then be substi-
tuted by the text in the current language controlled by AppWrapper. All translations are
stored in JSON files which allows for straightforward translations to additional languages
in future work.

62 CHAPTER 5. IMPLEMENTATION

Figure 5.6: Game Screen

Figure 5.7: Resources Overview Screen

CHAPTER 6

Conclusion and Outlook

The ARTigo Gaming Ecosystem is a Human Computation system. Human intelligence
is utilized to solve computational problems that exceed the capabilities of computer al-
gorithms. There are different incentives for humans to contribute their time to scientific
purposes, for example getting paid, altruism, interest in science or learning. Additional in-
centive is provided by Games with a Purpose, an idea by Luis von Ahn to motivate people
to contribute to science in a playful manner. The ESP Game by Luis von Ahn serves as a
model for the three main games ARTigo Game, ARTigo Taboo and Combino in the ARTigo
Gaming Ecosystem. In the ESP Game, two players are presented with the same image and,
in order to receive points, have to enter tags that their opponent might also use.

The first goal of this thesis was to implement a Semantic Categorization Pipeline to
gather information about each tag’s categories. The Semantic Categorization Pipeline con-
sists of six layers which each tag has to pass through. At first, a tag is preprocessed into a
normalized form. In the second layer, the lexical category of each tag is conducted and tags
are only further processed if they are noun, verb, adjective or adverb. Next, Named Entity
Recognition algorithms are used to find locations, persons or organizations in the tag. Se-
mantic Relations are used in the fourth layer to determine the hypernyms of tags. There
are three APIs, Wikidata, ConceptNet.io and WordNet, which define several relations be-
tween items of their knowledge bases used to determine a tag’s category. Eventually, all
categories have to be postprocessed to ensure the uniqueness and validity of the returned
categories. If no category was found, there might have been a typing error in the tag. In this
case autocorrection is used with a distance of one and the Semantic Categorization Pipeline
is recursively started with the corrected tag exactly once.

Some limitations to the pipeline were presented that could not be addressed in the scope
of this thesis, for example differences in the quality of the results depending on the part-of-
speech and language of each tag. A main obstacle was to determine the best-describing cat-
egory out of the many associated categories of a tag. This problem was solved by allowing
multiple categories for each tag and persisting original categories as subcategories before
shortening. Finally, the moderate performance of the Semantic Categorization Pipeline was
discussed, which could potentially be enhanced by storing API data locally.

63

64 CHAPTER 6. CONCLUSION AND OUTLOOK

The Semantic Categorization Pipeline successfully categorized 16% of all tags and 44%
of all validated tags. As a high percentage of tags did not receive categories in the process,
the sources of error for missing classification were examined with sample data for each
language. The analysis revealed incorrect grammatical case and missing results from the
APIs as the most important sources of error. Additionally, many tags were not considered
correct because they used invalid multiple-word tags, contained spelling errors, did not
provide the correct language or were not even considered a real word. Furthermore, espe-
cially for French tags the postprocessing and conversion to singular led to a few missing
classifications and demonstrated the dependency of the pipeline to the external tools. Some
sources of error could be avoided, for example the rejection of numbers as stopwords or
the misclassification of French tags including the language codes “de” or “en” as German
or English tags. In a second evaluation, the correctness of the collected category data was
examined. Correctness values of around 70% were determined for all three languages. In
some cases invalid tags were categorized or categories were returned which were related
to the cleaned tag but could, however, not be considered valid categories. In some cases
the cleaned tag name itself was returned as category by Wikidata’s API. Future evaluation
could detain a study to identify the completeness of the resulting categories.

As the Semantic Categorization Pipeline produced a lot of resulting categories, this data
could be put to use not only in the ARTigo search engine but also in future applications.
A new game could be created similar to ARTigo Game, which could offer bonus points if
the player uses words out of one randomly displayed category. The displayed categories
could either be retrieved from categories that were assigned to this image by the Seman-
tic Categorization Pipeline previously or some general categories which fit for almost all
images could be manually defined. With this game, more specific tags could be gathered
and the player could be guided to some main categories, for example painting techniques or
emotions. There could also be bonus rounds which could be employed to disambiguate a
tag’s meaning and to find the most fitting category for an artwork’s tags. In those bonus
rounds, ten tags could be displayed individually for one image with their categories. The
players would have to choose the most fitting category for each tag in a short time and
would receive bonus points if their chosen category fits their opponent’s.

Furthermore, the Semantic Categorization Pipeline could be enhanced. On the one
hand, categories could be further specified by collecting additional subcategories. It could,
for example, be interesting if a tag categorized as a person represents an artist and if this
artist is a painter or a sculptor and so forth. For this case there are several additional APIs,
for example the Union List of Artist Names (ULAN) which could be used to identify tags
which represent artists, the Thesaurus of Geographic Names which could be used to spec-
ify tags which connote locations and more generally Wikipedia which could be queried to
further specify the category of almost any tag. On the other hand, the Semantic Catego-
rization Pipeline has provided thousands of categories and it might therefore make sense
to reduce this amount to a smaller set of verified categories. For this purpose, some main
categories, for example object, person, location or emotion, could be defined manually and
tags could be assigned with probabilities to those main categories with the help of Machine
Learning techniques.

As the ARTigo platform was facing some difficulties with their underlying technology
and the performance of their servers, the second goal of this thesis was to reimplement
the three main games with JavaScript software. Additionally, new features were added
to utilize the power of the Semantic Categorization Pipeline and further improve the AR-
Tigo gaming ecosystem. As the categorization could benefit a great deal if the input was
validated, for example by checking for typing errors, two versions of cleaned tags as well

65

as a feature to identify, correct and remove misspelled words were added. Furthermore,
another type of bot was implemented which reenacts previously recorded game rounds to
simulate a more realistic opponent.

However, the implementation of the cleaned tag feature still shows room for improve-
ment as the current implementation only discards duplicate tags in both singular and plural
when the game session is already over as the prolonged period of time it takes to retrieve
the cleaned tag during the game prevents a great gaming experience. To accelerate the re-
trieval of the cleaned tag from the preprocessing module it might be an option to keep the
python scripts running in the background to remove the delay which seems to be caused
by the loading of the background data at the start of the python module.

Another feature for input validation could be to further evaluate tags consisting of mul-
tiple words. For example, the tag Mona Lisa consists of two words and makes sense as a
single tag as it describes one entity. However, tags like säule vor romanischem bogen (col-
umn in front of romanesque arch), bildnis eines knaben (portrait of a boy) or der gleiche typ
wie gerade (the same guy as before) should not be allowed as valid tags. This kind of in-
put validation could be implemented with lookups in lexical resources and Named Entity
Recognition algorithms, as implemented in the Semantic Categorization Pipeline. Addi-
tionally, it should be ensured that synonyms of already entered tags are not accepted with
the use of lexical resources.

The new feature and the additional enhancements discussed in this chapter show only
the beginning of the extension of ARTigo with linguistic features. By combining ARTigo’s
games with the Semantic Categorization Pipeline and additional features like spell check-
ing, tag corrections and the usage of a cleaned tag this thesis has provided a solid founda-
tion and start for future applications and studies.

66 CHAPTER 6. CONCLUSION AND OUTLOOK

67

68 APPENDIX A. EVALUATION

APPENDIX A

Evaluation

A.1 Sources of error (samples 1 & 2)

A.1.1 German tags (all)

HMMEL sambol
GARDEN drei durchgänge
FINGERZEIG gerhard eduard
NO. 112 adürer
SCHNEEDECKE minevra
PHOOGRAPHIE altar figuren gold
JUD Amphitehater
SPANISCHER MALER landschaft berge wasser
TRÄUMENDE fassade rundbogen
MANSCHATTEN schwarz vasen
SGRAFFITTO ahin
ORCHIDEEN Personen farbe
BILLETT van Beusel
LICCHT blau lasziv
FILMSZENEN Verkündigung des Herrn
PRPHET seite aus zeitung
VORSRPUNG Rohrschach fleck
ZOTTE
WAFFE KLEIDUNG KOPFBEDECKUNG
langestrecktes gebäude
6 personen
transparente bluse schwarz
decke rokoko ornament
interieur tisch menschen
theaterloge zeichnung
täfelschen
skizze landschaft kohle
mann hund vogel
grasüberwachsen
laube turm häuser
grün grau blau
ütabstrakt
tromp l´euil

A.1. SOURCES OF ERROR (SAMPLES 1 & 2) 69

A.1.2 German tags (validated)

FEDERN FABEL FELDHASE CISNERIUS
BILD HAUSARBEIT POLIEREN ERSTKOMMUNION
SEITLICH MOULIN ROUGE MURILLO 1476
BERGHANG AKREUZ GASSI GEHEN schwarze flügel
BAUERNHOF NETT BUCHHANDLUNG henry ii
PICKNICK DACHGAUBE BISCHOFSMÜTZE ecclesiam
KLINGER REKONSTRUKTION MUSCHELSUCHER bolognius
SURREAL GEBORGEN ANGELEINT 1916
EISEN EINSCHIFFIG ZAHNLOS mosaici
POLIZIST DELAUNAY HERMANN s10
ZIRKUS SÄUGEN BOURGEOIS theeves
KINDERSARG VERLETZTER U.S.MAIL
SCHIEFER KUTSCH LEONHARD FUCHS

A.1.3 English tags (all)

MAIN BUILDING caos Cloven feet mortuus est
FOGGY witness walkwaty sailship
EYELLOW Illegal Infanterie deggeurotype
SORROW pink blouse shireld dath
eye brows comunism naked crowd albania
lissan horrifying of coast woman with braids
esppelie shore line augustanus aposte
windom mockery vegetable atrichoke recumbent
portrait girl color open field gehangen Old face diagram
sandbag marcus blosom no image shown
mint stands out vw bierd
hprses plunderen mortus
buiodojg soestdyk holds rod

A.1.4 English tags (validated)

HAND BALLA brown eyes 1909
LANE APPLES damaged patriotism
NARROW DAYLIGHT architrave peg-leg
FOAM MODES red boots 1300
MEADOW CAPS green trees draconites
BLUSH lucifer tails 1627
NICHES naked woman plateware saintonge
MONK nimbus boeuf dostoevsky
BRUSHSTROKES cobweb cheers hvlst
BLAUER REITER urbanus red grapes consume
STEAL balck debating eaten
MARIA houres art works
ROTUNDA wellen binding

70 APPENDIX A. EVALUATION

A.1.5 French tags (all)

FLEURS MOUCHONS hollandaise l’échelle de Jacob
ANTIQUITÉ PIRATE petites porter les marchandises
ROUGE* salle de conseil disciple monuement
HORACE VERNET caravagesque requête Kopfbedeckung
BRODE caravelles pointue bousculade
INACHEVÉ mousses contact crucifier
TISCH pastem chevauché homes
TABOU âgé pont fermé peninsule
TENTURES aphrodite pages d’un livre platre#
REGULARITÉ âtre comfortable ruineux
POINTS ea document* épolette
AUGE roicher 481
MONT canope ffeu*

A.1.6 French tags (validated)

ESCALIER FONTAINE ARGENT antoine
EDGAR POE DIGUE TRITON boiseries
CENTAURE CALLIGRAPHIE BOITE oreilles
FILLE CANONS SILENCE douve
CHAT CHRÉTIEN PAUVRES dorures
MONET LANTERNE VIE caleche
MATIN COLIMASSON LEÇON oculus
BERGER BONNET BRUXELLES sièges
LIGNES FAMILLE HOMME DE DOS article
COMMEMORATION FANTOMES PÂLE abricot
MUNCHEN OPÉRA AUTEUR lac gelé
CRISTAL GAUGUIN TROIS QUARTS
PYRAMIDE MARIE ANTOINETTE PLAISIR

A.2. CORRECTNESS OF CATEGORIES (SAMPLE 3) 71

A.2 Correctness of categories (sample 3)

A.2.1 German cleaned tags

AMPHIBIE MARTIN LUTER
ANTON VON WERNER MEDICI WAPPEN
ARMBRUCH MENSCHENHANDEL
BEHINDERT MONT SAINT MICHEL
BEKRÄNZEN Obia
Crustacea OBRIST
DEHNUNG R WASSERSPEIER KÄLTE MELANCHOL
DIEGO RIVERA RAUPUTZ
EDUARD MUNCH ROTE FAHNEN
ELENDSVIERTEL SAKO
FÄCHER FOTO JAPAN ROSEN FRAU SATELLIT
FLIC SCHMELZE
FRAU PORTRÄT SCHÜTTEN
FÜNFZIGER Schwarz
GEDREHTE SÄULEN SCHWIMMBAD
GEORGE Segler
HAIN SIAMESISCHER ZWILLING
HANG STANDER
HOLZBRÜCKE TAGELÖHNER
JEAN DRC TAGESZEITUNG
klimazone TORF
kreuzworträtsel TROPFEN
KRÜCKSTOCK UMGEKNICKTE BÄUME
LANDUNG weihnachtsabend
LEUCHTREKLAME ZEITMESSUNG

A.2.2 English cleaned tags

abstracted doctored Louis Carint rocket
Aphricana doped Marshland SAIL
apsis DRESSER MAT scotland
archipelago ear mel shied
Bianco engage mutton shore
bite EXPRESSIONNISM Needlwork sleepyhead
BOUQUET facees new moon slum
Burgh gondoliere PAWS STONES
cantering guest Photogragh symposium
Carave insane PLANS Trafficking
croquet KOLLER privilege varnish
derelict lawman ref
digging likeness Regni

72 APPENDIX A. EVALUATION

A.2.3 French cleaned tags

1663 dais Love rouille
appartement dance Malbork ruche
Apple enrobé MARINS signature
architecte géant mât symbole
BERGERE géographie mer Thomas Becket
bienheureux glauque NOIR Tuer
CADET harem nuage typologie
calèche HIROSHIGE ouvrage veine
cathédrale INÉTRIEU palmette voyeurisme
cauchemar ingrédient présentation XIII
cible introduction PROUDHON XVIe siècle
colonel jambon RAPE
colonisateur lapidation RENOIR

Bibliography

[Bö08] Börkur Sigurbjörnsson and Roelof van Zwol. Flickr Tag Recommendation
based on Collective Knowledge. WWW 2008 / Refereed Track: Rich Media, April
2008.

[Bag18] Jimit Bagadiya. 171 Amazing Social Media Statistics You Should Know
in 2018. https://www.socialpilot.co/blog/social-media-statistics, Jan-
uary 2018. Retrieved 2018-09-01.

[BBBP97] David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe.
A Quest for Pi. Mathematical Intelligencer, 19(1):50–57, 1 1997.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From
Natural to Artifical Systems. Oxford University Press, New York, 1999.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly Media Inc., June 2009.

[Bri] Britannica. Cow. https://cdn.britannica.com/55/174255-004-9A4971E9.
jpg. Retrieved 2018-08-30.

[BS16] François Bry and Clemens Schefels. An Analysis of the ARigo Gaming
Ecosystem With a Purpose. 2016.

[BSS15] François Bry, Corina Schemainda, and Clemens Schefels. A Gaming Ecosys-
tem Crowdsourcing Deep Semantic Annotations. Citizen Science Games, Jan-
uary 2015.

[CCC+12] Irene Celino, Dario Cerizza, Simone Contessa, Marta Corubolo, Daniele
Dell’Aglio, Emanuele Della Valle, and Stefano Fumeo. Urbanopoly - a So-
cial and Location-based Game with a Purpose to Crowdsource your Urban
Data. 2012 International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, pages 910–913, September 2012.

[CCH+06] Susan Chun, Rich Cherry, Doug Hiwiller, Jennifer Trant, and Bruce Wyman.
Steve.museum: An Ongoing Experiment in Social Tagging, Folksonomy, and
Museums. Museums and the Web 2006: Proceedings, March 2006.

[COC13] R. Jordan Crouser, Alvitta Ottley, and Remco Chang. Balancing Human
and Machine Contributions in Human Computation Systems. In Pietro
Michelucci, editor, Handbook of Human Computation, chapter 5, pages 615–623.
Springer Science & Business Media, 1 edition, December 2013.

73

74 BIBLIOGRAPHY

[Cur15] Vickie Curtis. Motivation to Participate in an Online Citizen Science Game:
A Study of Foldit. Science Communication, October 2015.

[CZF+18] Qimin Cheng, Qian Zhang, Peng Fu, Conghuan Tu, and Sen Li. A survey and
analysis on automatic image annotation. Pattern Recognition, 2 2018.

[CZW13] Minmin Chen, Alice Zheng, and Kilian Q. Weinberger. Fast Image Tagging.
Proceedings of the 30th International Conference on Machine Learning, January
2013.

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhin-
gran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tom-
lin, and Jason Y. Zien. SemTag and Seeker: Bootstrapping the semantic web
via automated semantic annotation. WWW ’03 Proceedings of the 12th interna-
tional conference on World Wide Web, pages 178–186, 5 2003.

[Deu] OpenStreetMap Deutschland. FAQs: Fragen und Antworten. https://www.
openstreetmap.de/faq.html. Retrieved 2018-08-31.

[DVJ18] Ayushi Dutta, Yashaswi Verma, and C. V. Jawahar. Automatic image anno-
tation: the quirks and what works. Multimedia Tools and Applications, pages
1–21, June 2018.

[Eng18] Eric Enge. Mobile vs Desktop Usage in 2018: Mobile takes the lead. https:
//www.stonetemple.com/mobile-vs-desktop-usage-study/, April 2018. Re-
trieved 2019-01-31.

[Fli] Flickr. Lass dich inspirieren. https://www.flickr.com/. Retrieved 2018-08-
29.

[fol] foldit. The Science Behind Foldit. https://fold.it/portal/info/about. Re-
trieved 2018-08-31.

[GMVS09] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia
Schmid. TagProp: Discriminative Metric Learning in Nearest Neighbor Mod-
els for Image Auto-Annotation. 2009 IEEE 12th International Conference on
Computer Vision, pages 309–316, September 2009.

[HAM+18] Kotaro Hara, Abi Adams, Kristy Milland, Saiph Savage, Chris Callison-
Burch, and Jeffrey P. Bigham. A Data-Driven Analysis of Workers’ Earnings
on Amazon Mechanical Turk. CHI 2018, April 2018.

[Hav15] John Havel. reCAPTCHA: The Genius Who’s Tricking
the World Into Doing His Work. https://thehustle.co/
the-genius-whos-tricking-the-world-into-doing-his-work-recaptcha,
December 2015. Retrieved 2018-08-24.

[HH10] Yvonne Hellin-Hobbs. The constructivist museum and the web. EVA’10 Pro-
ceedings of the 2010 international conference on Electronic Visualisation and the
Arts, pages 72–78, July 2010.

[HW08] Mordechai (Muki) Haklay and Patrick Weber. OpenStreetMap: User-
Generated Street Maps. IEEE Pervasive Computing, 7(4):12–18, October 2008.

[JKS+16] Charlene Jennett, Laure Kloetzer, Daniel Schneider, Ioanna Iacovides,
Anna L. Cox, Margaret Gold, Brian Fuchs, Alexandra Eveleigh, Kathleen
Mathieu, Zoya Ajani, and Yasmin Talsi. Motivations, learning and creativ-
ity in online citizen science. Journal of Science Communication, 15(3), 2016.

BIBLIOGRAPHY 75

[KCS08] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing User Studies
With Mechanical Turk. CHI 2008, pages 453–456, April 2008.

[KNA+07] Lyndon Kennedy, Mor Naaman, Shane Ahern, Rahul Nair, and Tye Ratten-
bury. How Flickr Helps us Make Sense of the World: Context and Content in
Community-Contributed Media Collections. MM ’07 Proceedings of the 15th
ACM international conference on Multimedia, pages 631–640, September 2007.

[Koh11] Hubertus Kohle. Kunstgeschichtes goes Social Media. Aviso: Zeitschrift für
Wissenschaft und Kunst in Bayern, (3):38–43, 2011.

[LA17] Matthew Lease and Omar Alonso. Crowdsourcing and Human Computa-
tion, Introduction. Encyclopedia of Social Network Analysis and Mining, pages
1–12, 2017.

[LP13] Aidan Lyon and Eric Pacuit. The Wisdom of Crowds: Methods of Human
Judgement Aggregation. In Pietro Michelucci, editor, Handbook of Human
Computation, chapter 5, pages 599–614. Springer Science & Business Media,
1 edition, December 2013.

[LvA09] Edith Law and Luis von Ahn. Input-Agreement: A New Mechanism for
Collecting Data Using Human Computation Games. CHI ’09 Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 1197–
1206, April 2009.

[LvA11] Edith Law and Luis von Ahn. Human Computation. Morgan & Claypool Pub-
lishers, 1 edition, July 2011.

[Mal81] Thomas W. Malone. Heuristics for Designing Enjoyable User Interfaces:
Lessons from Computer Games. CHI ’82 Proceedings of the 1982 Conference
on Human Factors in Computing Systems, pages 63–68, 1981.

[Mar11] John Markoff. Computer Wins on ’Jeopardy!’: Trivial, It’s Not. New York
Times, February 2011.

[McG11] Jane McGonigal. Reality Is Broken, 2011.

[Mic13a] Pietro Michelucci. Introduction. In Pietro Michelucci, editor, Handbook of
Human Computation, pages xxxvii–xxxix. Springer Science & Business Media,
1 edition, December 2013.

[Mic13b] Pietro Michelucci. Synthesis and Taxonomy of Human Computation. In
Pietro Michelucci, editor, Handbook of Human Computation, chapter 1, pages
83–86. Springer Science & Business Media, 1 edition, December 2013.

[MNBD06] Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis. HT06, Tag-
ging Paper, Taxonomy, Flickr, Academic Article, ToRead. HYPERTEXT ’06
Proceedings of the seventeenth conference on Hypertext and hypermedia, pages 31–
40, August 2006.

[O’M18] James O’Malley. Captcha if you can: how you’ve been training AI for years
without realising it. World of tech, January 2018.

[OSvZ09] Simon Overell, Börkur Sigurbjörnsson, and Roelof van Zwol. Classifying
Tags Using Open Content Resources. WSDM ’09 Proceedings of the Second
ACM International Conference on Web Search and Data Mining, pages 64–73,
2009.

76 BIBLIOGRAPHY

[PCI10] Gabriele Paolacci, Jesse Chandler, and Panagiotis G. Ipeirotis. Running exper-
iments on Amazon Mechanical Turk. Judgment and Decision Making, 5(5):411–
419, August 2010.

[Proa] ARTigo Project. ARTigo Taboo Tagging Game. https://www.artigo.org/
tabooTaggingGame.html. Retrieved 2019-01-10.

[Prob] ARTigo Project. ARTigo Tagging Game. https://www.artigo.org/
taggingGame.html. Retrieved 2019-01-10.

[Proc] ARTigo Project. Combino. https://www.artigo.org/combino.html. Re-
trieved 2019-01-10.

[RAPM04] Paul Rayson, Dawn Archer, Scott Piao, and Tony McEnery. The UCREL Se-
mantic Analysis System. Beyond Named Entity Recognition Semantic Labeling
for NLP Tasks in LREC’04, 2004.

[RBG+13] Jordan Raddick, Georgia Bracey, Pamela L. Gay, Chris J. Lintott, Carolin N.
Cardamone, Phil Murray, Kevin Schawinski, Alexander S. Szalay, and Jan
Vandenberg. Galaxy Zoo: Motivations of Citizen Scientists. Astronomy Edu-
cation Review, 12(1), December 2013.

[Sav12] Neil Savage. Gaining Wisdom from Crowds. Communications of the ACM,
55(3), March 2012.

[SE16] Babak Saleh and Ahmed Elgammal. Large-scale Classification of Fine-Art
Paintings: Learning The Right Metric on The Right Feature. International Jour-
nal for Digital Art History, (2), October 2016.

[Sem18] Alana Semuels. The Internet Is Enabling a New Kind of Poorly
Paid Hell. https://www.theatlantic.com/business/archive/2018/01/
amazon-mechanical-turk/551192/, January 2018. Retrieved 2018-08-29.

[Shn04] Ben Shneiderman. Designing for Fun: How Can We Design User Interfaces
to Be More Fun? Interactions - Funology, 11(5):48–50, September + October
2004.

[Tho10] Clive Thompson. What Is I.B.M.’s Watson? New York Times, June 2010.

[TW06] Jennifer Trant and Bruce Wyman. Investigating social tagging and folkson-
omy in art museums with steve.museum. January 2006.

[UCI+06] Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria
Vargas-Vera, Enrico Motta, and Fabio Ciravegna. Semantic annotation for
knowledge management: Requirements and a survey of the state of the art.
Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
pages 14–28, 2006.

[vA] Luis von Ahn. Luis von Ahn. https://www.cs.cmu.edu/∼biglou/. Retrieved
2018-08-23.

[vA06] Luis von Ahn. Games with a Purpose. Computer, 39(6):92–94, June 2006.

[vAB05] Luis von Ahn and Manuel Blum. Human Computation. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburg, PA 15213, Decem-
ber 2005.

BIBLIOGRAPHY 77

[vABL04] Luis von Ahn, Manuel Blum, and John Langford. Telling Humans and Com-
puters apart automatically. Communications of the ACM, 47(2):57–60, 2004.

[vAD04] Luis von Ahn and Laura Dabbish. Labeling Images with a Computer Game.
CHI ’04 Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 319–326, April 2004.

[vAD08] Luis von Ahn and Laura Dabbish. Designing Games with a Purpose. Com-
munications of the ACM, 51(8):58–67, August 2008.

[vAKB06] Luis von Ahn, Mihir Kedia, and Manuel Blum. Verbosity: A Game for Col-
lecting Common-Sense Facts. CHI ’06 Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 1:75–78, April 2006.

[vALB06] Luis von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: A Game for Lo-
cating Objects in Images. CHI ’06 Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 55–64, April 2006.

[vAMM+08] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. reCAPTCHA: Human-Based Character Recognition via Web
Security Measures. SCIENCE, 321:1465–1468, September 2008.

[WBBL13] Christoph Wieser, François Bry, Alexandre Bérard, and Richard Lagrange.
ARTigo: Building an Artwork Search Engine With Games and Higher-Order
Latent Semantic Analysis. Association for the Advancement of Artificial Intelli-
gence, November 2013.

[Wel08] Terri Wells. Harnessing Video Game Power for Good. https:
//images.devshed.com/dh/stories/Harnessing Video Game Power for Good/
VG4G05.jpg, June 2008. Retrieved 2018-08-30.

