
A B R O W S E R - B A S E D D E V E L O P M E N T E N V I R O N M E N T F O R
J AVA S C R I P T L E A R N I N G A N D T E A C H I N G

maximilian meyer

Master Thesis
Teaching and Research Unit Programming and Modelling Languages

Faculty of Mathematics, Informatics and Statistics
Ludwig Maximilians Universität München

Aufgabensteller: Prof. Dr. Franc̨ois Bry
Betreuer: Prof. Dr. Franc̨ois Bry,

Sebastian Mader
Abgabe am 22. Januar 2019

Maximilian Meyer: A Browser-Based Development Environment for JavaScript
Learning and Teaching, © January 2019

D E C L A R AT I O N / E R K L Ä R U N G

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstandig
verfasst habe und keine anderen als die angegebenen Hilfsmittel ver-
wendet habe.

München, Januar 2019

Maximilian Meyer

Ohana means family.
Family means nobody gets left behind, or forgotten.

— Lilo & Stitch, film produced by Walt Disney Feature Animation,
2002

Dedicated to Amma and Antonia

2019

A B S T R A C T

Web development is becoming increasingly important in a world, that
is more and more interconnected. JavaScript and its frameworks em-
power developers to complete nearly every task and create applica-
tions that rival JavaScript’s native counterparts, making the language
ubiquitous. In tertiary STEM education, it is becoming progressively
more difficult to manage growing numbers of students and to provide
enough practical training both in and outside of lectures. A solution
to this problem is to implement an automated process in order to
facilitate revision processes for teachers and grant instant On-screen
feedback to students. This project firstly identifies the pedagogical
and technological needs of potential users for a learning tool and puts
them into perspective within existing scientific advances. Secondly, it
analyzes existing online tooling. After evaluation of the current envi-
ronment, an in-browser editor is proposed with the aim of teaching
web development. Using HTML, CSS and JavaScript, users can learn
online, work with code promptly without the need to setup an exten-
sive programming environment and receive automated test results.
In conjunction with this thesis, a concept for such an editor has been
designed and implemented. Afterwards, a usability study of the ed-
itor was conducted, and its results evaluated. The results show, that
tools such as the one proposed in this project help to mitigate some
of the problems that arise when starting with coding.

vii

Z U S A M M E N FA S S U N G

Web Entwicklung wird immer wichtiger in einer Welt, die zunehmend
vernetzt ist. JavaScript und dessen Programmiergerüste befähigen En-
twickler dazu, nahezu jede erdenkliche Aufgabe zu erledigen und Ap-
plikationen zu erzeugen, die ihren nativen Gegenstücken gleichkom-
men. Das macht Javascript allgegenwärtig. In tertiärer STEM Aus-
bildung wird es zunehmend schwierig, wachsende Studentenzahlen
zu verwalten und für diese Studenten adäquate praktische Übungen
in- und außerhalb von Vorlesungen bereitzustellen. Eine Lösung für
dieses Problem ist es, einen Automatisierungsprozess einzuführen,
um Korrekturprozesse zu vereinfachen und Nutzern sofortige Rück-
meldung zu gewährleisten. Als erstes identifiziert dieses Projekt päd-
agogische und technologische Bedürfnisse potenzieller Nutzer eines
Lernwerkzeuges und setzt diese in Zusammenhang mit aktuellen
wissenschaftlichen Erkenntnissen. Dann werden bereits vorhandene
Onlinewerkzeuge analysiert. Nach Auswertung der aktuellen Umge-
bung wird ein Konzept für einen im Browser laufenden Code Edi-
tor vorgestellt. Dieses Werkzeug hat das Ziel, für die Lehre beson-
ders geeignet zu sein. Durch die Anwendung von HTML, CSS und
JavaScript können Nutzer online lernen und schnell anfangen zu co-
den, ohne eine Entwicklungsumgebung aufsetzen zu müssen. Au-
tomatiserte Testresultate geben schnelles Feedback zum geschriebe-
nen Code und bieten Hilfestellung für Anfänger. Verknüpft mit dieser
wissenschaftlichen Arbeit wurde ein Konzept für solch einen Edi-
tor gestaltet und implementiert. Danach wurde eine Nutzbarkeits-
Studie anhand dieses Editors durchgeführt und deren Resultate aus-
gewertet. Befunde zeigen, dass Werkzeuge wie das in dieser Ausar-
beitung Vorgeschlagene dabei helfen, Probleme zu lösen, die auftreten
wenn man neu mit der Programmierung anfängt.

viii

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [47]

A C K N O W L E D G E M E N T S

The biggest eternal thanks go to you, Amma Frimpong, my loving
fiancé, for putting up with my stressed out self, providing food and
shelter when I most needed it.

To my life-coach, my mother Carmen: because I owe it all to you. And
to Ulrich & Thorsten, my loving fathers - always there to support me.
Many Thanks!

Also Sebastian Mader, my energizing supervisor and Francois Bry,
my professor. Thank you for the continuous stream of wisdom and
encouragement. I could not have done it without you.

I am grateful to my siblings, who have provided me with moral and
emotional support in my life. I am also grateful to my other family
members and friends who have supported me along the way.

With a special mention to Johann Arendt, Johann Rottenfußer, Michael
Thanei, Marcel Sebald, Max Karadeniz, Leon Busse, Patrick Nagel,
Robert Frimpong, Carl Luis Pöhl and Max Hünemörder. Thank you
guys!

It was fantastic to have had the opportunity to do the majority of my
research in the Bayerischer Rundfunk facilities. What a cracking place
to work!

Thanks for all your encouragement!

ix

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Challenges When Starting out With Coding 1

1.3 Goals of this Project . 2

1.4 What has been done in the thesis? 2

1.5 Overview . 3

2 fundamentals 5

2.1 Educational Science . 5

2.2 Why is the prototype using JavaScript? 7

2.3 Why is JavaScript Complicated? 8

2.4 Web development - the JavaScript stack and its features 9

2.5 Existing Editors . 12

2.5.1 JsFiddle . 12

2.5.2 JsBin . 13

2.5.3 CSSDeck . 14

2.5.4 CodePen . 15

2.5.5 Dabblet . 16

2.5.6 Plunker . 17

2.6 Learning Management Systems 19

2.7 Related Work . 21

3 concept 25

3.1 Goals . 25

3.2 Technological Concept 25

3.2.1 Input . 26

3.2.2 Output . 26

3.2.3 Additional Features 26

3.3 User Interface Concept 29

3.3.1 Full Screen View 31

3.3.2 Compact View 33

3.3.3 Buttons . 34

3.4 Testing Concept . 34

3.5 Advantages in Regards to Local IDE’s 36

3.6 Use Cases . 36

3.7 Possible Complications and Limitations 37

4 implementation 39

4.1 Technological Decisions 39

4.2 Single Page Applications and Their Frameworks 39

4.3 React.js . 40

4.3.1 React.js Props . 41

4.3.2 React.js State . 41

4.4 Inline Frame . 41

4.5 The Function eval() . 42

xi

xii contents

4.6 Data Flow . 42

4.7 Features . 45

4.7.1 Developer Console 45

4.7.2 Error/Success Logging 46

4.7.3 Full Screen Mode 46

4.7.4 Compact Mode 47

4.7.5 Library Loading 48

4.7.6 Automated Assertion Tests 49

5 study and results 51

5.1 Methodology . 51

5.1.1 Testing Methods 51

5.1.2 Typical Usability Problems 52

5.2 Study Design . 53

5.2.1 Exercise 1 . 53

5.2.2 Exercise 2 . 53

5.2.3 Exercise 3 . 54

5.2.4 Questionnaire . 54

5.3 Participants . 54

5.4 Measurement Criteria 55

5.5 Execution . 55

5.6 Results . 56

5.6.1 Usage Statistics 56

5.6.2 Questionnaire Results 1 – Likert Scale 56

5.6.3 Questionnaire Results 2 – Text 57

5.6.4 General Feedback 58

5.7 Discussion . 59

6 conclusion and perspectives 61

6.1 Perspectives . 61

6.2 Summary . 61

a user study – exercises 65

b user study – questionnaire results 71

c user study – comments in the original language

german 75

bibliography 81

L I S T O F F I G U R E S

Figure 1 This figure shows a learning retention pyra-
mid, according to Bloom’s taxonomy [15]. Bloom’s
taxonomy is a set of three hierarchical models
used to classify educational learning objectives
into levels of specificity and complexity [15].
The pyramid shows, that active learning tasks,
such as working with a coach, are more effec-
tive compared to traditional lectures when it
comes to memory retention. 7

Figure 2 A screenshot from jsfiddle.net 13

Figure 3 A screenshot from jsbin.com 14

Figure 4 A screenshot from cssdeck.com 15

Figure 5 Codepen.io : HTML, CSS, JavaScript and the
Output windows are visible in this online de-
velopment environment. 16

Figure 6 Dabblet: One of the older online JavaScript ed-
itors . 17

Figure 7 Plunker. A JavaScript online code editor. 17

Figure 8 Peter Morville’s Usability Honeycomb [56]. Each
facet of user experience design can be defined
by this diagram. The honeycomb helps to iden-
tify all the areas that are important to a strong
user experience [57]. 29

Figure 9 A high-fidelity wireframe for the QuestJs editor. 32

Figure 10 A view of the QuestJs editor with some win-
dows inactive. 32

Figure 11 A view of the QuestJs editor with reduced views. 33

Figure 12 A view of the QuestJs editor in compact mode. 34

Figure 13 A view of the editor in compact mode show-
ing the testing tab. The green symbols indicate
successful tests, while the red symbol indicate
tests, that have not yet run successfully. 36

Figure 14 Data flow within the editor. The flow starts
from the user who writes code and flows down-
ward to the point where the output is displayed
within the inline frame. The console can be
used to interact with the inline frame or to out-
put debugging information. 43

xiii

xiv List of Figures

Figure 15 The sequence of execution within the inline
frame. HTML, CSS, JavaScript code and library
scripts are assembled in this order. The inline
frame then gets rendered into the output win-
dow. 44

Figure 16 The developer console feature. It allows users
to write input queries in some ways similar
to the Chrome Development console. Since it
works on the scope of the inline frame, it can
be used to debug JavaScript code. Console.log
() statements can for example be written within
the JS editor and output can be generated via
the console. 45

Figure 17 The QuestJs prototype in fullscreen mode. . . 47

Figure 18 The QuestJs prototype in fullscreen mode, with
two views active. 47

Figure 19 The QuestJs prototype in compact mode, with
the JavaScript editor active. 48

Figure 20 The testing view in compact mode. Green check
marks indicate successful test runs. Red boxes
indicate failed tests. Tests can be refreshed by
running the code. 50

L I S T O F TA B L E S

Table 1 A comparison of the better known freely avail-
able online editors on the web. This Figure shows
a table comparing six tools in regards to their
features. The Basic Editor Features are supported
by each editor. 18

Table 2 Timings of each participants of the study in
minutes and seconds. It depicts when they com-
pleted tasks or discovered parts of the user in-
terface for the fist time. It also shows the aver-
age time for each event. 56

Table 3 Questionnaire results. These are statements from
the questionnaire and how participants answered
them on a Likert scale. 57

L I S T I N G S

Listing 1 The JQuery library versus normal JavaScript.
JavaScript can achieve the same, but sometimes
needs more lines of code compared to JQuery.
JQuery is declining in popularity due to JavaScript
catching up rapidly. 27

Listing 2 Chais.js assertion testing examples. 35

Listing 3 This code loads external library scripts before
rendering. It waits for each library script cho-
sen by the user to be successfully loaded and
only then moves on with the execution. 49

Listing 4 Assertion tests for Exercise One. 53

xv

A C R O N Y M S

STEM Science, Technology, Engineering, Mathematics

ZPD Zone of Proximal Development

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

JS JavaScript

PHP Hypertext Preprocessor

DOM Document Object Model

HAML HTML Abstraction Markup Language

IDE Integrated Development Environment

UI User Interface

SPA Single Page Application

JSX Syntax Extension to JavaScript

RTA Retrospective Think Aloud

CTA Concurrent Think Aloud

CP Concurrent Probing

RP Retrospective Probing

API Application Programming Interface

I/O Input/Output

ECMA European Computer Manufacturer’s Association

xvi

1
I N T R O D U C T I O N

1.1 motivation

Nowadays, the internet is one of the most used mediums. Therefore
it is not only important to understand how it works, but it is also
crucial for people to be able to work with and develop for it. Uni-
versity courses in Web Development can be a great help for students
to improve their development skills by learning about the different
building blocks of the web and how they interact. Setting up a de-
velopment environment often proves to be difficult. Making sure ev-
erything runs smoothly for each and everyone of the students is very
time consuming due to different operating systems, the user’s per-
sonal preference and individual skills. Having students work with
code as quickly as possible and therewith bringing web development
closer to them is the main motivation behind this thesis. This can be
enhanced by making the learning environment browser-based. By be-
ing web-based, new forms of learning and teaching are enabled and
starting out with programming is easy.

Universities are lacking in educated staff that would be sufficient
to deal with the influx of new enrollments [4]. Teaching in higher
education often benefits from alternative teaching and learning for-
mats, such as flipped classrooms [81], learning circles and others that
can be easily implemented for classes with small sizes [92]. In order
to effectively teach web development, students have to start coding
as quickly as possible. Teachers should be able to set coding tasks
without delay, have students work on them, and see results in real
time during the course. Additionally, users need tools which let them
learn about web development and enable them to get as close to the
experience as possible. Future students should have an easy time to
start coding. Building upon a pedagogical foundation, a system is cre-
ated which helps students navigate the development landscape and
facilitates their first steps in coding.

1.2 challenges when starting out with coding

Learning how to write clean code and understanding the languages
is a great challenge. Not only is it difficult to grasp all the theoretical
concepts, but it is also difficult to find the extensive amount of time
needed to enter the field. Finding adequate studying material can be
arduous. Learning about the different concepts of coding, for example

1

2 introduction

Callbacks1 or the Stack [20], takes immense amounts of time due to
the complexity of underlying theory. Learning to piece these concepts
together into working programs takes even more time. There is an
amount of frustration involved in learning to program. Programs may
fail for no apparent reason or the results may be unexpected - many
programmers who are starting share this experience.

JavaScript is a fragmented, rapidly growing language, which makes
it hard to gain an overview. Overcoming frustration takes much effort.
Taking into account the above mentioned challenges, it can be con-
cluded that students and anyone learning to code would benefit from
a tool that guides them through the process in an efficient manner
and mitigates the frustrating aspects of learning how to code.

1.3 goals of this project

The goal of this project is to make it easier to start coding by solv-
ing some of the problems that arise when setting out. When starting,
users have to worry about setting up their system for coding. They
usually have to install an development environment or an editor, a
compiler, manage version control and more. These challenges can be
solved by having a fully functional system within the browser. An-
other goal of this project is to design a user interface concept for a
system, which is intuitive and which features high usability. Tradi-
tional sit-and-listen lectures can be less effective than other formats
[68]. Therefore, it is important to use other formats once in a while,
like flipped classrooms [68] or learning circles [17]. In this project, a
tool is developed, which can be used in flipped classrooms [68] and
supports teachers in their work. Educators can be relieved of part of
their burdens by introducing some automation and feedback through
automated testing.

1.4 what has been done in the thesis?

A web-based editor for the programming language JavaScript has
been conceptualized and implemented. This editor focuses on web
development. By letting users see the results of their coding instantly
and by providing an educational scaffolding [10], some of the chal-
lenges of JavaScript and starting with coding in general are resolved.
A usability study using Think Aloud, first introduced by Lewis et al.
[48], has been performed to evaluate the prototype. The study has
shown, that the prototype is usable and similar systems in general
could be desirable.

1 https://stackoverflow.com/questions/824234/what-is-a-callback-
function/7549753#7549753

1.5 overview 3

1.5 overview

Chapter 2 of the thesis focuses on fundamentals. Firstly, it encom-
passes other works related to the project, and secondly the analysis
of some of the most well known online web development tools. This
way, the most important features are understood and extracted for
use within the prototype. In Chapter 3, "Concept", requirements and
design goals are established, the technological, UI and testing con-
cepts are presented in detail, and the advantages and complications
of such a system are examined. Chapter 4, "Implementation", offers
an in-depth explanation of the technological decision making process,
the various mechanics that were put into place and the different fea-
tures presented within the prototype. Chapter 5, "Study and Results",
reports on details about the design of a Think Aloud usability study
meant to analyze the prototype. Afterwards, preparation, realisation
and results of the study are explained and evaluated.

2
F U N D A M E N TA L S

This chapter addresses the educational aspects and corresponding
technological support proposed, while also giving an overview of
Web technologies. Additionally it presents and compares existing
JavaScript editors in order to establish the status quo.

2.1 educational science

Regarding educational methods, the following section addresses flipped
classrooms [81], educational scaffolding [63], and fading [34]. A flipped
classroom reverses traditional learning environments by delivering
educational content, often online, outside of the classroom. It is an in-
structional strategy which moves activities, including those that may
have traditionally been considered to be performed at home, like for
example solving math exercises, into classrooms. In a flipped class-
room, students watch online media, discuss in online sessions, or
carry out research at home while engaging in the classroom with
guidance of a teacher [34].

In the old-school educational concepts, teachers would be the cen-
ter of attention and primary source of information to students. They
would pose questions and the teacher would directly answer. A lecture-
style type of teaching would be used in this traditional method [71].
Students would only be able to either work in small groups or inde-
pendently on tasks designed by the teacher. The flipped classroom
intentionally shifts focus away from the teacher and onto the explo-
ration of topics in a learner focused manner. This way, a greater depth
of understanding and more meaningful experiences can be facilitated.
Educational media such as videos and quizzes can be used at home
to deliver content that would otherwise be explained by the teacher
[1, 70, 81].

The usage of a flipped classroom changes activities that can be con-
ducted inside the class, because more time is available for other activ-
ities besides lecture. Such activities can include: in-depth laboratory
experiments, using emerging mathematical technologies and mathe-
matical manipulation, original document analysis, debate or speech
presentation, discussion of current events, peer reviewing, project-
based learning and skill development or concept practice [12]. The
use of these techniques allows for more higher order tasks to be done
by the students such as collaborative work, creative exercises - such
as designing tasks for other students, problem finding, and problem
solving [5]. In this way, interactions of educators with students in a

5

6 fundamentals

flipped classroom can be more personalized and didactic. Students
are actively involved in knowledge finding and construction as they
participate in and evaluate their own learning [5].

Active learning strives to more involve the student into the teach-
ing session. Students participate by doing something other than pas-
sively listening. In order to learn effectively, students must do more
than just listen: They must read, write, discuss, or be engaged in solv-
ing problems [15]. Students should specifically engage in higher or-
der thinking tasks such as analysis and evaluation. Active learning is
the opposite of passive learning as it attempts to put the learner at
the center, instead of the teacher. Active learning aims to convert stu-
dents from passive listeners to active participants and helps students
understand the subject through asking questions, gathering data and
analyzing data in order to solve higher order cognitive problems [7].
Using class time for active learning, rather than just lectures, provides
opportunities for greater teacher-to-student mentoring, peer-to-peer
collaboration and cross-disciplinary engagement [68]. As can be seen
in figure 1, retention of knowledge is much higher when using active
learning strategies, for example, discussions or collaborative learning
groups [64]. The pyramid from Figure 1 shows different tasks and
how they correlate to memory performance. The illustration in Fig-
ure 1 was adapted from a similar one by Igor Kokcharov1.Some tasks
are stronger in this regard than others. Traditional lectures rank at
the bottom of the pyramid exhibiting a retention of under 20%, while
active learning tasks, such as practice with a coach rank above 75%
[15, 78].

Another important concept to look at in educational sciences is in-
structional scaffolding. It refers to the help given to students during
their learning process. This guidance is crafted to the needs of stu-
dents with the intention of supporting them, so that they may achieve
their learning goals [74]. Instructional scaffolding is meant to sup-
port students when they are first introduced to the material. Teach-
ers help the students conquer a task or concept by providing this
assistance. These supports may include compelling tasks, resources,
templates, helping materials, and guidance on the development of
social and cognitive skills. Instructional scaffolding can be employed
through modeling a task, giving advice, or qualified personnel pro-
viding coaching. As soon as students start to develop their own au-
tonomous learning strategies and skills, these supports can be gradu-
ally removed.

There are a number of features to consider when employing in-
structional scaffolding. There should be strong interaction between
learners and teachers. Only their close relationship can make sure an
exchange of knowledge takes place [10]. Learning should take place
in the students Zone of Proximal Development (ZPD). The ZPD is

1 https://commons.wikimedia.org/wiki/File:Learning_Retention_Pyramid.JPG

2.2 why is the prototype using javascript? 7

Figure 1: This figure shows a learning retention pyramid, according to
Bloom’s taxonomy [15]. Bloom’s taxonomy is a set of three hierar-
chical models used to classify educational learning objectives into
levels of specificity and complexity [15]. The pyramid shows, that
active learning tasks, such as working with a coach, are more ef-
fective compared to traditional lectures when it comes to memory
retention.

the difference between what a learner can do without help, and what
they can’t do without help. It is believed, that the role of education
is to give students experiences that are within their ZPD, thereby
encouraging and advancing their individual learning, such as their
skills and strategies [13]. If the task is too easy, learners will be unmo-
tivated, since they already know the solution. If it is too hard, they
will not understand what to do. When using instructional scaffolding,
teachers need to be aware of the learners current level of knowledge.
The final feature of instructional scaffolding is the scaffold, which
is often compared to scaffolding used in building construction. It is
meant to only be temporary, until the "building" can support itself
[89]. The support and guidance provided to learners facilitates in-
ternalization of the knowledge they need to complete the task. This
support is gradually taken away until the learner is independent [61].
This taking away of the scaffolding is referred to by many as "fading"
[63].

2.2 why is the prototype using javascript?

The question remains why the editor is required to be JavaScript and
why JavaScript is good for students. In today’s world, JavaScript is
worthwhile to learn, since the trend of usage worldwide has increased
continuously [41]. JavaScript can be compiled client-side, directly in
the browser. As a multi-paradigm language, JavaScript supports func-
tional, imperative and event-driven (including object-oriented and

8 fundamentals

prototype-based) programming styles. It has a capable API for work-
ing with arrays, booleans, strings, dates, regular expressions, and ma-
nipulation of the Document Object Model2, but JavaScript itself does
not include any I/O, such as storage, networking, external devices or
graphics facilities, often relying for these upon the hosting system in
which it is embedded [21]. It does however provide APIs like fetch
or the canvas, that provide many of these features. JavaScript can
be instantly compiled and run within browsers. No compilation on
an external server is required for the code to run. JavaScript is the
required programming language for this project.

2.3 why is javascript complicated?

It remains to be seen why JavaScript is a difficult language to pick up
compared to other languages. First of all, it is an asynchronous3 lan-
guage. Normally, a given program’s code runs with only one thing
happening at once. If a function relies on the result of another func-
tion, it has to wait for the other function to finish and return. This
is not the case with JavaScript. Its programs can run asynchronously.
This is useful in the context of web browsers. When a web app runs
in a browser and it executes code without returning control to the
browser, the browser can appear to stand still. This is called blocking.
When the call stack4 is blocked, the browser prevents user’s inter-
rupts and other code statements from executing until the blocking
statement is executed and the call stack is freed. Asynchronous code
does not block execution.

There are many pitfalls that inexperienced users can run into when
trying to learn JavaScript in regards to Asynchronicity. JavaScript is
single-threaded and powered by an event queue. It has a nature of
waiting for an event to trigger the right code at the right time. This
can be hard to understand for beginners. As a dynamically typed
language, JavaScript contradicts many of the rules established in tra-
ditional programming. Dynamic typing implies more succinct code
and the absence of a compilation step allows it to be more tolerant
to changes [62]. JavaScript is one of the most used programming lan-
guages in the world [60], which is why it is ever-changing and devel-
oping new features rapidly. Keeping up with this continuous evolu-
tion can be daunting.

1. Speed. Being client-side, JavaScript is very fast because any code
functions can be run immediately instead of having to contact
the server and wait for an answer [21].

2 https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
3 https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous
4 https://developer.mozilla.org/en-US/docs/Glossary/Call_stack

2.4 web development - the javascript stack and its features 9

2. Simplicity. JavaScript is relatively simple to learn compared to
for example C++. It can be used to write imperative code as
most computer science university students learn in their first
semesters as part of their coursework. As such it is easy for
them to instantly get started with writing code.

3. Versatility. JavaScript plays nicely with other languages and can
be used in a great variety of applications. Unlike PHP5 or SSI
scripts [18], JavaScript can be inserted into any web page re-
gardless of the file extension. JavaScript can also be used inside
scripts written in other languages such as Perl and PHP. It is
also a Full-Stack language, that can be used in the Front-end, in
the Back-end, or for application programming [21].

4. Less Server Load. Being client-side reduces the demand on the
website server and allows websites to be rendered without wait-
ing for a server to send a lengthy response. In most cases, this is
very quick, with average loading times between two and ten sec-
onds [76], depending on the site. Lazy loading6 and server side
rendering can be used to decrease loading times even further. It
is known, that most users leave the page if it does not load after
approximately four seconds, which is why this feature is very
important in web development [49].

5. Functions7. They are treated as first class objects within JavaScript
code. This means, that they can be handed to other functions or
saved to variables just like a string, integer or boolean. This for-
ward thinking feature made JavaScript popular in the early days
of its existence and helps its popularity to this day.

6. JavaScript is web native. In 2019, with a few very specialized
exceptions, JavaScript comes installed on every modern web
browser8. Starting with JavaScript programming can therefore
happen very quickly. If one is for instance using Google Chrome9,
one can just go to the “View” menu, click on the “Developer”
sub-menu, and see an option to open a JavaScript console. The
console then allows for JavaScript programming.

2.4 web development - the javascript stack and its fea-
tures

javascript This section is dedicated to web development in gen-
eral. Before the world wide web was conceived and implemented,

5 http://www.php.net/
6 https://developer.mozilla.org/en-US/docs/Web/Apps/Progressive/Loading
7 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
8 https://en.wikipedia.org/wiki/Comparison_of_web_browsers#JavaScript_support
9 https://www.google.com/intl/de_ALL/chrome/

10 fundamentals

it was not possible to quickly and easily share digital information
between many people. Alongside HTML and CSS, JavaScript is one
of the three core technologies that enable the World Wide Web [27].
JavaScript code can be embedded within HTML code to control the
behaviour and content on websites. Content could for example be
loaded onto the page using JavaScript. Interactivity usually also stems
from JavaScript. If the user would click a menu or button, the han-
dling of this event would fall to JavaScript. JavaScript drives interac-
tive web pages and thus is an essential part of web applications. The
great majority of websites use JavaScript, and all major web browsers
have a dedicated JavaScript engine to execute it and allow users to
potentially start coding right away. JavaScript sees universal support
for all modern web browsers with built-in interpreters. For example,
it supports if statements, do while loops or switch statements. Inher-
itance is implemented using prototypes in the JavaScript program-
ming language. Many class-based features can be simulated success-
fully using prototypes. Functions within JavaScript double as object
constructors, along with their typical role. The most abundant use of
JavaScript is to add client-side behaviour to HTML pages. Scripts are
embedded or loaded on demand into HTML pages and interact with
the DOM of the page. Since JavaScript code can run locally in the
user’s browser, the responsiveness of every application, if properly
implemented, is in comparison increased dramatically. There is little
to no waiting time involved [86], as would usually be the case with
a server-client architecture. Whenever a query has to be sent to the
server though, waiting times do occur. Techniques such as Persistent
Queries10, Lazy Loading11 and others can be used to mitigate this is-
sue. JavaScript can also detect some of the users actions, that HTML
alone could not, such as individual keystrokes which is widely used
(e.g. by Ajax12 development) as it represents a great strength of the
language. JavaScript is used far and wide and is one of the most used
programming language in existence, with for example Node.js13 be-
ing one of the most used runtimes in the world. It is allowed as a
scripting language in following projects:

• Google’s Chrome extensions14

• Adobe’s Acrobat and Adobe Reader15

• OpenOffice.org16

10 https://blog.apollographql.com/persisted-graphql-queries-with-apollo-client-
119fd7e6bba5

11 https://developers.google.com/web/fundamentals/performance/lazy-loading-
guidance/images-and-video/

12 https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
13 https://nodejs.org/en/
14 https://chrome.google.com/webstore/category/extensions
15 https://get.adobe.com/de/reader/
16 https://www.openoffice.org/

2.4 web development - the javascript stack and its features 11

• RPG Maker MV17

JavaScript also serves as Application platform for a variety of suc-
cessful software development projects. Originally it was submitted to
ECMA international18 in 1997 as a scripting language for browsers.
At this time, JavaScript is also used for a wide array of other tasks,
like for example application programming. Some of the prominent
ones written in JavaScript are for example:

• Apache Cordova19

• The Electron framework20

• Ubuntu Touch21

• Open webOS22

The Hypertext Markup Language also known as HTML is intro-
duced here. It is a text based markup language for the semantic struc-
turing of digital documents like texts with hyperlinks and images.
HTML documents are received by a web browser and sent by a web
server or retrieved by local storage. They are one of the core building
blocks of the world wide web. HTML serves for semantic structuring,
but not its formatting. HTML provides a means to display this struc-
turing by designating elements using so called tags such as

which designates a image or <p>text in here</p> which marks the
content as a text block. These tags tell the browser what certain ele-
ments are. Based on this information, the CSS styling language can
be used to style only e.g. certain aspects such as font-size or color of
text elements as will be explained later on. Browsers explicitly do not
display this tag information on the page. Instead they use this infor-
mation to interpret what can be seen on the page. The latest version
of HTML, that is HTML5, has introduced an array of interesting new
features to the markup language. Web workers can now be imple-
mented to load large scripts via parallel threads. The Canvas23 API
can be used to render graphics rapidly. Also, application caches al-
low the developers to store more information about large web apps
on the users device. The Geolocation24 API has been introduced and
is mainly used and best known on mobile devices.

The formatting, that is, how a structured text is rendered on a
screen or on paper, is not part of the HTML specification [65]. The

17 http://www.rpgmakerweb.com/products/programs/rpg-maker-mv
18 https://www.ecma-international.org/
19 https://cordova.apache.org/
20 https://electronjs.org/
21 https://ubuntu-touch.io/de_DE/
22 http://webosose.org/
23 https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
24 https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API

12 fundamentals

formatting language Cascading Style Sheets (CSS) is meant for this
purpose. Cascading style sheets, also known as CSS, is a styling lan-
guage for electronic documents. Together with HTML and DOM it
creates the main building blocks of the internet as we know it. CSS
is designed to enable the separation of presentation and content, in-
cluding layout, colors, and fonts25. The name cascading comes from
certain rules which determine in which order the code applies to an
element. CSS is implemented in such a way, that a lot of power is
granted to developers over how elements, which are displayed to the
user, behave. In CSS, selectors are used to determine which styles
are applied to which items. The identifier #navigation selects the
id navigation, .list-entry selects all elements with a class called
list-entry. There are many other ways to access elements for styling,
but these are the most basic and widely used ones. CSS is also able to
animate transitions and 3d transformations26 of items on the screen.
When a user for example hovers over a black link text, the font color
could be turned blue and the text could be underlined to provide the
user with a visual cue that he may be clicking a hyperlink [36].

2.5 existing editors

Other in-browser code editors exist and are widely used by program-
mers and designers. A closer look will now be taken at which editors
are already broadly in use, what their advantages are, and which
design decisions they have introduced in the past. Later on, it is an-
alyzed in detail, how these concepts can be improved upon. Similar
projects include, but are not limited to the following:

2.5.1 JsFiddle

This editor was one of the earliest code playgrounds and a major in-
fluence for all which followed. It offers the features of writing HTML,
CSS and JavaScript code and seeing the result in a output window as
well as URL sharing. We will from now refer to these as Basic Edi-
tor Features. JS Fiddle also lets users add external libraries and CSS
pre-processing with e.g. SASS27 or LESS28. Templates can be added
to circumvent the need to write boilerplate code as can be seen in
Figure 2. JsFiddle also supports Code Forking, Autocompletion and
Linting. Code Forking refers to the ability of creating new reposito-
ries with unique URLs from an existing repository. JsFiddle is still
being actively used by the online community. Especially Sites like
stackoverflow.com make use of jsfiddle in order to show code snip-

25 https://www.w3.org/TR/CSS/#css
26 https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Transforms/Using_CSS_transforms
27 https://sass-lang.com/
28 http://lesscss.org/

2.5 existing editors 13

pets, illustrate problems or ask questions about code-specific topics.
There is no in-browser console support within JsFiddle yet, but the
JsFiddle development team has it on their Road-Map29 and wants to
integrate it soon.

Figure 2: A screenshot from jsfiddle.net

2.5.2 JsBin

This editor offers the Basic Editor Features and also many advanced
properties like library support, CSS pre-processing, code forking, lint-
ing and even an in-browser development console for debugging. It
also sports a column-style UI where columns can be added and re-
moved. This feature allow for varying amounts of screen space for
the windows and therefore greater flexibility. JS Bin offers premium
accounts30 that come with "Pro Features" like for example private
bins and embedding functionality. JsBin allows code to be cloned to
other bins which are by default always public if no pro account was
bought.

29 https://trello.com/b/LakLkQBW/jsfiddle-roadmap
30 https://jsbin.com/upgrade

14 fundamentals

Figure 3: A screenshot from jsbin.com

2.5.3 CSSDeck

This editor supports all Basic Editor Features. CSS Deck is capable of
more than only CSS. It is an old project, that is not actively maintained
anymore. In comparison to other online editors, CSS Deck is very lim-
ited in its features. It offers CSS pre-processing and is one of the few
editors that supports the aged HAML31 HTML pre-processing. Other
features are not supported as can be seen in Table 1. The styling of
the page breaks in multiple locations, which hints at an old code base
as can be seen in figure 4. Mobile devices or even smaller screens are
not supported at all. There is also a requirement for its code snip-
pets to need moderator approval. One would regularly read "Page is
Under Review. The lab is awaiting moderator review and approval.". This
then denies access to the code in question, further limiting use of this
editor.

31 http://haml.info/

2.5 existing editors 15

Figure 4: A screenshot from cssdeck.com

2.5.4 CodePen

This editor is one of the most wide-spread and famous ones. It is up-
dated regularly and is used heavily by the community. It supports the
Basic Editor Features, as well as library support, CSS pre-processing,
a developer console for debugging, code forking, templates, autocom-
plete, linting and multi-file support. Its so called "Pens" account for
many examples of scenarios and can be duplicated for quick start-
ing. Additionally, it offers a flexible multi-window UI and settings,
that can be adapted for many needs. In figure 5 an example show-
ing React32 code shows the style and code highlighting Codepen em-
ploys. Multiple flavours of HTML, CSS and JavaScript are supported,
like for example HAML pre-processing for HTML, SCSS for CSS or
jQuery support for JavaScript to name a few. Specific details can be
seen in Table 1. Codepen even supports Vim33 key bindings for de-
velopers who are so inclined. The UI offers many different features,
that not many other editors can boast, like for example a full page,
detail or debug view. The CodePen Pro users can also switch into
live view mode, where other users can watch them code live. Col-
lab mode allows real time work on the same pen for different users
at the same time like is known from for example Google Docs34 or
MicroSoft Word Online35.

32 https://reactjs.org/
33 https://www.vim.org/
34 https://www.google.com/docs/about/
35 https://office.live.com/start/Word.aspx

16 fundamentals

Figure 5: Codepen.io : HTML, CSS, JavaScript and the Output windows are
visible in this online development environment.

2.5.5 Dabblet

This editor is one of the very early editors of the web. It has been
around since 2011, but has not seen many updates or upgrades in
the past. As such, many features, that others consider normal, are
not present on this site. The page itself breaks on medium sized and
smaller screen sizes. Dabblet uses a full-page design. Since Dabblet
has been a one-woman-project, the reduced features are understand-
able. Other projects have been developed by large teams. The seven
year old project is still maintained, but has been barely touched36.

36 https://github.com/LeaVerou/dabblet

2.5 existing editors 17

Figure 6: Dabblet: One of the older online JavaScript editors

2.5.6 Plunker

This editor is not being used very much anymore. It supports the Ba-
sic Editor Features together with library support, CSS pre-processing,
code forking, templates, linting and multi-file. Its multi file feature
can be seen in Figure 7. It also has a user generated template li-
brary. Its repositories can deliver the boilerplate one needs for smaller
projects. Since Plunker’s community is not as large as those of Code-
pen or JsFiddle, many repositories, called "plunks" in this case, are
outdated. The number of repositories in also very limited, which
makes it hard to find special scenarios in case of need.

Figure 7: Plunker. A JavaScript online code editor.

18 fundamentals

Table 1: A comparison of the better known freely available online editors on
the web. This Figure shows a table comparing six tools in regards
to their features. The Basic Editor Features are supported by each
editor.

 CodePen JsFiddle JsBin Plunker CssDeck Dabblet

HTML, CSS and

JS

✓
✓ ✓ ✓ ✓ ✓

Color coding ✓ ✓ ✓ ✓ ✓ ✓

URL

Sharing
✓ ✓ ✓ ✓ ✓ ✓

Preview ✓ ✓ ✓ ✓ ✓ ✓

Library

Support
✓ ✓ ✓ ✓ x x

CSS pre-

procssing
✓ ✓ ✓ ✓ ✓ x

Developer

Console
✓ x ✓ x x x

Code

Forking
✓ ✓ ✓ ✓ x x

Templates ✓ ✓ x ✓ x x

Auto-complete ✓ ✓ x x x x

Linting ✓ ✓ ✓ ✓ x x

Multi File

Support
✓ ✓ x ✓ x x

HTML pre-

processing
✓ ✓ x x ✓ x

Modern UI ✓ ✓ ✓ x x x

2.6 learning management systems 19

2.6 learning management systems

A learning management system is a software application for the ad-
ministration, documentation, tracking, reporting and delivery of ed-
ucational courses, training programs, or learning and development
programs [25]. Many higher education institutions have implemented
a learning management system (LMS) to manage online learning and
teaching. Widely spread in the US are "Blackboard" [8], "Moodle" [23]
and "Canvas" [42]. The question remains what the advantages of us-
ing a learning management system are over traditional teaching. A
LMS usually manages all types of information, including documents,
videos, files and courses. In higher education, LMS will usually have
some other features, like quizzes, rubrics, facilitated teaching for ed-
ucators and a syllabus. A discussion board may also be included
for the students to talk about concurrent teaching materials as was
done for example by Wang et al (2012) [85]. Through LMS, teachers
may create and integrate course materials, articulate learning goals,
align assessments and content, create customized test for students
and track studying progress [25]. LMS also allows for the organiza-
tion of learning time-lines and communication of objectives. Teaching
in higher education often benefits from different teaching and learn-
ing formats, such as flipped classrooms [81], learning circles [17] and
others that can be easily implemented for small class sizes [92]. Sadly
these formats often become impossible to implement due to limita-
tions in available staff and increased complexity. Large classes and
lectures are not necessarily problematic, but they can promote poor
results [9, 54] and make it harder to use alternative teaching methods
like for example the above mentioned flipped classroom. Learning
management systems can be used as part of a strategy to cope with
missing staff and reduce complexity. LMS bring their own problems
though. Data shows the existence of challenges, such as insufficient
time, technical problems, students and teachers not being familiar
with technology, and integration of systems into courses, which are
already filled with material [6].

Advantages of LMS are among other things the following:

• Accessibility. LMS can be used from many devices in many lo-
cations. They do not require students to be physically present
in class to be used. Content can be modified at any times and
students will receive the updates instantly. This feature can be
used by teachers to update learning material.

• Interoperability. Learning management systems offer the func-
tionality of cross-department and cross-faculty collaboration. This
may decrease overall work-load, since teachers can share tasks.

• Reusability. Courses, videos and other materials within an LMS
can be reused indefinitely. Once prepared, it can be used for all

20 fundamentals

classes thereafter [55]. This also potentially leads to an accumu-
lation of knowledge over time.

• Durability and maintenance ability. Since most LMS are deployed
off-campus, these will work, even when the electricity is down.
In such a case, users can still access the system via browsers at
home, since clients would be unavailable. It is also improbable
for the system to crash or not work. Many of these systems are
easy to maintain and User interfaces like Text-to-speech or vi-
sual aids exist to make them usable by most students, also by
those with disability [32].

• Adaptability. Learning management systems can be applied to
a variety of tasks and are highly adaptable within them. They
can be used e.g. for high schools, middle schools, universities
or even corporations and can be tailored to fit the task.

• Strong content. LMS can provide all kinds of content, that a com-
puter can provide. Quizzes, videos, images, soundtracks and
many more.

• Evaluation of students is easier and arguably fairer, since it can
be partly automated through online quizzes and attendance can
be tracked automatically. This is prone to errors though and
should be examined carefully before use.

Disadvantages of LMS are on the other side these:

• Acceptance. Teachers and also students have to accept and use
the infrastructure provided by the LMS. Especially older teach-
ers are used to their ways of educating, without using LMS.
These persons have to be convinced and studies have shown
this is not an easy or quick task [84, 85].

• The implementation of LMS requires a well-built technologi-
cal infrastructure. Students need screens in order to access the
clients, while teachers need equipment like laptops or tablets
in order to upload their materials and access the system. Not
all schools and universities are financially equipped to handle
these requirements.

• Current studies contradict themselves in whether technology
and LMS truly reduce the workload of teachers. On one side,
it surely reduces bureaucratic burdens by automation of cer-
tain tasks. Then again on the other side, teachers are always
connected to the system. Students who spot errors may imme-
diately notify the teacher and expect changes to be made. Such
systems may produce stress and work for the teacher even after
class and during time off.

2.7 related work 21

2.7 related work

In the following section, we will specifically look at related work from
educational sciences and technology-related topics alike. These works
are of interest to the development of this project and the scientific
analysis thereof. This project builds upon insights and successes seen
within prior works. Facebook itself was used as a learning manage-
ment system by Wang et al. (2012). In their experiment, they have
taken two university courses and employed Facebook for the shar-
ing of exercises and resources, organization of meetings, setup of
tutorials and for giving out announcements to students [85]. Since
Facebook provides social, pedagogical and technological affordances
[59] through its built-in functionalities it was chosen for the task.
The study explores how the students perceive Facebook as am LMS
throughout their course. The study’s results indicate that students
were satisfied with the experience that Facebook provides as an LMS.
A problem was, that some students did not feel comfortable about
their identities being revealed by Facebook and its privacy in general.

wainwright et al . (2009) introduced a new Learning Manage-
ment System called Moodle at the Lewis and Clark College. Moodle
is a free and open-source learning management system (LMS) writ-
ten in PHP [69]. In their paper, they talk about the difficulties in get-
ting staff and students to use the new system. They had to start a
mission of evangelism about the new system, since the old one had
barely been used and mostly ignored before these changes. Things
to consider when introducing a new LMS include the technical and
pedagogical training of teaching staff and maintenance implications.
Introducing a LMS into a college proved to be very time consum-
ing. A lot of patience and effort was required to make it work and
raise awareness of staff and students [84].The change in culture also
requires much finesse and care on the part of those spearheading it.
When Moodle was developed, Dougiamas et al. (2003) contributed to
it by researching what they call social constructionism and connected
knowing in their own online classes. Since then, Moodle has been
translated into twenty-seven languages and being used all around
the world by educators [23].

weaver et al . (2008) have looked at LMS in the academic world.
They have analyzed a LMS called "WebCT" via surveying of academic
staff and students. It was believed that student feedback would relate
to technical and infrastructure issues. Instead, the survey returned re-
sponses primarily on how WebCT was used in teaching and learning,
indicating that quality control is a major issue for the University. They
found out, that student opinions mostly reflect the material created by
the teachers - students who have seen a well-designed unit laden with

22 fundamentals

resources, timely feedback and good interaction with staff reported
a positive experience with the technology. Staff feedback was concen-
trated on technical and management aspects of using WebCT, rather
than educational issues. This paper may have implications about how
to use LMS in general and how students and staff view them. They
concluded, that learners should be more actively engaged by the sys-
tems. They concluded that staff and students are ready to engage
more into e-learning and online approaches [87].

rößling et al . (2008) have examined how LMS can be used to
improve education in computer science. Many instructors and univer-
sities tend to increase the amount of comprehensive LMS usage, such
as Blackboard Learn37 or Moodle38. Blackboard Learn is an LMS sys-
tem and a Web-based program, which features course management,
customizable architecture, and scalable design that allows integration
with student information systems and authentication protocols [16]. It
is good for managing courses and enhancing student learning. Com-
puter science educators keep developing tools that help in manage-
ment, teaching and learning in computer science courses. LMS that
are made specifically for computer science are abbreviated as CALMS
- Computer Augmented Learning Management Systems. Rößling et al.
(2008) have concluded, that novel computer science education tech-
nologies can be integrated in some scenarios and that this would
improve the learning and teaching process. If their goal of techni-
cal integration takes place, new pedagogical models will emerge. For
example, the chance of real-time automatic evaluation within a LMS
supported classroom environment.

a novel investigation by Saw et al. (2018) has shown, that
in this case Moodle was a great support to teaching and assessment
evaluation at higher education facilities in Myanmar. With growing
numbers of students, learning management systems have become a
necessity at universities in Myanmar. Moodle is used there to man-
age teaching and studying. A total of 318 respondents answered a
questionnaire about learning management systems. It was not shown
however, that LMS have any positive effect on students grades or pro-
ductivity [73].

tsukahara et al . (2007) have made an extensive three year
study at the Tokyo University of Agriculture, where they where chal-
lenged to replace over 30 courses with e-learning courses. They de-
veloped their own LMS by expanding and modifying an existing
LMS called WebClass. This existing LMS makes it easy to add new
functions. In their paper [82], they discuss the process of developing

37 https://www.blackboard.com/
38 https://moodle.org/

2.7 related work 23

and introducing their new system. They analyzed effects on admin-
istration, authoring of tasks and communication through the system.
Their system enables registration, authoring and importing informa-
tion from their educational affairs section. This enables effective men-
toring and coaching by the use of digital portfolios.

In conclusion, learning management systems are a positive addition
to the worlds teaching landscape. Many schools and universities around
the world that currently use them, could not do without them. The
advantages by far outweigh the disadvantages and few have yet re-
gretted the decision to transition into LMS supported teaching. As we
have seen, the biggest problems stem from affordability and insuffi-
cient technological advancement of some institutions.

3
C O N C E P T

Previously, properties of existing online editors have been analyzed
and the meaning of LMS in the educational world has been intro-
duced in Chapter 2. In this chapter, the concept for a JavaScript on-
line editor running in the browser is introduced. In Section 2.5, details
about features supported by existing editors were analyzed. Based on
these existing capabilities and didactic fundamentals from Section 2.1
an editor for the Backstage system is proposed. From now on this
editor may be referred to by its project name: QuestJs.

3.1 goals

The aim of the proposed editor is to assist in the study of coding in
JavaScript. In order to successfully do this, certain criteria need to be
taken into account. Users of the editor are primarily students who
are unfamiliar with JavaScript code or who have formerly not done
much web development. It is essential to not overload users’ cognitive
abilities with an overly complicated editor [22, 77]. This goal may be
partially reached by not having to set up a local development environ-
ment. It is therefore the intention of this editor to provide a positive,
encouraging and easy-to-use development experience. The user inter-
face must be intuitive, so that users can start to write code as soon
as the editor is opened in the browser. In addition to this, another ex-
plicit goal is not only the ability to write HTML, CSS and JavaScript
code, but also to see the compiled result in the browser. It must also
be possible to debug and test the code in a manner that comes close
to developing code inside an integrated development environment in
order to introduce learners to this side of programming as well.

3.2 technological concept

A potential JavaScript editor has input and output fields. Initially it
would support a number of features corresponding to the needs of
its future users. In Chapter 2, a set of Basic Editor Features has been
established. These features are supported by all the editors that were
analyzed previously. They are therefore present in this concept as
well. The editor will run client-side only, without the need of a server.
This brings with it a number of advantages, such as fast user interface
response times and therewith improved usability. Since JavaScript is
a dynamic browser native language, it does not have to be compiled
on a server in order to run. JavaScript runs instantly. This feature may

25

26 concept

be powerful from an educational point of view - users can write code,
instantly run it and see the results. The driving technological idea
is to use an inline frame1 in order to bring together and render the
HTML, CSS and JavaScript code the users write in the editor.

3.2.1 Input

The editor has these input fields:

• HTML. An input view where HTML code can be written.

• CSS. An input view where CSS code can be written.

• JavaScript. An input view where JavaScript code can be written.

3.2.2 Output

The editor has these output fields:

• Output window. A HTML inline frame is to be used to show
the output generated by the written HTML, CSS and JavaScript
code.

• Testing window. This window will show results of tests written
by teachers. These tests automatically run on the code the users
write and provide feedback to learners.

3.2.3 Additional Features

The editor supports these features:

• Syntax highlighting. The above mentioned HTML, CSS and
JavaScript Input windows support colored code highlighting for
better readability. Syntax highlighting also has positive effects
on code comprehension as was shown by Reijers et al. [66].

• Linting. The above mentioned HTML, CSS and JavaScript Input
windows support basic code linting. Linters are static analysis
tools, that warn developers about possible code errors or viola-
tions to coding standards. They are therefore part of White-box
Testing [88]. By introducing this feature, errors can be spotted in
real time without the need to run the program at all. Users are
able to see their syntax mistakes directly in the browser and are
able to correct them accordingly. Using linters improves read-
ability, enables code reviews and provides a way to find errors
before execution [80, 91].

1 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

3.2 technological concept 27

• Library support. is implemented in order to allow users to add
broadly available open-source libraries such as JQuery2, React3

or Require.js4. Users should not be overwhelmed with possibil-
ities on their first day of coding JavaScript. On the other hand,
libraries may also provide advantages. They enable users to em-
ploy shortcut functions, which potentially save time and make
it possible to do more with less code as can be seen in List-
ing 1. This stands in direct conflict with the aim of acquiring a
deeper understanding of the language. Therefore, this feature
is optional as required by the teacher. The corresponding drop-
down menu may or may not be rendered as needed.

Listing 1: The JQuery library versus normal JavaScript. JavaScript can
achieve the same, but sometimes needs more lines of code
compared to JQuery. JQuery is declining in popularity due
to JavaScript catching up rapidly.

1 //standard JavaScript

2 document.getElementbyId('mydiv').style.color = '#f00';

3

4 //the Library JQuery

5 $('mydiv').setStyle('color','#foo');

• Templates are provided by the teacher through the editor in
order to give some starting help to the users employing the con-
cept of scaffolding [63]. More advanced students or classes can
be given less help. Support can gradually be taken away using
the concept of Fading [63] in order to keep students within their
ZPD at all times.

• Developer Console. In order to give users the possibility to ex-
perience dynamic JavaScript development, they are given the
ability to debug their code. For this purpose, a developer con-
sole is proposed, that is fully integrated into the development
experience in the browser. This console operates on the inline
frames JavaScript context. Users are therefore able to receive in-
formation from this context while the program is running, po-
tentially from each execution step. They can use it to output
debugging information in real time via for example console.log

()5. The console can also be used to compare objects, handle
exceptions and errors, monitor events, measure and count exe-
cutions and evaluate expressions to only name a few possible
ways of use. As a two-way communication terminal it can re-
ceive input and provide output back to the users.

2 https://jquery.com/, https://insights.stackoverflow.com/survey/2018/
3 https://reactjs.org/
4 https://requirejs.org/
5 https://developer.mozilla.org/en-US/docs/Web/API/Console/log

28 concept

• Testing. Tests are included using the Chai.js assertion library6.
It can run in the browser since it only requires JavaScript. This
feature lets teachers write tests for their users. These tests will
then run on their code and provide a way of automated feed-
back [51].

• An Exercise view is developed that supports markdown script
in order to pass information about the exercise that is to be done
directly to the user.

• A Modern User Interface is implemented taking into account
the users requirements and general usability rules.

• Autocomplete. Having this feature would be advantageous. Time
constraints and complexity may not allow for its implementa-
tion. It is optional.

The goals defined in Section 3.1 may be partially reached once the
above features are successfully implemented. The following features
are omitted from development for a variety of reasons. The main one
being cognitive load theory. Based on the presumption that working
memory is limited, as well as the fact that users are mostly program-
ming for the first time, they should not be overloaded with input or
their learning may be hampered [22, 77]. Additionally, the need for
didactic reduction [28] has to be taken into account when developing
a prototype for young users. Since the implementation is going to be
client-side only, some of the following features are not viable, because
some of them would require a server:

• Multi-file support. The editor is mainly going to be used in live
lectures. As such, there is not a lot of time to develop complex
systems or programs with it. Also, multi file support would
provide an additional layer of abstraction and complexity to the
learning process. The primary target group are first and second
semester students, who may not have had a lot of experience
with programming. In order to not overly strain their cognitive
abilities with too much load, multi file support is not going to
be supported [77].

• CSS Pre Processing. This feature would require the users to
learn an additional syntax. SCSS or LESS use their own optional
dialect of CSS. For beginners, this is not the way to go, as CSS
itself offers sufficient content. At the same time, it allows for the
same outcome.

• Code Forking. Since the code that is being written is not saved
to any repository, forking will initially not be implemented.

6 https://www.chaijs.com/

3.3 user interface concept 29

• A Collaboration mode, where users can stream their screen to
others would require a different architecture. It is therefore omit-
ted.

Users will then be able to write web development related code and
instantly see the compiled and combined result in the output window
inside an inline frame. The instant feedback of this approach may pro-
vide positive learning outcomes. The proposed usage inside lectures
provides advantages associated with active learning [11, 43, 45].

3.3 user interface concept

Users have over time become familiar with interface elements acting
in a certain way. This is why the editor’s user interface is consistent
and predictable. Doing so will help with task completion, efficiency
and satisfaction [29]. There are many interesting user interface con-
cepts available and already in use as can for example be seen in
Figures 2, 3 and 5. Before a user interface for the QuestJs editor is
developed, a scientific foundation needs to be established. Many re-
sources are available when it comes to user interface and user expe-
rience design. Inspirational for the concept phase of QuestJs is Peter
Morville’s usability honeycomb [56]. QuestJs users are mainly young
students who want to learn JavaScript development. As can be seen
in Figure 8, Morville recommends a product to be useful, desirable,
usable, findable, credible and accessible in order to be valuable. The
question surrounding the meaning of these words, given the relation
to the problem at hand still remains.

Figure 8: Peter Morville’s Usability Honeycomb [56]. Each facet of user ex-
perience design can be defined by this diagram. The honeycomb
helps to identify all the areas that are important to a strong user
experience [57].

30 concept

The concepts from Figure 8 can be explained as follows:

• Usability. The editor needs to be simple and easy to use. It is
designed in a way that is familiar and easy to understand. The
learning curve a user must go through to understand the user
interface and its features should be as short and painless as
possible [56].

• Usefulness. The editor provided needs to be useful and fill a
need. If the editor is not as useful or fulfilling as the users needs,
there is no real purpose for the product itself [56].

• Desirability. The visual aesthetics of the service need to be at-
tractive and easy to translate. Design is minimalist and to the
point [56].

• Findability. Information needs to be easy to find and navigate.
If the user has a problem, they are able to quickly find a solution.
The navigational structure is set up in a way that makes sense
[56].

• Accessibility. The QuestJs editor is designed in such a way, that
even users with disabilities like for example some forms of vi-
sual impairment can have the same user experience as others
[56].

• Credibility. The service needs to be trustworthy. Studies have
shown users to be reluctant to enter any information if the ser-
vice is not credible [56] as was also shown in a study by Wang
et al. (2012) [85].

If all the above mentioned points are taken into account, a valuable
and meaningful product can be created. User interface design places
its focus on anticipating what users might need to do and makes sure
that the interface has elements that are easy to access, easy to under-
stand and easy to use in order to promote those actions [29]. User
interface design brings together concepts from interaction design, in-
formation architecture, and visual design [29]. Unnecessary elements
are avoided in favour of a clear layout and concise, but understand-
able labels [29]. However, labels are avoided wherever possible in
favour of clearly implied usability. The goal here is to create consis-
tency and use common, well known elements in order to make users
feel comfortable and have them find their way around the interface
intuitively. Spatial arrangement within the editor is based on impor-
tance, with navigation elements at the top and views below. For di-
recting the attention of users between elements, strategic use of color
is implemented. In order to for example promote interactivity, inac-
tive buttons are greyed out and hover effects for buttons are applied
to focus attention and deliver visual cues [29, 67]. It is important for a

3.3 user interface concept 31

system to always communicate clearly what is happening at the time.
All buttons and other user interface elements used in the QuestJs pro-
totype are, where necessary, appropriately labeled and colored. All
animations used in the prototype conform to patterns already known
to users [29].

3.3.1 Full Screen View

For the QuestJs prototype, initially a large full screen design was cho-
sen, as can be seen in Figure 9. On figure 9, a multi-column layout
is conceptualized. It has one row of buttons on the upper part of the
screen and several corresponding input and output windows on the
middle lower part of the screen. The buttons are meant for activat-
ing and deactivating the column-like windows of the lower part of
the screen, thereby hiding or revealing them within the user’s field
of view. This technique gives users full flexibility in choosing their
own layout depending on their needs. On Figure 9, a wireframe of
the QuestJs editor can be seen. On it, from left to right, the follow-
ing views are active: HTML, CSS, JavaScript, Console and Output, as
can be seen by inspecting the navigational buttons. The Column be-
low the buttons matches the label on the button. In this case, users
have four input windows (HTML, CSS, JavaScript and Console) and
one Output window, where the compiled code can then be viewed.
Arguably, the console is also an output window, since it is able to
for example to output debug information. It is a two-way view. On
large screens, the flexibility of this layout provides a direct overview
of every part of the development process involved. The advantages of
this layout become apparent in Figure 10 : Views can be opened and
closed at will via a press of the button. The button then changes to a
darker color in order to provide a visual cue for the columns hidden
status. Users are nowadays already conditioned to associate darker
colors with inactivity [29].

32 concept

Figure 9: A high-fidelity wireframe for the QuestJs editor.

In some situations for example, if one of the exercises requires only
JavaScript code and its results to be viewed, windows from the editor
can be hidden at will by users by pressing the corresponding buttons.
An example of this can be seen in Figure 10. As the button is pressed,
the corresponding window is hidden from view. The remaining win-
dows then take up all the remaining space improving visibility for
the user.

Figure 10: A view of the QuestJs editor with some windows inactive.

3.3 user interface concept 33

Teachers are able to decide which features of the editor they want
to make available to the students. Depending on which views are
necessary for the current task, the others are removed from the site.

As an example, users could have the task to write some HTML code
and style it via CSS in a certain way. For this task, only the HTML and
CSS input views, as well as the output view, would be needed. Ed-
ucators could then initialize the editor in this way for the users as
can be seen in the wireframe in Figure 11. This approach brings a
number of advantages related to didactic reduction [28]. Since only
the views needed are shown, users would not be overloaded with
unnecessary information and possibilities. It is therefore easier for
them to focus on the tasks at hand [22, 77]. This reduction can be ap-
plied to a number of scenarios in the web development context. Other
prominent examples would be a JavaScript view and the console in a
two-window scheme for JavaScript training or the JavaScript, HTML
and output view in order to learn better on-site scripting.

Figure 11: A view of the QuestJs editor with reduced views.

3.3.2 Compact View

In compact mode, the navigation changes from a navbar-multi-column-
layout, to a single column layout using navigational tabs. This way,
only one view is visible at a time, making it suited for smaller de-
vices. Figure 12 shows a wireframe of this compact view. The navi-
gation bar is reduced to tabs. The only way to view content in this
mode is inside of the one-column layout. Users can switch between
different input and output views by clicking the tabs at the top. Clos-

34 concept

ing a tab permanently is impossible. The content is always preserved
and users can switch between the different views.

Figure 12: A view of the QuestJs editor in compact mode.

Since the semantic behaviour of both the large and compact view
are identical, a button is added to the user interface, that lets users
switch freely between the two. This way, users on all devices can use
the view that best fits their requirements.

3.3.3 Buttons

A number of buttons are introduced to the editor. Buttons are needed
for navigation in large mode as can be seen for example in Figure 11.
A button to navigate between the large and compact view is added
as well. A drop-down-menu allows users to choose and integrate
a pre-defined assortment of external JavaScript-based libraries. An-
other button lets users run the code and therewith the tests. The li-
braries drop-down-menu is optional. Educators decide if it is shown
to the users or not, depending on their level of knowledge and the
context of their tasks.

3.4 testing concept

Finally, a concept is needed for educators and also users to see if the
code written by them fulfills the functional requirements of the exer-
cises. A mix of manual marking and automated testing is proposed.
Teachers are able to write tests for the code and pass them on to users

3.4 testing concept 35

together with the exercises. The Chai.js assertion library is used for
this purpose. The tests run automatically whenever the code is exe-
cuted and the inline frame containing the output view is refreshed.
A view containing test results is also present for users to see their re-
sults as shown in Figure 13. Chai.js is an assertion testing library that
runs in the browser. For QuestJs, the implementation in the browser
is used, since the editor runs client-side only. It was chosen from an
array of possible testing libraries because of its capability to run in-
side the browser. As a simple example, the users could be given some
numbers and the task to write a JavaScript program, which multiplies
these numbers a certain amount of times and then stores them to an
array. The assertion tests seen in Listing 2 could be passed to the
editor by the teacher to be run on their code.

Listing 2: Chais.js assertion testing examples.

1 assert.isArray(myArray, 'is array of numbers');

2 assert.include(myArray, 7, 'array contains 7');

3 expect(myArray).to.be.an('array').that.includes(2);

4 expect(myArray).to.have.lengthOf(5);

In the tests from Listing 2, the teacher first asserts that the users
have created an array using the method assert.isArray(). Then, they
could use the method assert.include() to make sure the correct re-
sult, in this case seven, is stored inside the array. This can be repeated
if there were multiple results. Depending on the return values of the
tests, a positive or negative color-coded user interface signal will ap-
pear inside the testing window with a corresponding message as can
be seen in Figure 13. The text next top the symbol is describing the
nature and requirements of the test.

36 concept

Figure 13: A view of the editor in compact mode showing the testing tab.
The green symbols indicate successful tests, while the red symbol
indicate tests, that have not yet run successfully.

3.5 advantages in regards to local ide’s

This concept has a number of advantages when compared to tradi-
tional integrated development environments. Since it is in the browser
only, users do not have to set up their own local programs. Setting up
ones own environment has some intricacies and may take a long time
when done for the first time. Users may use the QuestJs prototype in-
stantly and without any possible setup complications. It is therefore
very beginner-friendly and may prove a positive experience for our
target group. Since the editor runs client-side only, very quick UI feed-
back is possible. This may provide a comfortable working experience
and can prove adequate for the upcoming programmer, as remains to
be seen.

3.6 use cases

The question which use cases exist for the QuestJs editor still remains.
Naturally, it can be used by first or second semester students within
web development courses, for example to solve exercises posed by
teachers in class or as homework. This way, educators can directly
see the work that has been done and, if they want to, provide feed-
back to students. Students can work on coding challenges in flipped
classroom scenarios [68, 81] and perform peer-review or pair pro-
gramming [58] to assess their performance. In another use case, other
users wanting to learn JavaScript can use the editor to work on cod-
ing challenges. Educators or content creators can develop powerful

3.7 possible complications and limitations 37

assertion tests in order to provide exact feedback and mostly auto-
mate the experience for users. It requires some preparation, but this
way, JavaScript and web development can be taught to an audience
remotely.

3.7 possible complications and limitations

The QuestJs in-browser development environment has many advan-
tages compared to traditional integrated environments as mentioned
before. However, there are also a number of problems that may arise
when using it. One limitation is program length. Once programs be-
come too long, users have to do a lot of scrolling in order to find their
way around their programs, since only one file can be used. Espe-
cially in compact view, with a limited window width, long programs
could become a problem. Another problem is posed by experienced
coders. Users who already bring advanced programming experience
to the lessons may feel incomplete with this editor, since functionali-
ties such as Multi-File-Support have been purposefully omitted. They
may be used to their own setups and plug-ins and would rather use
those. They may therefore have trouble adapting to the straightfor-
ward approaches of the QuestJs editor. Since it is a prototype, it is
expected to produce any number of other technical or user interface
problems.

4
I M P L E M E N TAT I O N

This chapter discusses the implementation of a prototype. It provides
technical information about the system, including design decisions
taken, and an outline of structures, data flows and underlying tech-
nology.

4.1 technological decisions

Before developing QuestJs, a series of technological decisions had to
be taken. Nowadays, we live in a world with a plethora of develop-
ment languages with between 700 and 25,000 active programming
languages in use depending on whom one asks [2, 60]. Every year,
new development tools, frameworks, libraries and programming lan-
guages are developed an released. As such, it is difficult to make in-
formed decisions. When deciding which technologies to use, there are
many sources for information, like for example medium.com1, stack-
overflow.com2 and other high quality blogs, publishing platforms and
informative websites. For the QuestJs prototype editor, only JavaScript
is an option, because of its ability to dynamically compile in the
browser and provide instant feedback to users. Also, the Backstage
system is implemented using React.js3. Using React.js is therefore a
requirement for the system reported about in this thesis.

4.2 single page applications and their frameworks

A Single-Page Application (SPA) is a web application that keeps in
touch with users by dynamically changing the current page rather
than loading entire new pages from a server [53]. This approach
averts interruption of the action between consecutive pages, making
the application behave more like a desktop application. In an SPA,
either all necessary code – HTML, JavaScript, and CSS – is fetched
with a single page load or the appropriate resources are dynamically
loaded and added to the page as necessary, usually in response to
user actions [75] or because or large load sizes. The page does not
reload at any point in the process. Interaction with single page ap-
plications often involves communication with the web server behind
the scenes. This process is possible because of JavaScript adding and
removing elements from pages. Websites have been using more and

1 https://medium.com/
2 https://stackoverflow.com/
3 https://reactjs.org/

39

40 implementation

more JavaScript since its introduction in 1995. Because of growing net-
work speeds and machine power, it is now in many cases possible to
stay on one page and let JavaScript manage the complete UI [75]. In
the case of QuestJs, there is no server communication implemented,
because it is not needed. Backstage is implemented as a single page
application, which is why QuestJs is also an SPA. Many successful
frameworks exist for JavaScript. For example AngularJs4, Vue.js5 or
Ember.js6. For the QuestJs prototype, React.js7 is a requirement set by
the project and is thus being used for its implementation.

4.3 react.js

React.js is a JavaScript based library revolving around components
for building user interfaces. It is developed and maintained by Face-
book and an active community of developers. React.js was created in
2011 by Jordan Walke and has since then grown into one of the most
used web development libraries worldwide. As a front-end library,
React.js is used to build reusable encapsulated components for the
web [26]. These components can then be combined to build complex
user interfaces. Notable characteristics of React.js include the follow-
ing:

• Declarative. Since React.js uses a declarative component com-
position style, code is predictable and easier to debug.

• Component-based. React.js components are encapsulated and
manage their own state. They can then be composed into more
complicated user interfaces [26].

• React.js is a library. React.js does not make presumptions about
the rest of the stack in use. As such it is usable together with all
kinds of software. This makes it very reusable as a library and
attractive for developers to learn.

• Virtual DOM. In React.js, for every DOM object, there is a fit-
ting virtual DOM object. A virtual DOM object is a represen-
tation of a DOM object. A virtual copy of the original DOM is
created. The advantage to the real DOM is that nothing has to
be rendered in order to update the virtual DOM - it is a one-way
data binding [26].

• JSX is a way of writing HTML code mixed with JavaScript. JSX
can best be thought of as a markup syntax that very closely
resembles HTML itself [26].

4 https://angularjs.org/
5 https://vuejs.org/
6 https://www.emberjs.com/
7 https://reactjs.org/

4.4 inline frame 41

React.js is supported by Facebook and therefore is expected to have
an extended lifetime. Since every framework requires some getting
into and learning, React.js is a good choice, because it is one of the
most popular current frameworks. As such, it is a good thing to learn
how to use this framework.

4.3.1 React.js Props

Props8 in React.js are used to pass information from a parent com-
ponent to a child component. This information can for example be
objects in JSON format, strings, numbers or functions. The "props"
object is immutable. Props are useful because they enable reusability.
When data or content should change inside a component, props are
used to enable this behaviour [26].

4.3.2 React.js State

The State9 property is very important in many React.js class com-
ponents. React.js monitors components for changes and re-renders
whenever an update is detected. React.js lifecycle methods can be em-
ployed to manage this process more effectively. The state is usually
used as a private state. It manages and encapsulates the state of that
particular component. The idea behind this concept is to make com-
ponents reusable and independent [26].

4.4 inline frame

The HTML Inline Frame element10, also known as iframe or <iframe>,
is an important part of the editor. These names all refer to the same
HTML element. The inline frame element represents a nested brows-
ing context that can be embedded into the current HTML page. Each
embedded browsing context has its own active document and ses-
sion history. It is effectively a website inside a website. The use of
inline frames in general has to be done very carefully, since it can be
resource hungry. Because each embedded browsing context created
by <iframe> is itself a complete document environment, every use of
<iframe> within a page can cause substantial increases in the amount
of memory and other computing resources required by the document
overall [27]. The more iframes, the more strained the resources of the
enveloping system. For the editor, only one iframe is used to render
and display the combined output. Inline frames are known to pose

8 https://reactjs.org/docs/components-and-props.html
9 https://reactjs.org/docs/state-and-lifecycle.html

10 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

42 implementation

significant security risks111213 as can be confirmed from several en-
tries in, for example, the American national vulnerability database14.
[90]. Iframes can be used to load malicious payloads onto sites from
so called distribution sites [50]. Injected content can then be hidden
using zero-pixel-iframes [50]. In a typical attack, the user would first
visit the page and download the initial exploit script via, for example,
an inline frame. The exploit script then targets a vulnerability in the
browser, one of its plugins or one of its expansions. If the vulnerabil-
ity is successfully exploited this results in the automatic execution of
the exploit code, thereby triggering a drive-by download of further
malicious code [50].

4.5 the function eval()

The function eval() passes a string to the JavaScript compiler and ex-
ecutes the result as JavaScript code. It is used within the QuestJs ed-
itor’s code to execute assertion tests and to run JavaScript code that
has been written in the console by users. It is therefore responsible for
key features. The function eval() genereally compromises the secu-
rity of applications because of it granting too much authority to code
passed to the function eval(). It threatens the performance of code
as a whole since code passed to eval() cannot for example be cached
[21]. Uses of the function eval() are very flexible. The function eval()

also posses a significant number of dangers. It is not recommended in
general to use it often. Its practice is known to pose security risks [52,
79]. Especially in conjunction with inline frames, the function eval()

has some risk to be abused. In attacks such as "clickjacking", a users
session can be hijacked by attackers using inline frames [72]. Since
eval() can be used to dynamically create new scripts within the page,
potential for abuse by attackers is very high [90].

4.6 data flow

This section explains the data flow within the editor as can be seen in
Figure 14. In the default scenario, users write code in the three input
fields present: HTML, CSS, and JavaScript. The written code is then
appended to the inline frames document object model and rendered
using React.js. The HTML code is directly added to the document
body using innerHTML, the CSS code is appended to the DOM as a
style sheet, and the JavaScript code is joined using a script tag. Within
the inline frame component, it is then executed using the function
eval().

11 https://nvd.nist.gov/vuln/detail/CVE-2018-0355

12 https://nvd.nist.gov/vuln/detail/CVE-2017-12258

13 https://nvd.nist.gov/vuln/detail/CVE-2017-7830

14 https://nvd.nist.gov/

4.6 data flow 43

Figure 14: Data flow within the editor. The flow starts from the user who
writes code and flows downward to the point where the output
is displayed within the inline frame. The console can be used to
interact with the inline frame or to output debugging informa-
tion.

Figure 15 depicts the way the inline frame is assembled step by step.
When the user clicks the Run-Code button, the re-render is triggered,
and the code written within the editor windows gets transferred. At
first, a inline frame element is newly created as a parent. Its inner-
html15 property is set to the HTML code received by the editor win-
dows. A loop runs through an array of chosen library scripts and ap-
pends them to the head of the document. Afterwards, the style sheet,
if already existent, is replaced with the CSS code received from the
CSS input editor window. If non-existent, it is newly created, based
on the CSS code received. It is then appended to the inline frame’s
document head16. Finally, a script element is created. Its innerHTML
is set to the JavaScript code received from the JavaScript editor and
appended to the head of the inline frame as well.

15 https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
16 https://developer.mozilla.org/en-US/docs/Web/API/Document/head

44 implementation

Figure 15: The sequence of execution within the inline frame. HTML, CSS,
JavaScript code and library scripts are assembled in this order.
The inline frame then gets rendered into the output window.

4.7 features 45

4.7 features

In this section, the implementation of the features for the QuestJs
editor are described.

4.7.1 Developer Console

Implementing the developer console was a challenge, since it has
to function on the inline frame’s scope. With the current implemen-
tation, the console retains its history, even if the viewing mode is
changed. Tabs in compact mode are hidden and therewith invisible
but are actually always present in the background. The developer
console is an approximation of the Chrome development console17

and supports some of its features. Since it operates within the scope
of the inline frame it can be used to access and debug within this
scope. Errors occurring in the code written by users can be logged
and displayed on the console. Additionally, it is capable of displaying
nested objects, executing functions and generally operating on the
inline frame’s scope.

Figure 16: The developer console feature. It allows users to write input
queries in some ways similar to the Chrome Development con-
sole. Since it works on the scope of the inline frame, it can be
used to debug JavaScript code. Console.log() statements can for
example be written within the JS editor and output can be gener-
ated via the console.

17 https://developers.google.com/web/tools/chrome-devtools/console/

46 implementation

Figure 16 shows the developer console tab within the compact ed-
itor. The green text represents user input. As can be seen in the pic-
ture, dot notation18 can be used to access nested values. They are then
printed to the console in white letters. Red script is used to print out
errors happening in the JavaScript code. For the implementation, jq-
console19 is used as a base. It provides methods to write and receive
from the console. It also provides a console-like user interface. The
communication between inline frame and console is implemented us-
ing React.js. The parent editor window receives all user input from
the console and sends it to the inline frame. There, it is executed us-
ing the eval() function. Error handling is implemented here as well.
If an error occurs, the error message will be printed to the console
in red. If the message received by the inline frame was an object, an
additional step to enable readability is performed. If not, the answer
will be returned as a normal string.

4.7.2 Error/Success Logging

One especially complicated feature to implement was the error log-
ging. When an error occurs inside of the inline frame’s context, it is
not easy to transfer it to the console for the user to see. The way that
makes it possibly is using the postMessage()20 function of the Window
API. It safely enables cross origin communication between windows
- in this case between the actual window and the inline frame. This
way, either a ’success’- or ’failure’-message is dispatched whenever
the inline frame renders. This feature allows error messages to then
be displayed in the console. Additionally, a UI element appears at the
top of the screen to indicate an error and show its detailed stack trace
(S. Mader 2018, personal communication, 19 December).

4.7.3 Full Screen Mode

The full-screen mode, as can be seen in Figure 17, initially shows
every view enabled by the teacher. In this case, from left to right, it
would be three input windows for HTML, CSS and JavaScript code.
They are followed by console, the UI for the automated tests and
finally the output view showing the compiled results. Views can then
be disabled using the blue navigation buttons in the top navigation
bar as described in Section 3.3.1. The editor windows for coding can
be scrolled sideways. The scroll bars can be seen on the bottom of the
picture.

18 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_accessors
19 https://github.com/replit-archive/jq-console
20 https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

4.7 features 47

Figure 17: The QuestJs prototype in fullscreen mode.

As can be seen in figure 17 and 18, syntax highlighting has been
successfully implemented for the HTML, CSS and JavaScript editor
input windows. Figure 18 shows the full screen mode with every
column collapsed except JavaScript and Console, exactly as it was
conceptualized in Figure 10 from Chapter 3.

Figure 18: The QuestJs prototype in fullscreen mode, with two views active.

4.7.4 Compact Mode

In compact mode, tabs are managed via the top navigation bar. When-
ever a tab is clicked, all the other views are hidden via CSS21. On
Figure 19, the compact mode can be seen. In the top right corner on
the image, the implementation of the "Run Code"- and "Go to Full
Screen"-Button can be seen. Well known designs have been chosen

21 https://developer.mozilla.org/en-US/docs/Web/CSS/display

48 implementation

as icons for these buttons. Most users are conditioned to instinctively
understand what these buttons do.

Figure 19: The QuestJs prototype in compact mode, with the JavaScript edi-
tor active.

4.7.5 Library Loading

Libraries, chosen by the users via the drop-down menu, are loaded
using JavaScript Promises22. Promises can be used when writing asyn-
chronous code and represent the eventual completion or failure of
an asynchronous operation and its value. A promise guarantees that
callbacks will never be called before the completion of the current
JavaScript event loop23. The method then() can be used to chain
promises in a way that is easier to read as deeply nested callback
functions. Libraries that have been selected by users via the drop-
down menu are wrapped into promises. Once they all finished load-
ing, they are appended to the DOM. This is guaranteed to happen
before the inline frame is rendered. This method guarantees libraries
to be successfully loaded into the inline frame. A corresponding code
snippet showing the implementation can be seen in Listing 3. In this
case, Promise.all()24 is used in order to await the successful load
of every library. An Array called libraryScripts, which is assembled
by the user’s choice of libraries, is converted into promises. The cor-
responding JavaScript scripts are then appended to the head of the

22 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
23 https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
24 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

4.7 features 49

document. The execution only moves on to the statement .then()25,
once all scripts are loaded.

Listing 3: This code loads external library scripts before rendering. It waits
for each library script chosen by the user to be successfully loaded
and only then moves on with the execution.

1 Promise.all(

2 libraryScripts.map(

3 mappedScript =>

4 new Promise((resolve, reject) => {

5 const newScript = document.createElement('script');

6 newScript.async = true;

7 newScript.src = mappedScript;

8 // trigger fulfilled state when newScript is ready

9 newScript.onload = resolve;

10 // trigger rejected state when newScript is not found

11 newScript.onerror = reject;

12 document.head.appendChild(newScript);

13 })

14)

15)

16 .then(() => {

17 this.props.handleScriptsLoaded();

18 // success : all promises fulfilled!

19 })

20 .catch(error => {

21 // error : some error occurred in the promises.

22 console.log(error.message);

23 });

4.7.6 Automated Assertion Tests

Testing has been implemented using the Chai.js assertion library26.
As can be seen in Figure 20, a user interface has been implemented,
that can show the results of assertion tests passed to the editor by
teachers.

25 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
26 https://www.chaijs.com/

50 implementation

Figure 20: The testing view in compact mode. Green check marks indicate
successful test runs. Red boxes indicate failed tests. Tests can be
refreshed by running the code.

The corresponding class will accept an array of tests made up from
an id, a title, a description and the result, which can be "successful" or
"failed", represented as a boolean. The tests themselves are written by
educators in a simple string format. The function eval()27 is used to
execute the tests on the inline frames context. The tests update when-
ever the "run-code" button is pressed. This is where the assertion tests
run on the code written by users. The UI is then updated accordingly.
Whenever a test fails, an error is thrown within the function eval().
Such testing errors can then be caught and the testing view can be
refreshed respectively.

Concluding this chapter, a prototype has successfully been imple-
mented with most of the features aimed for well completed.

27 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

5
S T U D Y A N D R E S U LT S

Previously, a prototype for a JavaScript online learning tool was suc-
cessfully implemented. Its implementation process was reported on
in chapter 4. In this chapter, a method for testing the usability of the
QuestJs editor is chosen. Results of a study about its user interface
are shown and explained. Insights from the study are analyzed and
interpreted.

5.1 methodology

In this section, current methods for usability studies are explained
and one is chosen for the study. Usability problems that are to be
solved are introduced and examples are provided.

5.1.1 Testing Methods

In order to successfully test the prototype in regards to its usability
and performance, a testing method was chosen. There were several
scientific methods to establish the usability of software. The following
methods for testing exist:

• Retrospective Think Aloud (RTA) studies ask participants to
recount their voyage through the prototype after the actual test-
ing is done. This allows users to reflect on what they experi-
enced. They sometimes view a video of their testing session
and may comment on it while doing so [83].

• Concurrent Think Aloud (CTA) is used while the participants
of the study are interacting with the prototype. They would
then report on their impressions during the testing session. The
idea is to encourage test subjects to talk aloud, so that a maxi-
mum amount of valuable feedback can be gained [14, 19].

• Retrospective Probing (RP) is used in a way that researchers
wait until the testing is done and then ask questions afterwards
[14].

• Concurrent Probing (CP) is used while the participants of the
study are interacting with the prototype. Researchers are then
allowed to ask questions in between whenever the participants
say or do anything of interest.

51

52 study and results

• Moderated Usability Testing is related to live discussions. Testers
and researchers meet in person and discuss the prototype. Any-
one may ask and answer questions. This method is recommended
during the design phase and is therefore not suited for com-
pleted prototypes [24].

• Focus Groups. This method of usability testing brings together
a group of testers between six and twelve in size. Their task
is then to discuss and evaluate the features of the prototype.
There may also be a moderator present who probes further. This
method is very helpful in assessing users needs, feelings and
preferences [46].

Think Aloud studies are the dominant method in usability testing
[48, 83]. The CTA method usually results in significantly more prob-
lems detected by means of observation only. The RTA method, on the
other hand, proves significantly more rewarding in revealing prob-
lems that were not observable, but could only be detected by means
of articulation [83]. Results [33, 83] indicate, that the CTA method
reveals valuable task-oriented feedback. One drawback of the CTA
method is its interference with usability metrics such as timings and
speed. When users talk aloud, they are not as concentrated and there-
fore not as quick. The CTA method was chosen to analyze usability of
the QuestJs prototype, because of its capability to collect a maximum
amount of qualitative feedback.

5.1.2 Typical Usability Problems

The question which typical problems can be solved with usability
tests still remains. Here are some examples for usual problems, that
give hints to what was tested within this study [30]:

1. Users don’t know where to start.

2. Users don’t know which possibilities are at their disposal.

3. Users look for features they would expect to be present, but
they do not exist.

4. Users don’t know how to progress along their path at some
point.

5. Users are unable to see important UI elements on certain pages
of the site.

6. Users are not sure about where exactly they are on the site at a
certain moment in time.

These problems played an important role for evaluating the results
of the Think Aloud study. In Chapter 3, a concept was shown, that

5.2 study design 53

tries to be as accessible and intuitive as possible. Users were expected
to not run into many difficulties due to the design principles that
were taken into consideration.

5.2 study design

The goal of this user study was to evaluate the QuestJs editor and
its features. For the study, participants had to solve three coding
challenges with increasing difficulty. A total time of 45 minutes was
planned for each participant, with a time limit of 30 minutes for cod-
ing challenges. This way, there was still time to fill out the question-
naire and receive feedback. The screens of users were recorded using
the QuickTime player on a MacBook Pro and voice was recorded us-
ing a LG Samsung Galaxy S7 smart phone. Before the study began,
participants were quickly briefed about the concept of a Think Aloud
study and that they were supposed to talk about their experience. Ad-
ditionally, the purpose of the study and the QuestJs editor was briefly
explained to participants. Participants were allowed to use Search En-
gines and the internet freely during the study in order to look up
syntax and other knowledge that could help them solve the exercises.
They were, however, not allowed to use other online coding tools such
as CodePen1 or IDEs in order to solve their tasks.

5.2.1 Exercise 1

The first exercise was a simple "Hello world!" style task. It required
participants to use the JavaScript coding window. Additionally, the
console view was introduced here and used with console.log(). The
full exercise can be seen in Appendix A. Participants had to write one
function and declare one variable to pass the automated tests defined
for this exercise. Assertion tests using Chai.expect() for the task were
designed as follows:

Listing 4: Assertion tests for Exercise One.

1 Chai.expect(helloWorld).to.be.a('function');

2 Chai.expect(parameterVariable).to.exist;

3 Chai.expect(parameterVariable).to.equal('Hello World!');

5.2.2 Exercise 2

The second exercise introduced more HTML manipulation as can be
seen in Appendix A. Users needed to use HTML tables2 to generate
a Sudoku board from a given multi-dimensional array and render it

1 https://codepen.io/
2 https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

54 study and results

to the page. Usually this task required some knowledge of the docu-
ment3 interface, since HTML elements needed to be manipulated us-
ing JavaScript. Errors were expected to occur here. Users could then
naturally use the development console to debug and remove errors.
Syntax errors were noted by the static syntax checking included in
the QuestJs editor.

5.2.3 Exercise 3

Participants needed to solve a coding challenge involving nine but-
tons arranged in a three-by-three grid for this exercise as can be seen
in Appendix A. The buttons were numbered from one to nine. When
the middle one of the nine buttons was pressed, the outer buttons
were supposed to rotate their numbers clockwise. This exercise re-
quired participants to use all of the three editors, since they needed
to write HTML, CSS and JavaScript code. In order to solve this puzzle,
many approaches could have been chosen. One of the most straight-
forward solutions would have been to store the numbers on the but-
tons as an array and insert them into the HTML buttons via inner-
HTML4 using the Element API. Errors were expected to occur and
to be solved using the static syntax checking and the development
console.

5.2.4 Questionnaire

A Questionnaire was designed to supplement the Usability study
with insights into the feelings of the participants. The Questionnaire
was filled out after the exercises had either been completed or the 30

minute time limit had run out. It contained twelve questions regard-
ing usability as can be seen in Table 3 and Appendix B. Another four
questions allowed participants to answer with a couple of sentences
of free text and give specific feedback in regards to the prototype
they were using. A five point Likert scale was used in question one to
twelve [3] within this survey. Participants rated with statements rang-
ing from "Strongly Disagree" to "Strongly Agree" as can also be seen
in Figure 3. Two of the statements within the survey, number two and
10, were negated in order to make sure participants read everything
carefully.

5.3 participants

For the study, a total number of six participants had been chosen to
use the editor. All of them had been specifically selected for the study

3 https://developer.mozilla.org/en-US/docs/Web/API/Document
4 https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

5.4 measurement criteria 55

due to their pre-existing knowledge about JavaScript and web devel-
opment in general. All of them are experienced developers. Users
without prior knowledge would not have been able to solve the cod-
ing challenges or use core features of the editor, like for example the
developer console. Having had advanced users also provided better
feedback, since they had a direct comparison to other IDE’s, were
used to development tools and could provide valuable feedback in
regards to usability in terms of real software development.

5.4 measurement criteria

For measuring the success of the study, a set of criteria was defined.
According to research by Hornbæk et al., certain measurement crite-
ria for usability are especially effective and used a lot in evaluating
usability [35]. Among them are the following:

1. Effectiveness: Number of tasks completed in the space of 30

minutes.

2. Errors: Number of bugs encountered. These can be conventional
errors or usability problems as explained in Section 5.1.2.

3. Variety and Learning: Number of features discovered and ac-
tively used.

Metrics for measuring usability in software products have also been
established by the international standard organization in 2004 [39, 44]
and have been renewed in 2016 [38, 40]. These metric had been consid-
ered, but were proving to go beyond the scope of this usability study.
Preliminary tests had shown, that Exercise One could be solved in un-
der five minutes. Exercise Two was expected to take about 10 minutes,
with another 15 minutes left for Exercise Three. The results of the
questionnaire, filled out by participants after the coding challenges
were completed, were used to gather qualitative feedback regarding
usability of the prototype. Statements from participants of the Think
Aloud study were gathered and presented in compact form.

5.5 execution

The study was conducted at the facilities of the Bayerischer Rundfunk
in Munich in December 2018. Six software developers aged 24 to 32

took part and successfully completed 30 minutes of challenges and
15 minutes of combined preparation and questionnaire. Their Audio
and Screen were captured. Beforehand, each of the participants had
received a short explanation regarding the goals of the study and
what they had to do, that is use the prototype to solve the coding
challenges. The study was performed on a MacBook Pro system, with
two large 27-inch iMac monitors attached to it.

56 study and results

5.6 results

This section contains the results of the user study. In detail, it entails
usage statistics, results of the multiple choice questionnaire and gen-
eral feedback from the participants.

5.6.1 Usage Statistics

As can be seen in Table 2, Exercise One has been solved on average
after 4 minutes and 13 seconds, as expected. The large mode has been
discovered after, on average, 2 minutes and 50 seconds. One user has
discovered it after only 13 seconds. This user, S2, also discovered the
Run-Code button after 40 seconds and the Large Mode Tabs after 1

minute 20 seconds. They discovered the console very quickly after
just 30 seconds. They employed the strategy of first going through all
the features of the editor and then starting the exercises. Participant
S6 never discovered the console, since they did not use it to solve
exercises at all. They employed the strategy of running the code and
then analyzing the output window only.

Table 2: Timings of each participants of the study in minutes and seconds. It
depicts when they completed tasks or discovered parts of the user
interface for the fist time. It also shows the average time for each
event.

ACHIEVE-

MENT:

Task 1

Solved

Large Mode

Discovered

Run Code

Button

Discovered

Error

Message

Discovered

Compact

Mode Tabs

Discovered

Large Mode

Tabs

Discovered

Console

Discovered

S1 3:58 2:03 2:40 14:30 1:23 2:30 32:40

S2 3:42 0:13 0:40 26:30 0:30 1:30 0:30

S3 3:30 5:15 2:45 2:50 0:30 6:11 28:25

S4 4:20 3:10 3:01 24:01 2:55 12:13 14:00

S5 6:30 4:02 5:35 5:40 3:12 1:20 16:10

S6 3:20 2:20 3:05 9:30 1:30 3:11 -

Averages 4:13 2:50 2:57 13:50 1:40 4:29 18:21

5.6.2 Questionnaire Results 1 – Likert Scale

As can be seen in the results in Table 3 and Appendix B, most users
had a positive user experience with the editor. Question number three
and ten had been reversed. The reversal can clearly be seen in the
pattern of answers. Users disagreed on question 1,2,5,7 and 12 with 2

users disagreeing on question 12. All other answers have been either
neutral or positive.

5.6 results 57

Table 3: Questionnaire results. These are statements from the questionnaire
and how participants answered them on a Likert scale.

STATEMENTS:

I
q

u
ic

k
ly

 u
n

d
er

st
o

o
d

 t
h

e
u

se
r

in
te

rf
ac

e.

I
fo

u
n

d
 t

h
e

el
em

en
ts

 i
 w

as
 lo

o
k

in
g

fo
r.

Sw
it

ch
in

g
b

et
w

ee
n

 e
d

it
o

rs
 w

as
 h

ar
d

.

T
h

e
la

rg
e

ed
it

o
r

h
el

p
ed

 m
e

ga
in

 a
n

 o
ve

rv
ie

w
.

In
te

ra
ct

io
n

 w
it

h
 t

h
e

co
n

so
le

 f
ee

ls
 n

at
u

ra
l.

E
rr

o
r

m
es

sa
ge

s
h

el
p

ed
 m

e
fi

n
d

 e
rr

o
rs

.

I
fi

n
d

 t
h

e
ed

it
o

r
su

it
ab

le
 f

o
r

b
eg

in
n

er
s.

B
eg

in
n

er
s

h
av

e
an

 e
as

ie
r

ti
m

e
ge

tt
in

g
in

to
 c

o
d

in
g

w
it

h
 t

h
is

 e
d

it
o

r.

T
h

e
o

m
it

te
d

 f
il

e
m

an
ag

em
en

t
re

d
u

ce
s

co
m

p
le

xi
ty

.

T
h

e
m

is
si

n
g

se
tu

p
 p

ro
ce

ss
 m

ak
es

 s
ta

rt
in

g
o

u
t

m
o

re
 d

if
fi

cu
lt

.

I
w

o
u

ld
 h

av
e

h
ad

 a
n

 e
as

ie
r

ti
m

e
ge

tt
in

g
in

to
 J

av
aS

cr
ip

t,
 i

f
I

h
ad

 h
ad

an
 e

d
it

o
r

w
it

h
 r

ed
u

ce
d

 c
o

m
p

le
xi

ty
.

I
w

o
u

ld
 r

ec
o

m
m

en
d

 t
h

is
 e

d
it

o
r

fo
r

fi
rs

t
se

m
es

te
r

st
u

d
en

ts
.

Strongly Disagree 2 4

Disagree 1 1 3 1 1 2 1 2

Neutral 1 2 2 1 1 2 1 2 1

Agree 4 4 2 2 2 2 2 3 3 3

Strongly Agree 1 1 2 1 3 2 2 2

5.6.3 Questionnaire Results 2 – Text

This section explores the free text answers collected within the Ques-
tionnaire as can also be seen in original form in Appendix C.

Regarding question number 13, "Which features did you find espe-
cially useful?", users have positively mentioned:

• Using the Large Mode on Big Screens (n = 2)

• Error Messaging (n = 2)

• Multi-Cursor Support (n = 1)

• Indentation Handling (n = 1)

• Static Error Handling (n = 1)

• The Preview Feature (n = 1)

58 study and results

• Lack of file management (n = 1)

• The UI is not cluttered (n = 1)

For question number 14, "Please note this editor is built for educa-
tion. Do you think any other features could have been useful in this
context? Please explain.", users have positively mentioned:

• Auto-complete (n = 2)

• See generated HTML source code (n = 2)

• Clear Console feature (n = 1)

• Step-by-Step Walk-through (n = 1)

Regarding question number 15, "Do you have any thoughts to im-
prove upon the QuestJs editor? Please explain.", user have written:

• Clear Console Feature. (n = 2)

• Auto-complete or something like Intellisense5. (n = 2)

• Improve Large Mode Column Toggle. (n = 2)

• Add HTML Source View for generated Code. (n = 2)

• Rework Pop-up errors into something better. (n = 1)

• Better Warnings within static code checking (e.g. ’===’ instead
of ’==’). (n = 1)

5.6.4 General Feedback

Since the participants of the study were seasoned software develop-
ers, they were qualified to commentate on the usability and possible
measures to improve the editor. During the Think Aloud study, many
suggestions and ideas could be collected. The most interesting com-
ments have been the following:

• "I would expect visual feedback when I click the Run-Code but-
ton."

• "I would like to be able to clear the console history."

• "The error message immediately told me what was wrong. That
was nice!"

• "This error logging should not move the UI around so much."

• "I am used to a multi column layout from other editors."

5 https://code.visualstudio.com/docs/editor/intellisense

5.7 discussion 59

• "I miss plugins from my IDE."

• "Drag and Drop would be cool to re-size the columns of the
large editor."

• "I enjoy using arrow functions and ES6 within this editor."

• "I do not like the magical assembly of the code in the output
window. I like to know what is going on."

• "Dark mode would be nice."

The original German comments can be found in Appendix C.

5.7 discussion

All participants could solve Exercise One in approximately five min-
utes as anticipated, but became highly delayed on Exercise Two until
their 30 minutes had run out. One possible conclusion to draw from
this is that Exercise Two was too difficult to be completed in 10 min-
utes as was assumed possible for the study. Another problem that
became apparent during the study was that some of the participat-
ing developers were used to their own development environments
and plugins. For example: Hitting CTRL-S to save, format and auto-
completion for the written code was missed by participants. Having
to do everything "manually" took some getting used to for some par-
ticipants and considerably slowed them down. Additional slow-down
was generated by nature of the Think Aloud study, as expected. Two
participants used methods to generate most of their HTML code us-
ing JavaScript with for example the function document.createElement

()6. Some of the participants then complained about a missing source
code view. This problem could be solved in the future with a button
in the output window that lets users toggle between normal output
and source code view. One user suggested, as mentioned in Section
5.6.3, to have an interactive tutorial or feature tour. This could be im-
plemented in the future using for example Joyride7 or other similar
implementations. Such a feature could decrease the time it takes users
to gain a grasp of the system and its features.

Some parts of the editor, like the compact mode navigation tabs,
were easy to understand and were used by participants intuitively as
can be seen by the low time to first use in Table 2. The large mode
itself was also quickly discovered by most users and used extensively
by all except one user, who preferred to use the compact mode. On
the large screens, where the study was conducted on, the large mode
of the prototype made a positive difference and was welcomed by
users. The large mode navigational tabs were harder to spot and not

6 https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
7 https://zurb.com/playground/jquery-joyride-feature-tour-plugin

60 study and results

used as intuitively as the timings of Table 2 clearly indicate. This may
have been due to missing visual cues. One user suggested a drop
shadow or something similar that would identify the navigational
elements as clickable buttons. This way, users could spot them more
comfortably in the future and make use of the improved usability
provided by hiding the a couple of views.

One of the most difficult parts to understand and access for users
was the developer console. Participants of the study struggled to see
that it could be used not only to output data via for example the
function console.log() but could also be used to execute statements
directly in the inline frame’s context. Such functionality was not re-
quired for the exercises. Asking users revealed that some of them
were not used to having a console that works in both ways, as other
online editors did not have this feature. This problem could also be
solved by introducing a feature tour as stated earlier. On the other
hand, the console could initialize with a short greeting and very ba-
sic set of displayed functionality. As a last resort, a "help" command
could be implemented to allow users to gain an overview or docu-
mentation.

Concluding this chapter, it can be said, that the QuestJs editor has
proven to be largely usable by experienced programmers. Users were
able to experience a majority of features without delay. The fact that
Exercise Two was only completed by one participant is attributed to
differing individual skills and predictions about timings that were
too optimistic. Most participants of the study recommend this tool
for students starting out with web development. With advantages
like the missing setup process, users are able to commence coding
quickly and evade some of the early frustrations that usually accom-
pany users when starting in software development.

6
C O N C L U S I O N A N D P E R S P E C T I V E S

Previously, a prototype for a JavaScript online learning tool was suc-
cessfully implemented. A usability study was conducted in order to
assess its usability and its results were reported on and analyzed in
chapter 5. In this chapter, possible future improvements and direc-
tions are shown and the project is concluded with a summary.

6.1 perspectives

The QuestJs editor can be improved upon in the future in a num-
ber of ways. Participants of the user study already provided various
suggestions for enhancement. From a development viewpoint, syntax
auto-completion, a HTML source view and other features could be in-
troduced to improve the system. From a user interface point of view,
features like drag-and-drop could be implemented in order to further
increase usability by letting users rearrange editor windows as they
please. Rearranging windows is a feature that was also requested by
participants. Looking at the broader picture, other programming lan-
guages could be integrated into the editor to increase its applicability
outside of the web development context. A client-server architecture
would be required to allow compilation of other programming lan-
guages on servers. This would slow down the process, but increase
its capability. A Back-end could be used to allow real time monitor-
ing of the student’s progress by teachers. Teachers could for example
monitor the amount of tests that return positive results compared to
the total number of students. This way, teachers could decide when
to continue the lesson based on how many students have successfully
completed exercises.

Additionally, the editor could be made available for the general
public. It could be used as a tool for web development novices to start
out with coding. Training exercises could be made available. Looking
even further ahead, motivated content creators could be allowed to
conceive open source exercises for other users as a form of user gen-
erated content.

6.2 summary

This project set out with the goal of making it easier for students to
start with web development by solving some of the problems that
arise when doing so. Challenges were identified, such as frustrations
when starting with coding and troubles with the setup of traditional

61

62 conclusion and perspectives

integrated development environments. Learning a programming lan-
guage and finding the extensive amounts of time needed to start with
programming is also demanding.

With reduced numbers of staff, teachers have to find new ways to
educate larger groups of students outside of traditional settings. A
possible solution is the use of LMS and tools like the prototype devel-
oped in this project, so that a degree of automation is introduced. In
order to reach the aim of having students start coding earlier, state of
the art educational techniques were analyzed and evaluated. Teach-
ers are supported in conducting exercises with larger groups, if they
do not have to worry about many of the previously mentioned issues
which their students could face.

A concept for a browser-based JavaScript learning tool was realized
by analyzing existing online editors and expanding on their strengths.
This concept has a number of advantages when compared to tra-
ditional integrated development environments. Since the prototype
runs in the browser only, users do not have to set up their own lo-
cal programs and tools, which makes it beginner-friendly and saves
time. The editor runs client-side only, which enables very quick user
interface feedback. Users can start coding instantly.

A series of features were developed, that expand upon existing on-
line tools. A developer console was introduced to allow live-debugging
in the browser alongside automated testing. Teachers are now able to
create coding challenges and deploy automated assertion tests. Users
can then receive instant feedback on their progress within the current
task by looking at the results of the tests. Various features, like the in-
cluded library support, turn learning into a positive experience. Many
were positively mentioned in the usability study. The two modes of
usage, compact or full-screen, make it possible to use the editor on a
small device or on a big screen, depending on the need of the user.
The custom error message handling lets users see mistakes in a pop-
up window and sets this project apart from established tools. Using
this feature, errors can be resolved faster. Another feature lets teach-
ers write assertion tests, which can then provide valuable feedback for
students. This way, larger groups of students can be taught employ-
ing teaching methods such as flipped classroom [81], active learning
[43] and scaffolding [63], which are traditionally harder to implement
with bigger groups.

After establishing a Think Aloud study as the preferred testing
method, a usability study was conducted in order to evaluate the
prototype’s performance. Results of the study indicate a positive re-
ception by participants. Five out of six users reported to have quickly
understood the user interface. The usability study has shown that the
editor is usable by experienced developers. Participants of the study
recommend this tool for students starting out with web development.
With advantages like omission of the setup process, users are able to

6.2 summary 63

commence coding quickly and evade some of the frustrations that of-
ten appear in the early stages of starting with software development.

In conclusion, this project shows that technologies such as the QuestJs
prototype appear to be able to solve some of the aforementioned prob-
lems and create favorable conditions for setting out with web devel-
opment.

A
U S E R S T U D Y – E X E R C I S E S

65

QuestJs Usability Study

1) Beginner Level (JS code editor, console, compilation)

Perform the following tasks to complete this challenge:

1) Declare a variable called parameterVariable and give give it the string “Hello World!”.

2) Write a greeting function called “helloWorld” in the editor.

a) Use console.log to print parameterVariable.

2) Sudoku Generator :

Given a multi­dimensional Array, generate a Sudoku­style board. Each Array within the Array

represents one tile of the sudoku with its 9 numbers.

E.g. [5,2,8,9,5,3,1,2,6] would look like this:

5 2 8

9 5 3

1 2 6

[[5,2,8,9,5,3,1,2,6] , [7,2,8,9,5,3,1,2,1] , [9,2,8,9,5,3,1,2,1] , [3,2,8,9,5,3,1,2,3] , [

1,2,8,9,5,3,1,2,3] , [2,2,8,9,5,3,1,2,5] , [8,2,8,9,5,3,1,2,9] , [4,2,8,9,5,3,1,2,8] , [

6,2,8,9,5,3,1,2,7]]

­ Render this Array to a Sudoku Puzzle game board.

­ Use little to no CSS.

­ Use a HTML table with the unique id “sudokuMap”.

­ Give your <tr> elements nine id’s “row1” to “row9”

3) Advanced Level (3 editor tabs, console)

We want to create nine buttons enclosed in a div , laid out so they form a 3x3 grid.

Each button has a distinct label from 1 to 9, and the labels on the outer buttons

must rotate in the clockwise direction each time we click the middle button.

Complete the code in the editor so that it satisfies the following criteria:

● Initial State. The initial layout looks like this:

Element IDs. Each element in the document must have an id , specified below:

● The button container div 's id must be btns .
● The initial innerHTML labels must have the following button id s:

● Styling. The document's elements must have the following styles:
○ The width of btns is 75%, relative to the document body's width.
○ Each button (i.e., btn1 through btn9) satisfies the following:

■ The width is 30% , relative to its container width.
■ The height is 48px .
■ The font­size is 24px .

● Behavior. Each time btn5 is clicked, the innerHTML text on the grid's outer
buttons (i.e., bt1 , btn2 , btn3 , btn4 , btn6 , btn7 , btn8 , btn9) must rotate in the
clockwise direction. Do not update the button id 's.

B
U S E R S T U D Y – Q U E S T I O N N A I R E R E S U LT S

71

QuestJs Usability Study

QUESTION NUMBER 1 2 3 4 5 6 7 8 9 10 11 12

Strongly Disagree 2 4

Disagree 1 1 3 1 1 2 1 2

Neutral 1 2 2 1 1 2 1 2 1

Agree 4 4 2 2 2 2 2 3 3 3

Strongly Agree 1 1 2 1 3 2 2 2

1) I quickly understood the User Interface.

0
1
2
3
4
5
6

Strongly Disagree Disagree Neutral Agree Strongly Agree

1

4

1

2) I instantly found the elements I was looking for.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

1

4

1

3) Switching between code editors was difficult.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

1

3
2

4) The enlarged editor helped me in gaining a quick overview.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

222

5) Interaction with the console feels natural. It feels similar to the Chrome development console.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

1
22

1

6) Error messages helped me identify errors within code.�1

6) Error messages helped me identify errors within code.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

3
2

1

7) I find this editor suitable for beginners.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

22
11

8) Beginners have an easier time getting into coding with this editor.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

222

9) The omitted file management reduces complexity.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

2
3

1

10) The missing setup process of traditional IDE's makes starting out more difficult.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

2

4

11) I would have had an easier time getting into JavaScript, if I had had an editor with reduced complexity.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

3
2

1

12) Compared to traditional IDE's, I would recommend this editor for first semester students getting into web �2

12) Compared to traditional IDE's, I would recommend this editor for first semester students getting into web
development.

0

2

3

5

6

Strongly Disagree Disagree Neutral Agree Strongly Agree

3

1
2

�3

C
U S E R S T U D Y – C O M M E N T S I N T H E O R I G I N A L
L A N G U A G E G E R M A N

75

G L O S S A RY

Basic Editor Features Every online JavaScript editor in the tested set
offers the feature to write HTML, CSS and JavaScript code
and show the result in a output window. Each editor has the
feature of sharing these projects via URL sharing. Therefore
this set of features is called "basic editor features". xv, 12–15,
17, 18, 25

Document Object Model The Document Object Model is a platform-
and language-neutral interface that will allow programs and
scripts to dynamically access and update the content, struc-
ture and style of documents. The document can be further
processed and the results of that processing can be incorpo-
rated back into the presented page. This is an overview of
DOM-related materials here at W3C and around the web [37].
8

Full-Stack language A Full stack programming language work with
both the front and back end of a website. As an example,
JavaScript cam be used for the Front-end with the React frame-
work or as a Back-end server language with Node.js. 9

HAML HAML (HTML abstraction markup language) is based on
one primary principle: markup look good. It is not just good
looks though; HAML accelerates and simplifies template cre-
ation. It is aged though and not being used a lot anymore..
14, 15

HTML HTML, also known as hypertext markup language, is the stan-
dard Markup language for websites. Together with CSS and
JavaScript, it is one of the three cornerstones of the world
wide web. "To publish information for global distribution,
one needs a universally understood language, a kind of pub-
lishing mother tongue that all computers may potentially un-
derstand. The publishing language used by the World Wide
Web is HTML (from HyperText Markup Language)" -Raggett
et al. [31, 65]. 10

LMS A learning management system is a software application for
the administration, documentation, tracking, reporting and
delivery of educational courses or training programs or learn-
ing and development programs. The learning management
system concept emerged directly from e-Learning. 19–22

QuestJs The title of the JavaScript editor developed in this thesis.
The main reason this editor is developed, is teaching users

79

80 Glossary

JavaScript and web development in general. 25, 29–31, 35–37,
40, 42, 45, 51–53, 61

STEM Acronym for Science, Technology, Engineering, Mathematics.
vii, viii

UI Acronym for User Interface. 3

White-box Testing White-box testing is a method of testing software.
It tests the internal structure of an application as opposed to
its functionality. White-box testing can be applied at the unit,
integration and system levels of the software testing process.
26

Zone of Proximal Development (ZPD) The zone of proximal devel-
opment, often abbreviated as ZPD, is the difference between
what a learner can do without help, and what they can’t do.
6

B I B L I O G R A P H Y

[1] Lakmal Abeysekera and Phillip Dawson. “Motivation and cog-
nitive load in the flipped classroom: definition, rationale and a
call for research.” In: Higher Education Research & Development
34.1 (2015), pp. 1–14.

[2] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zac-
chiroli. “Building the universal archive of source code.” In: Com-
munications of the ACM 61.10 (2018), pp. 29–31.

[3] I Elaine Allen and Christopher A Seaman. “Likert scales and
data analyses.” In: Quality progress 40.7 (2007), pp. 64–65.

[4] Philip G Altbach, Liz Reisberg, and Laura E Rumbley. Trends in
global higher education: Tracking an academic revolution. 2009.

[5] Brenda Alvarez. “Flipping the classroom: Homework in class,
lessons at home.” In: The Education Digest 77.8 (2012), p. 18.

[6] Michael Barnett, William Harwood, Thomas Keating, and Julie
Saam. “Using emerging technologies to help bridge the gap
between university theory and classroom practice: Challenges
and successes.” In: School Science and Mathematics 102.6 (2002),
pp. 299–313.

[7] John C Bean. Engaging ideas: The professor’s guide to integrating
writing, critical thinking, and active learning in the classroom. John
Wiley & Sons, 2011.

[8] Brian Beatty and Connie Ulasewicz. “Faculty perspectives on
moving from Blackboard to the Moodle learning management
system.” In: TechTrends 50.4 (2006), pp. 36–45.

[9] Kelly Bedard and Peter Kuhn. “Where class size really matters:
Class size and student ratings of instructor effectiveness.” In:
Economics of Education Review 27.3 (2008), pp. 253–265.

[10] Penny L Beed, E Marie Hawkins, and Cathy M Roller. “Moving
learners toward independence: The power of scaffolded instruc-
tion.” In: The Reading Teacher 44.9 (1991), pp. 648–655.

[11] Yoany Beldarrain. “Distance education trends: Integrating new
technologies to foster student interaction and collaboration.” In:
Distance education 27.2 (2006), pp. 139–153.

[12] Jonathan Bergmann and Aaron Sams. Flip your classroom: Reach
every student in every class every day. International society for
technology in education, 2012.

[13] L Berk and Adam Winsler. “Vygotsky: His life and works" and"
Vygotsky’s approach to development.” In: Scaffolding children’s
learning: Vygotsky and early childhood learning (1995), pp. 25–34.

81

82 Bibliography

[14] Julie H Birns, Kristen A Joffre, Jonathan F Leclerc, and Chris-
tine Andrews Paulsen. “Getting the Whole Picture: Collecting
Usability Data Using Two Methods—-Concurrent Think Aloud
and Retrospective Probing.” In: Proceedings of UPA Conference.
Citeseer. 2002, pp. 8–12.

[15] Benajmin S Bloom, DR Krathwohl, and BB Masia. Taxonomy of
educational objectives: The classification of educational goals. New
York, NY: David McKay Company. 1956.

[16] Dave Bremer and Reuben Bryant. “A Comparison of two learn-
ing management Systems: Moodle vs Blackboard.” In: Proceed-
ings of the 18th Annual Conference of the National Advisory Com-
mittee on Computing Qualifications. 2005, pp. 135–139.

[17] Michelle Collay, Diane Dunlap, Walter Enloe, and George W
Gagnon Jr. Learning circles: Creating conditions for professional de-
velopment. Corwin Press, 1998.

[18] Jody Condit Fagan. “Server-side includes made simple.” In: The
electronic library 20.5 (2002), pp. 382–389.

[19] Lynne Cooke. “Assessing concurrent think-aloud protocol as a
usability test method: A technical communication approach.”
In: IEEE Transactions on Professional Communication 53.3 (2010),
pp. 202–215.

[20] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and
Clifford Stein. Introduction to algorithms. MIT press, 2009.

[21] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media,
Inc., 2008.

[22] Ton De Jong. “Cognitive load theory, educational research, and
instructional design: Some food for thought.” In: Instructional
science 38.2 (2010), pp. 105–134.

[23] Martin Dougiamas and Peter Taylor. “Moodle: Using Learn-
ing Communities to Create an Open Source Course Manage-
ment System.” In: Proceedings of EdMedia + Innovate Learning
2003. Ed. by David Lassner and Carmel McNaught. Honolulu,
Hawaii, USA: Association for the Advancement of Computing
in Education (AACE), 2003, pp. 171–178. url: https://www.
learntechlib.org/p/13739.

[24] Joseph S Dumas and Beth A Loring. Moderating usability tests:
Principles and practices for interacting. Elsevier, 2008.

[25] Ryann K Ellis. “Field guide to learning management systems.”
In: ASTD Learning Circuits (2009), pp. 1–8.

[26] Artemij Fedosejev. React. js Essentials. Packt Publishing Ltd, 2015.

[27] David Flanagan. JavaScript: The definitive guide: Activate your web
pages. " O’Reilly Media, Inc.", 2011.

https://www.learntechlib.org/p/13739
https://www.learntechlib.org/p/13739

Bibliography 83

[28] Gerald Futschek. “Extreme didactic reduction in computational
thinking education.” In: X World Conference on Computers in Ed-
ucation. 2013, pp. 1–6.

[29] Jesse James Garrett. Elements of user experience, the: user-centered
design for the web and beyond. Pearson Education, 2010.

[30] Uni Gießen. Guide for User Studies. https://www.inst.uni-
giessen.de/usability/downloads/Leitfaden.pdf. Accessed:
2018-12-29.

[31] Ian S Graham. The HTML sourcebook. John Wiley & Sons, Inc.,
1995.

[32] Mari Luz Guenaga, Dominique Burger, and Javier Oliver. “Ac-
cessibility for e-learning environments.” In: International Confer-
ence on Computers for Handicapped Persons. Springer. 2004, pp. 157–
163.

[33] Maaike J Van den Haak and Menno DT De Jong. “Exploring
two methods of usability testing: concurrent versus retrospec-
tive think-aloud protocols.” In: Professional Communication Con-
ference, 2003. IPCC 2003. Proceedings. IEEE International. IEEE.
2003, 3–pp.

[34] Jesse M. Heines, Jeff L. Popyack, Briana Morrison, Kate Lock-
wood, and Doug Baldwin. “Panel on Flipped Classrooms.” In:
Proceedings of the 46th ACM Technical Symposium on Computer
Science Education. SIGCSE ’15. New York, NY, USA: ACM, 2015,
pp. 174–175.

[35] Kasper Hornbæk. “Current practice in measuring usability: Chal-
lenges to usability studies and research.” In: International journal
of human-computer studies 64.2 (2006), pp. 79–102.

[36] Roya Hosseini and Peter Brusilovsky. “A comparative study of
visual cues for annotation-based navigation support in adap-
tive educational hypermedia.” In: CEUR Workshop Proceedings.
Vol. 1618. 2016.

[37] Philippe Le Hégaret. Document Object Model (DOM). https://www.w3.org/DOM/.
Accessed: 2018-12-21. 2009.

[38] ISO Usability standards ISO/IEC 25022:2016. https://www.iso.
org / obp / ui / fr / #iso : std : iso - iec : 25022 : ed - 1 : v1 : en.
Accessed: 2019-01-02.

[39] ISO Usability standards ISO/IEC TR 9126-4:2004. https://www.
iso.org/obp/ui/fr/#iso:std:iso-iec:tr:9126:-4:ed-1:v1:

en. Accessed: 2019-01-02.

[40] ISO/IEC 25023:2016. https://www.iso.org/standard/35747.
html. Accessed: 2019-01-02.

[41] JavaScript Usage Statistics. https://w3techs.com/technologies/
details/cp-javascript/all/all. Accessed: 2018-10-16.

https://www.inst.uni-giessen.de/usability/downloads/Leitfaden.pdf
https://www.inst.uni-giessen.de/usability/downloads/Leitfaden.pdf
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:25022:ed-1:v1:en
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:25022:ed-1:v1:en
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:tr:9126:-4:ed-1:v1:en
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:tr:9126:-4:ed-1:v1:en
https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:tr:9126:-4:ed-1:v1:en
https://www.iso.org/standard/35747.html
https://www.iso.org/standard/35747.html
https://w3techs.com/technologies/details/cp-javascript/all/all
https://w3techs.com/technologies/details/cp-javascript/all/all

84 Bibliography

[42] Ryan John. Canvas LMS course design. Packt Publishing Ltd, 2014.

[43] David W Johnson, Roger T Johnson, and Karl A Smith. Active
learning: Cooperation in the college classroom. ERIC, 1998.

[44] H. Jung, S. Kim, and C. Chung. “Measuring Software Product
Quality: A Survey of ISO/IEC 9126.” In: IEEE Software 21 (Sept.
2004), pp. 88–92. issn: 0740-7459.

[45] Eva Kassens-Noor. “Twitter as a teaching practice to enhance
active and informal learning in higher education: The case of
sustainable tweets.” In: Active Learning in Higher Education 13.1
(2012), pp. 9–21.

[46] Jenny Kitzinger. “Qualitative research: introducing focus groups.”
In: Bmj 311.7000 (1995), pp. 299–302.

[47] Donald Ervin Knuth. The art of computer programming: sorting
and searching. Vol. 3. Pearson Education, 1997.

[48] Clayton Lewis. “Using the’thinking-aloud’method in cognitive
interface design.” In: Research Report RC9265, IBM TJ Watson
Research Center (1982).

[49] Chao Liu, Ryen W. White, and Susan Dumais. “Understanding
Web Browsing Behaviors Through Weibull Analysis of Dwell
Time.” In: Proceedings of the 33rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. SIGIR
’10. New York, NY, USA: ACM, 2010, pp. 379–386.

[50] Niels Provos Panayiotis Mavrommatis and Moheeb Abu Rajab
Fabian Monrose. “All your iframes point to us.” In: USENIX
Security Symposium. USENIX. 2008, pp. 1–16.

[51] Ali Mesbah. “Advances in testing JavaScript-based web applica-
tions.” In: Advances in Computers. Vol. 97. Elsevier, 2015, pp. 201–
235.

[52] Leo A Meyerovich and Benjamin Livshits. “ConScript: Specify-
ing and enforcing fine-grained security policies for Javascript in
the browser.” In: 2010 IEEE Symposium on Security and Privacy.
IEEE. 2010, pp. 481–496.

[53] Michael Mikowski and Josh Powell. Single page web applications:
JavaScript end-to-end. Manning Publications Co., 2013.

[54] James Monks and Robert M Schmidt. “The impact of class size
on outcomes in higher education.” In: The BE Journal of Economic
Analysis & Policy 11.1 (2011).

[55] Hannelore Montrieux, Ruben Vanderlinde, Tammy Schellens,
and Lieven De Marez. “Teaching and learning with mobile tech-
nology: A qualitative explorative study about the introduction
of tablet devices in secondary education.” In: PloS one 10.12

(2015), e0144008.

Bibliography 85

[56] Peter Morville. “User Experience Honeycomb.” In: Web Log Post
Retrieved from Http://semanticstudios.com/publications/semantics/000029
21 (2004), pp. 09–12.

[57] Peter Morville and L Rosenfeld. “Information Architecture 3.0.”
In: Semantic studios 29 (2006).

[58] Matthias M Müller. “Two controlled experiments concerning
the comparison of pair programming to peer review.” In: Jour-
nal of Systems and Software 78.2 (2005), pp. 166–179.

[59] Donald A Norman. “Affordance, conventions, and design.” In:
interactions 6.3 (1999), pp. 38–43.

[60] Online Historical Encyclopaedia of Programming Languages. http:
//hopl.info/. Accessed: 2018-11-05.

[61] Annemarie Sullivan Palincsar. “The role of dialogue in provid-
ing scaffolded instruction.” In: Educational psychologist 21.1-2
(1986), pp. 73–98.

[62] Linda Dailey Paulson. “Developers shift to dynamic program-
ming languages.” In: Computer 40.2 (2007).

[63] Janneke Van de Pol, Monique Volman, and Jos Beishuizen. “Scaf-
folding in teacher–student interaction: A decade of research.”
In: Educational psychology review 22.3 (2010), pp. 271–296.

[64] Michael Prince. “Does active learning work? A review of the
research.” In: Journal of engineering education 93.3 (2004), pp. 223–
231.

[65] Dave Raggett, Arnaud Le Hors, Ian Jacobs, et al. “HTML 4.01

Specification.” In: W3C recommendation 24 (1999).

[66] Hajo A Reijers, Thomas Freytag, Jan Mendling, and Andreas
Eckleder. “Syntax highlighting in business process models.” In:
Decision Support Systems 51.3 (2011), pp. 339–349.

[67] David Robins, Jason Holmes, and Mary Stansbury. “Consumer
health information on the Web: The relationship of visual de-
sign and perceptions of credibility.” In: Journal of the American
Society for Information Science and Technology 61.1 (2010), pp. 13–
29.

[68] Amy Roehl, Shweta Linga Reddy, and Gayla Jett Shannon. “The
flipped classroom: An opportunity to engage millennial stu-
dents through active learning strategies.” In: Journal of Family
& Consumer Sciences 105.2 (2013), pp. 44–49.

[69] Patricia L Rogers. Encyclopedia of distance learning. IGI Global,
2009.

[70] Marco Ronchetti. “Using video lectures to make teaching more
interactive.” In: International Journal of Emerging Technologies in
Learning (iJET) 5.2 (2010).

http://hopl.info/
http://hopl.info/

86 Bibliography

[71] David Ryback and Joann J Sanders. “Humanistic versus tradi-
tional teaching styles and student satisfaction.” In: Journal of
Humanistic Psychology 20.1 (1980), pp. 87–90.

[72] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson.
“Busting frame busting: a study of clickjacking vulnerabilities
at popular sites.” In: IEEE Oakland Web 2.6 (2010).

[73] Thinzar Saw, Kyu Kyu Win, Zan Mo Mo Aung, and Myat Su
Oo. “Investigation of the Use of Learning Management System
(Moodle) in University of Computer Studies, Mandalay.” In: In-
ternational Conference on Big Data Analysis and Deep Learning Ap-
plications. Springer. 2018, pp. 160–168.

[74] R Keith Sawyer. The Cambridge handbook of the learning sciences.
Cambridge University Press, 2005.

[75] Emmit Scott. SPA design and architecture: understanding single
page web applications. Manning Publications Co., 2015.

[76] Steve Souders. High Performance Web Sites: Essential Knowledge
for Front-End Engineers. sl. 2007.

[77] John Sweller. “Cognitive load during problem solving: Effects
on learning.” In: Cognitive science 12.2 (1988), pp. 257–285.

[78] Sirous Tabrizi and Glenn Rideout. “International Journal for
Cross-Disciplinary Subjects in Education (IJCDSE), Volume 8,
Issue 3, September 2017.” In: http://infonomics-society.org/ (2017).

[79] Ankur Taly, John C Mitchell, Mark S Miller, Jasvir Nagra, et
al. “Automated analysis of security-critical javascript apis.” In:
2011 IEEE Symposium on Security and Privacy. IEEE. 2011, pp. 363–
378.

[80] Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen.
“The Adoption of JavaScript Linters in Practice: A Case Study
on ESLint.” In: IEEE Transactions on Software Engineering (2018).

[81] Greg Topp. “Flipped classrooms take advantage of technology.”
In: USA Today 6 (2011).

[82] Wataru Tsukahara, Fumihiko Anma, Ken Nakayama, and Toshio
Okamoto. “A Development of Learning Management System
for the Practice of E-Learning in Higher Education.” In: Knowl-
edge Management for Educational Innovation. Ed. by Arthur Tat-
nall, Toshio Okamoto, and Adrie Visscher. Boston, MA: Springer
US, 2007, pp. 145–152. isbn: 978-0-387-69312-5.

[83] Maaike Van Den Haak, Menno De Jong, and Peter Jan Schellens.
“Retrospective vs. concurrent think-aloud protocols: testing the
usability of an online library catalogue.” In: Behaviour & infor-
mation technology 22.5 (2003), pp. 339–351.

Bibliography 87

[84] Kelly Wainwright. “The Care and Feeding of a Moodle Cam-
pus.” In: Proceedings of the 37th Annual ACM SIGUCCS Fall Con-
ference: Communication and Collaboration. SIGUCCS ’09. New York,
NY, USA: ACM, 2009, pp. 267–270.

[85] Qiyun Wang, Huay Lit Woo, Choon Lang Quek, Yuqin Yang,
and Mei Liu. “Using the Facebook group as a learning man-
agement system: An exploratory study.” In: British Journal of
Educational Technology 43.3 (2012), pp. 428–438.

[86] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishna-
murthy, and David Wetherall. “Demystifying Page Load Per-
formance with WProf.” In: NSDI. 2013, pp. 473–485.

[87] Debbi Weaver, Christine Spratt, and Chenicheri Nair. “Academic
and student use of a learning management system: Implications
for quality.” In: Australasian Journal of Educational Technology 24.1
(2008). url: https://ajet.org.au/index.php/AJET/article/
view/1228.

[88] Laurie Williams. “White-Box Testing.” In: PDF): 60–61 69 (2006).

[89] David Wood and Heather Wood. “Vygotsky, tutoring and learn-
ing.” In: Oxford review of Education 22.1 (1996), pp. 5–16.

[90] Chuan Yue and Haining Wang. “Characterizing insecure javascript
practices on the web.” In: Proceedings of the 18th international con-
ference on World wide web. ACM. 2009, pp. 961–970.

[91] Nicholas C Zakas. Maintainable JavaScript: Writing Readable Code.
" O’Reilly Media, Inc.", 2012.

[92] Sebastian Mader et al. More than the Sum of its Parts: Designing
Learning Formats from Core Components. LMU, 2018.

https://ajet.org.au/index.php/AJET/article/view/1228
https://ajet.org.au/index.php/AJET/article/view/1228

colophon

This document is set in Minion Pro. The choice of font and layout
is quite deliberate since I believe that the chosen layout improves
readability and provides enough room in the margins for your notes.

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of January 23, 2019 (classicthesis version 1.0).

https://bitbucket.org/amiede/classicthesis/

	Declaration
	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Challenges When Starting out With Coding
	1.3 Goals of this Project
	1.4 What has been done in the thesis?
	1.5 Overview

	2 Fundamentals
	2.1 Educational Science
	2.2 Why is the prototype using JavaScript?
	2.3 Why is JavaScript Complicated?
	2.4 Web development - the JavaScript stack and its features
	2.5 Existing Editors
	2.5.1 JsFiddle
	2.5.2 JsBin
	2.5.3 CSSDeck
	2.5.4 CodePen
	2.5.5 Dabblet
	2.5.6 Plunker

	2.6 Learning Management Systems
	2.7 Related Work

	3 Concept
	3.1 Goals
	3.2 Technological Concept
	3.2.1 Input
	3.2.2 Output
	3.2.3 Additional Features

	3.3 User Interface Concept
	3.3.1 Full Screen View
	3.3.2 Compact View
	3.3.3 Buttons

	3.4 Testing Concept
	3.5 Advantages in Regards to Local IDE's
	3.6 Use Cases
	3.7 Possible Complications and Limitations

	4 Implementation
	4.1 Technological Decisions
	4.2 Single Page Applications and Their Frameworks
	4.3 React.js
	4.3.1 React.js Props
	4.3.2 React.js State

	4.4 Inline Frame
	4.5 The Function eval()
	4.6 Data Flow
	4.7 Features
	4.7.1 Developer Console
	4.7.2 Error/Success Logging
	4.7.3 Full Screen Mode
	4.7.4 Compact Mode
	4.7.5 Library Loading
	4.7.6 Automated Assertion Tests

	5 Study and Results
	5.1 Methodology
	5.1.1 Testing Methods
	5.1.2 Typical Usability Problems

	5.2 Study Design
	5.2.1 Exercise 1
	5.2.2 Exercise 2
	5.2.3 Exercise 3
	5.2.4 Questionnaire

	5.3 Participants
	5.4 Measurement Criteria
	5.5 Execution
	5.6 Results
	5.6.1 Usage Statistics
	5.6.2 Questionnaire Results 1 – Likert Scale
	5.6.3 Questionnaire Results 2 – Text
	5.6.4 General Feedback

	5.7 Discussion

	6 Conclusion and Perspectives
	6.1 Perspectives
	6.2 Summary

	A User Study – Exercises
	B User Study – Questionnaire Results
	C User Study – Comments in the original Language German
	Bibliography
	Colophon

