
INSTITUT FÜR INFORMATIK
der Ludwig-Maximilians-Universität München

A FRAMEWORK FOR
OBSERVING THE PARALLEL

EXECUTION OF RUST
PROGRAMS

Frederic Pascal Sautter

Masterarbeit
Aufgabensteller Prof. Dr. François Bry
Betreuer Prof. Dr. François Bry,

Thomas Prokosch

Abgabe am 07. Juni 2019

2

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und keine
anderen als die angegebenen Hilfsmittel verwendet habe.

München, den 07. Juni 2019 Frederic Pascal Sautter

i

ii

Abstract

With computing hardware evolving, processors incorporate more and more processing
units. As the number of simultaneously possible computations steadily increases, devel-
oping efficient and reliable parallel applications becomes essential in order to take full ad-
vantage of the additional computing power. The young programming language Rust aims
to ease the development of such high-performance applications. In contrast to Fortran, C,
and C++, languages common in the high-performance computing domain, Rust combines
low-level control of resources with strong safety guarantees. However, existing parallel
performance analysis tools such as Score-P, TAU, and Vampir lack support for Rust.

This work presents the design and implementation of the tRust framework, which al-
lows observing the execution of parallel Rust applications. This framework provides a
modified Rust compiler for the automated insertion of probes into the observed program
and its dependencies. A run-time library enables the transmission of observation data to a
central collector application for persistent storage. This centrally collected data allows for
extensive analysis of the run-time behavior of the program.

The tRust framework is evaluated using three different benchmark applications, each
targeting one of three common parallelism libraries in Rust. The experiments suggest good
performance of the tRust framework. More important is the fact that tRust allows program-
mers to precisely retrace program execution of concurrent and parallel Rust programs with
libraries that implement parallel paradigms not immediately available in the established
HPC programming languages Fortran, C, and C++.

iii

iv

Zusammenfassung

Durch laufende Weiterentwicklung von Rechnerhardware erhalten Prozessoren immer
mehr parallel arbeitende Recheneinheiten. Da dadurch die Zahl der simultan möglichen
Berechnungen steigt, wird die Entwicklung von effizienten und zuverlässigen parallelen
Programmen unerlässlich, um die zusätzliche Rechenkapazität voll auszuschöpfen. Die
junge Programmiersprache Rust versucht die Entwicklung solcher hochperformanter An-
wendungen zu erleichtern. Im Gegensatz zu den Sprachen Fortran, C und C++, die bei der
Programmierung von Hochleistungsrechnern vorwiegend eingesetzt werden, kombiniert
Rust hardwarenahen Zugriff mit starken Sicherheitsgarantien. Jedoch, fehlt bei existieren-
den parallelen Leistungsanalysewerkzeugen, Score-P, TAU und Vampir die Unterstützung
für Rust.

Diese Arbeit legt den Entwurf und die Umsetzung des tRust Frameworks dar, mit
dem der Ablauf paralleler Rust-Anwendungen überwacht werden kann. Das Werkzeug
stellt einen modifizierten Rust Compiler zur Verfügung, der das automatisierte Einfügen
von Analyseinstruktionen in das zu überwachte Programm und dessen Abhängigkeiten
ermöglicht. Eine Laufzeitbibliothek ermöglicht das Übertragen der Überwachungsdaten
an eine zentrale Sammelanwendung für die persistente Speicherung. Diese zentral abge-
legten Daten können in weiterer Folge für die ausführliche Analyse des Programmablaufs
genutzt werden.

Das vorgestellte tRust Werkzeug wird anhand von drei unterschiedlichen Testanwen-
dungen beurteilt, wobei jede Anwendung auf eine von drei geläufigen parallelen Pro-
grammbibliotheken zugeschnitten ist. Die Experimente legen nahe, dass tRust eine ange-
messene Leistung erzielt. Wichtiger ist die Tatsache, dass Entwickler die Möglichkeit er-
halten, den Programmablauf von nebenläufigen und parallelen Rust Programmen, die in
den üblicherweise im Höchstleistungsbereich eingesetzten Programmiersprachen Fortran,
C und C++ nicht unmittelbar zur Verfügung stehen.

v

vi

Acknowledgments

This thesis would not have been possible without the help and support of many others.

First, I want to thank Prof. Dr. François Bry for his valuable advice and guidance through-
out this project. The suggestions and the feedback he provided often helped to concentrate
on what is essential.

I want to express my great gratitude to my advisor Thomas Prokosch for his outstanding
support and advice at all times. Whenever I got stuck along the way, Thomas encouraged
me by providing useful suggestions and ideas. Particularly, his backing during the many
meetings helped to focus on and structure my work.

Special thanks go to my parents for their moral support especially in challenging times.
Furthermore, I express my heartfelt gratitude to Annabel for her backing at all times. Fi-
nally, I thank my friends for taking my mind off things from time to time.

vii

viii

Contents

1 Introduction 1

2 The Rust Programming Language 3
2.1 Selected Syntax Elements . 3
2.2 Ownership and Borrowing . 6
2.3 Concurrency and Parallelism in Rust . 10
2.4 Rust Infrastructure and Compiler . 11

3 Theoretical Foundations 15
3.1 Instrumentation . 15

3.1.1 Source-based Instrumentation . 17
3.1.2 Preprocessor-based Instrumentation . 17
3.1.3 Compiler-based Instrumentation . 18
3.1.4 Wrapper Library-based Instrumentation 18
3.1.5 Binary Instrumentation . 18

3.2 Architecture of Parallel Performance Tools . 18
3.2.1 Observer . 19
3.2.2 Inspector . 20

3.3 Parallel Libraries and Interfaces . 20
3.3.1 MPI . 20
3.3.2 Crossbeam (Rust) . 21
3.3.3 POSIX-Threads . 22
3.3.4 OpenMP . 22
3.3.5 Rayon (Rust) . 23
3.3.6 Timely Dataflow (Rust) . 24

3.4 Existing Tools . 25
3.4.1 TAU Parallel Performance System . 25
3.4.2 Vampir . 27
3.4.3 Score-P performance measurement infrastructure 28

4 Framework Design 29
4.1 Technical Implementations of Rust Instrumentation 30

4.1.1 Wrapper Libraries . 31
4.1.2 Compiler Plugin . 32
4.1.3 Drop-In Compiler . 33

4.2 Run-Time Instrumentation Architecture . 35
4.3 Instrumentation of Rust Source Code . 37

ix

x CONTENTS

4.3.1 Import Statements . 37
4.3.2 Global Scope Instructions . 37
4.3.3 Local Scope Instructions . 38
4.3.4 Instrumentation Calls around Functions 40
4.3.5 Instrumentation Calls around Methods 41

4.4 Persistent Storage of Trace Data . 42

5 Experiments and Results 45
5.1 Evaluation Environment . 45
5.2 Benchmarks . 46

5.2.1 Creating Vanity Keys . 46
5.2.2 Fractal Calculation . 49
5.2.3 PageRank . 51

6 Conclusion and Future Work 55

A Usage of the tRust Framework 57
A.1 Setting up a Rustup Toolchain . 57
A.2 Description of the Configuration File . 58

B Experiments 59

Bibliography 69

CHAPTER 1

Introduction

In recent years computing hardware has evolved to a point where almost every computing
device contains parallel hardware. From small embedded systems to computer clusters
consisting of thousands of nodes, multi-core processors have become the standard in 2019.
Chip manufacturers such as Intel and AMD release processors containing up to 56 [6] or 64
[1] cores respectively. Moreover, many systems contain graphics chips, which are made up
of an increasing number of compute units. The number of simultaneously possible com-
putations constantly increases. In order to benefit from this additional computing power,
appropriate software is required. Software developers need to design applications which
effectively leverage parallelism. However, experience has shown that creating reliable and
efficient parallel programs is difficult. Parallel computing is significantly more complex, as
it introduces new classes of errors such as deadlocks and race-conditions, not possible in
serial programs. These errors can be difficult to detect since they often occur under specific
circumstances.

Developing programming languages designed for the use in concurrent and parallel
environments is one approach to enhance reliability and efficiency of parallel programs.
Especially since the systems-level languages commonly used for the development of per-
formance critical applications, in particular Fortran, C and C++ provide, little to no safety
guarantees at all. For this reason, the Rust programming language was developed. Rust
incorporates elements of conventional systems programming language as well as elements
of modern high-level languages [7]. It combines low-level control of resources with strong
safety guarantees. Rust’s expressive static type system enables the compiler to prevent
many memory errors and data races. As a consequence, Rust empowers developers to take
advantage of modern parallel hardware [42].

While Rust manages to prevent data races there are other errors it cannot prevent, such
as bottlenecks occurring when threads are not properly synchronized. Such errors can only
be detected at run-time. In order to analyze and further optimize the complex parallel run-
time behavior additional tools are required. In the context of high-performance computing
(HPC), there already exist sophisticated tools for the analysis of parallel and distributed
execution. Tools like Score-P [37], TAU [56], HPCToolkit [18] and Vampir [48] allow the
collection of detailed event data during the programs execution. Based on this data it is
possible to gain insight into the programs state during execution, providing in-depth infor-
mation of its run-time behavior. Accordingly, these tools assist developers in finding most
of the remaining errors and performance bottlenecks.

1

2 CHAPTER 1. INTRODUCTION

The existing performance analysis tools are built around standard HPC libraries, in-
cluding Message Passing Interface (MPI), Open Multi-Processing (OpenMP), and pthreads.
Besides providing bindings to the named libraries, it is often possible to apply these per-
formance tools directly to applications written in specific programming languages. The
languages supported vary between these tools, but all of them support the major three lan-
guages in the context of HPC, namely C, C++, and Fortran. Since Rust is still relatively
new, it is not supported. Even though Rust wrapper libraries for MPI exist, observation
is limited to recording MPI calls, which is not sufficient for extensive performance analy-
sis. This work concentrates on the design and the implementation of the tRust framework
which allows observing the execution of parallel Rust applications.

The remainder of this work is structured as follows:
Chapter 2 provides an introduction to the Rust Programming language. It outlines unique
features of Rust and gives an overview of the Rust ecosystem.
Chapter 3 covers fundamental concepts such as the architecture of parallel performance
tools. Moreover, instrumentation is explained in detail.
Chapter 4 explains design and implementation decisions of the new framework. There-
fore, techniques of instrumentation in Rust are described, the data collection architecture is
outlined, and instrumented code snippets are explained.
Chapter 5 explains how the proposed framework was tested and evaluates the result of the
experiments.
Finally, Chapter 6 gives a conclusion and proposes ideas as well as concepts how this frame-
work can be further improved.

CHAPTER 2

The Rust Programming Language

Rust is a young programming language sponsored by Mozilla Research. Its development
is driven by an open source project and backed by a rapidly growing community. A strong
indication for its increasing popularity is the fact that as of 2019 Rust is the most loved pro-
gramming language for the fourth consecutive year according to Stack Overflow Developer
Survey [10].

Rust aims to enable low-level resource control while providing high-level guarantees
such as type-safety and memory safety. Similar to other common systems programming
languages like C or C++, it supports direct hardware access [34] including raw pointer ma-
nipulations, and fine-grained control over memory representations. In contrast to C/C++,
Rust provides memory safety, avoiding common errors such as dangling pointers, use-
after-free, and double-free. Rust achieves this through its strong static type system without
depending on a garbage collector. It uses lexical scoping to ensure memory is automatically
deallocated when variables go out of scope [42].

This chapter briefly summarizes the key features and concepts of Rust. Section 2.1 ex-
plains the more basic Rust syntax. Then ownership and borrowing two concepts unique to
Rust are described in Section 2.2. Section 2.3 points out the implications of the ownership
models for concurrency and parallelism. Finally, Section 2.4 outlines the ecosystem of Rust
and its internal compiler structure.

2.1 Selected Syntax Elements

The syntax of Rust is inspired by C++, Haskell and the ML-family. In Rust, variables are
immutable by default. They are defined using a let statement. However, if a variable
should be mutable, it has to be explicitly stated by adding the keyword mut in front of
the variable name. In other words, once a value was bound to a name without adding
the mut keyword it is not possible to change the value of the variable. Listing 2.1 shows
the definition of variables. The comments (starting with “//”) at the end of the last line
indicate the error returned by the compiler when trying to mutate a variable not declared
as mutable. Treating variables as immutable by default results in compile time errors when
a variable is mutated. This helps to prevent bugs where one part of an application relies
on the fact that a value will never change, while another component modifies the value,
which causes the first part to behave unpredictably. Immutable variables are different from

3

4 CHAPTER 2. THE RUST PROGRAMMING LANGUAGE

constants because only immutable variables can be set to the result of an expression that can
only be computed at run-time. Listing 2.2 shows the compiler error thrown when trying to
assign a value only known at run-time to a constant [35].

// Defining a variable (immutable by default)
let var = 5;
// Defining a mutable variable
let mut m_var = 6;

// Change value of mutable variable
m_var = 8;
// Change value of normal (immutable) variable
var = 7; // ERROR: cannot assign twice to immutable variable ‘var‘

Listing 2.1: Defining variables in Rust

// Defining a variable (immutable by default)
let im_var = current_time();
// Defining a constant
const CONSTANT1: u32 = 100;
// Not possible
const CONSTANT2: SystemTime = current_time(); // ERROR: calls in
// constants are limited to constant functions,
// tuple structs and tuple variants

Listing 2.2: Difference between immutable variables and constants

In Rust the distinction between statements and expressions plays an important role. Stat-
ment are instructions that perform some action without returning a meaningful value. Whereas
expressions are instructions that evaluate to a value which is returned. The second instruction
in Listing 2.3 is an expression. However, this expression itself is constructed of multiple
smaller expressions, consequently the result of this expression is evaluated from the re-
sults of its sub-expressions. In particular the smallest expressions possible are literals, a
literal returns its own value. The literal 2 in Listing 2.3 returns the value two. A variable is
evaluates to its value, hence the variable var evaluates to seven. Consequently, the whole
expression returns nine (9 = 7+2) [35].

In Rust the semicolon “;” can be used in order to discard the result of an expression,
turning an expression into a statement [13]. Therefore it becomes clear that an expression
can be part of a statement. The let construct used to define a variable is a statement which
expects a “;” at its end. The literal 7 in the first instruction in Listing 2.3 evaluates to seven,
which is assigned to var [35].

// Statement
let var = 7;

// Expression
var + 2 // Evaluates to 9

Listing 2.3: Statements and expressions

Closely related to these two concepts is the unit type, which has exactly one value ().
This value is returned when no other meaningful value can be returned. Thus it is not
the case that statements return no value at all, instead they return () referred to as “unit”

2.1. SELECTED SYNTAX ELEMENTS 5

[13]. From this it follows that every language construct in Rust returns some kind of value,
either () or some meaningful value. This concept is very important in Rust, as it allows to
write very expressive code. For example, it is considered good practice in Rust to omit the
return keyword. Instead, the return value of a function is the result of the last instruction
executed. Furthermore, this holds not only for functions and methods, but for blocks in
general: The result of a block is the result of its last evaluated instruction [35].

In Rust functions are defined as follows: fn func name(arg1: T, arg2: U,
...) -> R { function body }. Thus the definition starts with the fn keyword fol-
lowed by the name of the function. Next is a list of the parameters together with their types
(T and U) surrounded by parentheses. If the function returns a value other than the unit
value () an arrow -> followed by the return type R is added after the closing parenthesis.
This is the signature of the function, which is followed by a block containing the function
body [35].

In the case of the positive power 3 function defined in Listing 2.4 the return value
is the result of the if-else expression. The if-else evaluates to the result of the ex-
pression (note no trailing semicolon) in one of its branches, which is the last instruction
executed. The second function defined in Listing 2.4 does not return a (meaningful) value,
since the statements in both branches of the if-else expression just print out the sign
of the input. Understanding the basic concept of statements and expressions is vital for
understanding the matters of Section 4.3 [35].

// Function definition with integer in- and output
fn positive_power_3(x: i32) -> i32 {

if x < 0 {
x * x * (-x)

} else {
x * x * x

}
}

// Function definition with integer in- but "no" output
fn sign(x: i32) { // Short for fn sign(x: i32) -> () {

if x < 0 {
println!("minus");

} else {
println!("plus");

}
}

Listing 2.4: Function definitions

Rust allows the definition of closures, a language feature often present in functional pro-
gramming languages. Closures are special anonymous functions. Rust allows for passing
closures as arguments, or assigning them to variables for later use. Closures are defined as
|arg1, arg2, ...| { <Function body> }. Arguments are listed between the two
pipes. If the body of the closure consists of one expression, this expression is placed af-
ter the second pipe. In cases where the body does not consist of only one expression, it is
defined by a normal block similarly to normal functions. In contrast to regular functions
closures can capture values from their scope. In line three of Listing 2.5 a closure is defined
with a block defining its body. Furthermore, the closure is assigned to the variable calc.
As a result, the anonymous function now can be called by this name, which is done in the
second last line when printing its result to the terminal. In the last line, a closure whose
body contains just one expression is defined and passed to a function which takes a clo-
sure. In particular, the closure assigned to calc uses in its body the two variables times

6 CHAPTER 2. THE RUST PROGRAMMING LANGUAGE

and add which were defined earlier without passing them as arguments to the closure.
The ability to capture variables from their surrounding scope makes closures a powerful
language feature. Especially in the context of concurrency or parallelism closures are used
often for defining tasks which should be executed concurrently, such as in Section 2.3 [35].

let times = 3;
let add = 7;
let calc = |arg| {

if add < 9 {
arg * times + 2 * add

} else {
arg * times + add

}
};
println!("{}", calc(4));
fn_takes_closure(|arg| arg * times);

Listing 2.5: Defining and passing closures

2.2 Ownership and Borrowing

As noted earlier, Rust similar to other low-level languages does not have a garbage collec-
tor, yet it is rarely necessary to release memory manually [35]. To achieve this, Rust uses a
concept of ownership integrated into its type system for memory management. In particu-
lar, ownership manages the handling of multiple aliases (references to a value in memory).
This concept has been gaining popularity among academics as well as mainstream lan-
guage developers and is Rusts unique feature [34].
Its basic idea is that,

“[...] although multiple aliases to a resource may exist simultaneously, perform-
ing certain actions on the resource (such as reading and writing a memory lo-
cation) should require a ‘right’ or ‘capability’ that is uniquely ‘owned’ by one
alias at any point during the execution of the program.” [34]

This is enforced by the following set of rules, which the compiler checks at compile time:

Ownership Rules. According to Steve Klabnik and Carol Nichols [35]

1. Each value in Rust has a variable that’s called its owner.

2. There can only be one owner at a time.

3. When the owner goes out of scope, the value will be dropped.

First of all, Rust similar to other languages distinguishes between two kinds of values,
those stored on the stack and those allocated on the heap. In Rust “Copy” is a marker which
tells the compiler data is passed around as deep copy. Since the data is stored entirely on the
stack, copying it is easy. Values whose size is known at compile time and will not change
during execution are “Copy” by default. This includes all primitive data types such as
integers, floating-point numbers, characters, and pointers. Besides primitive data types, it
is possible to make compound data types “Copy” as well, if they consist of a fixed number
of elements which are “Copy” themselves, such as arrays of integers or structs with integer
and float fields [35].

Memory management in Rust is based on lexical scopes. A variable is valid for the
scope in which it was defined, as soon as the scope ends Rust automatically “drops” the

2.2. OWNERSHIP AND BORROWING 7

variable. This is a Rust specific term for invalidating the variable and freeing the memory
of its value. In the case of a “Copy” variable, this is straight forward, its value is popped
off the stack, releasing its memory. Listing 2.6 shows how variables become invalid when
they go out of scope [35].

let mut var = 7;
{ // New scope begins

let inner_var = var; // value is copied and assigned to inner_var
} // Scope ends, inner_var is dropped, not affecting var
// Now inner_var is not valid any more
// var is still valid, since its scope hasn’t ended
var = var + 1;
var = var + inner_var; // ERROR: cannot find

// value ‘inner_var‘ in this scope

Listing 2.6: Scops of “Copy” variables

Other values, in particular those not having a fixed size, are allocated on the heap.
Copying data located on the heap is supposed to be expensive, thus not the value itself
but the reference to the value is copied. This concept, known as shallow copy, is common in
other languages. This is where Rust leverages the ownership concept [34].

In Listing 2.7 a new string value is assigned to the variable var1, by calling the from
function which is defined on the String type indicated by ::. The String type is not
“Copy” since string values can grow when adding more characters. According to Rule
1 var is now the owner of the string value. Next, var1 is assigned to var2. In other
languages var2 would just receive a shallow copy, while var1 would still be valid. In
Rust, this strategy conflicts with Rule 2, it would not be clear which variable is the owner
of the value. For this reason, in Rust the ownership of the value is passed to var2 and
var1 becomes invalid. This process of transferring ownership is referred to as move. As
in “ownership is moved to ...”. In the last line the into bytes method is called on var1.
Thus, it would be used after it was moved to var2, resulting in an error. The first two rules
ensure there is only one valid variable to the value at a time - the owner -, the variable’s
memory can be released by dropping it when it goes out of scope (Rule 3) without running
into any dangling pointer errors [35].

let var1 = String::from("foo"); // var1 becomes owner of string
let var2 = var1; // var1 is moved into var2
var1.into_bytes(); // ERROR: use of moved value: ‘var1‘

Listing 2.7: Ownership of values and moving ownership

Ownership rules 1 and 2 establish a system of exclusive ownership, which entirely pre-
vents multiple variables referencing the same value in memory (stack and heap). While
allowing easy and safe memory management, this is very restrictive. For example, List-
ing 2.8 defines a function that prints out its string argument [34]. Consider the situation
in Listing 2.8, a string value is assigned to a variable var, this string should get printed
to standard output. It should be possible to still use var after calling swallow with it.
However, the last line produces an error, since the ownership of the string value has been
moved into the function and is dropped as soon as the scope of the function ends. Thus
passing a value to function in this way always causes the value to be invalid afterward [35].

8 CHAPTER 2. THE RUST PROGRAMMING LANGUAGE

// Function takes ownership of its argument
fn swallow(s: String) {

println!("{} has been swallowed", s);
} // s is dropped here

let var = String::from("foo"); // var1 becomes owner of string
swallow(var); // Ownership is moved into the swallow function
var.into_bytes(); //ERROR: use of moved value: ‘var‘

Listing 2.8: Functions and ownership

In order to gain more expressiveness but not lose its safety Rust incorporates references
which allow to refer to a value without taking ownership. References enable aliasing with
the following restrictions referred to as borrowing [35].

Borrow Rule. According to Steve Klabnik and Carol Nichols [35]
At any given time, it is possible to have either (but not both of)

• one mutable reference or

• any number of immutable references.

This allows the owner of a value to explicitly hand over references without giving up its
ownership. Like regular variables, references (borrows) can either be immutable (default) or
mutable. For a variable v of type T, the “owned” type, &v is a reference to v of type &T, the
“borrowed” type. Accordingly, for mutable variable m of type T, the “owned” type, &mut m
is a mutable reference to m of type &mut T, the “borrowed” type [35].

Listing 2.9 defines two functions. The first expects an argument of type &String which
is an immutable reference type for strings and prints the received string to the terminal.
The second function takes an argument of type &mut String, which is a mutable refer-
ence type for strings and appends an exclamation mark. As the rule for borrowing states
there is only one active mutable reference allowed at a time. In particular, a mutable refer-
ence grants exclusive access to its resource permitting to read or mutate its value. For the
duration of the mutable borrow the owner itself is not allowed to modify the value [34]. In
contrast, Rust allows multiple immutable references, which grant read-only access, to exist
at the same time. Immutable references can be copied without restrictions. Additionally,
they can be used as source for new immutable borrows [42].

// Function borrows value
fn display(ref_s: &String) {

println!("The string is: {}", ref_s);
} // reference ref_s is dropped

// Function mutably borrows value
fn append(mut_ref_s: &mut String) {

mut_ref_s.push(’!’);
} // mutable reference mut_ref_s is dropped

Listing 2.9: Functions accepting borrowed values

As stated earlier exclusive ownership is very restrictive: The use of borrowing removes
these restrictions. Listing 2.10 shows how the string "foo" is passed to the append func-
tion as mutable borrow, which mutates the string by adding an exclamation mark to the end
of the string. Next, the modified value is passed to the display function as immutable ref-
erence which prints out the string. This is only possible because the mutable borrow used

2.2. OWNERSHIP AND BORROWING 9

in the append function becomes invalid at the end of the scope of the function. Otherwise,
there would be a mutable reference and an immutable reference active at the same time
which would result in an error according to the Borrow Rule. After invoking these two
functions it is still possible to use the original owned variable var. The last character of the
string (’!’) is removed by calling pop.

let mut var = String::from("foo");
append(&mut var); // pass as mutable reference
display(&var); // pass as reference
var.pop(); // Use of var still valid
let ref_var = &var; // Create reference and assign it to ref_var
let mut_ref_var = &mut var; // ERROR: cannot borrow ‘var‘ as mutable

// because it is also borrowed as immutable
display(ref_var);

Listing 2.10: Passing immutably and mutably borrowed values to function calls

The following lines of the example (Listing 2.10) demonstrate how the Borrow Rule
prevents the simultaneous existence of mutable and immutable borrows. In line five, an
immutable reference of the string is assigned to ref var. Next, a mutable reference to the
same string is stored in mut ref var and afterwards display is invoked with ref var.
However, already the previous line returns an error. The compiler detects that ref var is
needed afterwards for calling display, thus it is still active, while the mutable reference
mut ref var is created. This contradicts the Borrow Rule, resulting in a compile-time
error.

Borrows, just like regular variables, are dropped as soon as they go out of scope. What
would happen if the owner variable of a value goes out of scope before its reference? Ac-
cording to Ownership Rule 3 the value is dropped when the owner goes out of scope. Due
to the ownership rules, the compiler can determine when a value is used after it was re-
leased, resulting in an error. This can be seen in Listing 2.11, the first line creates an empty
vector. In the new scope a string value is assigned to var, next a reference to var is stored
in the vector. This line is where the error occurs. The compiler detects that var, the owner
of the string value goes out of scope, releasing its memory, but the reference stored in vect
is used afterward in the last line of the example. This would result in an use-after-free
memory error. Instead, Rusts compiler throws an error, stating that var does not live long
enough [35].

let mut vect = Vec::new(); // Create empty vector
{ // New scope begins

let var = String::from("foo"); // Assign string to var
vect.push(&var); // ERROR: ‘var‘ does not live long enough

} // Scope ends, var is dropped
println!("{}", vect[0]); // Use of reference after value was dropped

Listing 2.11: Use of dropped variables

During compilation Rust automatically checks the ownership and borrowing rules. As
a consequence, Rust can eliminate common low-level development errors such as dangling
pointers and use-after-free without the need for a garbage collector. Furthermore, these
rules disallow the unrestricted combination of aliasing and mutation on the same memory
location which is required for the occurrence of data races. Thus, Rust provides thread
safety which makes Rust ideally suited for modern concurrent and parallel programs [34].

10 CHAPTER 2. THE RUST PROGRAMMING LANGUAGE

2.3 Concurrency and Parallelism in Rust

Rust was designed with concurrency in mind. The ownership concept eliminates not only
common memory errors but also prevents many concurrency errors resulting from data
races. These are usually hard to track down. Often errors only occur under specific circum-
stances, which are difficult to reproduce. By enforcing ownership and borrowing rules the
compiler already detects many errors at compile time. For this reason, Rust is well suited
for concurrent and parallel programming. However, it is important to note that concurrent
programs still need to be designed with caution, as Rust does not eliminate all kinds of
bugs [35].

The ownership concept enables Rust to disallow “[...] any unsynchronized, concurrent
access to data involving a write.”, i.e. data races. In doing so, it helps to avoid other forms
of race conditions. For instance, in many situations different memory locations have to be
updated atomically. Atomic operations are always performed without interruption. Even
if these operations internally consist of multiple operations, execution can not switch to
another thread before the atomic operation is finished. When memory locations have to be
updated atomically, it is desired that other threads see either all of the changes or none of
them. In Rust, granting access via mutable references (&mut) to several memory locations
ensures updates are performed atomically. The Borrow rule guarantees no other threads
have simultaneous read or write access [58].

Another essential feature of Rust which helps to avoid concurrency errors are “Send”
and “Sync”. Similar to the “Copy” marker they convey information to the compiler. The
ownership of types marked with “Send” can be safely transmitted from one thread to an-
other. Most of Rust standard types are “Send”. An example for a type not marked as
“Send” is Rc<T>, which is a reference to some type T with reference counting through
regular reads and writes. Rc<T> is not marked as “Send” because if it is shared between
threads, two threads might change the reference count simultaneously, resulting in poten-
tially incorrect reference counts. To support this scenario, Rust provides Arc<T>, which
uses atomic updates and therefore is “Send” [35].

Types marked as “Sync” can be safely referenced from multiple threads. This means
any type T is “Sync” if its reference type &T can be transmitted safely between threads
(is “Send”). Similarly to the “Copy” marker compound data types consisting entirely of
“Sync” types are “Sync” themselves. The same holds for “Send”. These markers provide
additional thread-safety as the compiler will detect if types which are not “Send“or “Sync”
are shared between or referenced from multiple threads [35].

Rust provides many features which help to develop safe and fast concurrent or parallel
applications. Its philosophy is to catch as many bugs as possible during compilation, pre-
venting many hours of tracing small, subtle errors. Especially for developers new to Rust
the long list of compiler errors might be frustrating. However, when a program finally
compiles, it is guaranteed to be memory safe and free of data races.

The standard library of Rust supports several approaches of introducing concurrency
or parallelism, either by creating child process or by spawning new threads. There are
different kinds of thread models. The approach of Rust is that it relies on the operating
system for creating new threads. This model is often called 1:1, because every spawned
thread maps exactly to one operating system thread. The standard library of Rust takes
this approach because it results in small binaries since thread management is outsourced
to the operating system. Low-level languages such as Rust require small binaries as this
makes it easier to combine them with other languages [35].

Spawning threads in Rust requires functions defined in the standard library such as
the std::thread::spawn function shown in Listing 2.12. This function creates a thread,
such that the new thread executes the closure provided as argument. In the case of the
spawn function a closure with no arguments has to be provided [35].

2.4. RUST INFRASTRUCTURE AND COMPILER 11

let n = 24; // Define new variable
let handle = std::thread::spawn(|| { // Create new thread

calc(n); // Closure body
// Do some more // Closure body

});
handle.join().unwrap(); // Join the child thread

Listing 2.12: Spawning threads

When the execution reaches std::thread::spawn a new thread is created, which ex-
ecutes the task defined in the closure provided as argument. Additionally, the main thread
continues to run and gets a JoinHandle [12] as a return value from the spawn(...)
function call. Listing 2.12 shows how the return value of the std::thread::spawn func-
tion is assigned to a variable. This handle represents the owned connection to the newly
created thread. Thus, when it goes out of scope, the connection is dropped, detaching the
child thread from the main thread [35].

In order not to lose the connection to the child thread, the main thread has to join the
child thread before the JoinHandle goes out of scope. Calling the joinmethod on handle
(last line of Listing 2.12), causes the execution of the main thread to block and to wait for the
child thread to finish. The child thread terminates as soon as the execution of the closure
is finished. In some cases, the provided closure is defined to perform a calculation which
returns a value. This result is returned upon the child threads termination yielded by the
join method [35].

In summary, calling join on the JoinHandle forces the main thread to wait for the
child threads termination as well as returning the result value computed by the child
thread. After join returns execution of the main thread will continue freely. In cases where
the main thread terminates before the child thread finished execution, the child thread is
cleaned up by the operating system. As a consequence, the task executed on the new thread
might get interrupted, not being able to finish its task. For instance, when the child thread
should calculate some data and write it to a file or send it to some other system, the value
might be lost if the thread is interrupted before writing to the file or sending it. This is
important to keep in mind as in Section 4.2 this will be the cause of difficulties. [12]

Rusts standard library offers basic support for concurrency such as the spawn function,
Rusts growing ecosystem provides various first-class libraries supporting multiple models
of parallelism. This work will focus on the following three major libraries:

• crossbeam

• rayon

• timely

2.4 Rust Infrastructure and Compiler

Rust, as noted earlier, is a compiled language, which means that Rust source code is trans-
lated into executable binaries using a compiler. Depending on platform, operating system
and processor architecture, a specific version of the compiler has to be used. Some oper-
ating systems, such as Linux or BSD, provide package managers which ease the installa-
tion and management of software. However, these managers depend on central reposi-
tories which often do not provide the most up-to-date versions of the software. Instead,
the Rust ecosystem includes the command line tool rustup, “the Rust toolchain installer”
[9]. Rustup is the preferred way to install Rust on a system. With rustup toolchain

12 CHAPTER 2. THE RUST PROGRAMMING LANGUAGE

install stable it automatically installs the latest stable toolchain available for the plat-
form, toolchain in this case refers to a single installation of the Rust compiler. Additionally,
it is intended to ease the management of multiple compiler installations, providing spe-
cific commands for automatically updating installed compilers, removing installations and
switching between them. Beyond that, it allows defining the default compiler installation
to be used for a specific directory (rustup override set nightly-2019-02-07). In
other words, when invoking the rust compiler in a directory, the compiler installation spec-
ified for this directory will be used. This is necessary when Rust packages require a specific
compiler version for compilation. Beyond that Rustup provides many handy configuration
options [9].

The rustup tool provides easy management of multiple Rust compiler installations. The
Rust compiler itself is written in Rust and is called rustc. It is developed as open-source
project together with the language itself on Github [11]. The compiler is invoked with
rustc. When adding the path to a Rust source file, it will be compiled yielding an exe-
cutable binary. Rustc provides various options in order to configure the compilation pro-
cess, such as optimization level, the name of the resulting binary, or linking options. [8]

It is not often necessary to invoke the compiler directly, instead Rusts ecosystem pro-
vides a package manager, which is the recommended way for compiling projects. The
package manager, called cargo, is automatically installed by rustup together with the com-
piler. This is the main tool Rust developer are confronted with. It provides short commands
for scaffolding a basic Rust project (cargo new <package name>) as well as compiling
(cargo build) and running (cargo run) it. Instead of passing multiple command-line
options to cargo, it is configured by means of a configuration file (Cargo.toml file). This is
where the name of the executable, the package version, dependencies and so on are speci-
fied. On the basis of this configuration file cargo automatically downloads the suitable ver-
sion of the dependencies from the central Rust package repository located at crates.io,
invokes the compiler with the right parameters ensuring all dependencies are compiled
and linked correctly [35].

rustc driver

rustc borrowckrustc codegen rustc metadata...

rustc

syntax

syntax pos syntax ext

Figure 2.1: Dependency graph of the compilers internal packages [8]

The Framework developed in the course of this work uses an internal compiler inter-
face. For this reason, the structure of the compiler is outlined here.

The Rust compiler is internally composed of multiple packages. Figure 2.1 shows some
of these packages and their dependencies. The rustc driver package contains the com-
piler driver, which is the “main” function of the compiler, it ties together the code provided
by the other packages, defining the general flow of execution. The packages in the middle

crates.io

2.4. RUST INFRASTRUCTURE AND COMPILER 13

of the dependency tree such as rustc borrowck, rustc codegen and rustc metadata
contain major parts of the compiler and export routines which are called from within the
compiler driver. The rustc package defines common data structure, which are used by
rustc borrowck and rustc codegen. These data structures include representations of
syntax elements which are defined in the syntax package. The packages below syntax
contain important routines for the parser [8].

Currently, there is a lot of work being done to transform the Rust compiler from fixed
“pass-based” model into a demand driven query model. So far, rustc performs a fixed
number of passes, each advancing transformation of the entire program by one step. This
rigid structure is getting replaced. Regardless of what model is used the compiler has to
perform seven steps to transform the provided source code into an executable binary [8].

1. Parsing Input: The Rust source files are parsed, creating the AST (abstract syntax tree).
The AST is composed of recursive data structures which are intended to closely match
Rusts syntax.

2. Name Resolution, Macro Expansion, and Configuration: The AST is walked recursively,
resolving names and expanding macros.

3. Lowering to HIR: The AST is transformed into HIR (Higher-level intermediate rep-
resentation). The HIR is an altered version of the AST optimized for the following
analyses.

4. Type checking, and subsequent analyses: Determines types and assigns them to HIR
nodes. Additionally type-dependent names, such as method calls are resolved. Sub-
sequently privacy checking is performed.

5. Lowering to MIR and Postprocessing: The HIR is transformed into MIR (middle inter-
mediate representation). MIR is optimized for ownership and borrow checking. After
transformation, ownership and borrow analysis is performed.

6. Translation to LLVM and LLVM Optimizations: MIR is translated to LLVM yielding
optimized object files.

7. Linking: Links the object files together returning one single executable [8].

The Rust compiler provides interfaces which allow developers to execute additional
code between two steps. A detailed explanation of how this works is given in Chapter 4.

14 CHAPTER 2. THE RUST PROGRAMMING LANGUAGE

CHAPTER 3

Theoretical Foundations

In the course of this chapter, various foundation, needed for the design and the implemen-
tation of a parallel performance analysis framework, are explained.

Section 3.1 gives a detailed explanation of instrumentation and its different variants.
Afterward, Section 3.2 outlines the architecture of parallel performance analysis tools. Sec-
tion 3.3 describes three libraries for parallelism common in the HPC domain together with
three popular Rust libraries for parallelism. Finally, Section 3.4 outlines three established
parallel performance tools.

3.1 Instrumentation

Instrumentation is a technique commonly used to observe and analyze the performance of
parallel programs. Instrumentation is the process of inserting additional instructions, often
referred to as probes or instrumentation calls, into the source code. During the execution of an
instrumented program these additional instructions trigger events, representing program
execution state [55]. By collecting these performance events and by performing measure-
ment on data associated with them developers can obtain valuable characteristics about
the run-time behavior of the program [56].

Events can be of two different types. On the one hand atomic events together with their
associated data represent an independent incident such as, the allocation of a certain size
of system memory or the sending of a signal. These events mostly consist of a single in-
strumentation call. On the other hand interval events need at least two instructions and are
usually represented by a begin and an end event. These are commonly inserted directly be-
fore and after regions of interest, such as performance critical routines or loops to measure
the time spent in the enclosed region. [55].

Commonly, instrumentation not only inserts the probes which trigger the aforemen-
tioned performance events but also requires some instructions for initialization. Initializa-
tion may include the creation of a new process or thread to calculate data associated with
performance events. In other instances, data structures might need to be initialized which
carry along data depending on multiple performance events. Additionally, instructions
for persistently storing the occurring performance events together with their related data
might need to be inserted. It might also be required to insert finalization instructions at the

15

16 CHAPTER 3. THEORETICAL FOUNDATIONS

end of the program to clean up data structures and join the created threads or processes
[48].

It is important to keep in mind that adding instructions always alters the program to
some extent. In order to provide actual help to the developer, instrumentation has to meet
certain requirements.

Requirement 1 The instrumented program must be executable. Instrumentation does not pro-
vide any use if the program under observation cannot be executed. Therefore it is
essential that the instrumentation calls themselves are syntactically correct. Further-
more, they have to be inserted into the original code in a way that again results in
correct syntax. As instrumentation can be introduced at various stages of the com-
pilation process “syntax” here means the appropriate representation associated with
the particular level of source transformation. Accordingly, probes might have to be
valid C/C++ or Rust syntax when inserted early on in the process or valid object code
when introduced later on [48].

Requirement 2 The instrumented program must semantically match the original. It is only pos-
sible to draw meaningful conclusions regarding the original program based on the
instrumented version when both yield the same results. Thus it is important for the
insertions not to alter the programs semantic [48].

Requirement 3 The execution behaviour of the instrumented program must be as close as pos-
sible to the behavior of the original. It becomes more difficult for developers to draw
a meaningful conclusion regarding the run-time behavior of the original program
the more its run-time behavior differs from the instrumented version. Introducing
additional instructions generally alters the execution time of the program. In partic-
ular, the overhead generated by initialization at application start-up, the calculation
of data associated with each event, the collection and storage of the event data, as
well as the finalization process can cause notable longer execution time. Therefore,
the performance analysis system as a whole and especially the instrumentation calls
have to be designed to introduce the least possible amount of overhead. Besides the
insertion of probes may result in increased compilation time. However, compilation
time is less of a concern as the developer is interested in run-time behavior. Still, sig-
nificantly longer compilation times can prolong development and can be annoying.
Thus, keeping compile time within a reasonable margin should not be disregarded
completely [48].

In other words, it is crucial that instrumentation alters the program and thus its behavior
as least as possible.

It is often difficult to measure the actions of interest directly. The instructions the de-
veloper is interested in are often interlaced with other instructions. Consider, the situ-
ation interest call(func1(), func2()). The performance of the function call
interest call should be measured but its arguments are calculated inside the call. When
inserting probes before and after interest call the time measured includes the time
needed to calculate func1() and func2(). In order to accurately measure such inter-
laced instructions it is necessary to isolate them which can be challenging. Moreover, iso-
lating these instructions might require significant changes to the program and its structure,
which may result in severely altered run-time behavior. As a consequence instrumentation
is a balancing act between retrieving detailed measurement which relates poorly to the
original program and receiving less detailed data which precisely relates to the original.

Instrumentation calls can be inserted at different stages of the compilation process. At
different levels of source-code transformation the available syntactic and semantic infor-
mation varies. In the following, these different approaches together with advantages and

3.1. INSTRUMENTATION 17

disadvantages of inserting probes at different stages of the compilation process are de-
scribed in more detail. [56]

3.1.1 Source-based Instrumentation

In case of source-based instrumentation the developer manually annotates lines of source
code with additional instrumentation instructions. These instructions have to be part of an
interface provided by a profiling framework and the programming language in question
has to be supported by the framework. As an example, Listing 3.1 shows how source-
based instrumentation of some function “foo” looks like, when instrumented using the
Score-P performance measurement infrastructure [37], a framework combining multiple
common profiling tools. In particular, the “SCOREP USER FUNC BEGIN” instrumentation
call indicates the beginning and “SCOREP USER FUNC END()” the end of an interval event.
The two inserted instructions enclose the region of interest which is the body of the “foo”
function. Also worth noting is the include statement at the top. This brings the probe
functions into scope and is typical for source-based instrumentation [37].

#include <scorep/SCOREP_User.h>

void foo()
{

SCOREP_USER_FUNC_BEGIN()

// original function body...

SCOREP_USER_FUNC_END()
}

Listing 3.1: Manual instrumentation of a function with the Score-P performance measure-
ment infrastructure. [16]

Source-based instrumentation offers the greatest amount of flexibility, granting the de-
veloper full control over which parts of the program should be observed. The developer
knows the semantics of the source code in contrast to automated tools. Therefore he knows
best which parts of the program need instrumentation. Nevertheless, manual annotation
can be very tedious in large projects [56].

3.1.2 Preprocessor-based Instrumentation

Preprocessors are used to alter the source code of a program before compilation. With
preprocessor-based instrumentation, a preprocessor automatically infers where to insert
instrumentation calls based on predefined regions of interest. After identifying source-
code regions which need instrumentation, the preprocessor inserts the appropriate probe
instructions. For example, the memory allocation/deallocation tracking package of TAU
detects invocations of the malloc and free routines and redirects them to memory wrap-
per calls. The wrapper calls add information such as source-code file and line number. As
a result, users can track the size of allocated memory during execution [56].

On the one hand, this automated approach reduces flexibility compared to manual in-
sertion. On the other hand, it takes much work off the hands of the developer. In some
cases the preprocessor has access to dependencies which allows for inserting instrumenta-
tion calls into the source code of libraries or other dependencies [56].

18 CHAPTER 3. THEORETICAL FOUNDATIONS

3.1.3 Compiler-based Instrumentation

With compiler-based instrumentation, additional instructions are inserted directly into the
object code generated by the compiler. Therefore, modern compilers used in the context
of high-performance programming (HPC) often provide extra flags which permit instru-
mentation of entry and exit points of functions and methods. This approach has a sub-
stantial advantage, as the compiler knows the entire mapping of source code to memory
locations including dependencies. Furthermore, the compiler has control over large parts
of the source-code transformation. This is especially important, since manually inserted
probes may conflict with the code optimization done by compilers. In some cases the com-
piler may remove instrumentation calls during the optimization process, in other cases the
probes may prevent the compiler from performing certain optimizations. However, since
in this approach the compiler is aware of the additional instructions it can prevent them
from being removed while maintaining aggressive source code optimization [56].

3.1.4 Wrapper Library-based Instrumentation

This approach uses special libraries which already contain the necessary instrumentation
calls. During compilation the original library is substituted by its corresponding instru-
mented version. For this reason, the wrapper-library provides a superset of the interface
of the original library. Usually, the routines declared in the wrapper-library call the rou-
tines of the original library and add the necessary instrumentation calls. In some cases, the
original library provides a special interface that allows for intercepting the calls, that the
instrumentation calls can be inserted. Furthermore, this grants the wrapper library access
to the arguments passed to the routine call. This approach only provides instrumentation
for the linked libraries and not for the developed program itself. This approach allows ap-
plying instrumentation to a program even though no source-code is available. Also, it is
ensured to run relatively stable since the instrumented libraries are well tested [56].

3.1.5 Binary Instrumentation

This approach inserts instrumentation instructions directly into an executable binary after
the compiler generated it. Therefore, the executable image can either be rewritten with the
added instrumentation calls using a binary rewrite tool [55] or probes can be dynamically
inserted into a running program. This enables the insertion of probes for interval events,
such as routine and loop entry and exit. Especially the second aspect enables the developer
not to have to decide before compilation what routines and loops should be instrumented.
Often, only execution reveals which parts of the program are bottlenecks and need further
analysis. Thus it is possible to immediately react to the run-time behavior of the program
without the need to recompile the entire program, resulting in a smoother development
process. However, with this approach it is more challenging to relate specific instruction to
source-code constructs [56].

3.2 Architecture of Parallel Performance Tools

Tools used to debug or analyze the performance of parallel applications, often referred
to as parallel performance tools, originated in the context of high-performance computing
(HPC). As HPC is concerned with maximum performance, it early on relied on parallel
applications in order to take advantage of increasingly parallel hardware. For the purpose
of analyzing parallel programs, performance tools use instrumentation to obtain detailed
event data during program execution. In particular, this data contains information about
the program state at the time of the event. The performance tool can either store the event

3.2. ARCHITECTURE OF PARALLEL PERFORMANCE TOOLS 19

Observed program

Observer

Storage

Inspector

event
data

event
data

event
data

Figure 3.1: Architecture of parallel performance tools

data for later inspection or analyze it right away. The process of storing data and analyzing
it after the programs execution is called offline or post mortem analysis while analyzing the
generated data during run-time is referred to as online or live analysis. Modern parallel per-
formance tools often support both approaches by providing two interfaces, one for storage
and one for immediate analysis [37].

Regardless of whether performance tools support online or offline analysis or both they
can be differentiated by what kind of event data they generate. Profiling tools (profiler) ag-
gregate event data during execution. Thus they produce statistics and do not record event
timings. Whereas, tracing tools (tracer) emit the raw event data, including time stamps.
However, especially when scaling up the number of threads or processes tracing tools can
become unusable, as the amount of generated event data may easily exceed storage capac-
ity or the processing capabilities of the online viewing component, reducing its responsive-
ness to a point where it becomes unusable. Since profiling tools only output aggregated
data storage and processing capacity is not that big a concern, however in the course of
computing statistics information is lost. In particular, the absolute chronology of events is
lost due to aggregation of data [39].

Even though profiling and tracing tools process event data differently, the general archi-
tecture of parallel performance tools is similar. All of them contain two major components,
the observer and the inspector [33], which are described in the following two sections.

3.2.1 Observer

The observer (or monitor) component is responsible for monitoring run-time behavior of a
program and emitting data about its state. The most common technique to gain insights
about the internal behavior of a program during execution is instrumentation. The in-
serted instruction calls often initialize a run-time environment, which is responsible for
computing additional data associated with the performance events or keeping track of data
structures used of aggregation, such as the number of times a certain function was called.
Additionally, the environment commonly manages the storage of the event data for post
mortem analysis or the data transmission for online inspection, as shown in Figure 3.1.
These actions are often delegated to a separate process. The inserted probes together with
the run-time environment make up the observer [38].

Ideally, the behavior of an uninstrumented program matches the behavior of its instru-
mented counterpart. However, the observer is interconnected with the observed program
through instrumentation, which is illustrated in Figure 3.1 by the observer node overlap-
ping the node of the observed program. For this reason, not only the instrumentation calls
themselves but also any actions performed by the run-time environment such as simple
updates of data structures, alter the programs run-time behavior. Even if a large propor-

20 CHAPTER 3. THEORETICAL FOUNDATIONS

tion of the computations the observer are performed in separate processes they occupy
system resources including CPU time and system memory. If the run-time behaviour of an
instrumented program is very different from its uninstrumented counterpart it is difficult
to relate observation results to the original program and identify bottlenecks and errors in
it. For this reason, it is a critical requirement for the observer to generate the least amount of
overhead possible [38].

3.2.2 Inspector

The inspector component is responsible for the preparation and appropriate presentation of
the event data to enable the user to evaluate the monitored data conveniently. In particular,
the inspector is typically a separate process, which may be running on a different physical
machine. Depending on the capabilities of the inspector it can either receive event data
directly from the observer for online viewing or read event data from storage for offline
inspection, as shown in Figure 3.1. In the case of online analysis the observer forwards the
data via some defined interface directly to the inspector. However, the communication
between monitor and the presentation component generates additional overhead, which
further alters the observed programs run-time behavior. In contrast, the storing of event
data generally produces less overhead. Moreover, it allows for computational intensive
analysis of the event data, compared to online examination where the inspector is required
to process the incoming data in real-time [38].

3.3 Parallel Libraries and Interfaces

There exist several well-established libraries for developing parallel applications. These
standards and libraries were mainly utilized in applications requiring high performance.
However, it is also possible to apply them in less performance critical areas. In the fol-
lowing, the three most common frameworks are introduced and compared to the libraries
proposes for parallel computing in Rust.

3.3.1 MPI

The Message Passing Interface (MPI) is most well known in the context of parallel computing.
Its goal is to provide a common standard for developing message-passing applications.
For this reason, MPI specifies a library interface and does not provide a library itself [45].
Accordingly, multiple implementations exist with open source versions such as OpenMPI
and MVAPICH as well as implementations from hardware vendors optimized for the use
on specific hardware such as Intel MPI and IBM BG/Q MPI. MPI is designed to be language
independent, yet only implementations in C/C++ and Fortran are officially supported.
As its name suggests, MPI proposes the message-passing paradigm, which was originally
designed for distributed memory architectures popular during the time of its first release
(80s early 90s) [21].

Message-Passing Programming Model In applications implementing the message-passing
programming model a set of processes exchange data through sending and receiving
messages. Figure 3.2 illustrates this concept on the basis of three processes. It is
important to note that the communicating processes can reside on different physical
machines. In addition, these cooperative operations can be used for synchronization.
For instance, a send performed in one process requires a matching receive operation
in another process [20].

3.3. PARALLEL LIBRARIES AND INTERFACES 21

Process 1Memory Process 2 Memory

Process 3

Memory

Message

Message

Message

Figure 3.2: Message passing programming model

3.3.2 Crossbeam (Rust)

There are wrapper libraries such as rsmpi, which provide Rust bindings to common MPI
implementations. However, these wrapper libraries currently only support a subset of the
official MPI specification. In some cases, this might be appropriate but when programming
in Rust it might be desirable to take full advantage of its safety guarantees by using na-
tive Rust libraries. When trying to implement the message passing paradigm in Rust, the
most common library to use is crossbeam. Crossbeam provides low-level concurrency
and parallelism utilities, such as atomics, concurrent data structures, and synchronization
primitives [31].

One of its greatest features is its high-performance implementation of channels. Chan-
nels are a technique for transmitting data between entities such as threads and processes.
They are ideal for implementing message passing between processes. Crossbeam provides
several channel variants, all of them can have one sender and one receiver, but multiple
sender and receiver are possible as well. The sender can send data through the channel
to the receiver, as shown in Listing 3.2. In the case of bounded channels, the sender can
only send data if the number of messages within the channel (messages, which were sent
but not yet received) is less than the capacity of the channel, otherwise the sender blocks.
The channel provided by Crossbeam enable easy synchronization and fast communication
between multiple threads or processes [2]. Crossbeam also provides atomics, data struc-
tures and synchronization primitives for the development of applications implementing
the shared memory or thread paradigm [2].

// Creates a channel capacity 5 and
// assigns sending and receiving end to variables
let (sender, receiver) = bounded(5);
// Sends ’Hello’
sender.send("Hello");
// Checks if ’Hello’ is received
assert_eq!(receiver.recv(), Ok("Hello"));

Listing 3.2: Sending and receiving with Crossbeams channels

Shared Memory Programming Model According to the shared memory programming model,
multiple execution units have access to a common address space. Data is exchanged
through reading from and writing to a shared memory region. This is illustrated
in Figure 3.3. In order to coordinate access of multiple threads to shared memory,
synchronization mechanisms have to be used. Consequently, in this programming

22 CHAPTER 3. THEORETICAL FOUNDATIONS

model execution units work on the same data thus it is shared implicitly, whereas in
the message passing model data has to be exchanged explicitly [20].

Thread 1Memory Thread 2 Memory

Thread 3 MemoryThread 4Memory

Shared Memory

Read/Write Read/Write

Read/WriteRead/Write

Figure 3.3: Shared memory programming model

3.3.3 POSIX-Threads

Historically, thread implementations from different vendors varied widely, hence devel-
oping portable applications which implemented the aforementioned thread programming
paradigm was difficult. For this reason, an interface specification for thread management
as part of the IEEE POSIX 1003.1c standard was introduced in 1995. Implementations of this
standard are referred to as POSIX (Portable Operating System Interface for Unix) Threads
or just pthreads [22]. This specification defines low-level data structures and procedures for
the C language, allowing synchronization on Unix systems through mutexes and condition
variables. Pthreads facilitate the development of portable applications in environments
where multiple threads can access a common memory region. For this reason, Pthreads
gained popularity with the increasing core count of processors [46].

3.3.4 OpenMP

Another widespread standard used for the development of threaded applications is Open
Multi-Processing (OpenMP). Similar to MPI it is a specification, not an actual library. It speci-
fies directives which can be used by developers. Compared to pthreads the goal of OpenMP
is to provide a high-level easy-to-use mechanism of writing new high-performance appli-
cations as well as incrementally parallelizing existing serial programs. Therefore, OpenMP
specifies certain compiler directives and callable dynamic library procedures. It was orig-
inally targeted towards Fortran, but now C and C++ are supported as well. OpenMP fol-
lows the fork-join paradigm [26].

Fork-Join Programming Model According to the fork-join programming model, every pro-
gram starts with a main thread. This main thread is colored red in Figure 3.4. It is
executed serially until a parallel region is reached. These are program regions which
benefit from parallelism. When the execution arrives at such a region the control flow
forks and additional threads are spawned such that each thread including the main
thread can perform independent computations. When the parallel region ends, the
threads are joined and only the main thread resumes execution serially until the next
parallel region occurs or the program terminates [53].

3.3. PARALLEL LIBRARIES AND INTERFACES 23

start

fork

Thread 1

Thread 2

parallel region

serial region

join fork

Thread 2

Thread 1

Thread 3

parallel region

join

end

Main
thread

Main
thread

Figure 3.4: Fork-Join programming model

3.3.5 Rayon (Rust)

Rust has a library specifically dedicated to data parallelism.

Data Parallel Programming Model The data parallel programming model does not make any
assumptions about the underlying memory architectures. The message-passing and
shared-memory models can be summarized as task parallelism, as they both describe
how different tasks can be performed simultaneously on multiple threads/processes.
In contrast, data parallelism proposes data should be distributed among multiple ex-
ecution units such that each unit gets a portion. Importantly each process/thread
performs the same action on its portion of the data. This is illustrated in Figure 3.5
[20].

Data Structure

Thread 2Thread 1 Thread 3

data
chunk

data
chunk

data
chunk

Figure 3.5: Data parallel programming model

The Rust library rayon tries to make converting sequential applications into parallel ones
easy while guaranteeing the absence of data races. Accordingly, Rayon provides its own
thread pool implementation. Developers will not have to deal with setting up a thread
pool, this is handled by Rayon. Maintaining a thread pool allows Rayon to quickly assign
tasks to the different threads, without having to spawn multiple threads every time parallel
executions is desired [3]. The central mechanism of the library for defining tasks which can
run in parallel is the join function, shown in Listing 3.3. It takes two closures which
are potentially executed on the thread pool in parallel. “Potentially” in this case means,
Rayon checks during run-time whether processor cores are idle or not. If no idle cores are
available, the two tasks are processed sequentially. The idea is similar to OpenMPs parallel
regions within the source code calls to join indicate which program regions might benefit
from parallelism. However, instead of always executing the annotated code in parallel
Rayon dynamically decides if it makes sense to perform actions in parallel depending on
the available resources [41].

24 CHAPTER 3. THEORETICAL FOUNDATIONS

// May run task_a and task_b in parallel, returns the result of each task
let (result_a, result_b) = join(|| task_a(), || task_b());

Listing 3.3: Rayons join function

// Computes total price in euro from multiple dollar prices
let total_euro_price = dollar_prices

.par_iter() // Indicates parallel execution possible

.map(|price| dollar2euro(price)) // May run in parallel

.sum(); // After parallel execution results are added up

Listing 3.4: Rayons parallel iterators

In addition, rayon provides parallel iterators which are convenient wrappers around the
join function. Parallel iterators allow iterating over data structures so that the specified
operation may be performed in parallel on different parts of the data. Listing 3.4 shows
an example of the usage of parallel iterators. It calculates the total price in euro from a list
of prices in dollar. Rayon not just assigns each thread an equal amount of the data and
waits until all threads are finished. Instead, it uses a technique known as work stealing. The
basic idea is, each thread has its own queue of pending tasks, processing pending tasks on
after another until the queue is empty. If one thread finishes its queue earlier it “steals”
tasks form the queue of another thread. As a result, no threads are idling and it takes less
time to process the entire data structure. Rayon provides various kinds of parallel iterators
which all use this technique and enables developers to implement data parallelism in new
applications easily [41].

3.3.6 Timely Dataflow (Rust)

While Crossbeam and Rayon allow for easy implementation of common parallel program-
ming models, namely message passing, thread and data parallelism, the library timely is
the Rust implementation of a new programming model called Timely Dataflow [49]. This is
a specific version of dataflow programming. In recent years, the dataflow model has regained
popularity as it is capable of representing parallelism very efficiently [29].

Dataflow Programming Model According to this model, applications are represented as
a directed graph. A node corresponds to operations such as addition or subtraction
and edges describe the flow of data within the graph. Thus, data arrives on incoming
edges and is processed according to the operation defined by the node, and the result
is sent on outgoing edges. This is illustrated by Figure 3.6. The data flow model has
two properties. First, nodes may perform their operations in parallel, except for one
node explicitly depending on the result of another one. Second, results do not depend
on the relative ordering in which potentially parallel nodes are executed [25].

This model does not provide an opportunity for nodes to maintain some internal state.
To avoid this restriction, Timely Dataflow extends the standard model with timestamps,
which correspond to logical points in the computation. As a result Timely dataflow allows
stateful dataflow vertices [49].

The central data types of the Timely library are streams which model dataflow. For ini-
tialization Timely provides the execute* functions which start the dataflow computation
on multiple worker threads. All of the execute* functions take a closure which defines
what operations the workers perform. Moreover, Timely comes with its own communi-
cations library which seamlessly handles the transfer of data between workers possibly

3.4. EXISTING TOOLS 25

Programming model Library Supported prog. languages
Message passing MPI Fortran, C/C++
Message passing, shared memory/thread Crossbeam Rust
Shared memory/thread Pthreads C, Rust (spawn/join)
Fork-join OpenMP Fortran, C/C++
Data parallel Rayon Rust
Timely dataflow Timely Rust

Table 3.1: Summary of the presented libraries

spread across multiple physical machines. As a result, it enables developers to build appli-
cations which run a single computer as well as large clusters. Besides, the fact that large
computations can easily be split up into smaller operations (nodes) Timely allows incre-
mental processing of large amounts of data, which does not entirely fit into memory [44].

Table 3.1 summarizes the six presented libraries listing their supported programming
languages and their suggested programming models.

Input 1 Input 2 Input 3

Operation a Operation b

Operation c

Operation d Operation e

Operation f

Output

Figure 3.6: Dataflow programming model

3.4 Existing Tools

So far, Section 3.1 explained the most common techniques for extracting internal event
data during program execution and Section 3.2 described the general structure of parallel
performance tools. This section will present three common tools in detail.

3.4.1 TAU Parallel Performance System

The University of Oregon developed the TAU (Tuning and Analysis Utilities) Parallel Per-
formance System [56] in cooperation with the Research Centre Juelich and the Los Alamos
National Laboratory. TAU provides an extensive toolset for instrumentation, measurement,
analysis, and visualization of parallel applications. It aims at overcoming portability issues

26 CHAPTER 3. THEORETICAL FOUNDATIONS

of other frameworks which force developers to apply different performance tools for dif-
ferent systems. For this reason, TAU offers a broad range of instrumentation mechanisms,
allowing users to select those instrumentation methods which are best suited for their en-
vironment [56].

The TAU performance tool is organized in three layers, instrumentation, measurement,
and analysis. Each layer contains several modules allowing users to configure TAU ac-
cording to their needs by selecting the appropriate modules. For instrumentation, there
are modules available such that all the instrumentation approaches explained in Section
3.1 are included, furthermore adding support for interpreters, component-based software,
virtual machines such as Java virtual machine (JVM), combining multiple instrumentation
methods, and explicit selection of performance events based on inclusion and exclusion
lists. The instrumentation layer communicates with the measurement layer through the
TAU measurement API [56].

The measurement component specifies how performance events are handled. Users can
choose between two measurement modes: tracing or profiling mode. Depending on the
selected measurement form TAU can collect different performance data. The measurement
layer is also responsible for adjusting the measurement environment to the underlying
system. In particular, TAU determines how many processes it can spawn and how much
memory it can occupy without significantly altering the observed applications execution
behavior [56].

Figure 3.7: ParaProf: 3-D communication matrix view [27]

The analysis and visualization layer offers modules for working with profiling or trac-
ing data. In order to analyze profiling data, TAU comes with the ParaProf tool [23], which
provides visualization and analysis capabilities such as the 3-D communication matrix
shown in Figure 3.7. This visualization of sender, receiver, and message size allows users
to identify communication bottlenecks [27]. Since the focus of TAU lies on portable tech-
niques to obtain performance data and given the fact that there are many tracing analysis
tools available TAU does not include its own. Instead, it just provides modules for the
conversion of trace data structures allowing the connection of other tools such as Vampir,
which is described in the following section [56].

3.4. EXISTING TOOLS 27

3.4.2 Vampir

Vampir was introduced in 1996 [50] as a visualization environment for the performance
analysis of parallel applications. Currently, the Center for Information Services and High-
Performance Computing (ZIH) of TU Dresden is responsible for its development. Vampir
comes in two versions, Vampir for the use on a single workstation, and VampirServer a
distributed variant providing better scalability [48].

Figure 3.8: Vampir: process summary view [17]

Vampir itself does not include components for producing event data such as instru-
mentation. Instead, it is intended to be used for post mortem analysis. For this reason,
it relies on external tools to store the event data obtained during measurement runs. The
recommended framework for instrumentation and event data storage is Score-P, which is
described in Section 3.4.3. Vampir supports the import of several trace file formats such as
Open Trace Format [36, 28] or EPILOG Trace Format [59]. After loading trace files, Vam-
pir offers various chart- and timeline views. Users can view the different charts based on
groups of processes as well as based on individual processes. For instance, the screenshot
in Figure 3.8 shows the process summary. It displays the execution time of every func-
tion for each process individually. This view may help to discover that one process takes
considerably more time to complete a particular calculation. This may indicate the un-
even distribution of work among the processes, which might be the cause of a performance
bottleneck [17].

While Vimpir targets the analysis of smaller programs, VampirServer aims to provide
insight into large scale parallel applications. It utilizes a client/server architecture. The
server is a parallel application, which itself uses MPI, pthreads, and sockets for communi-
cation, in order to speed up the complex computations performed during the data prepa-
ration process. As the server may run on a cluster, it is possible to store the entire trace
data in distributed memory. As a result, it is not necessary to copy many data to analyze
extensive trace data collections. The client application is connected to the server. It is re-
sponsible for visualizing the prepared performance data for analysis by the user. Since the
server component renders the visualizations, also low spec workstations and laptops can
run the client [48].

28 CHAPTER 3. THEORETICAL FOUNDATIONS

3.4.3 Score-P performance measurement infrastructure

The Score-P performance measurement infrastructure [37] is developed in cooperation by
the developers of the tools Periscope [24], Scalasca [30], TAU [56], and Vampir [48]. It ad-
dresses the fact that multiple performance tools provide different specialized features, and
users often utilize multiple tools to take advantage of these specific features. However,
many performance tools build on similar base functionalities. To ease the application of
several tools and to reduce the redundancy of developing base functionality for each tool
development effort was combined. Score-P provides base functionalities such as an instru-
mentation framework, run-time libraries, and some helper tools [37].

The instrumentation component supports the insertion of probes into programs writ-
ten in Fortran, C, and C++. It comes with several specific run-time libraries for different
programming paradigms. In order to collect event data appropriate for the given program-
ming paradigm Score-P links the application against the according run-time library [37].
Running scorep mpicc -c myapp.c in a terminal instruments and compiles myapp.c.
The scorep command is prefixed to the regular compile and link commands. Before the
actual build is performed the parallel programming library is automatically detected (MPI
in this case), and the corresponding flags are added. By passing options to scorep it
is possible to configure the desired instrumentation approach. Score-P provides several
mechanisms including compiler instrumentation, MPI wrapper-library, OpenMP source
code instrumentation, general source code instrumentation through TAU, and by employ-
ing other external components pthread and OpenCL instrumentation and CUDA instru-
mentation [16].

Executing the instrumented application generates performance data. Score-P provides
three different interfaces for further processing of the data. In tracing mode, event data is
saved to files in the Open Trace format 2 [28] for later inspection using Vampir or Scalasca.
In profiling mode, data is stored in special profiling formats which users can view with
Scalasca or TAU. Periscope can query measurement information during execution via the
online interface when the instrumented application is run with online mode enabled [16].

CHAPTER 4

Framework Design

The language Rust and its ecosystem evolve quickly. As outlined in Chapter 2 Rust pro-
vides many features which help to design reliable, high-performance parallel applications.
However, the language and its ecosystem are very young, compared to the languages es-
tablished in the domain of HPC and parallel computing namely Fortran, C, and C++. The
existing parallel performance tools were built around these languages and their ecosys-
tems. They offer various instrumentation approaches, allowing users to select the solution
best suited for their program and environment. This makes the analysis of parallel appli-
cations built with Fortran, C/C++, MPI, or OpenMP as convenient as possible.

Even though using existing performance tools to analyze Rust programs is possible,
their benefit is quite limited. As noted earlier wrapper libraries for MPI exist, allowing the
recording of MPI calls via wrapper-library instrumentation. Thus, only MPI calls can be
observed but not other properties of the program written in Rust. Moreover, only those
Rust applications which use MPI can be analyzed. Native Rust libraries are not supported.
However, using Rust libraries might be desirable in order to leverage the safety guarantees
of Rust. Another important aspect is that the existing performance tools do not fit well
with Rust’s own ecosystem. Such debugging tools are intended to help developers build-
ing high-performance, reliable applications. Therefore, it is essential that using them does
not require tedious setup and configuration, which complicates development. For these
reasons, the tRust framework is designed and built in the course of this work. In particular,
the following requirements were set:

1. The instrumentation of programs written entirely in Rust must be supported. In particular,
this should be possible without using any other tools and libraries such as MPI or
OpenMP.

2. The instrumentation of dependencies must be possible. Rust comes with many useful
libraries. They often provide high-level wrappers around low-level mechanisms,
which allow developers to focus on high-level application design. In order to get de-
tailed insight into the run-time behavior of the program, it is necessary to instrument
libraries. tRust should support the three popular Rust libraries for parallel program-
ming: Crossbeam, Rayon, and Timely Dataflow.

3. It must be easily usable together with existing Rust tools such as Rustup and Cargo. Building
reliable, highly parallel applications is challenging. Debugging tools are intended to

29

30 CHAPTER 4. FRAMEWORK DESIGN

support developers in building such software, therefore it is essential that their setup
and configuration does not introduce additional difficulties.

4. It needs to be extendable. As Rust and its libraries are young, they still may evolve. In-
terfaces may be modified or internals may be restructured. Therefore, the framework
must be adjustable to support additions and changes.

The following section will outline the instrumentation approaches investigated. Sec-
tion 4.2 will describe the structure of the run-time environment (observer). Afterward, in
Section 4.3 the syntax of the instrumented code is explained in detail. Finally, Section 4.4
describes how event data is collected and stored.

4.1 Technical Implementations of Rust Instrumentation

The tRust framework itself is implemented in Rust. This has multiple advantages. First
of all, it simplifies interaction with the observed application. For instance, writing the
framework in Rust allows using Rust specific types and data structure for the event data.
This enables the observer component to natively process Rust types. Using Rust data types
for event data makes sense because it allows for efficient transferring of the data. The event
data is produced by a Rust program (application under observation). Thus the event data
can be sent directly to the observer component as Rust data structures without needing to
convert the data to a common format. This is important, because it keeps the overhead low.

Another reason to implement the framework in Rust is that it allows for convenient
use, because the framework would nicely blend into the Rust ecosystem. For example, if
it is implemented as a Rust package it could be downloaded and built automatically using
Cargo. Consequently, Rust developers do not need to familiarize themselves with new
tools and they can use the tools they already know.

A further reason is, implementing the framework in Rust allows to leverage the safety
guarantees provided by Rust. Implementing such a framework requires concurrent and
parallel programming. The ownership concept together with the other safety features pre-
sented in Chapter 2 can help to build an efficient and reliable framework.

One significant difficulty in the design of a performance analysis framework is to pro-
vide an instrumentation mechanism for Rust programs which is not as tedious as manual
source-based instrumentation. There are two feasible approaches, either recording only
the invocations of library routines through wrapper library-based instrumentation or us-
ing an automated mechanism for inserting instrumentation calls such as compiler-based
instrumentation. However, one goal for this framework was to not only instrument the
application itself but also to instrument the dependencies of the observed application con-
veniently. In the case of source-based instrumentation, this would mean that users would
first have to download the source code of the dependencies which should be instrumented.
Second, they would have to look through the code and manually annotate the necessary
code regions. Third, they would have to compile all the instrumented packages individ-
ually. This whole process would be error-prone and take time. Therefore, this approach
is cumbersome. Consequently, the instrumentation of dependencies has to be done ei-
ther in advance or automatically. In other words, the framework provides either already
instrumented wrapper-libraries or a mechanism which automatically inserts instrumenta-
tion into a projects dependencies. Thus these two options, wrapper-libraries or automated
insertion, enable efficiently adding instrumentation calls to both the application and its
dependencies. The following Section explains these two approaches.

4.1. TECHNICAL IMPLEMENTATIONS OF RUST INSTRUMENTATION 31

4.1.1 Wrapper Libraries

This framework aims to support Crossbeam, Rayon, and Timely Dataflow. Therefore, the
framework has to provide instrumented versions for these three libraries. Each wrapper-
library has to offer a superset of the interface of the original library. In other words, ev-
ery function method and data structure exposed by the original is implemented in the
wrapper-library. Furthermore, it is essential that the function/method signatures of the
instrumented and the original version are identical. The functions defined in the wrapper
library call the original function passing on the provided arguments. Additionally, before
and after the call to the original function instrumentation calls are inserted.

// Imports original function and data structures
// with different name to prevent name collision.
use crossbeam::channel::bounded as orig_bounded;
use crossbeam::channel::Sender as Orig_sender;
use crossbeam::channel::Receiver as Orig_receiver;

// Instrumented version
fn bounded<T>(cap: usize) -> (Orig_sender<T>, Orig_receiver<T>) {

instrumentation_begin();
let return_val = orig_bounded(cap); // call to original function
instrumentation_end();
return_val

}

// --
// Original version in crossbeam
fn bounded<T>(cap: usize) -> (Sender<T>, Receiver<T>) {

// function body
}

Listing 4.1: Definition of a function in a wrapper-library

Listing 4.1 shows how an instrumented function would look like for the creation of a
crossbeam channel. The import statement use crossbeam::channel::bounded as
orig bounded; brings the original bounded method from Crossbeam into scope with a
different name. The new name orig bounded is specified after the keyword as. This is
necessary to avoid name collision of the instrumented version and the original one. After
the imports, the new wrapper-function is defined with the same signature as the original
(shown at the bottom of the listing). The wrapper-function calls the original function and
returns its result performing instrumentation calls in between.

// Import of the wrapper-library version
use crossbeaminst::bounded;
// Import of the original version
// use crossbeam::channel::bounded;

Listing 4.2: Import of a wrapper library

In order to use such a wrapper-library, the Rust developer has to change the import
statement similar to the one in the first line of Listing 4.2. Now, the function can be used
exactly like the original function. Commenting out the first line and removing the slashes
in the second line ends observation mode so that the original Crossbeam library is used

32 CHAPTER 4. FRAMEWORK DESIGN

directly. In order to obtain the wrapper-library the developer specifies it as a dependency
and Cargo will automatically download and build it.

This approach might seem straight forward but it has several significant drawbacks.
First using only wrapper-libraries results in recording calls to function/methods defined
in libraries, but not for code written by the developer himself. This is not sufficient for
extensive performance analysis.

Second, this approach only allows the instrumentation of functions/methods which are
exposed by the original library but not internal routines. In order to provide instrumenta-
tion for internal routines, a considerable amount of the original library would have to be
reimplemented because internal routines are private. Reimplementing major parts of these
libraries is work and can introduce errors. Moreover, maintenance would become unrea-
sonable. As noted earlier the Rust libraries are not stable and subject to change, therefore
keeping the wrapper-libraries up to date is hardly possible. However, ensuring that they
are up to date is necessary because they only work if they match the original.

For these reasons, this approach was not pursued further.

4.1.2 Compiler Plugin

As described in section 2.4 the package manager Cargo automatically downloads and com-
piles all the required dependencies before building the actual application. Thus Cargo has
access to the application and all its dependencies, which makes it appropriate for automat-
ically inserting instrumentation into both. When modifying the compilation process to add
instrumentation calls Cargo ensures that probes are inserted into the observed program as
well as the dependencies.

The Rust compiler rustc has several interfaces which extend its functionality. One of
them is the compiler plugin feature. A compiler plugin is a dynamic Rust library which
contains user defined functionality. The compiler provides the plugin registrar func-
tion to register plugin functions that provide new functionality. There are two main vari-
ants of plugins, syntax extensions or lint checks [14].

Syntax extensions are intended for modifying to the syntax of Rust. However, there
exist several variants of syntax extensions with different capabilities. Appropriate for in-
serting probes is the MultiItemModifier interface. This interface is implemented by
specifying the expand method. One of the arguments of the expand method is a part of
the abstract syntax tree [5].

The abstract syntax tree (AST) represents the hierarchical structure of a program. It is
constructed after parsing the source code. The AST is an ordered tree. Its nodes are oper-
ators with the children of the node being the operator’s arguments. The leaves of the tree
are variables [32]. In the case of Rust the AST is a recursive data structure containing Rust
types for the various syntax elements. Three essential types are Item, Expr, and Stmt.
Item represents top-level constructs such as imports, type definitions, or function defini-
tions. In short, it corresponds to all language constructs which can be defined in the global
scope. The Expr and Stmt data types represent expressions and statements as explained
in Section 2.1.

// Needed to allow custom inner attributes
#![feature(custom_inner_attributes)]
// Causes the syntax extension to have effect.
#![syntax_extension_name]

Listing 4.3: Attributes needed for the syntax extension to have effect

4.1. TECHNICAL IMPLEMENTATIONS OF RUST INSTRUMENTATION 33

In order to apply the syntax extension to the source code contained in a file the two
attributes in Listing 4.3 have to be placed at the beginning of the source file. Inner at-
tributes affect the item inside which they are placed. In the case of Listing 4.3 they are in-
serted into a module, as every Rust source file represents one module. The inner attribute
#![syntax extension name] ensure that the compiler invokes the expand method of
the syntax extension name plugin with the AST representation of this particular file
and the instrumentation calls are inserted into the AST.

This approach looked promising, it enables automatic insertion of instrumentation calls,
but this solution can not be used for instrumenting dependencies. As a syntax extension
only takes effect if the two attributes in Listing 4.3 are present at the top of a source file.
The user would have to annotate every source file of his application and its dependencies
containing interesting code regions. This requires the user to have substantial knowledge
about the internals of the used libraries. For this reason, the approach utilizing syntax
extensions was not further pursued.

After discovering that instrumenting dependencies through syntax extensions is not
feasible, the lint checks plugin option was examined. Lint checks plugins allow adding
new lints which are undesirable source code patterns. The compiler searches the source
code for these patterns and prints warnings or throws errors. Lints are intended to retain
or enhance code quality by alerting developers when writing possibly harmful code.

New lint checks are defined by implementing one of the methods provided by the inter-
face. The one best suited for inserting instrumentation is the check item method because
it is called for every item defined in an application or library. This allows to easily check
against a list of names with items which need instrumentation. The advantage of lint checks
over syntax extensions is that they have access to the AST without annotating source files
with attributes. Consequently, when Cargo invokes the compiler for the application and
all its dependencies the defined lint has access to all of the source code.

However, as Lint checks are intended to find undesirable patterns in the source code
and not to alter it they can inspect the AST but there is no way to change it. Consequently,
this approach does not work either.

4.1.3 Drop-In Compiler

The compiler plugins did not provide the necessary capabilities to satisfy the requirements.
However, rustc provides an interface for building a drop-in replacement for the compiler. It
allows customizing the compiler driver, the primary function of the compiler. With calls to
rustc internal routines it enables falling back on the compilers default behavior. Addition-
ally, it offers hooks which allow to execute additional code in between compilation steps.
Therefore, it facilitates the development of a drop-in compiler which adds instrumentation
calls during compilation.

The CompilerCalls interface provides the hooks, after parse, after expand,
after hir lowering, after analysis, and compilation done. Each hook takes a
callback in form of a closure. This closure is executed after the compilation step indicated
by the hook. Thus, after parsing source code the callback of the after parse hook is
invoked and after macro expansion the after expand callback is run and so on. Which
point during the compilation process is best suited for inserting instrumentation calls?

In each compilation step the compiler gains more information about the program. Af-
ter parsing and the construction of the AST have been accomplished, the compiler is aware
of the syntactical structure of the program. After name resolution and expansion are com-
plete, every name can be uniquely related to a definition and after type checking the type of
every element is known. Having more information about the program available is benefi-
cial for satisfying the requirements for instrumentation. Especially, the knowledge of types
would be beneficial for the correct insertion of probes. However, adding instrumentation

34 CHAPTER 4. FRAMEWORK DESIGN

Data name Data description Example
absolute name Resolved name of the function/method std::thread::spawn
AST depth Depth of the AST node within the AST 7
description Before or after the funtion/method call "LOCAL BEGIN"
filename Name of the file containing the correspond-

ing source code
"main.rs"

begin line Beginning line number of the correspond-
ing source code

67

end line Ending line number of the corresponding
source code

70

Table 4.1: Static event data with description

later in the compilation process also involves manually producing this information for the
inserted code. For instance, when instrumenting after type analysis, the instrumentation
framework is responsible for performing name resolution, macro expansion, HIR lowering
and type checking for the added code. This is necessary because the compiler expects this
information to be present later in the compilation process.

In some cases, existing information has to be changed when adding code. It turned out
that when inserting instrumentation calls after name resolution has happened the name
resolution information is no longer valid. Consequently, the entire name resolution would
have to be rerun after instrumentation. Unfortunately, the compiler interface does not pro-
vide a mechanism for rerunning compilation steps. Name resolution is a nontrivial process.
Reimplementing it would exceed the scope of this work. For this reason, instrumentation
calls are inserted after parsing, but before name resolution.

Section A.1 gives a short description of how to set up an environment which automat-
ically uses the drop-in compiler. In order to instrument a Rust program, it has to be com-
piled using the drop-in compiler. The rustc drop-in parses the entire source code of this
program and constructs the AST. Now the callback closure containing the instrumentation
component is invoked and first reads a configuration file. This file contains the names of
all functions and methods which are the target of instrumentation (see Section A.2). While
traversing the AST the instrumentation component checks for certain node types which
will be explained in Section 4.3. If a node of such a type is reached the data described in Ta-
ble 4.1 is computed for this node. The name resolution performed to determine the absolute
name is not exhaustive. In particular, there exist several situations in which it is not able
to resolve names correctly. For example it can not resolve the absolute names of methods,
since the actual method invoked depends on the type on which it is called. At this point
during the compilation process type information is not available, thus it is not possible to
resolve method names. This definitely is a starting point for later improvements. Never-
theless, this resolution is necessary in order to be able to differentiate between functions
defined by the user and functions defined in libraries. If the absolute name corresponding
to the current AST node matches a name defined in the config file a reference to this AST
node together with the computed data is stored in an ordered list of instrumentation points.
After traversing the entire AST, this list contains all AST nodes which will be instrumented.
The data stored together with the node references is called static data because it is known at
compile time. Section 4.2 explains dynamic data which is computed at run-time.

The AST node references stored in the list of instrumentation points are ordered by their
AST depth. The list is processed serially starting with the AST node with the greatest AST
depth and ending with the node with the smallest depth. In other words, child nodes are
instrumented before their parent nodes. This is essential for ensuring the validity of the
stored references.

4.2. RUN-TIME INSTRUMENTATION ARCHITECTURE 35

psp

Ri

c j

Ri+1 p′s′p

Ri

c′ j

psp

c j

Ri+1

Figure 4.1: AST node replacement and references

To explain why the instrumentation points have to be processed in this particular order,
consider the situation shown in Figure 4.1. Generally all of the stored references point to
inner AST nodes (not leafs). The stored reference Ri points to AST node p which is the root
node of a subtree sp and reference Ri+1 points to a child node c j of p. When instrument-
ing the parent p before its child c j, Ri+1 will become invalid. When probes are inserted at
node p the entire subtree sp is replaced by its instrumented counter part s′p, thus the refer-
ence Ri+1 is no longer valid, pointing to the old detached AST tree. Instead Ri+1 should be
pointing to c′ j. Since the instrumentation framework instruments child nodes before par-
ent nodes this can be avoided. When processing a parent node after its child, the reference
to the child in not needed any more because it has been processed already. For this reason
it does not matter if the reference to the child node becomes invalid during the replacement
of the subtree of its parent node. Processing the stored instrumentation points in this or-
der ensures every AST node references is valid at the time of use and instrumentation is
performed correctly for each point.

After inserting probes for every instrumentation point in the list the instrumentation
component is finished and the standard compilation process continues producing an in-
strumented binary.

4.2 Run-Time Instrumentation Architecture

After compiling the program with the Drop-In compiler the resulting binary contains all
necessary instrumentation calls. When running the binary the instrumentation calls are
invoked and event data is sent via UDP to the collector. The collector is a program which
preferably runs on a different physical machine. It receives the event data from the instru-
mented program and stores the data in an SQLite database. This general structure of the
framework is shown in Figure 4.2.

When executing the instrumented binary, first, the global instrumentation environment
(GlobalInstrumentation) is initialized by reading the same configuration file as the
instrumentation component did in the previous section. From the config file it learns the
address of the machine running the collector. This information is stored in a global single-
ton such that all threads have access. Next, the thread-local instrumentation environment
is initialized by spawning a helper thread.

When execution reaches an instrumentation call, which is the following function call:
instrument::instrument(static data). The static data is passed to the function as
static data object which is constructed entirely of literals inserted during instrumenta-
tion. The instrumentation call signals the helper thread by passing on the static data. When
the helper thread is signaled it updates the dynamic data. This is data such as time stamps

36 CHAPTER 4. FRAMEWORK DESIGN

Observed program

Run-time Library

Config file

Collector application

Drop-In Compiler
(Instrumentation)

SQLite Database

read

read

event data
send

event data
store

Figure 4.2: Framework architecture

Data name Data description Example
system time Number of nano seconds since an unspeci-

fied point in time
825403805208462

counter Number of instrumentation calls invoked
by one thread

37

pid Process ID of the current process 1252
thread id Thread ID of the current thread ThreadId(1)
machine id IP address of the current physical machine 192.168.178.21

Table 4.2: Dynamic event data with description

or thread ID which is shown in Table 4.2. The received static data is combined with the
updated dynamic data and sent to the collector.

For every thread spawned by the original program, instrumentation spawns one helper
thread. Thus every thread of the original program has one corresponding helper thread.
These helper threads are responsible for computing the dynamic data, encoding and sending
the entire event data, static and dynamic data, via UDP to the collector. Computing dynamic
data and sending the data is done for every instrumentation call. Without helper threads,
both updating and sending would have to be performed by the original thread, resulting
in significantly altered run-time behavior. In order to reduce overhead, these tasks are
outsourced to helper threads.

Instrumentation added initialization and finalization routines for the thread-local en-
vironment to the original program’s main function. Initialization spawns a new helper
thread, whereas finalization ensures that the main thread of the original program does not
finish before the helper thread sent its last event data. This is necessary to ensure that all of
the instrumentation calls are sent. The main thread determines how long the process of the
application lives. If the main thread of the application terminates the entire program shuts
down, even if helper threads are still running and did not send all event data off.

In summary, the run-time environment consists of helper threads corresponding to each
thread of the original program. If an instrumentation call is invoked the corresponding
helper thread receives static data, updates dynamic data and sends both to the collector.

4.3. INSTRUMENTATION OF RUST SOURCE CODE 37

4.3 Instrumentation of Rust Source Code

As described in Section 4.1.3 instrumentation of the references to AST nodes which need
instrumentation are stored in a list.

The most interesting nodes for instrumentation are those representing function/method
calls because this is where computations are performed. Instrumentation calls are inserted
around function/method calls. However, while traversing the AST also other node types
are of interest since initializations and finalizations have to be added as well. The following
subsections explain the five different types of instrumentation situations, import statements,
global scope, local scope, instrumentation call for functions, and instrumentation call for methods.

4.3.1 Import Statements

All the functions inserted into the program by instrumentation are defined in a library. In
order to bring these functions into the scope, this library must be imported. Without this
step, the inserted instrumentation calls would be invalid.

// Import statement
extern crate instrument;
// The remainder of the program code
// ...

Listing 4.4: Instruction inserted for the import statement

The import statement is inserted as the first instruction of the entire program. There-
fore, it is attached to the root node as its first child. This is equivalent to the code in Listing
4.4. An extern crate statement specifies a dependency on an external library. Addi-
tionally, it brings the library into scope, binding it to the identifier instrument. This is
different from the use some library and use some library as short statements
shown earlier, as these only bring the library into scope, but do not specify an external
dependency on these libraries. In order to apply these use statements, Cargo has to be
informed about the dependency. Configuring Cargo to know about this dependency is
additional work for the user, which can be avoided by using extern crate.

4.3.2 Global Scope Instructions

Initialization and finalization instructions have to be placed at the very beginning and end
of the program so that initialization instructions are the first instructions to be executed
and finalization instructions are last. For this reason, they need to be inserted into the pro-
grams main function. Listing 4.5 shows an instrumented main function. The global init
function is responsible for loading the config file and storing the information in a global
singleton. Next, local init() initializes a thread-local scope, by spawning a new helper
thread for the main thread of the program. It returns a JoinHandle which is assigned to
a variable. This handle is necessary later for joining the helper thread during finalization.
Next, an initial instrumentation event call is placed, marking the start of the application.
These three lines make up global initialization.

Before the application finishes finalization is performed. The clean up function call
receives the JoinHandle of the helper thread and ensures that the main thread waits for
its helper thread to finish. Finally, the application exits.

38 CHAPTER 4. FRAMEWORK DESIGN

// Main function of the program
fn main() {

// Global initialization
instrument::global_init();
// Thread-local initialization for main thread
let instrumentation_local_join_handle = instrument::local_init();
// Starting instrumentation call
instrument::instrument(staticData);
// ----------------
// ORIGINAL CODE...
// ----------------
// Ending instrumentation call
instrument::instrument(staticData);
// Finilization of local environment
instrument::clean_up(instrumentation_local_join_handle);

}

Listing 4.5: Instructions inserted for global scope

4.3.3 Local Scope Instructions

The instructions for local scope are inserted whenever a function or method call is encoun-
tered which spawns a new thread. They ensure that newly created threads get their cor-
responding helper threads. For importing as well as global initialization and finalization
inserting the appropriate functions was sufficient, in this case, the existing code has to be
restructured to ensure the inserted instructions do not alter the program semantically.

1 let var = thread::spawn(|| {
2 // ----------------
3 // ORIGINAL CODE...
4 // ----------------
5 });
6 // Before instrumentation
7 // --
8 // After instrumentation
9 let var = {

10 instrument::instrument(staticData);
11 let instrumentation_return_value = thread::spawn(|| {
12 let instrumentation_local_join_handle = instrument::local_init();
13 instrument::instrument(staticData);
14 let instrumentation_return_value = {
15 // ----------------
16 // ORIGINAL CODE...
17 // ----------------
18 };
19 instrument::instrument(staticData);
20 instrumentation_return_value
21 });
22 instrument::instrument(staticData);
23 instrumentation_return_value
24 };

Listing 4.6: Instrumentation of local scope

Consider the thread::spawn function from the Rust standard library described in
Section 2.3. It takes a closure which contains the code for the new thread and returns a

4.3. INSTRUMENTATION OF RUST SOURCE CODE 39

JoinHandle to the created thread. In the first five lines of Listing 4.6 the JoinHandle
is assigned to a variable via a let statement. The call of the thread::spawn function
is an expression, which evaluates to the JoinHandle. Instrumentation has to ensure that
after inserting instrumentation calls around the thread::spawn(...) function call the
JoinHandle is returned exactly like before instrumentation.

Generally, any expression can be replaced by another expression yielding the same type.
Therefore it is possible to replace the thread::spawn(...) function call by a block ex-
pression. Inserting a block has two advantages. First, it allows the replacement of this
single function call with multiple statements and expressions. Second, it introduces a new
scope, thus names defined in this scope shadow existing ones, which reduces the possibility
of name collisions. Furthermore, it guarantees any memory allocated for instrumentation
within this scope is released at the end of the block. This ensures additional memory al-
located for instrumentation is released as soon as possible. This is necessary to keep the
memory footprint of the instrumented program as close as possible to its uninstrumented
version.

Within the block, a beginning instrumentation call is added (line 10) and then the re-
turn value of the original function call is stored in an intermediate return variable (line 11).
Next comes an ending instrumentation call, together with the beginning probe it allows
to measure the time needed to spawn a new thread. At the bottom of the block (line 23),
the result of the thread::spawn function call is returned as the result of its variable ex-
pression which ensures that the new block expression returns the same value as the single
function call did before instrumentation (line 1).

So far, only the instrumentation of the parent thread was explained. Instrumentation
of the child thread is inserted inside the body of the closure. The original closure body is
moved inside a new block and its result is stored in a variable (line 14), for later return (line
23). This ensures that the returned value of the closure stays the same. Instrumentation
calls are added around the assignment in lines 14 till 18 in order to measure the execution
time of the computation. However, for the instrumentation calls to send event data the
framework requires the new child thread to have its own helper thread. For this reason,
the initialization call is placed at the beginning of the closure’s body (line 12). In short, the
closure’s body defined within the function call (line 11) is modified such that the result of
the original closure body is assigned to a variable for later return and initialization for the
helper thread is added at beginning and end.

// Closure definition and assignment
let closure_var = || {

// Some calculations
};
// Function call with closure name
thread::spawn(closure_var);

Listing 4.7: Instrumenting of local scope when closures are define not within the function
call

This approach works in most cases, which are those cases in which the closure is defined
within the function call, such as in Listing 4.6. As explained in Section 2.1, it is possible to
define a closure and assign it to a variable. This allows to define a closure early on in the
program and pass it to the thread::spawn function by its assigned identifier. This is
shown in Listing 4.7. Instrumentation is only triggered for the thread::spawn function,
thus it only has access to the AST subtree representing the thread::spawn(...) func-
tion call. However, this expression only contains the identifier of the closure closure var,
but not the closure body as this has been defined earlier in the program. At this point, it is
not possible to instrument the closure and therefore the newly created thread.

40 CHAPTER 4. FRAMEWORK DESIGN

One approach to solve this problem is to define an new closure inside the original
thread::spawn(...) function call and execute closure var within the new closure.
The signature of the new closure must match the signature of the closure var closure,
this requires type information. However, instrumentation is performed after parsing thus
no type information is available. For this reason, this approach does not work. In order
to generically handle all possible situations in which new local scopes are needed, type
information is necessary.

It is common practice to define the closure inside the function call, therefore the ap-
proach taken by this framework works in the majority of cases.

4.3.4 Instrumentation Calls around Functions

While the three instrumentation situations previously explained, are needed in order to ini-
tialize and finalize the run-time environment, function instrumentation is solely for mea-
suring the execution of function calls.

1 let var = interest_function(some_func(), 2 + 4, arg3);
2 // Before instrumentation
3 // --
4 // After instrumentation
5 let var = {
6 // Extract arguments
7 let instrumentation_argument_var_0 = some_func();
8 let instrumentation_argument_var_1 = 2 + 4;
9 let instrumentation_argument_var_2 = arg3;

10 // Beginning instrumentation call
11 instrument::instrument(staticData);
12 // Function call
13 let instrumentation_return_value = interest_function(
14 instrumentation_argument_var_0,
15 instrumentation_argument_var_1,
16 instrumentation_argument_var_2);
17 // Ending instrumentation call
18 instrument::instrument(staticData);
19 // Return result
20 instrumentation_return_value
21 };

Listing 4.8: Instrumentation of function calls

Whenever a function of interest which is listed in the config file is called inside the
program, instrumentation calls are added. However, this can not be achieved by simply
inserting probes before and after the call. Listing 4.8 shows the original call of function
interest function, which expects three arguments. In this example, the first argument
is the result of another function call, the second is a simple calculation, and the last is
a variable. As described in Section 3.1 it is important that probes measure the function
calls of interest and not include other computations. For this reason, it is not sufficient to
place instrumentation calls around the interest function(...) function call because
measurement would include the evaluation of arguments.

Since instrumentation does not know how expensive the evaluation of the arguments
is, they are extracted and stored in variables. This ensures that all arguments are evaluated
previous to the interest function(...) call and allows adding the instrumentation
calls around it. The result of the call of interest is stored in a variable for later return. Again,
a block expression is used to combine all these instructions.

4.3. INSTRUMENTATION OF RUST SOURCE CODE 41

Why are function calls instrumented and not the function definition? Inserting a begin-
ning and ending probe in the function body would ensure that every call of this function
is correctly measured. Placing an instrumentation call at the end of the function body, that
is where execution returns from the function, is nontrivial. Functions are not always exe-
cuted sequentially from top to bottom, constructs such as branching allow to return early.
To ensure the ending probe is always invoked would require extensive analysis in order
to find all points at which the function returns and add an ending probe. Consequently,
ensuring correct instrumentation of function definitions is a complex task.

More importantly, when solely instrumenting function definitions it is only possible
to record when such a function was invoked and which arguments were passed. How-
ever, no information about the caller of the function is available. Consequently, valuable
information about the context of the function call including the position (line number and
source file) of the function invocation itself cannot be determined. In particular, making
caller information available to developers is one of the major advantages of such debug-
ging tools. It is for this reason and the complexity of instrumenting function definitions
that this framework settles for instrumenting function calls.

4.3.5 Instrumentation Calls around Methods

The instrumentation of methods allows measuring the execution of method calls. Simi-
lar to functions, methods contain computations which makes method calls interesting for
analysis.

1 let var = some_expression.first().second().interest_method(
2 some_func(),
3 2 + 4).last();
4 // Before instrumentation
5 // --
6 // After instrumentation
7 let var = {
8 // Unwind method chain
9 let instrumentation_intermediate_var_2 = some_expression;

10 let instrumentation_intermediate_var_1 =
11 instrumentation_intermediate_var_2.first();
12 let instrumentation_intermediate_var_0 =
13 instrumentation_intermediate_var_1.second();
14 // Extract arguments
15 let instrumentation_argument_var_0 = some_func();
16 let instrumentation_argument_var_1 = 2 + 4;
17 // Beginning instrumentation call
18 instrument::instrument(staticData);
19 // Method call
20 let instrumentation_return_value = instrumentation_intermediate_var_0
21 .interest_method(instrumentation_argument_var_0,
22 instrumentation_argument_var_1);
23 // Ending instrumentation call
24 instrument::instrument(staticData);
25 // Return result
26 instrumentation_return_value
27 }.last();

Listing 4.9: Instrumentation of method calls

Whenever a method of interest is called in a program, instrumentation annotates it
with probes. Similar to function instrumentation arguments passed to the method between

42 CHAPTER 4. FRAMEWORK DESIGN

the parenthesis have to be extracted to ensure they are evaluated before the instrumented
method call. While the number of arguments passed to a method may vary, all methods
receive at least one argument, the object they are called on. This object may be the result of
another expression which allows chaining multiple methods together. In order to place the
instrumentation calls directly around the method of interest, the object on which it is called
has to be evaluated before the beginning instrumentation call. To achieve this, the chained
methods are unwinded as shown in Listing 4.9 using an intermediate variable to store the
result of each method call.

let intermediate = vec![1, 2, 3, 4].iter();
instrument::instrument(staticData);
let result = intermediate.map(|elem| elem*2).sum();
//ERROR: temporary value dropped while borrowed

Listing 4.10: Temporarily created values

It is necessary to assign the result of each method in the chain to a variable because
otherwise values might get released too early. Listing 4.10 shows such an example. In the
first line, the iter method is called on a vector of four numbers. It returns an iterator over
a reference to the vector. However, since the vector itself is never assigned to a variable, it
is only created temporarily and is freed at the end of the first line. When calling the map
method on the iterator in line three the vector referenced by the iterator has already been
released. Rust detects this and throws an error at compile time. Since every one of the
chained methods can introduce such a temporary value, the result of each method has to
be assigned to a variable to ensure that it is not freed before the method of interest is called.

The remainder of Listing 4.9 (starting with line 14) is structured analogously to the
instrumentation of functions.

4.4 Persistent Storage of Trace Data

So far, only the instrumentation and run-time environment have been explained in detail.
For collecting and storing the data the collector application is provided. It is independent
of the other parts of the framework, which allows the collector to be run on a separate
physical machine. This reduces the overhead produced by the framework as the collector
has its own machine and does not take away resources of the observed program.

The event data is sent to the collector via UDP. In contrast to the common TCP proto-
col, UDP uses a connectionless communication model thus no time is spent on establishing
connections or error correction such as resending packets. Establishing a new network con-
nection to the collector every time the run-time environment spawns a new helper thread
would result in significant overhead. Using UDP, the run-time can send off packets with-
out needing to wait until the message arrives or handle corrupted messages. It does not
matter in which order the event data arrives since it contains time stamps which allow later
restoring the correct order. Considering the low overhead sporadic packet loss is not a big
problem. In typical measurement runs, the collector receives event data of multiple thou-
sand events losing one or two does not affect detailed performance analysis. It should be
noted that if the number of parallel threads becomes too large, the amount of sent data can
saturate the network link resulting in a large portion of the packets being dropped. Chapter
6 will present a potential solution to this.

Highly parallel applications can generate large amounts of event data. Therefore it is
essential that the collector can handle many incoming messages at a time. The collector ap-
plication is built using Tokio [4], a Rust library for developing asynchronous, event-driven
network applications. The collector handles incoming messages asynchronously. Therefore

4.4. PERSISTENT STORAGE OF TRACE DATA 43

it maintains a thread pool and incoming packets are assigned to threads on the pool for pro-
cessing. In particular, the messages are decoded and inserted into an SQLite database. The
data of one event corresponds to one tuple in the database.

$instcollect run_1 -db instrumentation.db --table fractale

Listing 4.11: Invokation of the collector application

The collector is started from the command line on the desired machine like it is shown
in Listing 4.11. It allows specifying the database file as well as the name of the table in
which the event data will be inserted. If the database or the table does not already exist
a new database or table is created. The schema currently used for the database is simple.
Each event represented by its event data (static and dynamic data) corresponds to one row
in the database table. Consequently, the table contains one column for each event data
feature. The primary key is constructed of the timestamp and the thread id, as one thread
cannot execute two instructions at a time this combination will always be unique.

44 CHAPTER 4. FRAMEWORK DESIGN

CHAPTER 5

Experiments and Results

This chapter evaluates the newly build tRust framework. Currently three libraries are sup-
ported for instrumentation. In order to appropriately evaluate the new tRust framework,
it is necessary to test each of the three supported libraries, Rayon, Crossbeam, and Timely
Dataflow. Therefore, three benchmark applications were selected, each using one of the
three libraries to demonstrate the most important capabilities of the framework. For evalu-
ation, each benchmark application was first compiled using the drop-in compiler yielding
an instrumented binary. During a representative measurement run, the generated event
data was recorded using the collector application. Finally, the data stored in the SQLite
database was examined and analyzed.

Additionally, the execution time of each benchmark application was evaluated. For
this, the instrumented version and the original version of each benchmark were executed
four times, recording the elapsed wall clock with the /usr/bin/time utility. The timings
measured are the real time, user time, and system time. Real time is the wall clock time which
elapsed during the execution of the application. User time denotes the time the program
spent in user mode. It is important to note that user time is the sum of all used execution
units. For instance, if an application has four threads and each thread runs 10 seconds in
user mode user time would be 40 seconds. As these four threads are potentially executed
simultaneously, the corresponding real time can be less. Last, the system time matches
the time the application was executed in kernel mode. The average timings of the four
measurement runs of the version with added probes and the version without are compared
for analysis of the instrumentation overhead.

The following section describes the environment used for the experiments. In Section
5.2 each benchmark is first explained and then performance analysis results are evaluated.

5.1 Evaluation Environment

As it is recommended to execute the collector component of the framework on a differ-
ent physical machine to minimize overhead, the evaluation environment consists of two
machines, one for compiling and executing the application under observation and one for
running the collector.

The machine responsible for running the instrumented application is equipped with
eight GB of system memory and one Intel Core i5-4258U processor with two cores and a

45

46 CHAPTER 5. EXPERIMENTS AND RESULTS

total of four threads. The second machine running the collector contains a AMD Ryzen 7
2700 CPU with eight cores and a total of 16 threads as well as 16 GB of memory. The two
machines are connected over a switch via Gigabit Ethernet.

5.2 Benchmarks

As described in Section 3.3, each of the supported libraries favors a specific programming
model: Rayon is a data parallelism library, Crossbeam supports message passing as well as
the thread model, and Timely Dataflow is designed with dataflow programming in mind.

The benchmarks were selected to match these programming models, in order to demon-
strate their unique properties.

5.2.1 Creating Vanity Keys

The first benchmark is intended to evaluate the tRust framework in combination with the
Crossbeam library. In particular, the instrumentation of the channels implementation of
Crossbeam is analyzed. Channels are well suited for implementing the message passing
programming model.

This first benchmark is the creation of vanity keys. This is often done to personalize the
address of cryptocurrency wallets. Every cryptocurrency user has a wallet with a corre-
sponding address. This address usually is a cryptographic public key. Additionally, every
wallet comes with a private key used for signing transactions. In sum, if person A wants to
pay money to person B, person A sends money to B’s wallet address (public key) and signs
the transaction with his (persons A) private key [47]. Thus, the public key of the wallet is
equivalent to a bank number, which is given away such that people can transfer money to
this account. In order to make the public key stand out and make it easier to remember, it
is possible to generate a vanity key [57]. A vanity key is a cryptographic key with a particu-
lar sequence of letters at the beginning, which makes up a word or name, such as the key
starting with pEteR shown in Listing 5.1. Such a vanity key is generated by brute force,
feeding different values to a hash function and comparing the result to a specified sequence
of letters.

pEteRAmV8Glxu5VJb8w6VfMcYVjenHncqFfw9AAjQfE

Listing 5.1: Example vanity key

In this benchmark hashes are generated from three different cryptographic algorithms,
SHA2 [51], SHA3 (Keccak) [52], and BLAKE2 [19], all configured to use keys of length 512-
bit. In order to leverage Crossbeams channels this application is modeled as a single pro-
ducer multiple consumer problem. The single producer generates new input values, which
are sent through a single channel to the consumers. Every consumer thread computes a
hash with its hash function and compares the resulting key against a specified sequence.
Because of its producer-consumer structure, this implementation uses four threads, the
main thread for the producer and three child threads one for each hash function. For this
evaluation the particular sequence of characters which have to be present at the beginning
of the hash key is “cab”. For example, a taxi company which accepts BitCoin payments
wants to make its wallet address stand out.

Listing 5.2 shows the relevant instructions of the programs main function. In line 6,
the channel::bounded function (provided by Crossbeam) is called returning the chan-
nels sender and receiver. Next the three consumer * functions are called each receiving
a copy of the receiver object. Every consumer * function defines one consumer. Listing
5.3 shows one of the consumers, in particular the consumer with Blake2 hash function. In

5.2. BENCHMARKS 47

the beginning, every consumer spawns a new thread as shown in line 35. Afterward, the
recv method is called inside the while condition (line 39), such that the loop terminates
when an error is received. After receiving input on the channel the hash key for this input
is generated (line 41). The thread::spawn(...) function call (line 35), the send(...)
method call (line 11), and the recv() method call inside the consumer blake2 func-
tion (line 39) as well as the recv() calls inside the two other consumer functions are the
interesting function/method calls in this application which will be annotated with instru-
mentation calls.

4 fn main() {
5 // Some other instructions
6 let (sender, receiver) = channel::bounded(1);
7 let c_blake2 = consumer_blake2(receiver.clone(), ...);
8 let c_sha3 = consumer_sha3(receiver.clone(), ...);
9 let c_sha2 = consumer_sha2(receiver.clone(), ...);

10 // Producer
11 while sender.send(salt_gen.new_salt()).is_ok() {}
12 // Some other instructions
13 }

Listing 5.2: Main function from the examples/vanitykey.rs source file

34 fn consumer_blake2(...) -> ... {
35 thread::spawn(move || {
36
37 // Some other instructions
38
39 while let Ok(salt) = receiver.recv() {
40 // Some other instructions
41 let result = hasher.result_reset();
42 // Some other instructions
43 }
44 // Some other instructions
45 })}

Listing 5.3: The consumer blake2 function form the examples/vanitykey.rs source file

Table 5.1 shows parts of the collected event data in the database after instrumenting
the benchmark application and running the instrumented binary. The three dots “...” indi-
cate where rows have been omitted. Some of the column names are abbreviated including
cntr (counter), abs path (absolute path), ast dth (ast depth), l begin (line begin) and l end
(line end). Furthermore, the columns for IP address and process ID were removed from
this table and the other result tables throughout this chapter. The tables shown in the Sec-
tion B of the appendix also lack these two columns to save space. The values of these two
columns were the same for every row, thus they did not contain valuable information and
could be removed. The rows of all event data table are ordered by the time stamp column.

The GLOBAL BEGIN event shown in row one of Table 5.1 occures first. It originates from
global initialization inserted at the beginning of the main function. Afterward, the main
thread spawns the three child threads responsible for computing the hash keys, which is
indicated by the LOCAL BEGIN events. As the l begin column of row four indicates the first
LOCAL BEGIN event corresponds to the thread::spawn call inside the consumr blake2
function, shown in line 35 of the source code Listing 5.3. In between the LOCAL BEGIN
events the first spawned child thread (ThreadId(3)) already calls the recv method (row
6) on the channel. According to the l begin column this event is associated with the recv

48 CHAPTER 5. EXPERIMENTS AND RESULTS

time stamp cntr thread id abs path description ast dth source file l begin l end
1 15102611099457 1 ThreadId(1) main GLOBAL BEGIN 2 examples/vanitykey.rs 105 122
2 15102611233964 2 ThreadId(1) thread::spawn BEGIN 6 examples/vanitykey.rs 35 52
3 15102611365739 4 ThreadId(1) thread::spawn BEGIN 6 examples/vanitykey.rs 60 77
4 15102611443530 1 ThreadId(3) thread::spawn LOCAL BEGIN 6 examples/vanitykey.rs 35 52
5 15102611497545 5 ThreadId(1) thread::spawn END 6 examples/vanitykey.rs 60 77
6 15102611602995 2 ThreadId(3) recv BEGIN 13 examples/vanitykey.rs 39 39
7 15102611687252 6 ThreadId(1) thread::spawn BEGIN 6 examples/vanitykey.rs 85 102
8 15102611810325 3 ThreadId(3) recv BEGIN 8 .../crossbeam-...-0.3.8/.../channel.rs 698 698
9 15102611878125 7 ThreadId(1) thread::spawn END 6 examples/vanitykey.rs 85 102
10 15102611919797 1 ThreadId(5) thread::spawn LOCAL BEGIN 6 examples/vanitykey.rs 60 77
11 15102612044870 8 ThreadId(1) send BEGIN 8 examples/vanitykey.rs 11 11
12 15102612109340 1 ThreadId(7) thread::spawn LOCAL BEGIN 6 examples/vanitykey.rs 85 102
13 15102612121082 2 ThreadId(5) recv BEGIN 13 examples/vanitykey.rs 64 64
14 15102612185112 9 ThreadId(1) send BEGIN 8 .../crossbeam-...-0.3.8/.../channel.rs 390 390
15 15102612273126 2 ThreadId(7) recv BEGIN 13 examples/vanitykey.rs 89 89
16 15102612339682 3 ThreadId(5) recv BEGIN 8 .../crossbeam-...-0.3.8/.../channel.rs 698 698
17 15102612459231 10 ThreadId(1) send END 8 .../crossbeam-...-0.3.8/.../channel.rs 390 390
18 15102612466290 4 ThreadId(3) recv END 8 .../crossbeam-...-0.3.8/.../channel.rs 698 698
19 15102612561254 3 ThreadId(7) recv BEGIN 8 .../crossbeam-...-0.3.8/.../channel.rs 698 698
20 15102612680161 5 ThreadId(3) recv END 13 examples/vanitykey.rs 39 39
21 15102612690849 11 ThreadId(1) send END 8 examples/vanitykey.rs 11 11
22 15102612816204 12 ThreadId(1) send BEGIN 8 examples/vanitykey.rs 11 11
23 15102612897457 13 ThreadId(1) send BEGIN 8 .../crossbeam-...-0.3.8/.../channel.rs 390 390
24 15102612964779 4 ThreadId(5) recv END 8 .../crossbeam-...-0.3.8/.../channel.rs 698 698
25 15102612974639 14 ThreadId(1) send END 8 .../crossbeam-...-0.3.8/.../channel.rs 390 390
26 15102613072827 5 ThreadId(5) recv END 13 examples/vanitykey.rs 64 64
27 15102613109967 15 ThreadId(1) send END 8 examples/vanitykey.rs 11 11
28

Table 5.1: Event data from the vanity key experiment

Instrumented Not Instrumented
real time 4.3777s 1.3775s
user time 7.3875s 2.1575s
system time 3.6010s 0.0970s

Table 5.2: Average timings of instrumented and not instrumented vanity key application

method call in line 39, which is show in Listing 5.3. However, the main thread representing
the producer did not send any data down the channel yet, therefore thread 3 blocks. Fol-
lowing the third invocation of the thread::spawn function the main thread sends the first
input for hash computation down the channel by calling send. The send method called in
examples/vanitykey.rs line eleven invokes a Crossbeam internal send method in file
.../channel.rs (row 14 Table 5.1). Now the END event (row 18) of the recv method call
implies that the thread with ThreadId(3) stopped blocking and received the data sent by
the producer.

Meanwhile, the two other child threads called the recv method on the channel (row 13
and 15 Table 5.1) and are waiting for the producer to send new input down the channel.
The BEGIN event in row 22 indicates the main thread invoked the send method for the
second time, such that one of the two blocked threads will be able to continue.

It is evident that this program uses three simultaneous threads as there are three dif-
ferent thread IDs present. Furthermore, analysis of the entire event data reveals that the
thread with ID 7 calls the receive method 73 times compared to the thread with ID 3 45
times. Thus thread with ID 7 computes approximately twice as many hash keys as the
other thread. Hence the thread with ID 3 spends almost twice as much time computing
hash values.

Table 5.2 shows the average execution timings for the instrumented and original ap-
plication. It reveals that the instrumented version of this benchmark application executes
about three times as long as its uninstrumented counterpart. As expected, instrumentation
strongly affects the execution behavior of the program. This application incorporates much
communication, the producer sends each new input value down the channel such that the

5.2. BENCHMARKS 49

consumer can compute new hash keys. Furthermore, the time elapsing between the send
and receive calls is short. Thus, during the execution of the vanity key application, many
instrumentation calls occur within a short time interval. This results in high overhead
which is indicated by the longer execution time of the instrumented version. However, for
debugging purposes a slowdown by the factor of three is usually still acceptable.

5.2.2 Fractal Calculation

This benchmark intends to evaluate the tRust framework in combination with the Rayon
library, a library designed for data parallelism. Therefore, the selected task should benefit
of data parallelism. For this reason, an embarrassingly parallel code structure is well suited.

A good fit for such a task is the plotting of fractals. The resulting structures show self-
symmetry at all scales. In other words, when magnifying a particular part of a fractal, pat-
terns will repeat themselves. All fractals are computed by a recursive function. Depending
on the function different fractals arise. The fractal computed here is the Mandelbrot set,
which was first discovered by Benoit Mandelbrot [40].

The Mandelbrot set consists of a set of points in the complex plane. Thus each point
on this plane is a complex number c ∈ C. Each number c consists of a real part and an
imaginary part. This allows modeling each complex number as a pixel of an image, with the
real value being its horizontal position and the imaginary value being its vertical position
in the image. When assigning pixels in the Mandelbrot set and pixels not in the Mandelbrot
set different colors a visual representation of the Mandelbrot set is generated. In particular
a number c ∈ C belongs to the Mandelbrot set iff

lim
n→∞
‖ zn ‖9 ∞ (5.1)

where zn = z2
n−1 + c and z0 = 0. The ‖ · ‖ sign denotes the Euclidean norm. Consequently,

a complex number c ∈ C belongs to the set if the result of repeatedly applying this recur-
sive function is bounded. In implementations of this function, it is often difficult to deter-
mine whether zn will eventually diverge or not due to slow divergence at some points. For
this reason, implementations usually use a maximum number of iterations m. It has been
proven that if ‖ zn ‖≥ 2 zn will eventually diverge. Therefore, implementations test every
iteration if either the result is greater than two or if the maximum number of iterations has
been reached, terminating if either condition is met. If ‖ zn ‖< 2 holds throughout all the
iterations the pixel (number) belongs to the Mandelbrot set and is colored accordingly [15].

When visualizing the Mandelbrot set the computation described above has to be per-
formed for every pixel of the visualization. However, since pixel values can be computed
independently from each other this allows for efficient use of data parallelism. Therefore,
this task works well for evaluating the tRust framework in combination with the Rayon
library [15].

The particular implementation used for evaluation uses a character matrix instead of an
image, with # indicating that the corresponding complex number is in the Mandelbrot set
and a whitespace character indicating it is not. The resulting character matrix is shown in
Figure 5.1. The computation of each matrix position is parallelized across multiple threads
using a parallel iterator from the Rayon libraries, which is called on the matrix data struc-
ture.

The first row of Table 5.3 shows the GLOBAL BEGIN instrumentation call is reached
first, as it marks the beginning of the entire program. Accordingly, GLOBAL END event (last
row) marks the end of the application. The thread ID column shows that the main thread
(Thread(1)) invokes both of these calls. Additionally, the abs path column together with
the last three columns indicate the location of the function/method call these instrumenta-
tion calls are associated with, in the case of the GLOBAL * events, the main function which

50 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1: Mandelbrot set as 96×96 character matrix

time stamp cntr thread id abs path description ast dth source file l begin l end
1 8819245541627 1 ThreadId(1) main GLOBAL BEGIN 2 examples/fractal.rs 66 72
2 8819245740176 2 ThreadId(1) par iter mut BEGIN 8 examples/fractal.rs 30 30
3 8819245932493 3 ThreadId(1) par iter mut END 8 examples/fractal.rs 30 30
4 8819246984967 4 ThreadId(1) join context BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
5 8819257303714 1 ThreadId(7) join context LOCAL BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
6 8819257311026 1 ThreadId(6) join context LOCAL BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
7
8 8830568425424 1 ThreadId(121) join context LOCAL BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
9 8830579068911 2 ThreadId(117) join context LOCAL END 14 .../rayon-1.0.3/.../mod.rs 409 415
10 8830580207943 1 ThreadId(122) join context LOCAL BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
11 8830696721644 2 ThreadId(102) join context LOCAL END 14 .../rayon-1.0.3/.../mod.rs 409 415
12 8830697389629 1 ThreadId(123) join context LOCAL BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
13
14 8831787008562 2 ThreadId(121) join context LOCAL END 14 .../rayon-1.0.3/.../mod.rs 409 415
15 8831787502736 1 ThreadId(131) join context LOCAL BEGIN 14 .../rayon-1.0.3/.../mod.rs 409 415
16 8831945221673 2 ThreadId(124) join context LOCAL END 14 .../rayon-1.0.3/.../mod.rs 409 415
17
18 8833695404530 2 ThreadId(135) join context LOCAL END 14 .../rayon-1.0.3/.../mod.rs 409 415
19 8833696856259 5 ThreadId(1) join context END 14 .../rayon-1.0.3/.../mod.rs 409 415
20 8833705323059 6 ThreadId(1) main GLOBAL END 2 examples/fractal.rs 66 72

Table 5.3: Event data from the fractal experiment

5.2. BENCHMARKS 51

Instrumented Not Instrumented
real time 14.2905s 14.3125s
user time 43.0088s 42.9758s
system time 0.3150s 0.2680s

Table 5.4: Average timings of instrumented and not instrumented fractal application

ranges from line 66 to line 77 in file examples/fractal.rs. The counter column shows
that the GLOBAL BEGIN is the first and GLOBAL END is the sixth instrumentation call in-
voked by the main thread. If the value of the ast depth column would be one this would
indicate both instrumentation calls are invoked at the top level (global scope), instead, the
value two points out it is invoked on the second level.

After the initial GLOBAL BEGIN event the calculation of the fractal begins by calling the
par iter mut method on the 96× 96 matrix. This method provided by Rayon returns a
parallel iterator which allows data-parallel processing of the matrix. Rayon internally uses
the join context function for spawning threads and defining workloads. Consequently,
after the BEGIN event of the join context function the LOCAL BEGIN event occurs in-
side a newly spawned thread, which is shown by the new thread ID (Thread(7)). As
it is a Rayon internal routine it is invoked inside the library source code, shown in the
source file column. Execution goes on with multiple calls to join context.

The time between a LOCAL BEGIN and LOCAL END is the time a thread needs to process
its assigned data portion of the data. For example, thread 121 (Thread(121)) starts at
time stamp 8830568425424 and finishes at time stamp 8831787008562, thus the duration is
1218583138 nanoseconds or approximately 1.2 seconds. The event data reveals that some
threads take longer than others, in particular, Thread(121) with 1.2 seconds needed a
lot of time as threads calculate on average for 0.8 seconds. Nevertheless, there are threads
which are finished almost immediately.

Table 5.4 shows the average execution timings for the instrumented and original appli-
cation. It reveals that the real run-time of the instrumented version is slightly less than the
original version. However, the fact that the application with added probes has greater user
and system timings indicates that the instrumentation introduces overhead. However, less
than one percent difference between the user times of both versions is well in the margin
of error. The system time of the instrumented version is 17 percent longer than the original
version, which is probably due to the spawning of helper threads. In sum, the overhead
of the instrumented version is very low. It is important to note that this implementation of
fractals has few instrumentation calls since data portions are assigned to threads and these
threads spend long times processing the data before receiving new data. Thus not much
time is spent on communication between threads.

5.2.3 PageRank

The last benchmark task is intended for evaluating the tRust framework in combination
with the Timely Dataflow library. As described in Section 3.3.6 this library implements
the timely dataflow programming model. This allows for efficient processing of streaming
data and flows. An excellent showcase for the Timely Dataflow library is the PageRank
algorithm developed by Larry Page and Sergey Brin [54].

PageRank is a graph-based algorithm initially designed to rate the relevance of web
pages in the world wide web. The nodes in a directed graph represent websites. An edge
points from a node x to another node y if a link exists pointing from the web site correspond-
ing to x to the website associated with node y. Let X be the set of all websites containing
links to a site y. Consequently, the rank of this web page y is high if the sum of the ranks in

52 CHAPTER 5. EXPERIMENTS AND RESULTS

time stamp cntr thread id abs path description ast dth source file l begin l end
1 135346766088904 1 ThreadId(1) main GLOBAL BEGIN 2 examples/pagerank.rs 8 200
2 135346766235263 2 ThreadId(1) timely::execute from args BEGIN 7 examples/pagerank.rs 9 198
3 135346779188063 3 ThreadId(1) timely::execute from args END 7 examples/pagerank.rs 9 198
4 135346779657673 1 ThreadId(5) timely::execute from args LOCAL BEGIN 7 examples/pagerank.rs 9 198
5 135346779685915 1 ThreadId(6) timely::execute from args LOCAL BEGIN 7 examples/pagerank.rs 9 198
6 135346779708353 1 ThreadId(7) timely::execute from args LOCAL BEGIN 7 examples/pagerank.rs 9 198
7 135346784083029 2 ThreadId(7) send BEGIN 16 examples/pagerank.rs 181 181
8 135346784115904 2 ThreadId(5) send BEGIN 16 examples/pagerank.rs 181 181
9 135346784145464 2 ThreadId(6) send BEGIN 16 examples/pagerank.rs 181 181
10 135346784300237 3 ThreadId(7) send END 16 examples/pagerank.rs 181 181
11 135346784386752 3 ThreadId(5) send END 16 examples/pagerank.rs 181 181
12 135346784466515 3 ThreadId(6) send END 16 examples/pagerank.rs 181 181
13
14 135355143246504 33318 ThreadId(7) send BEGIN 10 .../timely com...-0.8.0/.../process.rs 106 106
15 135355143338154 33732 ThreadId(6) send BEGIN 10 .../timely com...-0.8.0/.../process.rs 106 106
16 135355143390904 33940 ThreadId(5) send BEGIN 10 .../timely com...-0.8.0/.../process.rs 106 106
17 135355143484226 33319 ThreadId(7) send END 10 .../timely com...-0.8.0/.../process.rs 106 106
18 135355143593585 33733 ThreadId(6) send END 10 .../timely com...-0.8.0/.../process.rs 106 106
19 135355143635724 33941 ThreadId(5) send END 10 .../timely com...-0.8.0/.../process.rs 106 106
20 135355143782434 33734 ThreadId(6) send BEGIN 10 .../timely com...-0.8.0/.../process.rs 106 106
21 135355143834537 33320 ThreadId(7) send BEGIN 10 .../timely com...-0.8.0/.../process.rs 106 106
22 135355143851795 33942 ThreadId(5) send BEGIN 10 .../timely com...-0.8.0/.../process.rs 106 106
23 135355143959577 33735 ThreadId(6) send END 10 .../timely com...-0.8.0/.../process.rs 106 106
24 135355144033779 33321 ThreadId(7) send END 10 .../timely com...-0.8.0/.../process.rs 106 106

Table 5.5: Event data from the PageRank experiment

X is high [54].
The simple rank r(y) of a website y is calculated according to the slightly simplified

recursive PageRank formula:

r(y) = d ∑
x∈X

r (x)
|x|

(5.2)

where |x| denotes the number of outgoing links from site x and d ∈ [0,1] is a factor used for
normalization, so that the total rank of all web pages (all nodes in the graph) is constant.
The ranks for all nodes (websites) in the graph are computed by starting with an arbitrary
set of initial ranks and iteratively computing this equation until the ranks converge [54].

The PageRank benchmark application [43] was executed with three worker threads in
addition to the main thread, which is indicated by the four different thread ids present in
the thread id column of event data Table 5.5. Again, the first event is the GLOBAL BEGIN
event followed by the BEGIN event of the timely::execute from args function, which
immediately returns as the End event occurs right after. This indicates it is an asynchronous
function. Now the worker threads are spawned which is indicated by the three consecutive
LOCAL BEGIN events.

After all worker threads are spawned, each of them sends data by calling the send
method, which is invoked in line 181 of the benchmark program. The send method call
in examples/pagerank.rs invokes an internal send method of the Timely library. The
trace goes on with alternating calls to send from the program and the library.

This PageRank implementation, in combination with this particular instrumentation,
produces a lot of instrumentation data compared to the other two experiments.

Instrumented Not Instrumented
real time 8.9238s 1.1845s
user time 9.8815s 3.0015s
system time 6.6593s 0.0795s

Table 5.6: Average timings of instrumented and not instrumented PageRank application

When the instrumented binary sends this many event data packets to the collector ma-
chine, it appears a considerable amount of packages are lost. The machine running the
collector has to process this large quantity of incoming packets sufficiently fast. Generally,

5.2. BENCHMARKS 53

UDP Packets arrive at the network interface of the machine. From there they are moved
into the socket receive buffer. Applications listening for incoming data are responsible for
retrieving the packets form this buffer before new ones arrive. It appears the collector does
not process network traffic fast enough to make room for new incoming packets. Hence,
packets are dropped and cannot be stored in the database.

Furthermore, the timings in Table 5.6 show that execution of the instrumented program
takes approximately eight times as long as its not instrumented counterpart. The very
many probes invoked during execution introduces a significant amount of overhead.

54 CHAPTER 5. EXPERIMENTS AND RESULTS

CHAPTER 6

Conclusion and Future Work

As the number of simultaneously possible computations steadily increases, developing ef-
ficient and reliable parallel applications becomes essential in order to take full advantage
of the additional computing power. The young programming language Rust aims to ease
the development of such high-performance applications. However, existing performance
analysis tools lack support for Rust. The purpose of this work was to fill this gap by design-
ing and implementing a framework which allows observing the execution of parallel Rust
applications. Therefore, in the first part of this work, different instrumentation approaches
were explored in order to find a technique capable of conveniently instrumenting an appli-
cation and its dependencies. Next, a run-time environment designed for minimal overhead
was conceived and implemented. For efficient storage of event data, a collector application
was implemented. Finally, the developed framework was evaluated using three different
benchmark application, each targeting one of three libraries common in Rust.

The evaluation demonstrated that the tRust framework is capable of correctly instru-
menting Rust applications and their dependencies yielding an executable binary. Fur-
thermore, the collected event data enables developers to precisely retrace program exe-
cution behavior of concurrent and parallel programs implementing various programming
paradigms not immediately available in the established HPC programming languages For-
tran, C, and C++. Experiments suggest good performance of tRust in combination with the
Crossbeam library as it produces fine-grained event data, which helps to understand com-
plex interleaved communication. For applications depending on the Rayon library tRust
adds very little overhead. In combination with Timely Dataflow, the evaluation revealed
that some work is still required in very exacting applications in order to cope with the
excessive amount of data produced by the worker threads.

Existing tools have been developed for many years, continually improving stability and
adding new features. Implementing more features or exploring other design approaches
would have gone beyond the scope of this work. This holds possibilities for further im-
provements. Designing a parallel performance analysis framework involves many diffi-
culties. Especially, determining ways for generically inserting instrumentation so that the
result is syntactically and semantically correct turned out to be challenging. In some sit-
uations, correct instrumentation is not possible without type information. Adding instru-
mentation after the type analysis compilation step, is a prerequisite for inserting probes in
several more complex code constructs as well as to strengthen resolution of method names.

The tRust framework transmits the event data from the instrumented program to the

55

56 CHAPTER 6. CONCLUSION AND FUTURE WORK

collector via UDP. During evaluation only one collector process was running. However,
it is possible to run multiple collector applications either on one machine or on multiple
physical machines spreading the load across multiple entities, which may reduce packet
loss. Furthermore, the standardized UDP interface allows easily connecting inspector ap-
plications for live viewing by simply listening for incoming UDP packets.

The collector stores the event data in a single table which is simple and efficient. Nev-
ertheless, relational databases such as SQLite allow complex schemas in order to structure
data. A more elaborate data structure could ease the later analysis of event data.

Another possible refinement of this work would be the introduction of mechanisms for
user-defined events or conditions which limit the execution of instrumentation calls. This
grants users more fine-grained control over how much event data is produced and where
events are triggered. Adding such features to tRust could help reduce the overwhelming
amount of generated event data in some cases.

In ongoing and future work, tRust could be improved and extended by one or sev-
eral of the features mentioned above to facilitate the development of reliable parallel Rust
applications.

APPENDIX A

Usage of the tRust Framework

A.1 Setting up a Rustup Toolchain

For Cargo to use the drop-in compiler provided by tRust it is necessary to register a cus-
tom toolchain with rustup. The following describes how to set up a custom toolchain on
Ubuntu. It is important that this is run after the drop-in compiler was built.

1. Create a new directory which will later contain the custom toolchain.

$ mkdir ˜/.rust_custom_toolchains

2. Copy the entire toolchain used to build the drop-in compiler to the newly created
directory.

$ cp -R ˜/.rustup/toolchains/nightly-2019-02-07-x86_64-unknown-linux-gnu
˜/.rust_custom_toolchains/rustinst

3. Copy the executable binary of the drop-in compiler inside the bin directory of the
new toolchain.

$ cp path/to/where/built/rustc-dropin/is/rustc
˜/.rust_custom_toolchains/rustinst/bin/

4. Use rustup to register the new rustinst toolchain.

$ rustup toolchain link rustinst ˜/.rust_custom_toolchains/rustinst

5. Finally, override the default toolchain for the working directory containing the user
program such that Cargo will automatically use the new rustinst toolchain.

$ rustup override set rustinst

57

58 APPENDIX A. USAGE OF THE TRUST FRAMEWORK

A.2 Description of the Configuration File

The configuration file containing the functions and methods of interest as well as the ad-
dress (IP and port) of the machine running the collector application has to be stored in
˜/.rust inst/instconfig.toml. As the file extension indicates the file is formatted
as TOML (Tom’s Obvious, Minimal Language), a common file format for configuration
files in the Rust ecosystem. The various options for configuring tRust are explained in the
following:

machine_id = "192.168.86.76"
collector_ip = "192.168.86.71"
collector_port = 8080
code_2_monitor = [

["", "ExternCrateItem"],
["main", "GlobalScope"],
["std::thread::spawn", "LocalScope"],
["par_iter_mut", "LocalScope"],
["rayon::join", "LocalScope"],
["join_context", "LocalScope"],
["crossbeam_channel::bounded", "InstCallForFunction"],
["send", "InstCallForMethod"],
["recv", "InstCallForMethod"],
["timely::execute_from_args", "LocalScope"],
["receive", "InstCallForMethod"],

]

Listing A.1: Example configuration file

machine id specifies the IP address of the current system. This address is sent as part of
the static data to the collector application.

collector ip specifies the IP address of the machine running the collector application.

collector port specifies the port on which the collector application is listening.

code 2 monitor specifies all the functions and methods which should receive instrumen-
tation. Each function or method is specified by its absolute name and the kind of
instrumentation it should receive.
["absoult func or method name", "instrumentation kind"]

In the following the different instrumentation kinds are explained:

ExternCrateItem defines the import statement. This has to be present in the con-
fig file at all times for tRust to work correctly.

GlobalScope defines which function in the application should be used for global
initialization and finalization.

LocalScope defines functions and methods which introduces a new thread-local
scope.

InstCallForFunction defines functions which should receive measurement in-
strumentation calls.

InstCallForMethod defines methods which should receive measurement instru-
mentation calls.

APPENDIX B

Experiments

In the following three extracts of the stored event data one for each benchmark application
are presented. In all three tables the columns for IP address and process ID are omitted.

59

60 APPENDIX B. EXPERIMENTS

tim
e

stam
p

counter
thread

id
absolute

path
description

ast
depth

source
file

lines
begin

lines
end

8819245541627
1

T
hreadId(1)

m
ain

G
LO

BA
L

BEG
IN

2
exam

ples/fractal.rs
66

72
8819245740176

2
T

hreadId(1)
par

iter
m

ut
BEG

IN
8

exam
ples/fractal.rs

30
30

8819245932493
3

T
hreadId(1)

par
iter

m
ut

EN
D

8
exam

ples/fractal.rs
30

30
8819246984967

4
T

hreadId(1)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819257303714
1

T
hreadId(7)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819257311026

1
T

hreadId(6)
join

context
LO

C
A

L
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819257408429
2

T
hreadId(6)

join
context

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819257522508

2
T

hreadId(7)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819257803673
1

T
hreadId(9)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819258106241

1
T

hreadId(8)
join

context
LO

C
A

L
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819258124868
2

T
hreadId(9)

join
context

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819258219048

1
T

hreadId(11)
join

context
LO

C
A

L
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819258372139
1

T
hreadId(10)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819258379742

2
T

hreadId(8)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819258457598
1

T
hreadId(12)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819258511719

2
T

hreadId(11)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819258731144
2

T
hreadId(10)

join
context

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819258842097

2
T

hreadId(12)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819259086527
1

T
hreadId(13)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819259166533

1
T

hreadId(14)
join

context
LO

C
A

L
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819259399442
1

T
hreadId(15)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8819259554293

2
T

hreadId(13)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8819259573769
1

T
hreadId(16)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
...

...
...

...
...

...
...

...
...

8831787502736
1

T
hreadId(131)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8831945221673

2
T

hreadId(124)
join

context
LO

C
A

L
EN

D
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8831947809312
1

T
hreadId(132)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8831947935250

2
T

hreadId(132)
join

context
BEG

IN
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8831949591740
1

T
hreadId(133)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8832361650791

2
T

hreadId(129)
join

context
LO

C
A

L
EN

D
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8832362127743
1

T
hreadId(134)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8832931734879

2
T

hreadId(130)
join

context
LO

C
A

L
EN

D
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8832932544513
1

T
hreadId(135)

join
context

LO
C

A
L

BEG
IN

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8832982202328

2
T

hreadId(131)
join

context
LO

C
A

L
EN

D
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8832983208198
2

T
hreadId(134)

join
context

LO
C

A
L

EN
D

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8833131678987

2
T

hreadId(133)
join

context
LO

C
A

L
EN

D
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8833695404530
2

T
hreadId(135)

join
context

LO
C

A
L

EN
D

14
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum
bing/m

od.rs
409

415
8833696856259

5
T

hreadId(1)
join

context
EN

D
14

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/rayon-1.0.3/src/iter/plum

bing/m
od.rs

409
415

8833705323059
6

T
hreadId(1)

m
ain

G
LO

BA
L

EN
D

2
exam

ples/fractal.rs
66

72

Table
B.1:Extractofthe

eventdata
from

the
fractalexperim

ent

61

ti
m

e
st

am
p

co
un

te
r

th
re

ad
id

ab
so

lu
te

pa
th

de
sc

ri
pt

io
n

as
t

de
pt

h
so

ur
ce

fil
e

lin
es

be
gi

n
lin

es
en

d
15

10
26

11
09

94
57

1
T

hr
ea

dI
d(

1)
m

ai
n

G
LO

BA
L

BE
G

IN
2

ex
am

pl
es

/v
an

it
yk

ey
.r

s
10

5
12

2
15

10
26

11
23

39
64

2
T

hr
ea

dI
d(

1)
st

d:
:th

re
ad

::s
pa

w
n

BE
G

IN
6

ex
am

pl
es

/v
an

it
yk

ey
.r

s
35

52
15

10
26

11
36

57
39

4
T

hr
ea

dI
d(

1)
st

d:
:th

re
ad

::s
pa

w
n

BE
G

IN
6

ex
am

pl
es

/v
an

it
yk

ey
.r

s
60

77
15

10
26

11
44

35
30

1
T

hr
ea

dI
d(

3)
st

d:
:th

re
ad

::s
pa

w
n

LO
C

A
L

BE
G

IN
6

ex
am

pl
es

/v
an

it
yk

ey
.r

s
35

52
15

10
26

11
49

75
45

5
T

hr
ea

dI
d(

1)
st

d:
:th

re
ad

::s
pa

w
n

EN
D

6
ex

am
pl

es
/v

an
it

yk
ey

.r
s

60
77

15
10

26
11

60
29

95
2

T
hr

ea
dI

d(
3)

re
cv

BE
G

IN
13

ex
am

pl
es

/v
an

it
yk

ey
.r

s
39

39
15

10
26

11
68

72
52

6
T

hr
ea

dI
d(

1)
st

d:
:th

re
ad

::s
pa

w
n

BE
G

IN
6

ex
am

pl
es

/v
an

it
yk

ey
.r

s
85

10
2

15
10

26
11

81
03

25
3

T
hr

ea
dI

d(
3)

re
cv

BE
G

IN
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

69
8

69
8

15
10

26
11

87
81

25
7

T
hr

ea
dI

d(
1)

st
d:

:th
re

ad
::s

pa
w

n
EN

D
6

ex
am

pl
es

/v
an

it
yk

ey
.r

s
85

10
2

15
10

26
11

91
97

97
1

T
hr

ea
dI

d(
5)

st
d:

:th
re

ad
::s

pa
w

n
LO

C
A

L
BE

G
IN

6
ex

am
pl

es
/v

an
it

yk
ey

.r
s

60
77

15
10

26
12

04
48

70
8

T
hr

ea
dI

d(
1)

se
nd

BE
G

IN
8

ex
am

pl
es

/v
an

it
yk

ey
.r

s
11

11
15

10
26

12
10

93
40

1
T

hr
ea

dI
d(

7)
st

d:
:th

re
ad

::s
pa

w
n

LO
C

A
L

BE
G

IN
6

ex
am

pl
es

/v
an

it
yk

ey
.r

s
85

10
2

15
10

26
12

12
10

82
2

T
hr

ea
dI

d(
5)

re
cv

BE
G

IN
13

ex
am

pl
es

/v
an

it
yk

ey
.r

s
64

64
15

10
26

12
18

51
12

9
T

hr
ea

dI
d(

1)
se

nd
BE

G
IN

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
39

0
39

0
15

10
26

12
27

31
26

2
T

hr
ea

dI
d(

7)
re

cv
BE

G
IN

13
ex

am
pl

es
/v

an
it

yk
ey

.r
s

89
89

15
10

26
12

33
96

82
3

T
hr

ea
dI

d(
5)

re
cv

BE
G

IN
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

69
8

69
8

15
10

26
12

45
92

31
10

T
hr

ea
dI

d(
1)

se
nd

EN
D

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
39

0
39

0
15

10
26

12
46

62
90

4
T

hr
ea

dI
d(

3)
re

cv
EN

D
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

69
8

69
8

15
10

26
12

56
12

54
3

T
hr

ea
dI

d(
7)

re
cv

BE
G

IN
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

69
8

69
8

15
10

26
12

68
01

61
5

T
hr

ea
dI

d(
3)

re
cv

EN
D

13
ex

am
pl

es
/v

an
it

yk
ey

.r
s

39
39

15
10

26
12

69
08

49
11

T
hr

ea
dI

d(
1)

se
nd

EN
D

8
ex

am
pl

es
/v

an
it

yk
ey

.r
s

11
11

15
10

26
12

81
62

04
12

T
hr

ea
dI

d(
1)

se
nd

BE
G

IN
8

ex
am

pl
es

/v
an

it
yk

ey
.r

s
11

11
15

10
26

12
89

74
57

13
T

hr
ea

dI
d(

1)
se

nd
BE

G
IN

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
39

0
39

0
15

10
26

12
96

47
79

4
T

hr
ea

dI
d(

5)
re

cv
EN

D
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

69
8

69
8

15
10

26
12

97
46

39
14

T
hr

ea
dI

d(
1)

se
nd

EN
D

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
39

0
39

0
15

10
26

13
07

28
27

5
T

hr
ea

dI
d(

5)
re

cv
EN

D
13

ex
am

pl
es

/v
an

it
yk

ey
.r

s
64

64
15

10
26

13
10

99
67

15
T

hr
ea

dI
d(

1)
se

nd
EN

D
8

ex
am

pl
es

/v
an

it
yk

ey
.r

s
11

11
15

10
26

13
16

92
90

6
T

hr
ea

dI
d(

3)
re

cv
BE

G
IN

13
ex

am
pl

es
/v

an
it

yk
ey

.r
s

39
39

15
10

26
13

26
26

15
16

T
hr

ea
dI

d(
1)

se
nd

BE
G

IN
8

ex
am

pl
es

/v
an

it
yk

ey
.r

s
11

11
15

10
26

13
32

84
27

7
T

hr
ea

dI
d(

3)
re

cv
BE

G
IN

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
69

8
69

8
15

10
26

13
37

89
12

17
T

hr
ea

dI
d(

1)
se

nd
BE

G
IN

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
39

0
39

0
15

10
26

13
43

35
20

6
T

hr
ea

dI
d(

5)
re

cv
BE

G
IN

13
ex

am
pl

es
/v

an
it

yk
ey

.r
s

64
64

15
10

26
13

44
74

66
8

T
hr

ea
dI

d(
3)

re
cv

EN
D

8
/.

../
.c

ar
go

/r
eg

is
tr

y/
sr

c/
gi

th
ub

.c
om

-1
ec

c6
29

9d
b9

ec
82

3/
cr

os
sb

ea
m

-c
ha

nn
el

-0
.3

.8
/s

rc
/c

ha
nn

el
.r

s
69

8
69

8
15

10
26

13
52

28
09

18
T

hr
ea

dI
d(

1)
se

nd
EN

D
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

39
0

39
0

15
10

26
13

59
15

81
9

T
hr

ea
dI

d(
3)

re
cv

EN
D

13
ex

am
pl

es
/v

an
it

yk
ey

.r
s

39
39

15
10

26
13

61
74

74
7

T
hr

ea
dI

d(
5)

re
cv

BE
G

IN
8

/.
../

.c
ar

go
/r

eg
is

tr
y/

sr
c/

gi
th

ub
.c

om
-1

ec
c6

29
9d

b9
ec

82
3/

cr
os

sb
ea

m
-c

ha
nn

el
-0

.3
.8

/s
rc

/c
ha

nn
el

.r
s

69
8

69
8

15
10

26
13

66
26

54
19

T
hr

ea
dI

d(
1)

se
nd

EN
D

8
ex

am
pl

es
/v

an
it

yk
ey

.r
s

11
11

...
...

...
...

...
...

...
...

...

Ta
bl

e
B.

2:
Ex

tr
ac

to
ft

he
ev

en
td

at
a

fr
om

th
e

va
ni

ty
ke

y
ex

pe
ri

m
en

t

62 APPENDIX B. EXPERIMENTS

tim
e

stam
p

counter
thread

id
absolute

path
description

ast
depth

source
file

lines
begin

lines
end

135346766088904
1

ThreadId(1)
m

ain
G

LO
BA

L
BEG

IN
2

exam
ples/pagerank.rs

8
200

135346766235263
2

ThreadId(1)
tim

ely::execute
from

args
BEG

IN
7

exam
ples/pagerank.rs

9
198

135346779188063
3

ThreadId(1)
tim

ely::execute
from

args
EN

D
7

exam
ples/pagerank.rs

9
198

135346779657673
1

ThreadId(5)
tim

ely::execute
from

args
LO

C
A

L
BEG

IN
7

exam
ples/pagerank.rs

9
198

135346779685915
1

ThreadId(6)
tim

ely::execute
from

args
LO

C
A

L
BEG

IN
7

exam
ples/pagerank.rs

9
198

135346779708353
1

ThreadId(7)
tim

ely::execute
from

args
LO

C
A

L
BEG

IN
7

exam
ples/pagerank.rs

9
198

135346784083029
2

ThreadId(7)
send

BEG
IN

16
exam

ples/pagerank.rs
181

181
135346784115904

2
ThreadId(5)

send
BEG

IN
16

exam
ples/pagerank.rs

181
181

135346784145464
2

ThreadId(6)
send

BEG
IN

16
exam

ples/pagerank.rs
181

181
135346784300237

3
ThreadId(7)

send
EN

D
16

exam
ples/pagerank.rs

181
181

135346784386752
3

ThreadId(5)
send

EN
D

16
exam

ples/pagerank.rs
181

181
135346784466515

3
ThreadId(6)

send
EN

D
16

exam
ples/pagerank.rs

181
181

135346784595838
4

ThreadId(7)
send

BEG
IN

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135346784644335

4
ThreadId(5)

send
BEG

IN
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135346784719418
4

ThreadId(6)
send

BEG
IN

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135346784930350

5
ThreadId(7)

send
EN

D
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135346785002327
5

ThreadId(5)
send

EN
D

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135346785133497

5
ThreadId(6)

send
EN

D
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

...
...

...
...

...
...

...
...

...
135346790580289

20
ThreadId(6)

send
BEG

IN
16

exam
ples/pagerank.rs

191
191

135346790742408
20

ThreadId(7)
send

BEG
IN

16
exam

ples/pagerank.rs
191

191
135346790809692

20
ThreadId(5)

send
BEG

IN
16

exam
ples/pagerank.rs

191
191

135346790885283
21

ThreadId(6)
send

EN
D

16
exam

ples/pagerank.rs
191

191
135346791068863

21
ThreadId(7)

send
EN

D
16

exam
ples/pagerank.rs

191
191

135346791185827
21

ThreadId(5)
send

EN
D

16
exam

ples/pagerank.rs
191

191
135346791479357

22
ThreadId(6)

send
BEG

IN
16

exam
ples/pagerank.rs

192
192

135346791635678
22

ThreadId(7)
send

BEG
IN

16
exam

ples/pagerank.rs
192

192
135346791704087

22
ThreadId(5)

send
BEG

IN
16

exam
ples/pagerank.rs

192
192

135346792544283
23

ThreadId(6)
send

EN
D

16
exam

ples/pagerank.rs
192

192
135346792776098

23
ThreadId(7)

send
EN

D
16

exam
ples/pagerank.rs

192
192

135346792790100
23

ThreadId(5)
send

EN
D

16
exam

ples/pagerank.rs
192

192
...

...
...

...
...

...
...

...
...

135355143246504
33318

ThreadId(7)
send

BEG
IN

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135355143338154

33732
ThreadId(6)

send
BEG

IN
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135355143390904
33940

ThreadId(5)
send

BEG
IN

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135355143484226

33319
ThreadId(7)

send
EN

D
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135355143593585
33733

ThreadId(6)
send

EN
D

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135355143635724

33941
ThreadId(5)

send
EN

D
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135355143782434
33734

ThreadId(6)
send

BEG
IN

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135355143834537

33320
ThreadId(7)

send
BEG

IN
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135355143851795
33942

ThreadId(5)
send

BEG
IN

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106
135355143959577

33735
ThreadId(6)

send
EN

D
10

/.../.cargo/registry/src/github.com
-1ecc6299db9ec823/tim

ely
com

m
unication-0.8.0/src/allocator/process.rs

106
106

135355144033779
33321

ThreadId(7)
send

EN
D

10
/.../.cargo/registry/src/github.com

-1ecc6299db9ec823/tim
ely

com
m

unication-0.8.0/src/allocator/process.rs
106

106

Table
B.3:Extractofthe

eventdata
from

the
PageR

ank
experim

ent

List of Figures

2.1 Dependency graph of the compilers internal packages [8] 12

3.1 Architecture of parallel performance tools . 19
3.2 Message passing programming model . 21
3.3 Shared memory programming model . 22
3.4 Fork-Join programming model . 23
3.5 Data parallel programming model . 23
3.6 Dataflow programming model . 25
3.7 ParaProf: 3-D communication matrix view [27] 26
3.8 Vampir: process summary view [17] . 27

4.1 AST node replacement and references . 35
4.2 Framework architecture . 36

5.1 Mandelbrot set as 96×96 character matrix . 50

63

64 LIST OF FIGURES

List of Tables

3.1 Summary of the presented libraries . 25

4.1 Static event data with description . 34
4.2 Dynamic event data with description . 36

5.1 Event data from the vanity key experiment . 48
5.2 Average timings of instrumented and not instrumented vanity key application 48
5.3 Event data from the fractal experiment . 50
5.4 Average timings of instrumented and not instrumented fractal application . . 51
5.5 Event data from the PageRank experiment . 52
5.6 Average timings of instrumented and not instrumented PageRank application 52

B.1 Extract of the event data from the fractal experiment 60
B.2 Extract of the event data from the vanity key experiment 61
B.3 Extract of the event data from the PageRank experiment 62

65

66 LIST OF TABLES

Listings

2.1 Defining variables in Rust . 4
2.2 Difference between immutable variables and constants 4
2.3 Statements and expressions . 4
2.4 Function definitions . 5
2.5 Defining and passing closures . 6
2.6 Scops of “Copy” variables . 7
2.7 Ownership of values and moving ownership 7
2.8 Functions and ownership . 8
2.9 Functions accepting borrowed values . 8
2.10 Passing immutably and mutably borrowed values to function calls 9
2.11 Use of dropped variables . 9
2.12 Spawning threads . 11
3.1 Manual instrumentation of a function with the Score-P performance mea-

surement infrastructure. [16] . 17
3.2 Sending and receiving with Crossbeams channels 21
3.3 Rayons join function . 24
3.4 Rayons parallel iterators . 24
4.1 Definition of a function in a wrapper-library 31
4.2 Import of a wrapper library . 31
4.3 Attributes needed for the syntax extension to have effect 32
4.4 Instruction inserted for the import statement 37
4.5 Instructions inserted for global scope . 38
4.6 Instrumentation of local scope . 38
4.7 Instrumenting of local scope when closures are define not within the func-

tion call . 39
4.8 Instrumentation of function calls . 40
4.9 Instrumentation of method calls . 41
4.10 Temporarily created values . 42
4.11 Invokation of the collector application . 43
5.1 Example vanity key . 46
5.2 Main function from the examples/vanitykey.rs source file 47
5.3 The consumer blake2 function form the examples/vanitykey.rs source file 47
A.1 Example configuration file . 58

67

68 LISTINGS

Bibliography

[1] AMD Takes High-Performance Datacenter Computing to the Next Horizon.
https://www.amd.com/en/press-releases/2018-11-06-amd-takes-
high-performance-datacenter-computing-to-the-next-horizon. Ac-
cessed: 2019-05-27.

[2] Crate crossbeam. https://docs.rs/crossbeam/0.7.1/crossbeam/index.
html. Accessed: 2019-06-01.

[3] Crate Rayon. https://docs.rs/rayon/1.0.3/rayon/. Accessed: 2019-05-30.

[4] Crate Tokio. https://docs.rs/tokio/0.1.20/tokio/. Accessed: 2019-05-30.

[5] Enum syntax::ext::base::SyntaxExtension. https://doc.rust-lang.org/
nightly/nightly-rustc/syntax/ext/base/enum.SyntaxExtension.
html. Accessed: 2019-06-03.

[6] Intel Announces Broadest Product Portfolio for Moving, Storing and Process-
ing Data. https://newsroom.intel.com/news-releases/intel-data-
centric-launch/. Accessed: 2019-05-27.

[7] Rust language. https://research.mozilla.org/rust/. Accessed: 2019-05-30.

[8] Rustc Guide - High-level overview of the compiler source. https://rust-lang.
github.io/rustc-guide/high-level-overview.html. Accessed: 2019-06-
03.

[9] rustup: the Rust toolchain installer - README. https://github.com/rust-
lang/rustup.rs/blob/master/README.md. Accessed: 2019-06-04.

[10] Stack Overflow - Developer Survey Results 2019. https://insights.
stackoverflow.com/survey/2019. Accessed: 2019-06-04.

[11] The Rust Programming Language. https://github.com/rust-lang/rust. Ac-
cessed: 2019-06-03.

[12] The Rust Standard Library Documentation - JoinHandle. https://doc.rust-
lang.org/std/thread/struct.JoinHandle.html. Accessed: 2019-06-04.

[13] The Rust Standard Library Documentation - Primitive Type unit. https://doc.
rust-lang.org/std/primitive.unit.html. Accessed: 2019-06-04.

[14] The Unstable Book - plugin. https://doc.rust-lang.org/unstable-book/
language-features/plugin.html. Accessed: 2019-06-03.

69

https://www.amd.com/en/press-releases/2018-11-06-amd-takes-high-performance-datacenter-computing-to-the-next-horizon
https://www.amd.com/en/press-releases/2018-11-06-amd-takes-high-performance-datacenter-computing-to-the-next-horizon
https://docs.rs/crossbeam/0.7.1/crossbeam/index.html
https://docs.rs/crossbeam/0.7.1/crossbeam/index.html
https://docs.rs/rayon/1.0.3/rayon/
https://docs.rs/tokio/0.1.20/tokio/
https://doc.rust-lang.org/nightly/nightly-rustc/syntax/ext/base/enum.SyntaxExtension.html
https://doc.rust-lang.org/nightly/nightly-rustc/syntax/ext/base/enum.SyntaxExtension.html
https://doc.rust-lang.org/nightly/nightly-rustc/syntax/ext/base/enum.SyntaxExtension.html
https://newsroom.intel.com/news-releases/intel-data-centric-launch/
https://newsroom.intel.com/news-releases/intel-data-centric-launch/
https://research.mozilla.org/rust/
https://rust-lang.github.io/rustc-guide/high-level-overview.html
https://rust-lang.github.io/rustc-guide/high-level-overview.html
https://github.com/rust-lang/rustup.rs/blob/master/README.md
https://github.com/rust-lang/rustup.rs/blob/master/README.md
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://github.com/rust-lang/rust
https://doc.rust-lang.org/std/thread/struct.JoinHandle.html
https://doc.rust-lang.org/std/thread/struct.JoinHandle.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/unstable-book/language-features/plugin.html
https://doc.rust-lang.org/unstable-book/language-features/plugin.html

70 BIBLIOGRAPHY

[15] Wolfram Mathworld - Mandelbrot Set. http://mathworld.wolfram.com/
MandelbrotSet.html. Accessed: 2019-05-30.

[16] Score-P User Manual, 4.1 edition, October 2018. Accessed: 2019-02-25.

[17] Vampir 9 - User Manual, 9.5 edition, June 2018. Accessed: 2019-05-03.

[18] L. Adhianto, S. Banerjee, M. W. Fagan, M. Krentel, G. Marin, J. M. Mellor-Crummey,
and N. R. Tallent. HPCTOOLKIT: tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685–701, 2010.

[19] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. Blake2: simpler,
smaller, fast as md5. In International Conference on Applied Cryptography and Network
Security, pages 119–135. Springer, 2013.

[20] B. Barney and L. L. N. Laboratory. Introduction to Parallel Computing. https://
computing.llnl.gov/tutorials/parallel_comp/. Accessed: 2019-04-26.

[21] B. Barney and L. L. N. Laboratory. Message Passing Interface (MPI). https:
//computing.llnl.gov/tutorials/mpi/. Accessed: 2019-04-26.

[22] B. Barney and L. L. N. Laboratory. POSIX Threads Programming. https://
computing.llnl.gov/tutorials/pthreads/. Accessed: April 2019-04-29.

[23] R. Bell, A. D. Malony, and S. Shende. Paraprof: A portable, extensible, and scalable tool
for parallel performance profile analysis. In H. Kosch, L. Böszörményi, and H. Hell-
wagner, editors, Euro-Par 2003. Parallel Processing, 9th International Euro-Par Conference,
Klagenfurt, Austria, August 26-29, 2003. Proceedings, volume 2790 of Lecture Notes in
Computer Science, pages 17–26. Springer, 2003.

[24] S. Benedict, V. Petkov, and M. Gerndt. PERISCOPE: an online-based distributed per-
formance analysis tool. In M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel,
editors, Tools for High Performance Computing 2009 - Proceedings of the 3rd International
Workshop on Parallel Tools for High Performance Computing, September 2009, ZIH, Dresden,
pages 1–16. Springer, 2009.

[25] D. E. Culler. Dataflow architectures. Annual review of computer science, 1(1):225–253,
1986.

[26] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-memory
programming. Computing in Science & Engineering, (1):46–55, 1998.

[27] Department of Computer and Information Science, University of Oregon Advanced
Computing Laboratory, LANL, NM Research Centre Juelich, ZAM, Germany. TAU
User Guide, 2.28.1 edition, April 2019. Accessed: 2019-05-03.

[28] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf. Open
trace format 2: The next generation of scalable trace formats and support libraries.
In K. D. Bosschere, E. H. D’Hollander, G. R. Joubert, D. A. Padua, F. J. Peters, and
M. Sawyer, editors, Applications, Tools and Techniques on the Road to Exascale Computing,
Proceedings of the conference ParCo 2011, 31 August - 3 September 2011, Ghent, Belgium,
volume 22 of Advances in Parallel Computing, pages 481–490. IOS Press, 2011.

[29] V. Gajinov, S. Stipic, I. Eric, O. S. Unsal, E. Ayguadé, and A. Cristal. Dash: A bench-
mark suite for hybrid dataflow and shared memory programming models. Parallel
Computing, 45:18–48, 2015.

http://mathworld.wolfram.com/MandelbrotSet.html
http://mathworld.wolfram.com/MandelbrotSet.html
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

BIBLIOGRAPHY 71

[30] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr. The scalasca
performance toolset architecture. Concurrency and Computation: Practice and Experience,
22(6):702–719, 2010.

[31] S. Glavina. Lock-free Rust: Crossbeam in 2019. https://stjepang.github.io/
2019/01/29/lock-free-rust-crossbeam-in-2019.html. Accessed: 2019-
05-30.

[32] R. Harper. Abstract Syntax, page 3–11. Cambridge University Press, 2 edition, 2016.

[33] A. Hondroudakis. Performance analysis tools for parallel programs. Edinburgh Parallel
Computer Centre, The University of Edinburgh, 1995.

[34] R. Jung, J. Jourdan, R. Krebbers, and D. Dreyer. Rustbelt: securing the foundations of
the rust programming language. PACMPL, 2(POPL):66:1–66:34, 2018.

[35] S. Klabnik and C. Nichols. The Rust Programming Language. No Starch Press, 2018.

[36] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel. Introducing the open trace
format (OTF). In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. J. Dongarra,
editors, Computational Science - ICCS 2006, 6th International Conference, Reading, UK,
May 28-31, 2006, Proceedings, Part II, volume 3992 of Lecture Notes in Computer Science,
pages 526–533. Springer, 2006.

[37] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Eschweiler, M. Geimer,
M. Gerndt, D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik, P. Philippen, P. Sa-
viankou, D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf. Score-
p: A joint performance measurement run-time infrastructure for periscope, scalasca,
tau, and vampir. In H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, editors,
Tools for High Performance Computing 2011 - Proceedings of the 5th International Workshop
on Parallel Tools for High Performance Computing, ZIH, Dresden, September 2011, pages
79–91. Springer, 2011.

[38] D. Kranzlmüller, S. Grabner, and J. Volkert. Debugging with the MAD environment.
Parallel Computing, 23(1-2):199–217, 1997.

[39] J. Labarta, J. Giménez, E. Martı́nez, P. González, H. Servat, G. Llort, and X. Aguilar.
Scalability of tracing and visualization tools. In G. R. Joubert, W. E. Nagel, F. J. Peters,
O. G. Plata, P. Tirado, and E. L. Zapata, editors, Parallel Computing: Current & Fu-
ture Issues of High-End Computing, Proceedings of the International Conference ParCo 2005,
13-16 September 2005, Department of Computer Architecture, University of Malaga, Spain,
volume 33 of John von Neumann Institute for Computing Series, pages 869–876. Central
Institute for Applied Mathematics, Jülich, Germany, 2005.

[40] B. B. Mandelbrot. The fractal geometry of nature, volume 173. WH freeman New York,
1983.

[41] N. Matsakis. Rayon: data parallelism in Rust. http://smallcultfollowing.
com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/.
Accessed: 2019-05-30.

[42] N. D. Matsakis and F. S. K. II. The rust language. In M. Feldman and S. T. Taft,
editors, Proceedings of the 2014 ACM SIGAda annual conference on High integrity language
technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, pages 103–104. ACM,
2014.

https://stjepang.github.io/2019/01/29/lock-free-rust-crossbeam-in-2019.html
https://stjepang.github.io/2019/01/29/lock-free-rust-crossbeam-in-2019.html
http://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
http://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/

72 BIBLIOGRAPHY

[43] F. McSherry. PageRank example. https://github.com/TimelyDataflow/
timely-dataflow/blob/59f438d338e3395b547453c3104c6ffa0ac8b52e/
timely/examples/pagerank.rs. Accessed: 2019-06-04.

[44] F. McSherry. Timely Dataflow. https://timelydataflow.github.io/timely-
dataflow/introduction.html. Accessed: 2019-05-30.

[45] Message Passing Interface Forum. MPI: A message-passing interface standard, ver-
sion 3.1. Technical report, High Performance Computing Center Stuttgart (HLRS),
June 2015.

[46] M. Mitchell, J. Oldham, and A. Samuel. Advanced linux programming. New Riders
Publishing, 2001.

[47] U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu, and R. R. Brooks. A
brief survey of cryptocurrency systems. In 14th Annual Conference on Privacy, Security
and Trust, PST 2016, Auckland, New Zealand, December 12-14, 2016, pages 745–752. IEEE,
2016.

[48] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and W. E. Nagel. De-
veloping scalable applications with vampir, vampirserver and vampirtrace. In C. H.
Bischof, H. M. Bücker, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and F. J. Pe-
ters, editors, Parallel Computing: Architectures, Algorithms and Applications, ParCo 2007,
Forschungszentrum Jülich and RWTH Aachen University, Germany, 4-7 September 2007,
volume 15 of Advances in Parallel Computing, pages 637–644. IOS Press, 2007.

[49] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a
timely dataflow system. In M. Kaminsky and M. Dahlin, editors, ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA, November
3-6, 2013, pages 439–455. ACM, 2013.

[50] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. VAMPIR: Visu-
alization and analysis of MPI resources. Supercomputer, 1:69–80, 1996.

[51] N. I. of Standards and Technology. Fips pub 180-2: Secure hash standard. Federal
Information Processing Standards Publication, 2002.

[52] N. I. of Standards and Technology. Fips pub 202: Sha-3 standard: Permutation-based
hash and extendable-output functions. Federal Information Processing Standards Publi-
cation, 2015.

[53] OpenMP Architecture Review Board. Openmp application program interface, version
5.0. Technical report, November 2018. Accessed: 2019-03-27.

[54] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bring-
ing order to the web. Technical report, Stanford InfoLab, 1999.

[55] S. Parker, J. Mellor-Crummey, D. H. Ahn, H. Jagode, H. Brunst, S. Shende, A. D. Mal-
ony, D. Lecomber, J. V. DelSignore Jr, R. Tschüter, et al. 2 performance analysis and
debugging tools at scale. Exascale Scientific Applications: Scalability and Performance
Portability, page 17, 2017.

[56] S. Shende and A. D. Malony. The tau parallel performance system. IJHPCA, 20(2):287–
311, 2006.

[57] C. Team. Vanity addresses. https://medium.com/coinbundle/vanity-
addresses-857fa4fb44be, 2018. Accessed: 2019-05-25.

https://github.com/TimelyDataflow/timely-dataflow/blob/59f438d338e3395b547453c3104c6ffa0ac8b52e/timely/examples/pagerank.rs
https://github.com/TimelyDataflow/timely-dataflow/blob/59f438d338e3395b547453c3104c6ffa0ac8b52e/timely/examples/pagerank.rs
https://github.com/TimelyDataflow/timely-dataflow/blob/59f438d338e3395b547453c3104c6ffa0ac8b52e/timely/examples/pagerank.rs
https://timelydataflow.github.io/timely-dataflow/introduction.html
https://timelydataflow.github.io/timely-dataflow/introduction.html
https://medium.com/coinbundle/vanity-addresses-857fa4fb44be
https://medium.com/coinbundle/vanity-addresses-857fa4fb44be

BIBLIOGRAPHY 73

[58] A. Turon. Fearless Concurrency with Rust. https://blog.rust-lang.org/
2015/04/10/Fearless-Concurrency.html, 2015. Accessed: 2019-06-04.

[59] F. Wolf and B. Mohr. Epilog binary trace-data format (version 1.1), 2004.

https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

	Introduction
	The Rust Programming Language
	Selected Syntax Elements
	Ownership and Borrowing
	Concurrency and Parallelism in Rust
	Rust Infrastructure and Compiler

	Theoretical Foundations
	Instrumentation
	Source-based Instrumentation
	Preprocessor-based Instrumentation
	Compiler-based Instrumentation
	Wrapper Library-based Instrumentation
	Binary Instrumentation

	Architecture of Parallel Performance Tools
	Observer
	Inspector

	Parallel Libraries and Interfaces
	MPI
	Crossbeam (Rust)
	POSIX-Threads
	OpenMP
	Rayon (Rust)
	Timely Dataflow (Rust)

	Existing Tools
	TAU Parallel Performance System
	Vampir
	Score-P performance measurement infrastructure

	Framework Design
	Technical Implementations of Rust Instrumentation
	Wrapper Libraries
	Compiler Plugin
	Drop-In Compiler

	Run-Time Instrumentation Architecture
	Instrumentation of Rust Source Code
	Import Statements
	Global Scope Instructions
	Local Scope Instructions
	Instrumentation Calls around Functions
	Instrumentation Calls around Methods

	Persistent Storage of Trace Data

	Experiments and Results
	Evaluation Environment
	Benchmarks
	Creating Vanity Keys
	Fractal Calculation
	PageRank

	Conclusion and Future Work
	Usage of the tRust Framework
	Setting up a Rustup Toolchain
	Description of the Configuration File

	Experiments
	Bibliography

