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Abstract

In large university courses, and particularly in Massive Open Online Courses (MOOCs),
interventions to prevent students’ disengagement, and eventually dropout, often conflict
with limited resources, as compared to the number of participating students. In previous
research many prediction models have been proposed to identify students at risk of dropout
at an earlier stage. However, just the identification of at-risk students is not enough. Effec-
tively, dropout and disengagement of students should be prevented in the first place. This
thesis presents a prediction model, which uses multiple, differentiated labels to describe
the assignment performance of students. For that purpose an existing dataset from an
introductory lecture of theoretical informatics was used. The course required students
to submit weekly assignments, which were assessed and with feedback returned to the
students. For the dataset this process was extended for 82 randomly selected students and
each assignment was additionally tagged out of a total 27 labels. Generally, more commonly
given feedback has been coded into labels. The simplest label is just “good”. In the opposite
case of “bad” exercises more differentiated labels have been selected, e.g. “Understanding
of implications insufficient” or “Syntax for grammars invalid”.

To provide directions to students based on anticipated labels, this thesis presents a predic-
tion model, which has been inspired by recommender systems and relies on Collaborative
Filtering. More specifically, a distributed implementation of the Alternating Least Squares
method with weighted-λ -regularization (ALS-WR) has been selected. For every student,
assignment and exercise this results in a predicted (confidence) rating of their co-occurrence.
The evaluation relies on ten-fold Cross-Validation and a variety of metrics to account for
top-k-recommendation and binary label prediction use cases. After identifying suitable
hyperparameters for ALS-WR using a grid-based method the model obtained results that
seem feasible for future applications.

These applications have been prepared by integrating the prediction model with the Back-
stage 2 learning environment developed at the Ludwig-Maximilians-Universität München.
This implementation was facilitated by the prediction framework developed with the earlier
master thesis of Steven Dostert. In the future Backstage 2 could be used to either directly
communicate prediction results to students or to otherwise indirectly personalize their
learning experience based on predicted labels. In their discussion these applications will
be subsumed as feedback, or more specifically Feed Forward. Lastly, four criteria for the
effectiveness of these Feed Forward applications are proposed based on research about
recommender systems and effective feedback.
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Zusammenfassung

In großen Vorlesungen, und insbesondere in “Massive Open Online Courses” (MOOCs),
scheitern Maßnahmen, um das Zurückfallen, und letztendlich den Kursabbruch, von Stu-
denten zu verhindern, oft an den begrenzten Mitteln im Vergleich zur Teilnehmerzahl. In
früherer Forschung wurden viele Vorhersagemodelle vorgeschlagen, um Studenten, bei
denen die Gefahr eines Kursabbruchs besteht, frühzeitiger zu erkennen. Jedoch ist das
bloße Erkennen gefährdeter Studenten nicht ausreichend. Sinnvollerweise sollte der Kursab-
bruch und das Zurückfallen von Studenten von vorneherein verhindert werden. Diese
Zulassungsarbeit stellt ein Vorhersagemodell vor, das eine Vielzahl differenzierter Label
nutzt, um die Leistung der Studenten in Übungsaufgaben zu beschreiben. Für diesen Zweck
wird ein existierender Datensatz aus einer Einführungsvorlesung in die Theoretische Infor-
matik verwendet. In diesem Kurs mussten Studenten wöchentliche Übungsblätter abgeben,
welche beurteilt und mit Rückmeldungen versehen an die Studenten zurückgingen. Für
den Datensatz wurde dieser Ablauf für 82 zufällig ausgewählte Studenten ergänzt und
jede Abgabe zusätzlich mit einem oder mehreren von insgesamt 27 Labels versehen. Im
Allgemeinen wurden häufiger vergebene Rückmeldungen durch Labels kodiert. Hierbei ist
das einfachste Label schlicht “gut”. Im gegenteiligen Fall “schlechter” Abgaben wurden dif-
ferenziertere Label ausgewählt, z.B. “Implikationen nicht richtig verstanden” oder “Syntax
von Grammatiken nicht eingehalten”.

Um den Studenten zielführende Hinweise basierend auf ihren zu erwartenden Labels zu
geben, wird mit dieser Arbeit ein Vorhersagemodell vorgestellt, das von Empfehlungssyste-
men inspiriert wurde und auf Collaborative Filtering setzt. Dafür wurde eine verteilte Imple-
mentierung der Methode alternierender kleinster Quadrate mit gewichteter λ -Regularisie-
rung (ALS-WR) ausgewählt. Für jeden Studenten, jedes Übungsblatt und jede Aufgabe
ergibt sich dabei eine vorhergesagte Bewertung ihres gemeinsamen Auftretens. Deren
Auswertung beruht auf 10-facher Kreuzvalidierung und einer Vielfalt von Metriken, um
die Anwendungsfälle Top-k-Empfehlungen und binäre Labelvorhersage zu berücksichtigen.
Nach der Bestimmung geeigneter Hyperparameter für ALS-WR mit einer Rastermethode
erreichte das Modell Ergebnisse, die für zukünftige Anwendungen praktikabel erscheinen.

Solche Anwendungen wurden durch die Einbindung des Vorhersagemodells in die an
der Ludwig-Maximilians-Universität München entwickelte “Backstage 2”-Lernumgebung
vorbereitet. Diese Implementierung wurde durch ein Vorhersage-Framework erleichtert, das
in der früheren Masterarbeit von Steven Dostert entwickelt worden ist. Zukünftig könnte
Backstage 2 genutzt werden, um Studenten die Vorhersageergebnisse entweder direkt zu
kommunizieren oder andernfalls indirekt ihr Lernerlebnis basierend auf vorhergesagten
Labels zu personalisieren. In der Diskussion dieser Anwendung werden diese als Rückmel-
dung, oder genauer gesagt als Feed Forward, subsumiert. Zuletzt werden vier Kriterien für
die Effektivität solcher Feed Forwards anhand von Forschung über Empfehlungssysteme
und effektives Feedback aufgestellt.
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CHAPTER 1

Introduction

This thesis aims to contribute to the development of personalized blended learning envi-
ronments in order to facilitate university students’ learning and to prevent dropout from
lectures. In education research and debate the individual needs of students and adapting
to them has received increasing attention over the last decades. Unsurprisingly, expecta-
tions are that information and communications technology (ICT) could solve this issue of
personalization e.g. through “just-in-time’ support” [32, p. 40]. However, also for blended
learning environments, which blend ICT and face-to-face education [28], personalization
poses a major challenge [6, 32, 37].

Unlike a human instructor, who sleeps, eats or gets sick, a sophisticated computer system
could theoretically provide close to uninterrupted tutorship even to hundreds of students
simultaneously. Practically however, in the case of a human and a computer the balance
between the benefit for every individual learner and the cost of personalization must be
considered. Indeed, developing and especially maintaining personalization software also
depends on human resources like time and experience. For that reason, personalization –
even using ICT – is still limited by the access to human experience.

While advances in information technology have not readily been able to generate ex-
perience, storage of and ubiquitous access to all types of information has become feasible
in recent years [10]. Nowadays many online platforms apply this data in computer rec-
ommendation systems aiming to substitute human peer review, of movies for instance, by
computer-generated recommendations [33, pp. 4–20]. Like education this is just another
context for personalization. Often these recommender systems still require explicit user
feedback and do not rely on implicit feedback derived from behaviour such as “time spent
watching . . . ” for instance. Particularly, users need to express their individual preferences of
certain products over others, usually called rating [3, p. 1]. Subsequently, a compilation of
these preferences is digitally stored thus granting everybody access to any preference ever
expressed by anybody within the scope of the system.

1.1 Research aims

The proposed prediction model relies on a compilation of preferences as well, and yields
predictions for students’ assignment performance in large university courses. However,
in our application preferences are not expressed by the students themselves. Instead we

1



2 CHAPTER 1. INTRODUCTION

rely on correctors – since they have more experience than students – to assess and label
students’ assignment performance. If peer review were used instead, it is challenging
to guarantee effective feedback [26, 31] and a consistent application of labels, which is
especially important to obtain meaningful predictions.

Foremost, the assessments provide students with differentiated feedback of individual is-
sues in the assignment and conceptual problems. Simultaneously, typical feedback instances
are coded into labels, which in their combination are considered as assignment performance
by the proposed prediction model. For example “good” is the label used most often. In
the opposite case of “bad” exercises more differentiated labels describe the specific issue.
Those are for instance “Understanding of implications insufficient” or “Syntax for grammars
invalid”. Chapter 2 will give a more comprehensive overview of labels complemented with
an analysis.

For now, the next step is to view predictions as the problem of recommending labels.
Much similar to product recommendations, the existence of underlying causes, that is
latent factors, which determine product choice or assignment performance, is assumed.
More specifically, a Collaborative Filtering algorithm based on matrix factorization using
the Alternating Least Squares method with weighted-λ -regularization (ALS-WR) [5, 30,
44] is employed. This results in predictions for labels representing students’ assignment
performance and ordered by a non-probabilistic confidence rating. Our primary intention is
to gain usable hints about individual students needs by anticipating their future behaviour.
As one possible application, interventions revolving around the aim to counterbalance
students’ misconceptions can be implemented. Since labels can manifest differently in
followup assignments or connections between labels might exist, the anticipated behaviour,
as opposed to past observations, is more fit for that application. That is, while the same
application is feasible using past observations, by interleaving a prediction layer the notion
of labels becomes more that of “Where to next?” instead of just “How am I going?” [26,
p. 87]. This is desirable because the question “How am I going?” is already answered by the
assessment of students’ assignments.

Therefore, this thesis addresses the development of personalized blended learning envi-
ronments through three aims. (1) The main focus is to develop and evaluate the aforemen-
tioned prediction model. In that course possible alternative machine-learning approaches
and the possible effects of different data representations are mentioned. Chapter 2 and
particularly chapter 3 focus this part of the thesis. (2) To prepare for future applications a
working reference implementation has been integrated with Backstage 2 an online learning
platform for university courses developed by the Teaching and Research Unit Programming
and Modelling Languages at the Ludwig-Maximilians-Universität München. In a previous
master thesis Steven Dostert developed a generic prediction framework [13] for Backstage 2,
which served as the foundation. Hence chapter 4 summarizes the implementation of the
prediction model with a focus on the enhancements to the framework. (3) Lastly in chapter 5
possible future applications are discussed. For the resulting predictions different transfor-
mations and thus eventually different applications are conceivable. One such application
has already been sketched and will be built on in chapter 5 with the final discussion.

1.2 Background

For decades now we have seen a substantial rise of everyday information technology. Lately,
innovations in this field have especially been driven by applications of machine learning
and data mining supported by the historically unprecedented ubiquity of data on almost
every aspect of our daily life. While many problems have been solved by ICT, on many other
occasions this has not (yet) been possible. This sparked research on human computation,
whose applications often use gamification elements for incentive [21].
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In education many problems have remained difficult to solve solely by technology. In-
stead many instances of blended learning have been developed, which is commonly defined
as the “integration of online and face-to-face strategies” [28]. At the Ludwig-Maximilians-
Universität München Backstage has been one such research project, where a backchannel
communication platform for presence courses at universities has been conceived, imple-
mented and evaluated. Experiences from the evaluation of Backstage [9] eventually lead to
the development of the learning platform Backstage 2, which also constitutes the context of
this thesis.

In the sense of blended learning, the proposed prediction model aims to combine the
best of both worlds by using humans for the assessment and technology for the predictions.
While applications with computer-assisted feedback have been available for a while, they
do not cover any type of exercises. The dataset used throughout this thesis has been
collected from an introductory lecture about theoretical informatics. Therefore a major aim
is to convey fundamental concepts and notations to students. However, the application
of automated proof checking, for example, requires the usage of specific notations, which
however are still a major learning objective for the students.

Eventually, the question that should be asked with any learning intervention has been
nicely clarified by Hattie [25]. It is not just the question: Does it work? Because based
on Hattie’s analysis of more than 800 meta-analysis, the answer would be: “everything
works” or more precisely 95% of all the learning interventions, which he investigated, have a
positive effect on the learning outcome. So instead Hattie suggests to ask a different question
by using effect size to compare all the interventions on a common scale: What works better
than average?

Following Hattie’s terms, when replacing an intervention previously conducted by
teachers with a working electronic equivalent, just evaluating whether they both work
is not sufficient. Instead both solutions should be compared more closely and from the
perspective of learning outcome the better one (or at least the better than average one) is
favourable. So in the context of this thesis this is the question to ask, when replacing the
human assessment of assignments by another possibly electronic method. And arguably the
same question could also be asked with a future application of the prediction model. Except
that differently from the assessment, students currently do not receive predictions about
their future assignment performance by any other means.

Similar principals have been found to guide former research as well. For instance
GraphoGame1 (also Ekapeli2) is a relatively new creation that relies on teacher-software
cooperation. Developed at the University of Jyväskylä in Finland it is an “evidence-based
learning game [that] helps children to read”. Here the word “helps” is of utter importance
and emblematic for GraphoGame’s self-concept. Clearly it does not say “teaches” because
“GraphoGame is not intended for replacing the regular reading instruction children receive
at school, but to work as a supplementary tool” [36]. Its roots lay with the Jyväskylä Lon-
gitudinal Study of Dyslexia. Meanwhile however, countless Finnish variants, such as for
immigrants, have been developed in addition to other language versions.

The core concept of the gameplay is actually really simple. In several minigames the
player hears a sound (phoneme or phonemic unit) and has to pick the right letter, syllable
or even word from a selection displayed on screen. A key feature of the game is how it
adapts to the learner to maintain a success rate of around 80% all the time [34]. The basis is
an adapted Hidden Markov Model that optimizes the information gain about the learner’s
skill by selection of tasks. Thus the underlying assumption is that exactly these tasks are
currently also most suitable to the learner.

GraphoGame has many distinctive features when compared to our method such as
younger users, different model and the integration of game elements. However, similarly to

1http://info.grapholearn.com/
2http://www.lukimat.fi/lukeminen/materiaalit/ekapeli/ekapeli-in-english-1

http://info.grapholearn.com/
http://www.lukimat.fi/lukeminen/materiaalit/ekapeli/ekapeli-in-english-1


4 CHAPTER 1. INTRODUCTION

the prediction approach in this thesis predictions about assignment performance can take
one of comparably many values and they are then used to provide a personalized learning
experience. Other works in the context of higher education courses focus the prediction of
some notion of course completion.

For example Drăgulescu et al. evaluated different machine-learning techniques for
a multi-class classification of students’ assignment submission behaviour. Based on 11
features collected for every assignment the behaviour of the students is classified into one
of three groups: on time, over time or no submission. Since students that did not submit
a “graded assignment” [14, p. 244] were more likely to fail the course, they proposed to
red-flag students based on this classification. Obviously, the already observed submission
behaviour can be used to red-flag students as well and even without the uncertainty of
prediction. Assumably however, Drăgulescu et al. recognized the importance of early
intervention to better prevent dropout. When assignments are (continuously) not submitted,
dropout has arguably already occurred. In the case of high-school students reconstructing
engagement of disengaged students has been found to require “intensive measures” [43,
p. 53]. Consequently, a prediction model that allows to identify at-risk students early and
reliably would be preferable. Other scholars like Halawa et al. have recognized this issue as
well and evaluate the timely identification of at-risk students as well [23]. Nevertheless, this
specific work is situated in the different context of Massive Open Online Courses (MOOCs)
where dropout rates are particularly high [11].

Eventually, when some notion of course completion is predicted the information of at-risk
students should be applied in some way. Just automatically informing the relevant students
about their imminent dropout requires little effort and is also feasible for large courses up to
MOOCs. Any further, more differentiated intervention either requires the usage of another
prediction model or human intervention, for which in MOOCs and higher education the
resources are limited. This is the gap that further prediction models like the one proposed
with this thesis might be able to fill. While the works on dropout prediction allow to identify
the need for intervention the differentiated prediction of labelled assignment performance
allows to choose between different interventions without further human interaction.



CHAPTER 2

Dataset

The groundwork for this whole thesis is constituted by the dataset used, which was provided
by research assistant Niels Heller. Collected in the summer term 2016 from the introductory
lecture Formale Sprachen und Komplexität (in English: Formal languages and complexity) it
provides a fully anonymized and obfuscated binary matrix representation of the relationship
between students, exercises and respective labels.

Since a solid understanding of the dataset given by the matrix is key to all the remaining
chapters a short analysis of the dataset is included in the end of this chapter. Before that the
next section provides the context by detailing the meaning and origin of labels. It is followed
by the formalization used for labels, exercises, students and the rating matrix throughout
the remaining work.

2.1 Labels

Labels are derived from the feedback given by correctors on students’ assignments. Each la-
bel codes one common feedback like for the simplest instance “good”. That is, that student’s
returned assignment exhibited neither errors nor evidence for relevant misconceptions. The
remaining labels code issues evident in the returned assignments with a main focus on those
of conceptual nature. Here are some examples for labels, that have been translated closely
from the German counterparts listed on page 47 in the appendix:

Understanding of implications insufficient
When there’s a grammar of type n, the language for this grammar is at least of type n.
Maybe there is an even simpler grammar, that produces the same language.

Remember: The type of a language is always greater or equal to the type of a corre-
sponding grammar.

Particularly: If one is able to specify a type 2 grammar for a language, one cannot defer
that the language is regular.

Language incomplete
This grammar does not produce all the words.

Typically: The word “100” is not contained in the language.

5



6 CHAPTER 2. DATASET

Epsilon production ignored
A grammar that contains an epsilon production, is necessarily of type 0.

Syntax for grammars invalid
On the right side of production rules only variables of the language may be denoted.

Not allowed: Regular expression, whole languages, automatons, . . .

That is, every label consists of two parts. The first line provides a short summary
intended mainly for easy identification by the correctors. Additionally this line may explicitly
or implicitly denote a conceptual problem. Explicitly in the example Understanding of
implications insufficient by giving an interpretation instead of describing a mere observation.
Here the student should either revise the concept of implication as opposed to equivalence
in general, or the specific instance of an implication relating the type of languages and
grammars. Implicitly in the case of Language incomplete because in this case an observation
is described as a fact not relying on an interpretation. Here one can locate the issue with the
concept of formal languages. Finally the following lines provide a more detailed description
of the issue and hint at relevant concepts. This part is of most relevance to the student
receiving the feedback. For the corrector, on the other hand, collecting these description
reduces the workload unlike rewriting them every time. For this reason, we expect high
acceptance of a software system that integrates labels into the correction process. Especially
so in combination with functionality to complement the label with individual feedback as
required on a case to case basis. However, such a system goes beyond the scope of this thesis
and will only be grazed when discussing the results in chapter 5.

2.2 Formalization

To develop a prediction model based on Collaborative Filtering the content is of no relevance
to the model. Therefore this thesis uses a simple representation of labels, which only
comprises of necessary information. Additionally, that representation guarantees students
full anonymity and obfuscates the labels. Every student, exercise and label is represented by
an index:

• for students: s ∈ N

• for exercises: u-v-i j with

– v ∈ N the exercise sheet,
– i ∈ N the exercise, and
– j ∈ {a, . . . ,z, /0} an optional subexercise

• for labels: c-l with l ∈ N

Furthermore the last two identifiers for an exercise e and label l are combined into one
observation index

o = (e, l)

This allows for a representation of the binary relationship between students and observations
in a two-dimensional rating matrix rso ∈ {1,0}. For an observation o = (e, l) the rating matrix
is encoded as

rso =

{
1 =̂ TRUE if label l was contained in student’s s feedback for exercise e

0 =̂ FALSE otherwise

A partly visualization of the rating matrix rso is shown in figure 2.1.
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Figure 2.1: Extract from the rating matrix (rso) of the introductory lecture Formale Sprachen
und Komplexität showing an extract of 35 students and 45 exercise-label pairs, i.e. observa-
tions. For a student s an observation o is represented by a filled cell if the rating rso = 1 and
by an empty cell otherwise. One pattern emerging with students is highlighted by red cells.

2.3 Analysis

The complete rating matrix contains ratings for 82 students on 495 observations derived
from 30 exercises and 27 labels. Those 82 students were randomly chosen out of all the
345 participants that handed in the first assignment. For all the students labels have been
collected for every single exercise. The sample size is considered sufficient for this work since
predictions are made for individuals and not populations. Collaborative Filtering primarily
relies on sufficient information about the relation between observations and students among
themselves and each other. In a supervised machine-learning setting if the dataset were to
be insufficient in size or quality, poor predictions are very likely identifiable by using only
a subset of the data in training and the remainder to evaluate the predictions. However,
further analysis will reveal, that due to the properties of the dataset this is an unlikely
outcome.

Before we continue several of those properties are already evident in figure 2.1, the
visualization of the rating matrix. All in all the following four properties can be observed
and will be discussed hereafter:
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1. Not every label has been observed for every exercise:
e.g. c-7

2. One student can receive multiple ratings for a single exercise:
e.g. u-0-1c1 and u-0-1c2 for student 1

3. Some labels are observed more frequently than others:
e.g. c-6 vs. c-7

4. For students different patterns seem to emerge based on the labels they received:
e.g. students 5, 19, 21, 22 and 28

Property 1 leads to the important design decision for the implementation of the prediction
model to incorporate an observation set O = {o = (l,e) | label l is observable for exercise e}.
With the previously defined formalization of the dataset the observation set would be
redundant as the same information can be contained in the rating matrix. However, the
implementation uses a sparser representation of the matrix for persistence, where – to
preserve all the information from the rating matrix – an observation set can be necessary.
The details only relevant to the implementation are described in section 4.3.2.

Next, property 2 is important to the definition of the rating matrix. Due to multiple
ratings per exercise for one student the ratings rso from the rating matrix cannot be simplified
to rse = l with e, the exercise, and l the label derived from an observation o = (e, l). As a
consequence, a software implementation needs to provide the means to record multiple
observations for one time step like an exercise in our case. Alternatively, it would be possible
to either pick only one label per exercise according to some algorithm or to represent multiple
labels as a single one. For the prediction model neither alternative is acceptable. The first
one was rejected because it would drastically lower the available information as figure 2.1
shows that multiple observations per exercise are common. The second one, on the other
hand, suffers from a different problem. Assuming we have several observations oi with
an index i ∈ N and we combine them into one observation oa = {o1,o2} and another one
ob = {o1,o3}, then oa 6= ob. That is, the information that o1 ∈ oa,ob is not anymore available
by an equality comparison. However, if two students receive oa and ob respectively, with
Collaborative Filtering the information that both actually received o1 is essential. In other
words, joining multiple labels would yield another, more detailed and hence most probably
less reliable prediction model, which predicts sets of observations instead of individual
observations. Then predicting ratings for every possible set of observations results in a
map P(O)→ R with O, the observation set as previously defined, and P(O), its power
set. Since the power set easily grows very large and hence is difficult to computationally
handle, making predictions for individual observations is the better alternative. Especially
since predictions for individual observations can be flexibly converted into a predicted set
of observations for example by selecting only those observations with a predicted rating
above a suitable threshold.

The conjecture from property 3 about observation frequencies is confirmed by the label
frequencies as shown in figure 2.2. The by far most frequent label c-1 is known to code
“good”, which makes it the opposite of all the other labels coding some sort of problem
with the assignment. Hence c-1 appears more often. Furthermore, the overall observable
3,975 exercise-label pairs are relatively equally distributed over the remaining labels. Hence
predictions about them should be feasible and reliable. In that regard most problematic are
c-19, c-27 and c-22 with less than 50 observations. In the evaluation the quality of their
predictions should be especially scrutinized. On the other hand however, exactly due to
their rareness these labels provide the highest information gain when observed for a student.
Hence these labels are not going to be removed and are instead just given more attention in
the evaluation.
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Figure 2.2: Frequencies of labels for the rating matrix rso accumulated throughout all
exercises

For property 4 intuition suggests that if patterns indeed exist, that they would also
visually materialize themselves in clusters. To obtain a plot suitable for such analysis t-
distributed stochastic neighbour embedding [42, t-SNE] was applied to the rating matrix
mapping the original 495 observation- and 82 student-dimensions onto respectively one
two-dimensional scatterplot. The results are presented in figure 2.3. The choice for t-SNE
was made, because out of other unsupervised dimensionality reduction techniques it was
found to result in better visualizations “on almost all of the data sets” [42, p. 2579], which
van der Maaten tested it on. Usually t-SNE like its predecessor SNE [29] is input already
dimensionality-reduced data by for example first applying principal component analysis
(PCA) [24, ch. 11]. Apart from that the most important parameter for t-SNE is the perplexity,
which for a discrete probability distribution p and its Shannon-Entropy H(p) is defined by:

Perp(p) = 2H(p) = 2p(x) log2 p(x)

According to van der Maaten and Hinton “perplexity can be interpreted as a smooth measure
of the effective number of neighbours” [42, p. 2582]. Therefore in our case, because of the
small number of samples in the rating matrix, low perplexity is expected out of the typical
range “between 5 and 50” [42, p. 2582]. Sampling several settings lead to a perplexity of 10
and an initial dimensionality reduction by PCA to 80 for figure 2.3a and a perplexity of 20
and an initial 82 dimensions by PCA for figure 2.3b.

Both figures show that the data contains local and global structure. While bigger, more
obvious clusters exist for observations, some small groups of students are significantly
more similar among each other than compared to the remainder. We do not see a striking
neighbourhood relation for the students initially mentioned in item 4, which is unsurprising
when selecting students based on a small subset of their observations. Students 28, 60 and
80 are according to figure 2.3a very similar. This similarity is confirmed by a visualization of
all their respective observations in figure 2.4. All three bear a striking resemblance.

When generating figure 2.3 it also became obvious, that the dataset contained duplicates
both in rows and columns of (rso). Since the PCA transformation may subtly changes
duplicates to become distinct, they have been removed for the purpose of visualization only.
That is, students 44 and 61 are solely depicted by student 41. However for the prediction
model, neither duplicate students nor observations are removed. In the latter case, for
observations, they actually could provide additional information when combining new data
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(a) students / rows of (rso) (b) observations / columns of (rso)

Figure 2.3: Scatterplots of the rating matrix (rso) using t-SNE for dimensionality reduction

(a) Student 28 (b) Student 60 (c) Student 80

Figure 2.4: Visualizations of all observations from the rating matrix (rso) for three students.
Labels are indexed by row and exercises by column.

with our dataset used as training data. In the former case, for users, the explanation is
similar. In this case during evaluation it is perfectly valid for test data to contain users with
the exact same observations as in the training data. Additionally, dropping duplicates would
necessarily impede a computational and developmental overhead, which is superfluous
when unlike t-SNE Collaborative Filtering can handle duplicates.

In summary, the aforementioned properties provide strong support that our dataset
does actually contain sufficient information to make the predictions we aim for. On these
grounds and with a solid understanding of the dataset there is a foundation for the following
chapters, in which a prediction model is developed and implemented.

Finally, so far observations were viewed as exercise-label pairs. Another approach would
be to use labels as observations regardless of the exercise and to assign ratings based on
their frequency for one student. This would most likely reduce the available information
but also significantly reduces the dimensionality of the data. Furthermore, predicted ratings
would represent frequencies instead of just confidence, which could be of interest to some
use cases. Future works could evaluate the effects of this different representation using
explicit and implicit Collaborative Filtering methods.



CHAPTER 3

Prediction model

Because the proposed prediction model is not limited to one software platform such as
Backstage 2, this chapter only gives a formal description. After a short introduction to Col-
laborative Filtering and recommender systems in section 3.1, the structure used to present
the proposed prediction model is loosely built around the input-process-output model.
Hence in section 3.2 two important properties of the input lead to a short formalization
of the input and expected output. Next section 3.3 describes the prediction process con-
necting input and output. The specific method is called Alternating Least Squares with
weighted-λ -regularization (ALS-WR), which is one approach to Collaborative Filtering and
recommender systems described by Zhou et al. [44]. Lastly, an introduction to the evalua-
tion tools follows, which are subsequently used to interpret the results in section 3.5. As a
reminder, the aim is to make predictions about students’ future assignment performance to
enable personalization applications in blended learning environments such as Backstage 2.

3.1 Collaborative Filtering

Since personalization is also a problem of recommendation, recommender systems have been
the research focus for this thesis. Collaborative Filtering, as the method of choice, is but one
approach to recommender systems in the bigger ensemble of machine-learning techniques.
Recommender systems may roughly be split into two groups [3]. Common to both groups
are users, items and ratings, whereas ratings connect the former two. For this thesis they
correspond to students, observations or labels, and ratings. The distinction of recommender
systems lies with their conceptualization. For Content-based recommender methods ratings
are of lesser importance and can be mere results. Instead users and items are represented by
“attribute information” such as “textual profiles or relevant keywords” [3, p. 8]. Therefore,
it is content connecting users and items into a rating relationship. Collaborative Filtering
relies only on “the collaborative power of the ratings provided by multiple users” [3, p. 8].
Users are represented by feature vectors containing their ratings on items. Usually, where
ratings are missing, no implicit assumptions are made and the vector is left sparse. To obtain
predictions, the basic idea with Collaborative Filtering is to assume, that proximity of users
in this feature space implies similar taste. Based on that recommendations are derived from
the remaining dissimilarities of similar users. Next, we will relate this general understanding
of Collaborative Filtering to the application of predicting assignment performance.

11
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3.2 Context

In this thesis the input, that is the rating matrix, has two special properties not usually seen
in Collaborative Filtering [3]. First, at one point in time only a subset of all observations
have a rating record. Taking lecture week three for example, at that point all observations
for exercises from weeks one through three have a rating record. Contrarily, observations
for exercises from weeks four until the last week do not have a rating record. Only for
that exact reasons exists in our application a distinct boundary between two datasets. For
this thesis they are referred to as training data, which is collected from past lectures, and as
runtime data, which is collected from a current lecture. Both of them are of the same matrix
format, whereas only the latter, the runtime data, is incomplete from a certain point. and
the former, the training data, fills its gaps thereby enabling prediction. Effectively however,
Collaborative Filtering is only run on one matrix, where training and runtime data are
concatenated by rows, that is by users.

Second, this concatenated rating matrix is not sparse except for the runtime data not yet
available at one point in time. During assessment the expectation for correctors is to either
record a label if it is applicable to the assignment, or not to record it if it is not applicable.
Since positive ratings are explicitly recorded and all observations are known the negative
ratings can be implicitly deferred. Additionally, this is based on the assumption that for
correctors the decision is clear-cut as for the present dataset. If it were not clear-cut, for
any label some notion of “I don’t know” could be represented by sparse entries in the
matrix. Based on these consideration an implicit approach as presented by Hu et al. [30],
that implicitly assumes missing ratings to be FALSE, does not fit our application. Hu et al.
would be applicable to non-explicit ratings, such as “time spent viewing” or “number of
clicks”, where the previous implicit assumption is valid. The implementation from chapter 4
would support the method of Hu et al. as well. However, in our case ratings are indeed
explicit and the sparse entries are completely unknown.

3.2.1 Training data

In summary, for the input, that is the training data, a rating matrix is used, where for every
student s an observation o is assigned a rating or NaN for missing ratings

rso =


1 =̂ TRUE if o was observed
0 =̂ FALSE if o was not observed
NaN otherwise

Every student s from this matrix belongs to one of two groups. The first group is the runtime
data, which contains students of the current lecture and observations up to certain point.
Afterwards this group contains only sparse entries given by NaN. The second group is the
training data and it includes students from past lectures and hence ratings on any observation.
Their combination is formed by first dropping all the observations from the runtime data
not in the training data. Next, the resulting student columns are appended as new students
to the training data. As we advance in time the runtime data changes incorporating new
ratings for sparse entries, whereas the training data remains unchanged.

3.2.2 Predictions

For the output, i.e. predictions, assignment performance is desired and modelled by obser-
vations based on labels as for the input. Furthermore, given that not all observations might
be interesting, a prediction set P containing arbitrary observations is used. A prediction
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model should output a map ps : P −→ R+
0 , which maps for a student s every observation

o ∈ P to a predicted confidence rating and particularly not to a probability rating

ps(o) =


x ∈ Bεso(1)∪ [1,∞[ if o will be observed
x ∈ Bεso(0) if o will not be observed
NaN otherwise, if no prediction is possible

with the open ball Bε(c) = {x ∈ R+
0 | |x− c| < ε} and εso unknown. Moreover, for two

observations o1,o2 ∈ O and with a non-strict definition of likeliness the following property
is generally desired

o1 more likely than o2 ⇐⇒ ps(o1)> ps(o2)

for which reason ps(o)∈ [1−εso,∞[ = Bεso(1)∪ [1,∞[ is used in the case that o will be observed.
The above property allows to particularly obtain top-k-recommendations while a clear-cut
binary decision for or against an observation is generally impossible since εso is unknown
and dependent on s and o. The results in section 3.5 will show, that, based on the mean
prediction error, ε is typically sufficiently small to obtain a good binary prediction as well.

3.3 Alternating Least Squares with weighted-λ -regularization

To connect input and output the matrix factorization approach to Collaborative Filtering
using the Alternating Least Squares method with weighted-λ -regularization (ALS-WR)
described by Zhou et al. [44] was selected. It has already been implemented for the Apache
Spark platform and this section is essentially a formal documentation of that implementation
for the case of explicit and non-negative ratings.

In matrix factorization the idea is, that in our case for the students and observations,
latent factors exist, which explain the more frequent co-occurrence of certain observations
as compared to others. Intuitively, that matched exactly the expectation that possibly non-
observed, relatively time-stable characteristics of the students, such as misconceptions or
even personality traits, sufficiently determine observations and thereby aspects of assign-
ment performance.

For a rating matrix (rso) ∈ {0,1,NaN}n×m, that is with n students and m observations,
the resulting factorization yields k student factors (xs) ∈ Rn×k and k observation factors
(yo) ∈ Rm×k such that

xᵀs yo = r̂so ≈ rso ∀s,o

We call r̂so the predicted rating and k the rank of the factorization, which signifies the number
of latent factors and is dependent on the specific dataset.

As the name Alternating Least Squares suggests, this method alternates between students
and observations to optimize the squared error of r̂so− rso in a pre-defined (maximum)
number of iterations. For that purpose X = (xs) ∈ Rn×k and Y = (yo) ∈ Rm×k are randomly
initialized and iteratively optimized by minimizing the cost function

∑
s,o
(rso− xᵀs yo)

2 +λω(‖xs‖2 +‖yo‖2)

Here λ ∈R is a suitably chosen (Tikhonov) regularization parameter, that limits the complexity
of the factorization into X and Y and a proposed value is 0.02 [20]. As suggested by
Zhou et al. [44] λ is weighted by the number of explicit ratings. Hence for this thesis
ω = n ·m− (δT +δR), where δT is the number of sparse entries in the training data (usually 0)
and δR the number of sparse entries in the runtime data dependent on the lecture week.
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More precisely, in every iteration a better approximation of X and Y is computed. That
computation is based on the observation, that with either factors fixed “the cost function
becomes quadratic” [30, p.4]. So with either student or observation factors fixed obtaining
respectively the observation or student factors represents a least squares problem

min
x
‖Ax−b‖2 +(λω)‖x‖2 ⇐⇒ min

x
xᵀ(AᵀA+(λω)Ik)x− xᵀ(Aᵀb)

where either A := X or A := Y fixed, and respectively x := yo ∀o and b := r∗o, or x := xs ∀s and
b := rs∗. Here the *-notation signifies the vectors r∗o = (r1,o,r2,o, . . .) and rs∗= (rs,1,rs,2, . . .) and
Ik is used for the k× k identity matrix. Finally, this problem is solved with a non-negativity
constraint on x using the modified conjugate gradient method implemented by Apache
Spark. Shewchuk [39] gives a good summary of the conjugate gradient method in general.

So in summary, how does this relate to the training data (input) and predictions (output)
previously defined in section 3.2? For every student s and every observation o we had the
rating rso for the input. Applying a factorization of rank k to the resulting matrix (rso)∈Rn×m

yields student factors (xs) ∈ Rn×k and observation factors (yo) ∈ Rm×k. Their product xᵀs yo
forms an approximation of rso, which should particularly be defined for sparse entries
rso = NaN. In our case the sparse entries are mostly in the runtime data, which is the part of
(rso) where the students s are currently participating in a lecture. Since the other part, the
training data, only contains students from past lectures, its sparse entries are not of interest
in prediction (if there are any at all).

In any case, out of all the students s and observations o, there are some of particular
interest but rso = NaN. For every interesting student s this leads to the restricted definition of
a prediction set Ps = {o | observation o is interesting for student s}. Here interesting usually
means that for an observation, i.e. the tuple of an exercise and a label, the exercise and label
are generally still used with the current lecture and particularly in the near future. Thus
using the factorization we obtain the output, which is a prediction ps(o) = xᵀs yo for every
o ∈ P, where ps(o) = NaN particularly if a student s has no observations or past lectures did
not gather ratings for the observation o. The biggest issue for the prediction model is posed
by the latter case. Since observations have been defined as an exercise-label pair one possible
remedy is the usage of labels on their own. This has not yet been evaluated and would yield
very different results predicting the frequency of labels for students and not their occurrence
on exercises. And for the exercise-label pairs the results will show that using this additional
information produces good prediction results, which is equally important.

3.4 Evaluation

Before presenting the results in section 3.5 an introduction is given about the method and
metrics used to evaluate and tune the parameters of the prediction model. All the results are
based on the dataset from chapter 2, from which ten folds were derived for Cross-Validation.
Every fold contains a random selection of users, i.e. rows of the rating matrix. Conceptually,
the training data is viewed as coming from past lectures, whereas the runtime data is being
collected from an ongoing lecture. For that reason, we use so called steps [13] to model
varying levels of knowledge. For the purpose of evaluation a step is defined as one week
and comprises all the observations for exercises of that week. Furthermore, for the first
week, where no behaviour has been observed yet, no predictions are possible. Hence out
of 11 assignment weeks predictions are computed in 10 steps. In the first step only ratings
for observations of the first first week are available and observations from the remaining
weeks form the prediction set. Iteratively in every step more ratings for observations from
the current week become known, whereas the number of predictions shrinks as the same
observations are removed from the prediction set. Thus with ten folds 100 models (one for
each step and fold) must be trained and for every fold 35,264 predictions are calculated
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and evaluated. Due to the resulting high computational overhead the majority of the
computations was run on Apache Spark separate from Backstage 2 and the statistics suite R
was used to summarize and plot the resulting data.

3.4.1 Metrics

Metrics are the foundation of the following hyperparameter tuning and for the result
evaluation in general. Here, their respective definitions are presented along with a short
overview of their interpretation and usage. In this thesis they are generally used with a
prediction set P of observations and a prediction map ps : P −→ R+

0 , which for a student
s yields nonnegative predictions as defined in section 3.2 for the output of the prediction
model. Moreover, in this supervised machine-learning setting the correct prediction for a
student s and an observation o is given by rso ∈ {0,1}, derived from the dataset as described
in chapter 2. Hence particularly rso 6= NaN can be presumed, which simplifies the evaluation.
Several instances of P, ps and rso can be collected from different students, steps or folds into
one family input to an aggregate metric. Those metrics are now outlined in the following
sections and the index sets I = {1, . . . ,n} and J = {1, . . . ,m} are used throughout with n,m∈N.

3.4.1.1 Root-Mean-Square-Error (RMSE)

RMSE is computationally the simplest metric that has been included. But RMSE can also
be difficult to interpret when used but for the general optimization of a (Collaborative
Filtering) algorithm [3, p. 413]. Its definition is based on the error of a prediction p ∈R+

0 with
a corresponding correct rating r ∈ {0,1}

err(p,r) = p− r

One might be tempted to believe that err(p,r) ∈ {−1,0,1}, which in fact it is not. Instead
since p ∈ R+

0 the error err(p,r) ∈ [−1,∞[.
To obtain a measure that weights large errors over smaller ones RMSE [3, p. 230] is

derived from the plain error in analogy to the standard deviation

RMSE(D) =

√
1
n ∑

i∈I
(err(pi,ri))

2 ∈ R+
0 smaller is better

with a family D = (pi,ri)i∈I and where pi the predicted and ri the correct rating.
The resulting measure is flexible and can be arbitrarily aggregated over the predictions

for one student, multiple students, steps or even folds. In every case RMSE yields only
a single number. Because of its definition the meaning of the RMSE is analogous to the
standard deviation. So particularly 95% of the samples RMSE was aggregated over have
an absolute error less or equal to twice the RMSE. For top-k-recommendations, where the
k observations with the highest predicted rating for a student are used, its applicability is
limited since RMSE constitutes a “global ranking measure” [3, p. 413]. These measures are
generally global aggregates over all the predictions of every student contrarily to just the
top-k ones for instance.

3.4.1.2 Mean Reciprocal Rank (MRR)

In the case of top-k-recommendations a “top-heavy ranking measure” [3, p. 413] such as the
MRR is more typically used. For the prediction set P containing interesting observations
and a prediction map p : P−→ R+

0 the rank of an observation o ∈ P is defined as

rankP,p(o) = |{ô ∈ P | p(ô)> p(o)}|+1
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In respect to the order defined by the prediction map p on P the everyday meaning of
rank(o) = n ∈ N would be “o is the n-th ‘finisher”’, where in the case of m equally ranking
observations m−1 ranks are skipped.

To obtain the MRR a family D = (Pi, pi,Ri)i∈I is needed, where Pi the prediction set, pi
the prediction map and Ri the set of relevant observations. Here, relevant signifies all those
observations that should be ideally predicted, i.e. rso = 1. Averaging the reciprocal rank of
the first relevant observation leads to the definition of MRR [3, p. 246] given by

MRR(D) =
1
n ∑

i∈I

1
minrankPi,pi [Ri]

∈ ]0,1] bigger is better

As already hinted, this measure is tightly coupled to the top-k-recommendations. As-
suming MRR(D)≈ 1

k with k ∈N then on average the top-k-recommendations contain at least
one relevant prediction. Particularly for that reason, using MRR does not globally optimize
all predictions whether relevant or not. Instead its focus is to provide anything relevant first,
that is with a high rating.

3.4.2 Metrics for binary classification

Since for each fixed observation the proposed prediction model could be used as a binary
predictor as well, the necessary tools are collected in this section. Assuming θ ∈ R+

0 is a
suitable threshold, then by using the decision rule p >= θ yields a binary prediction based
on a predicted rating p ∈ R+

0 .
Therefore, from now on we suppose binary predictions and let D = (pi,ri)i∈I a family

where pi ∈ {TRUE,FALSE} a prediction and ri ∈ {TRUE,FALSE} the expected correct pre-
diction. For each index i ∈ I this results in four cases which can each be counted and
summarized in a contingency table [35]:

Actual rating

ri = TRUE ri = FALSE

Predicted
rating

pi = TRUE True Positive (TP) False Positive (FP)

pi = FALSE False Negative (FN) True Negative (TN)

TP and TN on the one diagonal consist of correct predictions whereas the other diagonal
with FN and FP contains wrong predictions. Ideally for a sample of size n the expectation
is no prediction errors FP = FN = 0 and the remaining predictions to either be rightfully
positive or negative TP+TN = n. Since optimization on multiple values is impractical, many
combined measure have been defined for the confusion matrix. The aim for this thesis is to
eventually plot ROC and Precision-Recall curves, for which purpose Recall, Fall out and
Precision are needed.

Recall / FPR This is the True Positive Rate (TPR) also called Recall or Specificity [35]. Out
of all the actually positive ratings it measures the proportion recalled as positive ratings in
prediction.

TPR(D) =
TP

TP+FN
=
|{i ∈ I | pi = TRUE∧ ri = TRUE}|

|{i ∈ I | ri = TRUE}|
∈ [0,1] bigger is better

However, just looking at the TPR is not sufficient since the right half of the confusion matrix
is completely ignored. So for perfect TPR = 100% the easiest solution is to just always predict
TRUE, which is not desirable and for which reason a second metric is needed.
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Fall-out / FPR This second metric is the False Positive Rate (FPR) also called Fall-out [35].
Out of all the actually negative ratings it measures the proportion wrongly predicted as
positive.

FPR(D) =
FP

FP+TN
=
|{i ∈ I | pi = TRUE∧ ri = FALSE}|

|{i ∈ I | ri = FALSE}|
∈ [0,1] smaller is better

Finally, in combination with the TPR the FPR accounts also for actually negative ratings
and hence prevents the degenerate predictor previously outlined. Nevertheless, a direct
relation between TPR and FPR is still missing. For example, we could suppose the number of
actually negative and actually positive ratings is very unbalanced, say many more negatives.
In that case although TPR high and FPR low the prediction could still yield many more false
positives than true positives in absolute numbers. So a third measure is needed.

Precision / PPV This is the Positive Predictive Value (PPV) also called Precision[35]. Out
of all the positively predicted ratings it measures the proportion rightfully predicted as
positive.

PPV(D) =
TP

TP+FP
=
|{i ∈ I | pi = TRUE∧ ri = TRUE}|

|{i ∈ I | pi = TRUE}|
∈ [0,1] bigger is better

Altogether combined with the TPR and FPR the PPV helps to prevent all the previously
described degenerate cases of prediction. The remaining problems are finding the suitable
threshold θ ∈ R+

0 and particularly for that purpose a means to compare multiple measures
in a compact form, such as plots of curves.

3.4.2.1 Receiver Operating Characteristic (ROC)

The ROC was first invented for and named after radar receivers during the second world war,
for which the challenge was to tweak parameters to obtain a good balance between true and
false positives for the detection of radar echos [19]. For this thesis the parameter is a family
of thresholds (θi)i∈I where θi ∈ R+

0 . As θi is varied the ROC visualizes changes in prediction
performance by plotting the TPR on the y-axis against the FPR on the x-axis [3, p. 247ff.].
We require for every threshold θi a family Di = (pi j,r j) j∈J where pi j the binary prediction
derived from the threshold θi and r j the true rating. Then the ROC is a non-continuous
function graph defined by

ROC((Di)i∈I) = {(FPR(Di),TPR(Di)) | ∀i ∈ I} ⊂ [0,1]2

For random predictions all points of the ROC (FPR,TPR) ∈ ROC are located on the bisector
of the axes of the coordinate system because FPR = TPR. A good threshold, on the other
hand, maps above the bisector and as close as possible to (FPR,TPR) = (0,1). Finally, an
ROC underneath the bisector indicates wrong assumptions because by swapping positive
for negative it is mapped above the bisector. Overall, the ROC has two usages. First, as
detailed so far, it provides evidence of the prediction quality for varying parameters. Second,
as a result it allows to pick an optimal threshold parameter in respect to the balance between
FPR and TPR.

3.4.2.2 Precision-Recall curve (PRC)

Likewise for the PRC the PPV on the y-axis is plotted against the TPR on the x-axis [3,
p. 247ff.]. As previously defined for the ROC, we have a family of thresholds (θi)i∈I and
corresponding families Di = (pi j,r j) j∈J . The PRC is another non-continuous curve given by

PRC((Di)i∈I) = {(PPV(Di),TPR(Di)) | ∀i ∈ I} ⊂ [0,1]2
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Typically the PRC origins in the top-left corner and ends in the bottom-right. Unlike for the
ROC neither a line connecting those corners nor the bisector of the coordinate axes are of
relevance. Instead the PRC allows evaluation of the precision as the threshold is changed to
increase or decrease the FPR. For that reason ideally the curve remains high and close to
constant, which signifies high precision with stability throughout different thresholds.

Lastly, we note that comparing either curve (ROC or PRC) for different prediction
models suffices to identify the better model. Herein the definition of better is that one
curve dominates the other. This is because ROC and PRC determine the contingency
table and hence also the other curve [12]. Therefore in this thesis the ROC is used for the
hyperparameter optimization, which involves training and comparing multiple models.

3.4.3 Hyperparameter optimization

For machine-learning algorithms hyperparameters are those parameters, which “change the
way the learning algorithm [...] works” [41] and thus ultimately influence what is learned.
They depend on properties of the specific dataset and can be viewed as part of the model
selection. Parameters on the other hand are not part of the model selection. For example
with our prediction model one parameter is the prediction set, which only limits the scope
to which the model is applied and does not influence what was learned. However, our
interest in this section is the selection of suitable hyperparameters for the proposed ALS-WR
prediction model. Reviewing the algorithm from section 3.3 there are three hyperparameters:
rank, λ (Lykhonov regularization parameter) and the maximum number of iterations.

Rank (k) The rank k ∈ N of the factorization of a rating matrix into k student factors
and k observation factors. For an ideal factorization k could be chosen as the rank of the
rating matrix. Practically however, the rating matrix contains noise and hence requires
approximation by using a lower rank [44]. Therefore k should be close to (or higher) than
the actual number of latent factors which determine the behaviour of students resulting
in observations. For that reason it could grow with the number of students or when
incorporating new observations through new exercises or labels. Since those latent factors
are usually unknown we estimate the rank based on cross validation. The default value
for the Apache Spark implementation of ALS-WR is k = 10. For the Netflix dataset Zhou et
al. [44] report values between 20–60 and up to 1000, as they could not observe any overfitting.
Based on that and some initial experimentation ranks ranging from 5 to 100 are proposed
for evaluation of the prediction model.

Regularization parameter (λ ) The Lykhonov regularization parameter λ is introduced to
prevent overfitting of the model. Overfitting in the case of matrix factorization means that
single factors gain too much weight, for which reason λ is used to limit their magnitude.
Due to the weighted regularization approach of ALS-WR λ is less dependent on the dataset.
Again for the Netflix dataset Funk [20] proposed λ = 0.02 with Zhou et al. [44] reporting
good results slightly higher with λ between 0.03 and 0.075. Since additionally the default
with Apache Spark is set to λ = 0.01, λ -values from 0.001 to 0.1 are evaluated.

Iterations (N) Since ALS is an iterative method and we do not expect to find a non-
approximate solution to the matrix factorization, the third parameter is the maximum
number of iterations. In every iteration student and observation factors are optimized by
using a conjugate gradient method on each set of factors separately with the other one
fixed. Therefore the approximation should improve in every step unless it is already ideal
or overfitting occurs. At some point increases should become sufficiently small while
the computation cost is still acceptable. This point is dependent on the dataset and other
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k λ N

{5,10,20,40,60,70,80,90,100} × {0.001,0.005,0.01,0.02,0.05,0.1} × {5,40}
{10,40,70,80,90,100} × {0.005,0.02,0.05,0.065,0.075} × {10}
{10,40.70,80,90,100,120} × {0.065,0.075} × {5}

Table 3.1: The three grids evaluated to identify suitable hyperparameter settings

hyperparameters. Diverging from the default value of 10 iterations we will compare 5
and 40 iterations. Earlier experiments showed that both settings lead to acceptable albeit
different quality. Higher values were not systematically evaluated for all parameters due
to the previously detailed high computation cost of evaluation. Either, the expectation is
that performance differences already manifest themselves between 5 and 40 iterations or
that they are small. In the latter case small differences imply that the algorithm has already
converged close to an optimum with few iterations.

Conclusively, the the first grid from table 3.1 was constructed. For every grid the settings
of any hyperparameter are combined with every setting of the other hyperparameters.
After some literature research and pre-experiments the ranges given in the description of
every hyperparameter were selected. Only few distinct values were picked from these
ranges such that the evaluation would show tendencies for possibly further optimization
without becoming overly expensive. Just the first grid identified λ = 0.05 and N = 5 as good
settings. Based on this tendency the second and third grid evaluate some more options.
For every combination models were trained and predictions calculated as initially outlined
in this section. The comparison is done using single value metrics only, that is RMSE,
MRR and instead of ROC its area under the curve (AUC). For the AUC [35] the following
(approximative) definition is used

AUC((xi,yi)i∈I) = ∑
i∈I

yi(xi+1− xi)

where (xi,yi)i∈I is a family of points belonging to a curve such as the ROC and ordered such
that xi < xi+1 ∀i ∈ I.

3.5 Results

The evaluation results are presented in two steps. First, the prediction model is optimized
by tuning the hyperparameters. Based on this a good hyperparameter combination for the
current dataset is proposed. For different datasets suitable hyperparameters can be selected
by a likewise process. The result is a final model concluding the model selection process.
Second, the final model is evaluated in more detail.

3.5.1 Model selection

The foundation for the final model selection are the metrics from section 3.4 that were
calculated for all the 152 models derived from the parameter grid and every fold. For
further analysis of the still very large dataset the metrics were next summarized by common
statistical measures such as mean and quantiles into one summary of all the 10 folds for
every model. Table 3.2 shows the results for the six best models and an overall summary for
all 1520 evaluations performed for any model and fold.

For selecting the best model a combined rank based on the mean of MRR, RMSE and
ROC AUC was chosen. PRC AUC was particularly not included because it yields the same
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Parameters
k 40 70 90 10 80 90

OverallN 10 10 10 10 5 10
λ 0.065 0.065 0.065 0.065 0.065 0.075

MRR

Min. 0.5929 0.5909 0.5844 0.5629 0.5800 0.5903 0.5070
1st Qu. 0.7354 0.7499 0.7619 0.7757 0.7481 0.7532 0.7043

Median 0.8289 0.8303 0.8263 0.8229 0.8310 0.8222 0.7736
Mean 0.7982 0.7981 0.7980 0.7982 0.7970 0.7975 0.7571

3rd Qu. 0.8712 0.8628 0.8642 0.8623 0.8601 0.8625 0.8212
Max. 0.8931 0.8902 0.8915 0.8916 0.8874 0.8904 0.9016

RMSE

Min. 0.2485 0.2490 0.2487 0.2497 0.2491 0.2516 0.2467
1st Qu. 0.2546 0.2544 0.2547 0.2538 0.2550 0.2567 0.2608

Median 0.2606 0.2609 0.2609 0.2600 0.2607 0.2619 0.2690
Mean 0.2604 0.2605 0.2605 0.2605 0.2605 0.2622 0.2770

3rd Qu. 0.2629 0.2628 0.2630 0.2628 0.2627 0.2653 0.2786
Max. 0.2751 0.2745 0.2748 0.2757 0.2734 0.2739 0.8406

ROC AUC

Min. 0.6272 0.6279 0.6298 0.6180 0.6310 0.6309 0.4832
1st Qu. 0.7255 0.7254 0.7258 0.7172 0.7265 0.7262 0.6879

Median 0.7307 0.7327 0.7327 0.7302 0.7350 0.7339 0.7211
Mean 0.7387 0.7392 0.7395 0.7326 0.7408 0.7393 0.7128

3rd Qu. 0.7665 0.7662 0.7667 0.7582 0.7655 0.7649 0.7498
Max. 0.8160 0.8138 0.8160 0.8042 0.8185 0.8142 0.8186

PRC AUC

Min. 0.2769 0.2786 0.2817 0.2784 0.2795 0.2798 0.0609
1st Qu. 0.3409 0.3429 0.3425 0.3488 0.3385 0.3263 0.3131

Median 0.3899 0.3821 0.3828 0.3802 0.3830 0.3587 0.3556
Mean 0.3773 0.3774 0.3796 0.3820 0.3770 0.3654 0.3506

3rd Qu. 0.4169 0.4224 0.4237 0.4249 0.4194 0.4134 0.3935
Max. 0.4441 0.4421 0.4426 0.4586 0.4521 0.4407 0.4808

Samples 10 10 10 10 10 10 1520

Table 3.2: Summary statistics for the six best as well as for all evaluated models and folds
overall. The best models have been selected from a combined rank of the means with
weights 3×MRR, 1× RMSE and 2× ROC AUC.

ranks as ROC AUC (see section 3.4.2.2). The combined rank is defined as

3 · rank(MRR)+ rank(RMSE)+2 · rank(ROC AUC)

4

where rank(M) is used to denote the rank of the mean of the metric M. How every metric is
weighted depends much on how the predictions will be used. With a top-k-recommendation
approach the MRR is most relevant measuring the average position at which the first relevant
prediction occurs. When a plain binary prediction instead of recommendations is desired,
the ROC provides the means to identify a suitable threshold to convert predicted into binary
ratings. Foremost the combined rank is an effort to find a feasible tradeoff for both use
cases. Additionally its aim is to prevent overly global optimization when eventually only
one threshold is used in the case of binary predictions. For that purpose the MRR received
the most weight whereas the global measures RMSE and ROC AUC were reduced in their
weight.

This leads to a final model selection with hyperparameters tuned to k = 40 for the rank,
N = 10 for the maximum number of iterations and λ = 0.065 for the regularization parameter.
It is worth noting that the rank significantly varies between the top-ranking models and that
40 is situated in the middle of that range. Furthermore, a maximum number of iterations set
to 10 was not expected to yield better results than 40 iterations. Other studies on the much
sparser and much larger Netflix dataset showed consistently increasing performance with an
increasing number of iterations as measured by RMSE [44]. Possibly the lack of sparseness
and the comparably small size of our dataset fosters overfitting with higher iteration settings.
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(a) Receiver Operating Characteristic (b) Precision-Recall Curve

Figure 3.1: Performance of the final model (k = 40, N = 10, λ = 0.065) in the case of binary
predictions evaluated with different thresholds

On the other hand, the evaluation identified an optimal registration parameter of λ = 0.065
equal to the optimum identified by Zhou et al.

Nevertheless, the performance of all the top ranking models is consistently above average
as compared to the overall column of table 3.2. Indeed differences between them are so small
that either one should be suitable for top-k-recommendations and binary predictions alike.
A mean MRR of 0.7970 for the final model corresponds to a rank of 1

0.7982 = 1.2528 for the
first correct prediction on average. Assuming that predictions can be connected to content
relevant for the individual student, it is a very good result. Essentially for every student
only the two recommendations with highest predicted rating have to be presented to him to
typically provide at least one relevant recommendation. Furthermore with a mean RMSE of
about 0.25, approximately 95% of the predicted ratings have an error of 2 ·0.25 = 0.5 since
the RMSE is actually the standard deviation of the error. In those cases using the interval
[0.5,1.5] allows for separation of positive and negative predictions with certainty because a
predicted rating of 1 =̂ TRUE and a predicted rating of 0 =̂ FALSE. Additionally, the ROC
AUC is well above 0.5, which is the expected value for random predictions mapping the
ROC to the bisector of the coordinate axes.

3.5.2 Final model

For further analysis of the final model the Receiver Operating Characteristic and the
Precision-Recall Curve have been plotted by varying the threshold used to convert pre-
dicted ratings into a plain “yes” and ”no”. The result is shown in figure 3.1. Instead of the
left-side continuous constant approximation used for the AUC the curves were generated
by a linear approximation between the distinct results. Therefore, while the specified AUC
values are necessarily underestimates the plot from figure 3.1 could slightly overestimate
the performance.

The ROC suggests that a good tradeoff between Recall and Fall-out is at 0.08 as a thresh-
old setting. However, since for one student the number of actually applicable observations is
usually much lower than the overall number of possible observations, a comparison with the
PRC is important. The PRC shows mostly a near linear descent of the Recall with increasing
Precision. In fact at the 0.08 threshold the Precision is only at approximately 0.3 (unlike
the apparently good Fall-out of approx. 0.2) with approx. 0.7 for the Recall. Therefore
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Figure 3.2: Frequency (bars) and F-Score (triangles) with the final model (k = 40, N = 10,
λ = 0.065) and a threshold setting of θ = 0.25

a threshold setting of 0.25 could be a better tradeoff yielding 0.5 for Precision and Recall
and less than 0.1 for the Fall-out. Eventually every individual user will want many correct
and few incorrect predictions regardless whether there are few or many possibilities for
the prediction model to make wrong predictions. That is, users want high Recall and high
Precision. Low Fall-out on the other hand is only relevant to the developer of a prediction
model that struggles to select the few correct predictions out of all the wrong ones. Therefore,
the Precision-Recall curve should be used to identify a suitable threshold setting on the
imbalanced dataset used [38].

Lastly, the proposed value θ = 0.25 was selected to analyze the performance of individual
labels. For this purpose an unweighted F-Score was used that combines Recall and Precision
like the Precision-Recall curve

F-Score(PPV,TPR) = 2 · PPV ·TPR
PPV+TPR

∈ [0,1] bigger is better

The results in figure 3.2 show that the prediction performance varies to a great degree
between labels. Initially, when analysing the dataset the labels c-19, c-22 and c-27 were
identified as least frequent. None of them are among the top-performing labels based on the
F-Score. But only label c-19 is very clearly predicted worse than the rest. There seem to
exist different explanations for the variance in prediction performance, because c-27 with
25 occurrences is not much more frequent than c-19 with 18 occurrences but still c-27
performs better than c-22with 43 occurrences. Regardless of such different explanations the
overall tendency with all labels in figure 3.2 is, that with increasing frequency the prediction
performance improves. The current dataset only contained 82 out 345 participating students.
Therefore most likely the prediction performance would increase when applying the model
to even more students or when data from different lectures or terms is consistently combined.



CHAPTER 4

Implementation

To work towards the greater aim of personalized blended learning this chapter details the
integration of the proposed prediction model with the Backstage 2 learning platform. In great
parts the implementation has been prepared for by the prediction framework from the mas-
ter thesis of Dostert [13]. Nevertheless, in other parts modifications were required while the
structure of the framework remained mostly unchanged and was preferably supplemented.
Since the original implementation of Dostert included only one prediction model quite dif-
ferent from the one proposed now, enhancements had already been anticipated beforehand.
Specifically Dostert used the four tags NO ERROR, ERROR, SKIPPED and INSUFFICIENT
KNOWLEDGE assigned to all past assignments of a student to predict the exact same tags
for future assignments. For that purpose he trained and compared Relative Frequency and
Hidden Markov Models using students’ time series of these four tags from past lectures. On
the one hand, like the now proposed model a time series of tags is used to predict the same
tags. On the other hand, in Dostert’s case the tags are (1) sealed, (2) known at compile-time
and (3) all four are always applicable to any assignment. This differs from the requirements
of the new model, which are outlined in the next section and which constitute the software
specification. The remaining sections first give an overview of Dostert’s framework and
identify relevant limitations. Afterwards the resulting general enhancements to the frame-
work are summarized, which are lastly connected by the implementation of the prediction
model.

4.1 Specification

With the now proposed prediction model tags, that is observations or labels, are contrar-
ily to Dostert’s model (1) not sealed, (2) only just known at run-time, (3) not applicable
(= observable and predictable) to every assignment and (4) prediction as well as training
is computationally more expensive. These four differences guided every enhancement
except for the serialization changes described in section 4.3.6. These serialization changes
are optional and provide a general improvement to the prediction framework independent
of the proposed model and its implementation requirements.

Next the specific requirements of the proposed prediction model towards a framework
like Dostert’s are defined. These are the resulting requirements in the style of a user
specification:

23
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1. Labels and exercises can be collected from different sources.

2. Labels and exercises are viewed as one unit and called observation as previously in
this thesis.

3. Students can have a record of multiple distinct observations for one exercise.

4. Not every label can be recorded for any exercise, that is some of their combinations do
not form a valid observation.

5. Used labels and exercises may change throughout lectures but remain identifiable if
unchanged.

6. Predictions can be restricted to a subset of interesting ones out of all the predictable
observations, such that the computational cost is also reduced. This set of interesting
predictions may change throughout the lecture.

7. Predictions for a label are either assigned an anticipated rating or no rating at all in
case a prediction was not possible.

8. The storage space required by the data types used should remain within sensible
bounds.

In addition to the above specification there are some general requirements not just specific
to the proposed model. Since they are exactly what Dostert’s prediction framework was
developed for, this thesis does not include a list of them. Instead the interested reader may
find more information in the master thesis of Dostert [13]. Since the following sections
explain how the specification was met, the relevant requirements are referenced by their
index in round braces, e.g. (1) for requirement 1.

4.2 Existing prediction framework

By now giving a short overview of Dostert’s prediction framework we will be able to
isolate those parts of the specification that are not yet sufficiently supported by the present
implementation. This results in the limitations of the existing framework for the new use
case, which conclude this section.

4.2.1 Overview

The framework was built on top of Backstage 2 which uses various technologies of which the
most relevant ones are:

Scala1 The programming language used for the backend. It is a functional and object-
oriented language compiled to Java bytecode. Therefore it runs on the JVM and
is fully compatible to Java code. Its type system is strong and provides automatic
type inference. The sophisticated collections API of Scala is of great relevance to the
prediction framework [18, scala.collections].

Play Framework2 The web application framework used for the server-side backend. With
Play the interface, application and domain logic are separated using the model-view-
controller (MVC) software pattern.

1https://www.scala-lang.org/
2https://www.playframework.com/

https://www.scala-lang.org/
https://www.playframework.com/
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MongoDB3 The database providing persistence for objects in the JavaScript object notation
(JSON). It is a NoSQL database that stores documents as binary JSON (BSON), a binary
format derived from JSON. Since for frontend communication JSON is also used,
(de-)serialization is only implemented once for the JSON format [13].

JavaScript The programming language used for the frontend. It is an interpreted language
that is functional as well as imperative and weakly typed unlike Scala. Backstage 2 uses
functionality introduced with ECMAScript 64.

AngularJS5 The second web application framework used for the client-side frontend. In
addition to the MVC pattern AngularJS implements the Model-View-ViewModel
(MVVM) design pattern for updates of the user interface.

At the time of writing this thesis the versions Scala 2.11, Play 2.5 and AngularJS 1.6 defined
the most relevant APIs.

The overall structure of Backstage 2 divides the prediction framework into the two main
components: backend and frontend. The backend runs on a server and handles predictions,
whereas the frontend shows the results and allows to control the data and prediction models
used. Since with this thesis a new prediction model was implemented, the backend is of
most relevance. Indeed, one aim of this thesis was not to modify the frontend. Nevertheless,
enhancements of the user interface should be considered to improve the usability for the
new use case. To keep the overview as short as possible the following paragraphs are a
walk-through for the most relevant components of the prediction use case. An overview
of the relationships between the explained components is given in the class chart from
figure 4.1.

The class BehaviourLog is the entry point to most functionality of the backend of the
prediction framework. With Backstage 2 lectures are represented as Projects containing an
arbitrary number of BehaviourLogs. Additionally a Project provides information about
Users participating in different roles and various types of content, particularly such as
assignments and the answers returned by students.

Nevertheless, this information is not directly used from a Project in the prediction
framework (1). Instead there are Tags of different types that represent data from which and
of which to make predictions. A BehaviourLog contains for each participating student a
sequence of Tags observed for that particular student which is called behaviour. For one
BehaviourLog every student’s behaviour is of the same Tag type called the observation
type. Furthermore, as new observations are made the BehaviourLog of suitable observation
type is only on the receiving end and the corresponding student’s observation sequence is
added to (1). Apart from the observation type every BehaviourLog has a defined prediction
type. Predictions are Tags of this type and it can be equal – as for the proposed model – or
non-equal to the observation type. Thus BehaviourLogs not only contain all the information
required for predictions, they also act as gateways to that functionality.

However, to make predictions training data is required, which is provided by a History
or a set of them. Every History contains sequences of tags (i.e. behaviour) from past lectures
like BehaviourLogs but without the association to a specific user. Furthermore, tags are all
of the same observation type, whereas a prediction type is not specified by a History since
it can be used for any prediction based on tags of its observation type.

Next, predictions are provided by PredictionUnits which are configured for each
BehaviourLog, trained using at least one History and transform a sequence of observations
into predictions. Therefore much like the BehaviourLogs supported Tags are specified
by an observation type for the training data and by a prediction type for the resulting

3https://www.mongodb.com/
4http://es6-features.org/
5https://angularjs.org/

https://www.mongodb.com/
http://es6-features.org/
https://angularjs.org/


26 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Overview of the main components and their relations in Dostert’s original
prediction framework. Included members are all public unless specified differently.

Predictions. A Prediction in turn is simply a map from all the the Tags of the prediction
type to a Double value, which usually represents the predicted probability for that Tag (7).
PredictionUnits may be provided with a prediction set to restrict the Tags contained in
the output Prediction (6).

Finally, a major technical challenge Dostert faced was the (de-)serialization of the case
class BehaviourLog. For that purpose it is not sufficient to implement a generic case class
BehaviourLog, as the generic type information is stripped at compile-time and thus not
available during runtime. However, (de-)serialization is performed at runtime and thus the
right method cannot be selected with the generic type information missing. Furthermore,
TypeTags are also not a viable solution. They are a non-experimental part of the Scala
Reflection Library [17, scala.reflect.api.TypeTags] and preserve generic type information at
runtime. Of actual interest is not just the type, but the particular class of which to create
instances. Therefore, Dostert introduced an enumeration TagCategoryCollection of all
Tags that connects each entry with a suitable (de-)serialization method yielding instances
of the correct class. Conclusively, BehaviourLogs store the prediction and observation
type in two places. First, two generic types determine what the BehaviourLog should
be viewed as, which is typically just BehaviourLog[Tag,Tag] without specifying a more
specific Tag type. Second, two fields store an entry of the TagCategoryCollection, which
define the (de-)serialization method for observations respectively predictions. Finally, for the
following implementation the enumeration has been moved from TagCategoryCollection
to the trait Tag, which used to be nothing but a declaration anyway. Instead of the long
TagCategoryCollection.Value the class chart from figure 4.1 already uses the much
shorter but equivalent Tag.Value.
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4.2.2 Limitations

For all the remaining requirements not mentioned in the previous section there are at least
partial limitations with the original prediction framework. For requirement 7 (see 6) the
existing Prediction implementation works perfectly for the new prediction model but no
value has been defined for unavailable predictions. NaN could be used for that purpose but
is not supported for serialization and by the user interface.

Requirement 3 (see 7) creates a conflict with a concept named step in the BehaviourLog.
A step is merely an index which can be assigned a name for the user interface. Typical names
are weeks or exercises, since steps represent exactly that. The behaviour of any user stored
at the index i ∈N0 is said to belong to the step i and the behaviour is displayed alongside the
corresponding name in the user interface. Based on that, incremental predictions have been
implemented, where only behaviour up to the index i is provided to the PredictionUnit.
Since for the new prediction model multiple observations can be collected for one step either
the concept of steps is not applicable or multiple observations must be combined into a
single entry of the behaviour sequence.

The second option leads to problems with the storage space as from requirement 8 (see 8).
Assuming bi is an entry of the behaviour sequence and bi ∈ O where O is just some set of
valid entries. Now when we combine multiple entries into one we have an entry b̂i ⊆ O.
Consequently, to reestablish the original semantics of O, that is b̂i ∈ O, we need the much
larger power set P(O) resulting in b̂i ∈P(O). Since storing the power set without any
additional information gain is not desirable, a better solution would be to have flexible
semantics with either bi ∈ O or bi ⊆ O.

This leads us straight to requirement 4 (see 9) since the information about the validity of
observations is not yet stored throughout in Dostert’s implementation: A comparison with
figure 4.1 shows that the History does not yet include an observation set used to store that
information. Furthermore, analysing the code of the framework reveals that the observation
set from BehaviourLogs is only provided to the user interface but not to PredictionUnits.

Next, requirement 5 (see 10) is not yet of much interest. Essentially, we need any source
which provides tags to guarantee object equality between tags that should represent equal
observations or predictions. Otherwise the current semantics of the prediction framework
do not consider them to be equal and the resulting predictions are not as desired.

Dostert’s implementation uses in the PredictionUnits and BehaviourLogs already
observation sets to document all the observable observations regardless of their occurrence.
But this information is stored independently from each other, and particularly the obser-
vation set of a BehaviourLog is not passed to a PredictionUnit alongside the behaviour
when requesting a Prediction. Instead every PredictionUnit uses its own prediction
and observation set. However, since with the new implementation Tags are not sealed nor
all their possible instances known at compile-time, it is impossible for the developer of
a PredictionUnit to define either set for such Tags. As BehaviourLogs are expected to
be modified at runtime, their observation and prediction set may be updated as well and
passed on to a PredictionUnit when requesting predictions.

Apart from these aforementioned limitations the existing prediction framework with
Backstage 2 remained applicable to the new prediction model.

6 Requirement 7: Predictions for a label are either assigned an anticipated rating or no rating at all in case a
prediction was not possible.

7 Requirement 3: Students can have a record of multiple distinct observations for one exercise.
8 Requirement 8: The storage space required by the data types used should remain within sensible bounds.
9 Requirement 4: Not every label can be recorded for any exercise, that is some of their combinations do not form

a valid observation.
10 Requirement 5: Used labels and exercises may change throughout lectures but remain identifiable if unchanged.
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4.3 Framework enhancements

Before describing the details of the prediction model as a new PredictionUnit this section
gives a summary of the general enhancements to the framework. Most of them come straight
from the list of limitations and thus from the specification. In the case of the task-based
prediction interface (see section 4.3.5) the implementation was not absolutely necessary but
greatly benefited performance (possibly for future implementations too) with reasonable
effort. In any case great care was taken with all the enhancements to remain compatible with
the existing framework and all the already implemented PredictionUnits. Furthermore
code reuse was maximized and clear responsibilities aimed for to provide a solid foundation
for future enhancements. The only incompatible change to the database schema is described
with section 4.3.2 and located in the History.

4.3.1 Labels as Tags

The first step when implementing a new PredictionUnit is to implement at least one
new Tag to represent the input (behaviour) and output (predictions) of the unit, unless a
suitable Tag already exists. For this thesis the three new tags Label, AttributedLabel and
AttributedLabelSeq shown in figure 4.2 have been added to the framework.

Figure 4.2: Implementations of the trait Tag used by the new PredictionUnit

The class Label is used nowhere else but in the definition of the two other Tags. It only
consists of a single String that defines the equality relation between Labels. Therefore,
unlike storing a String directly with the other two Tags, in the future more information
could be added to Labels. For now its only id field may be used arbitrarily as long as
requirement 5 (see 11) is met in respect to the equality relation. In Scala terms equals and not
eq [18, scala.AnyRef]. AttributedLabels represent exercise-label pairs as per requirement
2 (see 12). Since more generally a label is to a cause such as an exercise they have been
named AttributedLabel. Predictions with the proposed model are of this type. Finally,
AttributedLabelSeq is used with the BehaviourLog, such that only one instance of it is
stored for each step.

4.3.2 Observation and prediction set

The concepts of observation and prediction set have already been introduced in section 2.3
respectively section 3.2.2. However, the matter of implementation had not yet been discussed
in addition to the necessity of the observation set. The definition of both sets remains
unchanged

O = {(e, l) | label l is observable for exercise e}
P = {(e, l) | predictions for observation (e, l) are of interest}

Prediction set The benefits of a prediction set are obvious as it allows to reduce the runtime
cost of predictions pertaining to memory and CPU cycles. Its original implementation

11 Requirement 5: Used labels and exercises may change throughout lectures but remain identifiable if unchanged.
12 Requirement 2: Labels and exercises are viewed as one unit and called observation as previously in this thesis.
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remained almost unchanged. With the new framework the generic predict method of the
trait PredictionUnit only ensures that every entry from the observation set is contained in
the resulting Prediction returned by one of its implementations. Missing entries are just
mapped to NaN.

Since the default JSON serialization format of the Play framework does not include sup-
port for Double values the new format from listing 1 was added. It received the distinctive
name naNDoubleFormat and maps NaN to the exact same string. To prevent incompatibili-
ties its implicit declaration has been wrapped by the object NaNDoubleFormat such that only
an explicit import of that object replaces the original format. It is so far only imported by the
format for Predictions. Furthermore the value originalDoubleFormat ensures access to
the original Format[Double] regardless of the import.

202 private val originalDoubleFormat = implicitly[Format[Double]]
203 object NaNDoubleFormat {
204 implicit val naNDoubleFormat: Format[Double] = new Format[Double] {
205 override def reads(json: JsValue): JsResult[Double] = json match {
206 case JsString("NaN") => JsSuccess(Double.NaN)
207 case _ => originalDoubleFormat.reads(json)
208 }
209 override def writes(o: Double): JsValue = o match {
210 case x if x.isNaN => JsString("NaN")
211 case _ => originalDoubleFormat.writes(o)
212 }
213 }
214 }

Listing 1: Implementation of a Play Format for (de-)serialization of Doubles including NaN

The frontend, which already employs the MVVM pattern [40, pp. 27–31], was extended
using a variant of the Decorator pattern [16, pp. 70–73] implemented by AngularJS. Es-
sentially, the View uses a decorator to intercept and convert data from the ViewModel.
Thus with AngularJS a filter named probability was introduced. It is used to display
Predictions and either outputs the Double value as a percentage or -/-% in the case of NaN.
In summary, the combination of the new Format and filter fulfils requirement 7 (see 13) and
additionally can be easily extended to new use cases like Infinity due to the application of
established software patterns.

Observation set Next, for the observation set we need to understand how the prediction
framework persists observations as behaviour. It is stored per student as a sequence where
every entry corresponds to a step (such as week or exercise)

(b1,b2, . . . ,bn)

and where every entry bi ⊆ O (the observation set), since per requirement 3 (see 14) any
number of observations can be observed for one exercise and consequently also for one step.
The semantic is given by

l ∈ bi ⇐⇒ label l was observed for step i

This representation does not explicitly store labels, which have not been observed. For the
prediction model it would be most straightforward to explicitly store non-observed labels,

13 Requirement 7: Predictions for a label are either assigned an anticipated rating or no rating at all in case a
prediction was not possible..

14 Requirement 3: Students can have a record of multiple distinct observations for one exercise.
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too, similar to the rating matrix. Then every entry of the behaviour sequence is instead
given by b̂i ∈ {0,1}m with the same semantics defined for the rating matrix.

However, the option b̂i was rejected due to two main disadvantages. First, explicitly
storing every entry would most likely increase the persistent storage required. During
prediction a matrix representation is used anyway so the runtime memory usage remains
unaffected. Second and more importantly, as assignments are corrected to incorporate new
observations continuous updates of the behaviour sequence are necessary. Particularly,
updating a vector b̂i requires first an index lookup and only then the observation is added
by flipping the bit at that index to 1. This is still perfectly possible, but issues arise once the
lookup table must be updated with new labels. Because then all the existing vectors b̂i need
to be updated correspondingly, which, when performed often, can be costly and is easily
done wrong corrupting the data.

So with bi chosen instead one could believe that an observation set is redundant, because
every label is explicitly stored. Indeed, the observation set can be reconstructed from all the
collected behaviour but this reconstruction could miss possible but non-observed behaviour.
The reconstruction would lack a label l where l /∈ bi ∀i, i.e. no students’ behaviour sequence
contains the label l. That is we have a reconstructed observation set O with l /∈ O. This is
relevant because at some point the lecture, from which the behaviour was collected, ends,
and from now on the behaviour could be used as training data to make predictions. Indeed,
now with another lecture there could be a student s in the runtime data that actually received
the label l. To relate the training data to the runtime data both datasets must be reduced
to the common dimensions of their feature space, i.e. their common labels. That common
feature space will not contain a dimension for label l since we assumed no reference of it
exists in the training data. Therefore the information that the one student s differs from
all the students in the training data by the label l is lost. In conclusion the implementation
needs to maintain and persist an observation set with BehaviourLog and History such
that the new implementation of a PredictionUnit can use that information to correctly
determine the common feature space between BehaviourLog and History.

Finally, one of the Tags, the AttributedFeedbackSeq, has a peculiarity when used as
a member of the observation set in respect to its usage and semantics. As introduced
in figure 4.2 the AttributedFeedbackSeq is a tuple of one causeId and a set of labels.
First of all, the observation set should only contain one AttributedFeedbackSeq instance
for each causeId. Second, that one object has power set semantics to circumvent stor-
ing an actual power set as the observation set. This means that for two instances of
the AttributedFeedbackSeq which are given by t1 = (causeId1,observations1) and
t2 = (causeId2,observations2)

t1 = t2 ⇐⇒ causeId1 = causeId2∧ (observations1 ⊆ observations2∨
observations2 ⊆ observations1)

Since object equality cannot be defined depending on the context this has been documented
with the AttributedLabelSeq. In fact with the current implementation such subset compar-
ison is not required, because the implemented PredictionUnit simply explodes the input
AttributedLabelSeq instances into AttributedLabels, which store just one observation
per instance and hence require no power set semantics. This is generally the proposed solu-
tion since the AttributedLabelSeq was only implemented to store multiple observations
for one step as per requirement 3 (see 15). In the future this problem could be circumvented
altogether by enhancing the backend and frontend of the prediction framework to support
the aggregation of multiple Tags for one step in general. Since this presents a quite funda-
mental assumption with the prediction framework, many parts of the framework would

15 Requirement 3: Students can have a record of multiple distinct observations for one exercise.
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have to be significantly modified or even completely redesigned, which was not acceptable
for this thesis.

4.3.3 Step data provisioning

As per requirement 4 (see 16) valid observations and hence necessarily interesting predictions
change with the exercise. This may be nicely observed with the extract from the dataset in
figure 2.1 on page 7. These changes of the prediction set could be derived from the overall
observation and prediction set introduced in the previous section. They summarize this
information for all exercises and thus all steps but by defining the relationship between
steps and exercises those two sets could be used as the foundation. So either every exercise
constitutes its own step or multiple exercises (such as from one week’s assignment) are
combined into one step. But since a BehaviourLog[Tag,Tag] does not know the specific
type stored in its observation set, it cannot (type-safely) access the exercise, i.e. causeId,
stored with its entries of just the plain type Tags.

Figure 4.3: Overview of the components for Step Data provisioning. Included members are
all public and the generic types O <: Tag as well as P <: Tag have been left out. Members
in italics are abstract.

The solution is summarized in figure 4.3 and the new trait StepDataProvider consti-
tutes the core component. A StepDataProvider is an Iterable whose Iterator yields
StepData to be sequentially used for each step. Its users do not need to call hasNext() since
the iterator does not terminate and just returns empty StepData when the rawIterator of
an implementing class terminates. That way responsibilities are clearly defined. Specifically,
the StepDataProvider manages the provision of StepData whereas the BehaviourLog is
independent from those implementation details and just uses StepData wherever needed
such as to initiate prediction. For now StepData contains an observation and a prediction
set for the corresponding step. For empty StepData both sets are also just empty.

Two implementations for StepDataProviders are available. On the one hand, the
Iterator of a SparseStepDataProvider returns the same StepData infinitely for every
step. On the other hand, a SeqStepDataProvider is initialized with a Seq[StepData] and
a predictionDepth of type Int. It offsets the observation sets one step. For example when
it is initialized with a Seq[StepData] given by

((O1,P1),(O2,P2), . . . ,(On,Pn),( /0,Pn+1))

its iterator instead yields the following sequence

(( /0,P1),(O1,P2),(O2,P3), . . . ,(On,Pn+1),( /0, /0), . . .)

16 Requirement 4: Not every label can be recorded for any exercise, that is some of their combinations do not form
a valid observation.
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This example additionally assumes predictionDepth = 1 otherwise for every step the
prediction sets of the predictionDepth - 1 subsequent steps are joined into one prediction
set. This allows to easily change how far into the future predictions are computed without
modifications to the underlying StepData.

Another class StepDataService handles the requests for StepDataProviders by the
BehaviourLogFactory given a BehaviourLog alongside its logTitle. That logTitle ori-
gins in the configuration of available BehaviourLogs as described in Dostert’s master
thesis [13, Framework Extension]. The relevant key is behaviourLogs in the configu-
ration file application.conf. With the current implementations the StepDataService
chooses from two alternatives. If no configuration is available for the BehaviourLog
based on its logTitle, it returns a SparseStepDataProvider initialized with the ob-
servation and prediction set of the BehaviourLog. This is consistent with the original
prediction framework of Dostert. Otherwise the application.conf contains an entry
stepData.<logTitle>. In that case that configuration object is parsed and used to initialize
and return a SeqStepDataProvider. A commented example configuration is provided
with the application.conf and has been added on page 48 to the appendix. Furthermore,
listing 2 shows the beginning of the configuration used with the dataset from chapter 2.

150 stepData."Label Prediction" {
151 predictionDepth = 2,
152 steps = [ // derived from files/complete_record_fsk_16ss.csv
153 {
154 id = "u-0-1"
155 observations = ["c-1", "c-2", "c-3", "c-4", "c-5", "c-6"]
156 }
157 {
158 id = "u-0-2"
159 observations = ["c-1", "c-2", "c-3", "c-4", "c-5", "c-6", "c-7"]
160 }

Listing 2: Beginning of the Step Data configuration for the dataset from chapter 2 from the
file conf/application.conf

In the future the StepDataService could be extended to actually just read causeIds
from the configuration. Then the fields observationSet and predictionSet of the class
BehaviourLog may be split into sets for the corresponding steps by selecting the one
AttributedLabelSeq with the configured causeId.

4.3.4 Apache Spark backend

The implementation of the prediction model and great parts of the evaluation use Apache
Spark17, a cluster-computing “engine for large-scale data processing” with APIs for Scala,
Java and R programming languages. For this thesis the at that time latest version 2.2.0 was
used [2]. Apache Spark is built around Hadoop18 and its MapReduce functionality, which it
extends with caching functionality for acyclic dataflows and over 80 functional high-level
operators such as map, flatMap, groupBy, aggregate or union. For their implementation
Apache Spark uses an execution engine based on directed acyclic graphs. They operate on
Datasets or resilient distributed datasets (RDD), whereas for this thesis mainly the former
is used since this newer API is meant to replace the older one. A Dataset is either weakly
typed as a Dataset[Row], which is then referred to as DataFrame, or strongly typed, for

17https://spark.apache.org/
18https://hadoop.apache.org/

https://spark.apache.org/
https://hadoop.apache.org/
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example as Dataset[(Int, String, Double)] or Dataset[Model] where Model must be
a case class for Scala. While the weakly-typed DataFrames implement an SQL-like API, on
strongly typed Datasets, typed Scala functions can be executed using the aforementioned
high-level operators similar to the Scala Collections API. However, to optimize and dis-
tribute the computation Datasets are evaluated lazily computing results only when needed
comparable to a Stream or View in Scala.

Furthermore, Apache Spark ships with a machine-learning library implementing two
APIs: ML based on the Dataset-API and MLlib for the RDD-API. With this thesis exclusively
the former ML-API is used. Since recommender systems typically involve large numbers
of ratings and ALS-WR describes a parallelizable matrix factorization method and Apache
Spark implements a Scala API, it was the logical choice for the implementation of the
proposed prediction model. Indeed, the machine-learning API of Apache Spark already
includes an implementation of ALS with support for implicit and explicit ratings. Section 3.3
essentially fomalized that implementation for the case of explicit ratings.

Apache Spark proved most invaluable in the evaluation, which required several thou-
sand factorizations and countless predictions. In the future the rating matrix could easily
grow both in the number of students (only 82 out of 345 were selected) as well as in the
number of labels (so far 27). In that case Apache Spark can provide the means to scale the
proposed and possibly other prediction models not just to multiple processor cores but to a
whole cluster. Obviously there are limitations since the parallelization relies on distributing
the finite number of factors. For the dataset used for this thesis increasing the number
of partitions, by which the factors are distributed, well beyond 40 actually increased the
runtime. Most probably this is due to the amount of data exchanged between Apache Spark
instances, for which an increase in no proportion to the size of the dataset was observed. To
counteract this effect multiple steps or PredictionUnits with fewer partitions could be run
in parallel, which could be easily implemented with the prediction interface from the next
section.

In any case Apache Spark is not necessarily just used with this prediction model but
possibly in other places of Backstage 2 such as further PredictionUnits. Backstage 2 uses
the Guice19-based dependency injection provided by the Play framework to make services
available to other components (including other services). This solution has two advan-
tages. First, services can be easily swapped for another implementation such as a mock.
Second, services are loaded as part of a module, which can be enabled or disabled at will.
Since Apache Spark requires a server to connect to (or depending on its configuration
automatically starts one), it is preferably left disabled until needed. Furthermore, only
one SparkSession may be started inside a single Java Virtual Machine (JVM) and that
session is otherwise reused and the configuration shared. Therefore Apache Spark has been
integrated with Play as a very simple, injectable service named SparkService loaded by
the SparkModule. Since that service is a singleton it ensures that only one SparkSession
with consistent settings is started for the whole Backstage 2 application. In theory the
SparkModulewould only need to be enabled when a PredictionUnit requires it. In practice
PredictionUnits are not loaded using injection and hence cannot be injected dependencies
themselves. For that reason the BehaviourLogFactory is injected with the SparkService
instead. It registers the SparkService with the PredictionUnitFactory, which is declared
as a Scala object. Therefore PredictionUnits can request the SparkService on demand
by PredictionUnitFactory.sparkService. The SparkService stores the SparkSession
with a lazy value such that a session is only started once needed for the first time. Conse-
quently, Apache Spark is only started when the FeedbackPrediction PredictionUnit is
used for the first time.

For the configuration of the SparkSession different options are available. First of all,

19https://github.com/google/guice

https://github.com/google/guice


34 CHAPTER 4. IMPLEMENTATION

75 spark = {
76 master = "local[*]"
77 app.name = "Crowdlearning platform"
78 }

Listing 3: Configuration for Apache Spark in the file conf/application.conf

the key spark in the file application.conf is read by the SparkService and passed
to a SparkSession during initialization. It only supports the two most important options
master and app.name. The former identifies (the master of) the cluster to connect to. It
can be set to local to automatically start a local cluster with one worker and to local[k],
where k workers are started. For local[*] k is set to to the number of cores on the local
system. URLs such as spark://... for a standalone cluster or yarn://... are used
otherwise for separately deployed cluster. The second key app.name is just used as a
human-readable identifier in the cluster frontend. Further options may be configured using
Java system properties20.

Finally, the machine-learning library requires a netlib implementation, which provides
various optimized vector and matrix operations. For that purpose the netlib-java21 wrap-
per is used. It ships with a slower pure Java implementation and faster native reference
implementations for common 32- and 64-bit architectures as well as operating systems.
Instructions to configure native system implementation with even better performance (such
as ATLAS, openBLAS or Intel MKL) is available with the GitHub repository of netlib-java.
For this thesis the undocumented blis22 implementation with support for recent AMD
processors was also successfully used. However, such configuration is optional and the im-
plementation provided with this thesis should work on any system with sufficient memory
without further configuration changes falling back to the Java implementation in the worst
case. When a SparkSession is started the actually loaded implementation is logged with
the DEBUG level configured.

4.3.5 Task-based prediction interface

One shortcoming with the ALS-WR implementation of Apache Spark is that the student
and observation factors resulting from the factorization cannot be reused. Otherwise the
training data could be factorized in advance and during prediction only the runtime data
generated from the BehaviourLog would still require factorization. Modifying the ALS
implementation of Apache Spark could resolve this issue but unless maintained upstream
could break with future releases of Apache Spark.

Since presently with the prediction framework performance is not of great importance a
different solution was implemented to limit the scope of this issue. Dostert’s implementation
of the prediction framework provided with the trait PredictionUnit only an interface to
predictions for each student individually. Therefore the runtime data used in factorization is
only the behaviour sequence of a single user. Therefore for n users n factorizations would be
performed for every single step. The number of students n could grow very large despite
the support to make predictions for multiple users simultaneously. The obvious solution is
to extend the existing interface to simultaneously predict multiple users.

For that purpose a requested prediction for one user is viewed as a PredictionTask.
Every PredictionTask is used to request predictions for multiple users at once using
a common observation and prediction set. The original trait Model was refactored to

20https://spark.apache.org/docs/latest/configuration.html
21https://github.com/fommil/netlib-java
22https://github.com/amd/blis

https://spark.apache.org/docs/latest/configuration.html
https://github.com/fommil/netlib-java
https://github.com/amd/blis
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TasklessModel and superseded by the new task-based interface named Model. In one trait
the TasklessModel implements a wrapper for the new interface while specifying the old
interface. Since one interface is converted to another its an application of the Adapter design
pattern [16, p. 66f.]. Figure 4.4 gives an overview of the components of the new task-based
prediction interface.

Figure 4.4: Overview of the interface and components with the new task-based prediction
interface. Italic members are abstract.

In the current implementation the BehaviourLog, upon request from the Predictions
controller, collects a sequence of tasks for every step. Every PredictionUnit receives that
sequence containing only references to immutable object and returns a Promise for the result.
Since every PredictionTask is a request for multiple users the result contains an entry for
every step that maps user identifiers to the computed Prediction. Since PredictionUnits
are independent and a PredictionTask only references immutable objects running the
predictions for all PredictionUnits in parallel is unproblematic. For each PredictionUnit
further parallelization of multiple PredictionTasks or of the predictions for multiple users
from one task remains the responsibility of the implementation. The reason is that the
implementation of a PredictionUnit is not necessarily stateless (at least the trained model
is currently stateful). Thus only individual implementations can make the necessary guaran-
tees for parallelization. Finally, in the current implementation a Model is only responsible
for the synchronous prediction of individual tasks instead of a sequence of tasks as for the
PredictionUnit. This simplifies the implementation of the model while code from the
PredictionUnit may additionally be reused for different models. Unchanged is that a
Model also represents a prediction model generated during training. Hence future imple-
mentations could for example opt to persist them to avoid repeated training.
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4.3.6 Serialization

Here an improved (de-)serialization solution for the case class BehaviourLog is proposed.
It is implemented as a Format, which is a trait used for (de-)serialization by the Play
framework. As shown in figure 4.5 every Format is a Reads and Writes using mix-in traits.
Reads and Writes define abstract methods reads respectively writes and come with some
more non-abstract members such as map, which “[c]reate a new Reads which maps the value
produced by this Reads” [1, play.api.libs.json.Reads]. Furthermore, for any non-generic case
class Play can generate the correct Format implementation using Scala compile-time macros.
This presumes that for every member of type A a Format[A], Writes[-A] or Reads[A]
exists. To locate a Format[A] of suitable type A implicit parameters are used. When such an
implicit parameter is left undefined, the Scala compiler tries to locate an implicit declaration
with matching type A.

Figure 4.5: Format interface used for (de-)serialization to JSON by the Play framework

Dostert’s prediction framework does not implement Format[BehaviourLog[Tag,Tag]]
but triggers the autogeneration of a Format[SerializedBehaviourLog]. Unlike what the
name SerializedBehaviourLog suggests it is only partially serialized. Effectively, Dostert
implemented a two step serialization, where first every Tag is converted into a JsValue
and stored in the SerializedBehaviourLog, which is no JsValue itself. Since all Tags are
now of the common type JsValue the Format[SerializedBehaviorLog] is autogenerated
using the macro provided by Play. Second, this macro-generated format fully serializes the
partial serialization from step one into a single JsValue. This solution works, but when the
signature of the BehaviourLog is change, the lines responsible for the (de-)serialization of
one specific field are not easily identified. Furthermore, the serialization and deserialization
code are almost identical but need to be implemented redundantly in different methods.

The proposed new serialization solution aims to solve those problems. For the redun-
dancy between serialization and deserialization Play provides a solution using JsPath,
that allows to define symmetric serialization and deserialization in one place. Listing 4
shows that part of the new serialization solution. It is part of the class BehaviourLogFormat,
which implements a Format[BehaviourLog[Tag,Tag]] and thus renders Dostert’s class
SerializedBehaviourLog unnecessary. When the signature of BehaviourLog is changed
only lines 37 to 52 from listing 4 require modification, where every single JsPath, such as
(__ \ "observationSet"), is responsible for exactly one field. For one JsPath the associa-
tion with a Format is established by a call to format[T](implicit f: Format[T]), which
yields an OFormat, that, using implicit conversions, may be coerced to InvariantFunctor
or to InvariantFunctorOps. These in turn implement a bidirectional map given by
inmap[B](f: (A) => B, g: (B) => A): M[B]. Lines 47 to 51 of listing 4 show an appli-
cation of inmap, where a bidirectional mapping between a Buffer and a Map is established.

Finally, how does the BehaviourLogFormat solve the problem that the specific type of
Tags and thus the needed Format[A <: Tag] is unknown at compile-time? This is provided
by lines 33 to 36 from listing 4. Listing 5 shows their application in the reads-implementation
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33 private val behaviourLogTypeFormatBuilder = {
34 (__ \ "observationCategory").format[Tag.Value] and
35 (__ \ "predictionCategory").format[Tag.Value]
36 }
37 private def logFormatBuilder(ot: Tag.Value, pt: Tag.Value) = {
38 val (of, pf) = (Tag.format(ot), Tag.format(pt))
39 behaviourLogTypeFormatBuilder and
40 (__ \ "observationSet").format(seqFormat(of)) and
41 (__ \ "predictionSet").format(seqFormat(pf)) and
42 (__ \ "observations").format(stringMapFormat(seqFormat(of))) and
43 (__ \ "predictions").format(stringMapFormat(stringMapFormat( c

bufferFormat(predictionFrontendFormat(pt)))))
and

↪→

↪→

44 (__ \ "stepNames").format[Seq[String]] and
45 (__ \ "historyTitles").format[Buffer[String]] and
46 (__ \ "discrepancy").format[Buffer[String]] and
47 (__ \ "predictionUnits").format[Buffer[String]]
48 .inmap[Map[String, PredictionUnit[Tag, Tag]]](
49 _.map(name => name -> PredictionUnitFactory.getUnitForName[Tag,

Tag](name))(collection.breakOut),↪→

50 _.keys.to
51 )
52 }

Listing 4: Definition of the Format[BehaviourLog[Tag,Tag]] using JsPath where a
Format[A <: Tag] for the observation and prediction category is looked up at runtime

86 override def reads(json: JsValue): JsResult[BehaviourLog[Tag, Tag]] = {
87 try {
88 val (ot, pt) = json.as(behaviorLogTypeFormat) // <-- exception
89 return logFormatByCategory(ot, pt).reads(json)
90 } catch {
91 case e: JsResultException =>
92 return JsError(JsError.merge(
93 JsError("could not read tag categories for Behaviour").errors,
94 e.errors
95 ))
96 }
97 }

Listing 5: Implementation of reads that uses the definitions from listing 4 to build a
Format[BehaviourLog[Tag,Tag]] at runtime

of the format. The aforementioned lines are used to construct a format just to read the cate-
gories. Applying this Format to the input JSON yields the required categories. Thereafter the
logFormatBuilder on line 37 of listing 4 is passed both categories and looks up the correct
two (macro-generated) Formats for observation and prediction categories, which have pre-
viously been registered with Tag for each Tag.Value, i.e. each category. Eventually, it just
chains together the returned Formats into an overall Format[BehaviourLog[Tag,Tag]],
which is used to read the whole BehaviourLog. The writes implementation works analo-
gously but uses the prediction and observation category from the BehaviourLog directly,
which do not require prior deserialization.

Overall this new serialization solution solves both problems initially identified. First, the
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less than 20 lines (as compared to originally 50 lines for separate serialization and deserial-
ization) specify serialization and deserialization in one place. Second, the syntax is more ex-
pressive and concise. Every JsPath is responsible for exactly one field of the BehaviourLog.
Therefore modifications can be easily propagated to the (de-)serialization implementation
and consequently are less error-prone. As of now, this new solution has not been applied to
the History, which still uses Dostert’s analogously implemented SerializedHistory for
(de-)serialization. The same solution works for the History as well and if desirable, could
be similarly implemented.

4.4 Prediction model

Lastly the new PredictionUnit[AttributedLabelSeq, AttributedLabel], which was
named LabelPrediction, connects all the previous parts. The core of its implementation
lies with the Model[AttributedLabelSeq, AttributedLabel], which is based on the for-
malization of the ALS-WR method presented in section 3.3 on page 13. During initialization
the Model receives a SparkSession, which triggers the startup of Apache Spark as described
in section 4.3.4. To ensure that data from training can be persisted for prediction with the
SparkSession, it could not have been set or requested with every call to train or predict.

4.4.1 Training

A call to train(history, observationSet, ...) on the Model begins its training. The
ellipsized parameters from the call are the observationSetHint and predictionSetHint

and so far not used by any PredictionUnit. Their proposed usage is to provide a hint
during training about the intended usage of predict. Specifically, the Tags from the
observationSetHint will be (most probably) available as behaviour to predict. The
predictionSetHint defines the predictions that will (most probably) be requested from
predict as the predictionSet. The idea is, that a PredictionUnit, which drops parts of
the training data, might drop exactly those parts later used in calls to predict. For such
cases the usage of these two hints is proposed and communicates in advance the anticipated
usage of the predict- to the train-method. Like a sizeHint with Scala’s class Buffer for
example [18, scala.collection.mutable.Buffer], implementations should still not fail in case
the hint was wrong. If they cannot make a prediction, they shall map it to NaN or leave
that task to the trait PredictionUnit by dropping the entry altogether. With the current
implementation observations are never removed, for which reason these hints may be safely
ignored and are hence definitely used correctly.

The remaining parameters history and observationSet are used to train the model.
They may already combine more than one History, since that generic part is already handled
by the trait PredictionUnit. The actual training process consists of multiple steps and data
is transferred to Apache Spark as early as possible. In the first step the observationSet

is indexed into a map. For that purpose every AttributedLabelSeq is first exploded
into a Seq[AttributedLabel] since predictions about individual observations and not
about sets of observations are aimed for. The concatenation of all the exploded sequences
defines the feature space for every user. Therefore every entry of type AttributedLabel is
joined with its index and once transmitted to the SparkSession yields the obsMap of type
Dataset[(AttributedLabel,Int)]. As this map is used several times, and particularly
for the reverse mapping during prediction, it is cached with Apache Spark and stored with
a field of the Model implementation.

In the second step the history is converted into ratings using the obsMap. The history
is a sequence of behaviour whereas every entry is of type Seq[AttributedLabelSeq].
Indexing every entry of the behaviour produces the user-ids of type Int and transforms
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the behaviour into a Dataset[(Int, Seq[AttributedLabelSeq])]. Then the resulting
Dataset[(Int, Seq[AttributedLabelSeq])] is converted into a Dataset[Rating] by
using the declaration

case class Rating(user: Int, label: Int, rating: Float)

For the conversion a Dataset[(Int,AttributedFeedback,Float)] is built first. Its
first entry is the user (i.e. student) and the last entry the rating = 1.0f =̂ TRUE. This
Dataset is then joined with the obsMap on AttributedFeedback into the desired ratings

of type Dataset[Rating].
In the third step the Dataset[Rating] is complemented with the implicit ratings, which

is any AttributedLabel not observed for a student. They are essentially added using a
right outer join with the obsMap for the right-hand side and the ratings for the left-hand
side. Moreover, this step may be disabled, in which case the predicted ratings were observed
to be always of approximate value 1.0 since all the explicit ratings input to ALS never take
on another value.

In fact, no actual model fitting happens during training since the matrix for the factoriza-
tion still lacks the observed behaviour provided during prediction. And because the ALS
implementation of Apache Spark does not allow reusal of the factors from the factorization
without modifications. Since modifications not merged upstream could break in the future,
this was avoided.

4.4.2 Prediction

A call to predict(task: PredictionTask[AttributedLabelSeq, AttributedLabel])
requests Predictions for multiple students. Those students are indexed using Ints with a
offset that does not overlap with the users from the training step. Then each users behaviour
is transformed into a Dataset[Rating] using the same procedure as during training. For
the addition of implicit ratings the obsMap is filtered using the observationSet from
the PredictionTask since only the intersection of both sets can be implicitly inferred as
not observed. The union of the resulting Dataset[Rating] and the one from training is
used to fit an ALSModel. Since with the Apache Spark implementation predictions are
requested by a Dataset[Rating] the predictionSet is also transformed into one. Lastly,
the predictions are requested and the result is reverse transformed using the obsMap and
split into a Prediction[AttributedLabel] for each user.

For optimization the main focus was on the hyperparameters of ALS-WR and hence
optimal prediction results. Currently, with a native netlib implementation a call to predict

returns within acceptable 1-10 seconds mostly depending on the maximum number of
iterations for the factorization. Nevertheless, this is still significantly slower than for instance
Dostert’s HMM model, whose computation for all steps finishes within one second. A first
measure to improve the response time was to introduce the task-based prediction model. As
a result the aforementiond 1-10 seconds per step are the response time for all the students
as opposed to previously per student. For all the 82 or even more students the runtime
reduction is therefore already significant. In the future this could be further optimized by
modifying the ALS implementation of Apache Spark, such that a complete factorization of
the training data is performed only once or by increasing the parallelization alongside the
Apache Spark cluster size.
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CHAPTER 5

Discussion

Every result only becomes meaningful in its application. In the case of this prediction model
three possible applications were conceivable from the beginning. First, the application
of the prediction model to data from an actually running lecture. Second, the prediction
model could reveal unknown properties of the data, i.e. new domain knowledge about
relationships between labels. Or third, the general results and experiences may provide
useful directions for future research. The following sections discuss them in this order,
whereas three, future research, is incorporated throughout.

5.1 Proposed applications

For the practical application of predictions the interdependence between an application
and the prediction model is the main concern. Focusing an aspect of either one, such as the
performance of the prediction model, is not sufficient. Indeed with recommender systems
some instances of ‘bad predictions’ could even be beneficial to prevent the “filter bubble”
phenomenon [8, 22]. For the proposed prediction model performance has already been
discussed and what now remains to be identified is a suitable application inherently linked
to the performance. In the beginning the overall aim was defined as the personalization
of blended learning to reduce dropout rates and to improve the learning outcome. In that
sense two general applications of the prediction model have been conceived. It is argued
that learning platforms such as Backstage 2 may either directly communicate predicted labels
to students or indirectly personalize their learning experience based on labels. Starting with
the direct case this is a straightforward example:

Based on your previous assignments: Did you ignore epsilon productions?

This example intentionally leaves much room for criticism such as: Is a student that ignores
epsilon productions even capable to know that he ignored epsilon productions?

This question has been discussed as the Dunning-Kruger effect, which observes that
“people tend to be blissfully unaware of their incompetence” [15, p. 83]. The interpretation
of Dunning and Kruger is that incompetence prevents the recognition of itself as the missing
skills are exactly those necessary to recognize the lack of competence. Hence where relevant
competences have not yet been acquired by the students, any direct communication of their
anticipated mistakes based on labels could be ineffective. Nevertheless, sometimes mistakes
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only happen carelessly without a fundamental lack of knowledge. For such cases and labels
the Dunning-Kruger effect does not apply. In this case, and if the student is willing to act,
the above example question could prevent the small mistake. Questionable remains whether
a learning outcome would be observable, when just a small, careless mistake is corrected.

Next, by instead assuming the existence of knowledge gaps the question necessarily
becomes how to close them. The “power of feedback” is proposed for this purpose. It is
an extensive review of research regarding the properties of effective feedback created by
Hattie and Timperley [26]. And for this thesis it is argued, that from the student’s viewpoint
directly and indirectly provided predictions are like feedback “information provided by an
agent [...] regarding aspects of one’s performance or understanding” [26, p. 81]. And since
labels reflect the “performance” or “understanding” of students, validly predicted labels are
equally feedback. For effective feedback Hattie and Timperley claim that three questions
and notions of feed up, feed back and feed forward should be answered:

Feed Up: Where am I going? (goals)

Feed Back: How am I going?

Feed Forward: Where to next?

Hence they particularly create a distinction between feedback, as the general information
provided to a student, and Feed Back, as one part of feedback, which answers only one of
the questions. Next, a more detailed description of these questions based on the work of
Hattie and Timperley [26] and an interpretation for the prediction context is given.

The question of Feed Up is usually answered by the lecture staff and eventually students
construct their individual goals from that. These goals are not provided by software in the
case of Backstage 2.

Feed Back instead is provided by correctors and hence also not by technology. Unlike
for Feed Up concepts for software-generated Feed Back exist and also have been used in
real-world applications. For example unit tests [13] may “evaluate the correctness of a
response” [26, p. 81] to a programming task. And as Hattie and Timperley specifically
mention, students may develop strategies to obtain Feed Back themselves. For example
for a programming task by anticipating the expected output and comparing it to the actual
result output by their own implementation. In large university courses, where students
do not receive constant Feed Back, developing these “effective error detection skills” of
students seems very desirable. At least if the feedback is applicable and if the knowledge
level required for its understanding does not trigger the Dunning-Kruger effect.

Finally, for the question of Feed Forward software-generated predictions are proposed for
the future and the necessary foundation has been developed with this thesis. The reason
is not, that correctors would not be able to provide Feed Forward. Instead one corrector
is often responsible for a large number of students. Even with and regardless of a great
amount of experience, human working memory remains limited to about half a dozen
items [4]. A prediction model may not have the same experience as a corrector, but for
computer software combining the labels of any student on any exercise into one prediction
is no problem even when the number of students rises to hundreds or thousands. Proof is
the prediction model introduced with this thesis. Now for a true Feed Forward the question
is “Where to next?”, which is not about the present Feed Back coded into the already known
labels. Therefore predictions, which anticipate students’ Feed Back on future assignments,
are required. This is particularly because different assignments typically cover different
topics, where just the observed labels from previous exercises can be useless. Predictions
build a bridge between such possibly incompatible domains by answering the question,
what Feed Back represented as labels to expect next. And since they anticipate future, so far
unobserved behaviour, predictions are not actually Feed Back but Feed Forward.
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The result can be communicated to students by the aforementioned direct and indirect
means. In the direct case future research could evaluate phrases used to present the la-
bels and when, what labels are shown to whom. For example, based on Dostert’s HMM
prediction model [13] students with insufficient knowledge, or which are expected to skip
assignments, could be the most interesting subjects. In the indirect case for every label
relevant material could be collected or newly written, which is especially helpful to students
with a prediction of that label. For example, students with a predicted label ‘Syntax for
grammars invalid’ could be offered a summary of the syntax or with a select reference
to relevant resources. For the effectiveness and the acceptance of any of the previously
described direct or indirect Feed Forward four criteria were collected from related research:

1. constructiveness
2. justification
3. specificity
4. exclusivity

Their detailed meanings are described hereafter alongside their origin and the reasoning for
their inclusion.

Constructiveness is created with Hattie and Timperley [26] by answering the questions
of Feed Up, Feed Back and particularly Feed Forward. Like any part of the feedback Feed
Forward may be generated by students themselves if they possess the necessary skills and
domain knowledge to do so. Otherwise the Feed Forward can only be provided by another
agent in the form of constructive feedback.

Justification is demanded, since predictions will certainly be wrong at some point. As
Herlocker [27] observes, humans in general are used to deal with imperfect recommenda-
tions and hence also feedback used as such. If doubt about the validity of a recommendation
arises, the question ‘Why?’ will be asked. Hence providing explanations about the origin of
feedback (e.g. on exercise 2 your knowledge of implications was insufficient) empowers stu-
dents to deal with the ultimately never completely avoidable prediction errors themselves.
For this reason justification has according to Herlocker become accepted for recommender
systems in general. Future research could evaluate possibilities to integrate such explana-
tions with the prediction model based on ALS-WR. For ALS with implicit ratings Hu et
al. [30] have already proposed a solution to generate explanations that link predictions to
the causative observations.

Specificity guarantees that eventually some prediction will be useful, which is necessary
for students to even keep considering the provided Feed Forward. This criterion may be
interpreted as the binary prediction metric specificity, as its close relative the precision
metric and in respect to the content of the provided Feed Forward. Performance metrics
may yield stunning but meaningless results simply just by labels, which represent obvious
characteristics of students such as gender or hair colour. Therefore only the combination
of all these notions of specificity results in effective feedback, which needs to be “clear,
purposeful [and] meaningful” [26, p. 104].

Exclusivity refers to a non-inflational supply of feedback to the student. If too much
irrelevant feedback is provided to the individual student, difficulties to isolate the relevant
one become the consequence. Furthermore, among relevant feedback the level of relevance
for a specific student will vary. Feed Forward asks the question “Where to next?” and not
just “Where to?”. Exclusive Feed Forward accounts for this by filtering the predictions. For
this purpose the MRR presented during evaluation is one useful tool. Based on the ordering
defined by the predicted rating on a subset of observations, the rank at which the first
relevant prediction appears can be measured. For a MRR above 0.5 like for our prediction
model only two predictions need to be presented to students, such that on average one of
them is correct. Here, future research would have to evaluate whether correct predictions are
actually those that produce relevant Feed Forward, which requires unobfuscated, meaningful
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labels in addition to a formative assessment of their effect on students when used as direct
or indirect Feed Forward.

5.2 Frequent-pattern mining

To possibly generate new domain knowledge about labels Collaborative Filtering, such as
ALS-WR is not the best choice, as the computed factor relationship between students and
observations is not explicitly accessible. Particularly, the student and observation factors
resulting from the matrix factorization are not easily connected to a specific meaning such
as ‘insufficient knowledge of . . . ’, ‘busy’ or ‘careless’. This reason, that caused the observed
behaviour, is in general unobservable and possibly even to the observed student unknown.

In psychology, what has been referred to as ‘reason’, is conceptualized as latent factors
(also: latent variables). By definition they “[explain] a wide range of behaviour by invoking
a limited number of latent variables” [7, p. 203]. Since ALS-WR maps students onto factors
to predict (i.e. explain) observations, it is argued that the factor space of ALS-WR is at
least conceptually close to latent variables. The factors are not necessarily independent,
although the term ‘rank’ from linear algebra suggests exactly that notion. Regardless of
the independence, if a rank is identified, where higher ranks do not yield significantly
better results, it constitutes an upper bound estimate of the actual rank, i.e. the number of
(independent) latent variables. Therefore and based on the results from table 3.2 on page 20
the proposition is made, that as little as ten latent variables explain the observed behaviour
of students for the present dataset. With the above argumentation there may perfectly well
be even less latent variables. And without more reliable analysis on more students there are
possibly even more than ten. Further research could narrow down the real number of latent
factors and new domain knowledge could become the result of an investigation of their true
meaning.

Furthermore, different machine-learning techniques do communicate the relationship
between students and students or observations and other observations. For example,
frequent pattern mining might provide insights into the the aforementioned relationships.
For that purpose, first, frequent items (such as labels or observations) and their frequent
pairs, triples, . . . are identified. Second, frequent patterns such as ‘label A always with B’
or ‘tuple (A,B) always with (B,C)’ are identified. Used on observations this could reveal
patterns in the dataset.

In figure 2.1 on page 7, which just visualized a small part of the dataset, such patterns
were already difficult to spot at a glance. Frequent-pattern mining would not suffer from
this problem. Apart from that, frequent-pattern mining may predict like ALS-WR the
assignment performance based on these patterns. However, in addition to that, it produces
domain knowledge about relations between labels, which is possibly new. For example,
a co-occurrence of the labels ‘lacks understanding of automatons’ and ‘translation of the
grammar into an automaton is incorrect’ seems very obvious. But when frequent pattern
mining instead identified the frequent but unexpected co-occurrence of ‘lacks understanding
of infinity’ and ‘wrong application of epsilon production’, this would be worthwhile to
investigate, as a connection between the two is neither implausible nor obvious. As a
consequence for a lecture the order of topics may be rearranged or their focus shifted.
For example, assuming that ‘lacks understanding of infinity’ leads to ‘wrong application
of epsilon production’ and that relevant concepts of infinity have been identified, these
concepts could be taught before epsilon productions or may be focused differently.

The great advantage of such explicit knowledge produced by some machine-learning
techniques is, that not just the predictions but the knowledge itself becomes accessible. This
allows to observe and interpret what the model actually learned. Eventually, there is even
the possibility, that the application of the knowledge supersedes the prediction.



CHAPTER 6

Conclusion

Initially, three aims have been defined for this thesis. They are in a short summary the
prediction model, the implementation and the greater aim of personalization in large blended
learning environments.

First, the prediction model based on Collaborative Filtering has been successfully de-
veloped using the ALS-WR method. After a comprehensive evaluation of different hy-
perparameters the best performing ones (k = 40, N = 10, λ = 0.065) on the one available
dataset were identified using a combination of different metrics (MRR, RMSE and AUC
ROC). The resulting final model was evaluated in more detail, particularly when instead
of continuous predicted ratings a predicted binary yes-/no-rating is desired. This can be
implemented using a threshold, which divides the continuous predicted rating into two
ranges, that respectively represent yes or no. The effect of choosing this threshold differently
has been visualized by the Receiver Operating Characteristic and Precision-Recall curve.
Particularly, they allow to identify a threshold setting that balances Recall, Fall-out and
Precision depending on the individual needs of an application.

Overall this thesis executed fundamental research but with a practical orientation. For
that purpose a reference implementation of the prediction model was implemented with
the blended learning environment Backstage 2 and used an existing prediction framework
developed with the master thesis of Steven Dostert [13]. After defining a specification with
the specific requirements of the new prediction model, parts of the framework with relevant
limitations were identified. Consequently, several general enhancements to the framework
were implemented in addition to a new prediction unit and the necessary data types for
label prediction. Particularly, any part of Backstage 2 may now use the cluster-computing
engine Apache Spark designed to handle significantly larger datasets than the ones used so
far. Herefore the necessary foundation has already been set by using Apache Spark with the
reference implementation of the prediction model.

Finally, to use the predictions from the model first the differences to typical Collaborative
Filtering were observed. Usually it is used with recommender systems where the predicted
items are not observations but usually for example products, movies or news topics and
articles. If labels could be just straightforward recommended, what is the meaning of “I
recommend to you ‘insufficient knowledge about implications”’? Chapter 5 tried to answer
this question and essentially it is just a matter of rephrasing, e.g. to “I recommend to
check your assignment for ‘insufficient knowledge about implications”’. Ideas how to
present this differently and more effectively were also discussed. Eventually this lead
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to the proposition of four criteria based on research about effective feedback and good
recommendations. These criteria propose that feedback derived from predicted labels
should guarantee constructiveness, justification, specificity and exclusivity.

To make these guarantees the underlying prediction model is of great relevance albeit
not necessarily just its performance. The extensive evaluation of the proposed prediction
model using ALS-WR clearly shows a non-marginal predictive value. It has been argued,
that by providing ‘justification’ alongside the computed feedback, students are empowered
to judge the relevance and quality of predictions themselves. This can limit the impact of
wrong predictions. Since some amount of wrong predictions is unavoidable due to noise in
the dataset, and otherwise the development of better prediction models may be expensive,
effects of communicating the results differently (e.g. justification) can provide a viable
alternative.

In any case the proposed prediction model makes some assumptions about the learning
environment. First of all, the labels collected need to be available in some sort of database.
Secondly, to make their collection worthwhile to correctors, they are equipped with a
software solution such as Backstage 2, where for the returned assignments feedback is
entered and available labels can be picked from a list. Thirdly, labels must be initially
selected and later used with care. Their use should be consistent, as far as possible, and
even with the best prediction model only their choice eventually decides the effectiveness of
an application. Conclusively, personalized blended learning applications will particularly
require further analysis of labels to effectively communicate their predictions to students.
While the evaluation of different machine-learning techniques is possible and potentially
useful, eventually and effectively the students should be reached.



Appendix

Source code

The source code of the implementation is available with the Git repository of Backstage 2 at:
http://gitlab.pms.ifi.lmu.de/niels/cwdl-projects

Branch: feedback-prediction
Final commit: 6221c5ae

Dataset and scripts used for evaluation and figures are available with the Git repository at:
http://gitlab.pms.ifi.lmu.de/Abschlussarbeiten/zula-andreas-born

Branch: master
Final commit: a495c0f

Both repositories require prior authentication by a valid PMS account.

Original German examples for labels

Implikationen nicht richtig verstanden
Wenn es eine Grammatik vom Typ n gibt ist die Sprache der Grammatik mindestens
vom Typ n. Vielleicht gibt es ja noch eine einfachere Grammatik, mit der man die selbe
Sprache erzeugen kann.

Merksatz: Der Typ der Sprache ist immer größer oder gleich dem Typ der Grammatik.

Insbesondere: Wenn man eine Typ 2 Grammatik für eine Sprache angeben kann, weiß
man noch lange nicht, ob die Sprache nicht regulär ist.

Sprache unvollständig
Mit dieser Grammatik kann man nicht alle Wörter erzeugen.

Typisch: Das Wort ’100’ ist nicht in der Sprache.

Epsilon-produktionen übersehen
Wenn eine Grammatik eine Epsilon-produktion enthält, ist sie automatisch vom Typ 0.

Syntax von Grammatiken nicht eingehalten
Auf der rechten Seite einer Produktionsregel stehen ausschließlich Variablen der
Sprache.

Nicht erlaubt sind: Reguläre Ausdrücke, ganze Sprachen, Automaten, . . .
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Commented example configuration for Step Data

107 stepData.BehaviourLogName {
108 // categories are provided by the corresponding behaviourLog
109 // when requesting this data
110 predictionDepth = 2 // number of future steps to make predictions for
111 steps = [ // <-- list to preserve the order of steps
112 {
113 id = "u-0-2"
114 // vvvv short notation for [ { val = "c-1" }, { val = "c-4" } ]
115 observations = ["c-1", "c-4"]
116 predictions = ["c-1", "c-4", "c-2"]
117 // c-2 is not anymore used ˆˆˆ
118 // but if its predictions are interesting and some history
119 // contains c-2 we can still receive predictions for c-2
120 }
121 {
122 id = "u-0-1"
123 observations = ["c-1", "c-2", "c-5"] // BUT c-2 is still used for u-0-2
124 // no predictions key => predictions = observations
125 }
126 {
127 id = "u-1-1"
128 observations = ["c-1", "c-24", "doesnotexistinhistory"]
129 predictions = ["c-1", "c-24"] // ˆ so no prediction possible
130 }
131 {
132 id = "u-0-5"
133 // Here we want predictions only based on previous steps
134 // since what to observe for u-0-5 might be still unknown
135 predictions = ["c-1", "c-3", "c-17", "alsodoesnotexistinhist"]
136 }
137 {
138 id = "u-0-6"
139 // no predictions, no observations, just a step
140 }
141 // vvvv throws an error due to duplicate id
142 //{
143 // id = "u-1-1"
144 // predictions = ["c-1"]
145 //}
146 ]
147 }

Source: conf/application.conf
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Control flows for the prediction use case

Control flow for the initialization of BehaviourLogs during prediction framework startup
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Control flow for the training of the FeedbackPrediction prediction unit
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Control flow for the prediction in the FeedbackPrediction prediction unit
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