
Ontology Driven Visualisation of Maps with
SVG – An Example for Semantic Programming

Frank Ipfelkofer, Bernhard Lorenz and Hans Jürgen Ohlbach

Institute for Informatics, Ludwig-Maximilians University, Munich
E-mail: fipfelkofer@kastner.de, {lorenz,ohlbach}@pms.ifi.lmu.de

Abstract. In this work we demonstrate a particular use of ontologies for
visualising maps in a browser window. Geographic data are represented
in the OWL data format that corresponds to an ontology of transpo-
ration networks which was designed in close relation to the concepts of
the Geographic Data Format (GDF). These data are transformed into
Scalable Vector Graphics (SVG). The transformation is specified sym-
bolically as instances of a transformation ontology. This approach is ex-
tremely flexible and easily extendible to include all kinds of information
in the generated maps. The basic implementation technique is to use
classes and instances of ontologies in an intelligent way.

Keywords semantic web, geospatial notions, ontologies, visualisation, scal-
able vector graphics, semantic techniques

1 Introduction

There are may different ways for generating maps as images on a computer.
The most straightforward way is to read the geographic data from a data source
and to use special purpose algorithms that transform the data into some bitmap
graphics format. These algorithms – as well as the whole process – are rather
complex and not easy to change or extend. Only experts who are familiar with
the details of the process can do this. The algorithms depend very much on the
particular data format and they usually yield only static pictures.

An alternative method is to generate output by means of ontologies and
ontology instances instead of using specialised algorithms processing data trans-
formed into generalized formats. Furthermore, instead of creating bitmap graph-
ics, the results are encoded in a graphics description language, such as Scalable
Vector Graphics (SVG), which is used as an example throughout this article.
Several advantages result from this approach which are briefly laid out in this
introduction and discussed in more detail in section 2.

Scalable Vector Graphics (SVG) [24, 1] is an XML-based language for de-
scribing geometric objects. There are special plugins for web browsers which can
render SVG files in a browser window [1]. Compared to bitmap graphics, SVG
has a number of advantages:

– SVG is based on vector graphics, which are zoomable without losing resolu-
tion on the screen.

– SVG has language constructs for describing dynamic changes of the graphics.
– Since SVG objects have a DOM representation [6] in the browser, script

languages like JavaScript can interact with it. SVG documents can therefore
serve as GUIs to interact with the user. We used this to allow the user to
interactively change the presentation of the maps.

– SVG renderers can adapt the generated picture to the output device. There-
fore the SVG generator need not worry about the device characteristics.

– There are different SVG sublanguages available [23, 25] to provide adaptation
means for very different output media.

– SVG documents are XML documents which can be read by humans. This is
very useful during the development and test phase of SVG generators.

The generation of code in a graphics description language like SVG instead of
bitmap graphics therefore has the following advantages:

– The algorithms for transforming the geographic data are much simpler be-
cause the final rendering of the graphical data is done by the browser.

– The generated graphics code is device independent. The renderer automati-
cally adapts the graphics to the output device.

– If the graphics description language has constructs for dynamic presentation,
they can be used directly without having to care about rendering issues.

– Most kinds of interaction, for example zooming in and out to a certain ex-
tent, is done by the browser, and need not be taken into account by the
transformation algorithms.

The primary data sources for the visualisation are usually Geographical In-
formation System (GIS) databases which (in-)directly provide data in standard
formats, for example the Geographic Data Format (GDF) [8] or the Geography
Markup Language (GML) [9]. This is not the only choice. In this article we
propose an alternative. We still use GIS data in some of the standard formats
as primary source, but only because these are the only available data. The idea
is to take an OWL ontology of transportation networks to represent the data
as instances of the concepts of this ontology. OWL provides a data format for
instances of the concepts of the ontology (basically RDF), and we use the OWL
data format for the GIS data. This is not just a syntactic reformulation. It offers
completely new possibilities because the OWL data format is only loosely cou-
pled with the OWL ontology. For example, consider an ontology containing the
concept of a road. A road may have directions, at most two. If there is a particular
road R with directions = 1 then OWL would classify R as a road. If, in a later
step, the ontology is extended with the concept one way road as a road with
directions = 1 then OWL would automatically reclassify R as a one way road.
Thus, there is a certain degree of independence between the OWL data format
and the ontology. The same data can be used for different ontologies.

We developed the Ontology of Transportation Networks (OTN) [2]. OTN was
generated by making the concepts and structures which are implicitly contained

2

in GDF [7, 8] explicit as an OWL ontology. OTN contains all kinds of notions
for transportation networks, roads, trains, ferries and much more.

The method for visualising maps proposed in this article is as follows1:
There are three classes of input data

1. Concrete GIS data which has been transformed into the OWL data format
(we used the map of the city of Munich).

2. An ontology of transportation networks, in our case OTN.
3. A set of transformation rules which determine how the instances of the con-

cepts in the ontology are to be transformed into SVG code.

The transformation algorithm now applies the transformation rules to all
relevant instances of the concepts in the ontology and produces SVG documents
as output. With this architecture it is extremely easy to change the visualisation.
For example, if we want to distinguish one-way roads from ordinary roads, it is
only necessary to introduce the concept of a one-way road in the ontology and
to add a corresponding transformation rule.

If the data source is in XML, which is the case for GML or the OWL data
format, and the target is also XML, which is the case for SVG, there is a further
alternative for generating maps. One can develop an XSLT style sheet that
transforms the GIS data into SVG [16]. This approach is, however, very limited
and relatively inflexible because the XSLT style sheet depends extremely on the
structure of the XML data source. Moreover, it does not support rasterisation
and levels of detail, which is extremely important for working with large maps.

In this document we describe the basic ideas and techniques of our approach,
a more detailed description can be found in [14]. Section 2 describes the limits
of SVG and illustrates our solutions, particularly regarding a dynamic loading
mechanism and a special rasterisation technique based on R-trees. The transfor-
mation step is dealt with in section 3, while section 4 shortly indicates a number
of possibilities to extend the system and its functionalities. Related work is shown
in section 5, before we conclude this paper with the summary and outlook in
section 6.

2 SVG Visualisation

We start with a description of the SVG visualisation technique because this
motivates some of the design decisions for the transformation method.

2.1 The Final Result

The final result of the visualisation is illustrated in fig. 1. The browser window
consists of a frame containing the SVG map and a HTML menu on the right
hand side. The SVG map is zoomable in a wide range, more than the built-in
SVG zooming facility allows us. The section to be displayed can be changed
by just dragging the mouse over the window. The map may contain dynamic
1 This method was also implemented, see [14].

3

elements (e.g. buses or trains moving along the rails, clouds moving over the
scene, etc.).

Fig. 1. Visualisation in SVG

The menu allows the user to choose what he wants to see. It is divided into
two main sections, Modules and Ontology. The Ontology section corresponds to a
display ontology, which is a tree of concepts in the transportation network realm.
Checking or unchecking the appropriate box causes the corresponding items in
the map to become visible or invisible. A module in the upper section of the
menu consists of a set of elements from the display ontology. Any combination
of elements from the display ontology can form a module. Checking or unchecking
makes the whole group of items visible or invisible.

There is a further feature which is not part of the section of the browser
window shown in fig. 1. Below the map there is a text input section where one
can type in a street name and the street is then highlighted in the map.

2.2 Dynamic Loading

All visualisation systems for maps have the same problem: the server has usually
much more data than the user at the client side wants to see. Network bandwidth
and computation capacity are not large enough to transfer all the data from the
server to the client such that the client can decide what to show to the user and
what not. Therefore it is necessary to partition the data at the server side and
send only the relevant parts to the client side. If the user changes the section of

4

the map to be shown or he zooms in and out, more data needs to the loaded
dynamically during the user interaction.

SVG has no built-in facility for dynamically loading data from the server. The
combination of the DOM representation of SVG data in the browser memory
and the possibilities of scripting languages like JavaScript to modify the DOM
at any time, however, makes it possible to program dynamic downloading of
data from the server. The method works as follows: any SVG file may contain
elements like this:

<g bBox="14848 8831 3144 5782"
loadUrl="maps/MunichBackground/MunichBackground.svgz" />

These elements are ignored by the browser, but they may be manipulated
by JavaScript. The bBox attribute contains the bounding box of the picture (a
compressed SVG document) to be loaded from loadURL. The script uses the
bounding box to decide when the other picture has to be loaded. When this
is the case, it loads the file from the corresponding URL, parses it as an XML
document into a further DOM tree and replaces the node that corresponds to the
<g> element with the new DOM tree. The browser then automatically redisplays
the modified picture.

In order to use this mechanism for loading only the actually needed parts of a
big map, we have to solve two problems. The first problem is to divide a big map
into small enough tiles which can be loaded independently. The second problem
is to support zooming already at the server side. The problem here is that the
same item must be displayed differently at different zoom levels. For example, if
the whole map of Germany is to be shown, it makes no sense to display all the
details of, say, the city of Munich. Munich should in this case be displayed only
as a dot, or maybe as a very simple polygon filled with a uniform colour. If the
user zooms into Munich, he wants to see of course more detail. These different
views have to be prepared at the server side.

2.3 Rasterisation

There is a very simple solution for splitting a big map into smaller tiles: a fixed
grid is imposed on the map and the map is split into the grid elements. The
disadvantage is that this way the split parts may have very different size – we
are talking about vector data here. There may be split parts with almost nothing
in it and split parts in very densely populated areas which contain thousands or
millions of items. One could argue that this is not the case with rasterised data,
since all tiles would come in the same size (e.g. 128x128 pixels). The contained
information, the net data, however, would also greatly differ.

A much better distribution of equally sized split parts can be obtained with
R-Trees [19, 20]. An R-Tree is a structure for storing 2-dimensional data. Each
node in the tree contains data about its minimum bounding rectangle, i.e. the
smallest rectangle which includes the node itself and all of it descendants. Leaves
contain the data and nodes contain index information. Nodes can be further

5

combined within other nodes, rectangles can be overlapping. The root node
therefore contains all descending nodes and subsequently all leaves including the
bounding rectangle of the whole tree. It is normally not possible to generate an
optimal R-Tree, since this would involve a complexity of O(n) = 2n. Therefore,
there are generally a number of different (equal) instances of an R-Tree and
some algorithms for maintaining its structure. This does, however, not have a
significant impact on the rasterising process as we need it for our application.
Fig. 2 shows a possible R-Tree, which is rather self explanatory.

Fig. 2. R-Tree Sample

In our special case, using an R-Tree means using the advantages of rectangu-
lar grid sections while eliminating the need for separate indexing or cumbersome
preprocessing of data. The grid is comprised of the minimum bounding rect-
angles (which can be overlapping), whereas each element belongs to only one
section and all sections contain a similar number of elements. Each node con-
tains information about its children and the sizes of their respective rectangles.
This allows for recursive search from the root along the different nodes, while for
each node it can be quickly decided, whether it touches the area to be displayed
(and therefore, whether data from its children has to be loaded). Elements can
easily be distributed equally between grid sections and there is no need for a
separate index file. Fig. 3 shows a tile of a map of Munich which has been gen-
erated using an R-Tree. This tile contains only data for a particular road type.
We use the OTN ontology to separate the items in the tiles into instances of the
same classes.

2.4 Levels of Detail

Yet another similar problem stems from the zoom mechanisms. Depending on
the current zoom level, certain elements - mostly because of their size - cannot
be displayed properly because they would be too small to be useful. Elements
like this include smaller streets (which come in greater numbers as well), street
names and similar things. Moreover it makes sense to simplify certain elements
to simpler structures in order to improve readability and usability of the map.

6

Fig. 3. A generated tile of a map

Cities might be reduced to circles or dots of different diameter (depending on
other attributes, such as number of inhabitants). This form of presentation is
much more useful than putting processing power into rendering irregular city
boundaries which are too small to be identified as such.

Every element therefore contains the attributes minDetail and maxDetail
which set the levels of detail between which the element is to be visible. The
level of detail is the minimum of both the vertical and horizontal resolution. On
a map displaying from coordinates (200, 400) to (500, 1000) the minimum would
be min(300, 600) = 300.

Our system therefore generates SVG files for the different tiles at the different
zoom levels. If the user zooms in or out the corresponding files are automatically
loaded.

3 From OTN to SVG

In a preparatory step the GIS data has been transformed into the OWL data
format of the OTN ontology. All information about roads, bus lines, underground
lines, parks, etc. are therefore stored as instances of the OTN ontology. In order
to generate the many little SVG files which contain the tiles of the map at the
various zoom levels, one could now write a bulky program that reads the map
and somehow generates the SVG files. This would be extremely complicated and
inflexible. Therefore we took another route.

3.1 Basic SVG Constructs

SVG has a relatively small fixed number of constructs for displaying graphical
structures. These few constructs are also represented as an OWL ontology, the
transformation ontology. The main parts are depicted in fig. 4.

The SVGOntology class does not correspond to an SVG construct. It defines
the structure of elements in the SVG document which are to be displayed under
“ontology” in the menu on the right hand side of the browser window (see fig. 1).

7

SVGGraphic

SVGNodeGraphic

SVGEdgeGraphic

SVGAreaGraphic

SVGPath

SVGImage

SVGSplittedEdge

SVGOntology

ontologyPart

SVGTextPath

SVGElement
ontologyPart

Fig. 4. Transformation ontology for transformations from OTN to SVG

Each component of the map is to be transformed into one of these SVG
elements. For example, a road may be transformed into an SVG path element. A
railway or a bus line may also be transformed into an SVG path element. The idea
is now to generate an instance of the corresponding class of the transformation
ontology for each element of a map that is to be transformed into a particular
SVG element. This instance must contain the information how to transform the
map element into SVG.

To illustrate this, consider the following instance of SVGPath:

<SVGPath rdf:ID="BusLine">
<useOnClass>Route_Link</useOnClass>
<condition>=[public_Transport_Mode]=Bus</condition>
<minDetail>0</minDetail>
<maxDetail>40000</maxDetail>
<paintingOrder>300</paintingOrder>
<width>3</width>
<groupAttributes>class="Bus"</groupAttributes>
<elementType>path</elementType>
<addId>false</addId>
<ontologyPart rdf:resource=

"#oeffentliches_Verkehrsnetz_ontologyPart"/>
<ontologyPart rdf:resource="#Bus"/>

</SVGPath>

It specifies how the OTN data Route Link with public Transport Mode =
Bus, which represents a segment of a bus line, is to be transformed into an SVG
path element. The important parts are <useOnClass>Route_Link</useOnClass>
and <condition>=[public_Transport_Mode]=Bus</condition>. It means that
the transformation is to be applied to all instance of the class Route_Link which
satisfy the condition public_Transport_Mode=Bus. The elements minDetail
and maxDetail specify the zoom level for which this transformation is to be

8

applied. The remaining elements of SVGPath specify geometric and other details
to be inserted into the SVG path element. The actual coordinates for the path
element are directly taken from the OTN data.

In the next example we want to put a small moving image of a bus onto
the SVG path element of a bus line. SVG has features for generating dynamic
graphics. Unfortunately it turned out that in the currently available browsers
they slow down the rendering so extremely that they are just not usable. There-
fore the system generates moving images on a map by periodically downloading
a new version from the server2. This is specified in the next example.

<SVGImage rdf:ID="Bus">
<useOnClass>Line</useOnClass>
<condition>=[public_Transport_Mode]=Bus</condition>
<minDetail>0</minDetail>
<maxDetail>40000</maxDetail>
<url>images/bus.gif</url>
<updatePeriod>5</updatePeriod>

<xCoord>=[x]-15</xCoord>
<yCoord>=[y]-25</yCoord>

<height>50</height>
<width>30</width>

<onClick>=IF [external_Link] THEN
window.top.open ("[external_Link]")</onClick>

<tooltip>=Bus|Linie [alternate_Name] |
Departure Time: {TIME(3)@[startTime]} \- [starts_at].[ID] |
Arrival Time: {TIME(3)@[endTime]} \- [ends_at].[ID] |
Waiting Time: {TIME(2)@[waitingTime]} |
Travel Time: {TIME(2)@[drivingTime]}</tooltip>

<ontologyPart rdf:resource="#Bus"/>

<ontologyPart rdf:resource="#aktueller_Betrieb_ontologyPart"/>
<paintingOrder>10000</paintingOrder>
<addId>false</addId>
<viewbox>-30 -30 25878 23419</viewbox>

</SVGImage>

This time we use an SVGImage element to insert the image images/bus.gif
into the map. The transformation is to be applied to OTN instances of Line with
attribute public_Transport_Mode=Bus. In order to update the SVG file every 5
2 Periodically downloading a new version of a file from a server is actually much more

flexible than using the dynamic elements of SVG. The server can take a lot more
information into account for computing these images than the client has available.

9

seconds, the update period is set as <updatePeriod>5</updatePeriod>. If the
image is to be moved then this file must be updated at server side in the same reg-
ular intervals. <xCoord>=[x]-15</xCoord> shows an example for a special arith-
metic language which is part of the transformation technology. [x]-15 means
that the x attribute of the corresponding OTN instance is to be subtracted by 15
in order to get the precise x-coordinate of the image. The elements <onClick>
and <tooltip> show other features of this language. <onClick> causes an event
listener to be inserted into the SVG element, and <tooltip> causes a tooltip
to be inserted. [external_Link], [startTime] etc. refer to elements and at-
tributes in the OTN data source. The generated SVG code would look like this:

...
<g ontology="aktueller_Betrieb Bus">
<!-- Start of LOADNODE -->
<image onclick=’if (window.top.ALLOW_ONCLICK){window.top.open

("http://efa.mvv-muenchen.de/mvv/XSLT_TTB_REQUEST?lineName=54")}’
x=’17763.23’ y=’10898.37’ width=’30’ height=’50’
xlink:href=’images/bus.gif’ onmouseover=’TOOLBAR.Show(evt)’ >
<title>Bus

Linie 54

Abfahrt: 20:38 - Mauerkircherstrasse

Ankunft: 20:40 - Herkomerplatz

Haltedauer 00:00:15

Fahrtzeit 00:01:45

</title>
</image>
<image onclick=...
</image>
<!-- End of LOADNODE -->
</g>
...

Putting it all together. Now we have the data source, i.e. the GIS data
as OTN instances in the OWL format. We have the SVG graphics elements
as the transformation ontology in OWL, and we have transformation rules as
instances of the transformation ontology. This is the declarative part. The actual
transformation is now done by a particular Java program. For each element of
the transformation ontology (see fig. 4) there is a corresponding Java class. They
have methods which know how to match the OTN data with instances of the
transformation ontology and how to generate SVG code from this.

For example, there is a Java class SvgImage. This class can be instantiated
with the parameters of the SVGImage instances of the transportation ontology,
the Bus instance from above, for example. Now we have a Java object whose
methods are able to search through the OTN data and to identify the items
for which SVG code is to be generated that inserts the symbol for the bus. This
information is inserted into an R-Tree, and from the R-Tree the system generates

10

the SVG files for the tiles of the map. The fact that the transformed data need
to be grouped with an R-Tree makes simpler approaches, for example via XSLT,
much more difficult.

All this may sound complicated, but it is extremely flexible. It allows to
change or extend the displayed map by just changing or extending the instances
of the transformation ontology. It is also quite straightforward to add new infor-
mation from new data sources, for example symbols for traffic jams from Traffic
Message Channel (TMC) [21, 18] data. The OTN ontology must be extended to
contain the concept of traffic jams, the TMC data must be turned into the OWL
data format, and a new SVGImage instance must be added to the transformation
ontology.

3.2 Formulas

The transformation from the geographic data to the SVG data may require cal-
culations which can be specified in the instances of the transformation ontology.
We saw already some examples of the formula language which is used there. A
formula always begins with =, followed by a number of operators and arguments.
All strings not starting with a = are handled as a static string or text entry. If
an operation leads to an invalid or no result, the resulting value is treated as
0. This can occur when the syntax of the formula is not correct or it cannot
be calculated (e.g. division by zero, etc.). Since texts can often contain regular
brackets “(” and “)” formulas contain curly braces instead ({}).

Operations +, −, ∗, / and % can be applied to numbers and text, although
if applied to text the argument are treated as 0. There are, however, exceptions.
If + is applied to text, the arguments are concatenated, if ∗ is applied to a text
and a number n, the text is concatenated n times.

Comparison operators are <, >, <=, >=, <> and =. These return 1 if
successful, otherwise 0.

Type conversion is denoted by “@”. The desired type is given directly before
the @ (no whitespace in between) and the value follows. Predefined types are
the following:

– INT@ conversion to an integer
– TIME@ extracts the time from a timestamp (which also includes a date)
– DATE@ extracts the date from a timestamp
– DATETIME@ extracts time and date from a timestamp

The attributes of features can be accessed using [ATTRIBUTE NAME]. The ID
of a feature can be accessed using [ID] although in a strict sense it does not
represent an attribute. If the attribute is in turn a feature, its attributes can
be accessed using a dot notation, such as [FEATURE NAME].[ATTRIBUTE NAME].
An edge for example begins (starts at) at a point in space which contains an
x-coordinate. Its value can be accessed using [starts_at].[x].

If the feature is a Line, for each vehicle travelling along this line a separate
graphical symbol is generated. Furthermore, standard attributes can be accessed,

11

such as x- or y-coordinates of the vehicle’s current position. The current line
and the next (resp. previous) stop can be referenced through [route_Section],
[starts_at] and [ends_at]. The times of arrival and departure are found
in [startTime] and [endTime]. [waitingTime] and [drivingTime] hold the
idle time before departure and the duration of travel.

4 Further Services

The browser that renders SVG data has, via JavaScript, access to the data
structures underlying the items on the generated image. This can be exploited to
implement further services. One of the services we implemented is a road finder.
Since every road has a name, the browser can build an index for the roads when
they are downloaded. The user can now type in the name of a road and the
browser uses the index to match the road name with the SVG elements that
display the road. These elements are now highlighted by changing their colour
attribute. So far this works only for roads. The reason is that different types
of objects are usually represented by different combinations of SVG elements.
A road, for example, consists of road segments which are displayed with one or
two (or more) SVG path elements. This association is different for other types
of objects and therefore has to be programmed in another way.

Highlighting particular roads is a service which can be executed at client side.
We also implemented a prototype of a service where the client has to contact
the server. This service searches the shortest path between two locations on a
map. The client sends the two locations to the server, the server computes the
shortest path, and sends back an SVG document that shows the shortest path
in the browser window. So far, only the interface between client and server is
implemented and only fixed test data are sent over the interface.

5 Alternative Approaches

As mentioned before, there exist a number of different possibilities in order to
provide similar services. We give some distinct examples here which employ
different approaches, although none incorporate a holistic use of ontologies.

Two of the most prominent commercial examples come from the search en-
gine provider Google. Google Maps and Google Earth show two very different
approaches in client-side applications for GIS data presentation, a more compre-
hensive description can be found in [26, 27]. Google Maps is based on JavaScript
and XML, and can be accessed with any current web browser, whereas Google
Earth is a proprietary stand-alone application.

Google Maps is a free Web Map Server application [11] which provides zoomable
and pannable street map and satellite images for the whole planet, along with
route planning and business locator facilities for a number of countries3. Fol-
lowing Google’s key mission, Google Maps can be combined with some search

3 The U.S., Canada, Japan, Hong Kong, China, the UK and Ireland (city centres only)

12

functionality. Search results can for example be restricted to a certain area:
“Pizza in Boston” yields facilities providing pizza in the greater Boston area.
This applies to other services as well. Further functionality includes common
routing and navigation, including lists of driving directions4

Although in the early stages the underlying protocols and mechanisms have
not been publicly available, reverse engineering of the interface (which is mainly
based on JavaScript and XML) has led to the development of expanded and
customized features. Using the core engine and the map/satellite images hosted
by Google, such expansions can introduce custom location icons, location co-
ordinates and metadata, and even custom map image sources (e.g. [13, 17]).
Meanwhile Google released a Google Maps API to Google developers for non-
commercial purposes.

Google Earth, formerly developed as a purely commercial product by Keyhole
Inc. and now owned and made freely available by Google, is a virtual globe
enabling the viewing of vectorised and rasterised data by generating views of
the earth from above [10]. Currently Google Earth is only running on personal
computers using Microsoft Windows, although versions for Linux and Mac OS
versions have been announced for the end of 2005.

Google Earth operates in a similar manner to Google Maps, but as a 3-
dimensional application. Instead of planar maps, Google Earth provides a globe,
which can be viewed, rotated, zoomed into, much like its real life counterpart.
The most important difference is a layer architecture, well known from Geo-
graphic Information Systems, which contain different sets of features, such as
parks, rivers, roads, borders of countries, locations of national monuments and
many thousands of other places. These are provided not only by Google, but by
the whole Internet community. These layers can be selected and deselected by
the user in order to create a view containing the desired features. The mecha-
nisms for incorporating customised data into the client are publicly available via
the Keyhole Markup Language (KML) [15].

Especially worth mentioning are for example 3D terrain data which allow
the user to view the Grand Canyon or Mount Everest in 3D, as well as a layer
providing 3D data about buildings for some of the major cities in the U.S. A
growing number of third party data sources are available on the web [22, 12].

MacauMap [4, 3] is a handheld digital map application which displays informa-
tion about tourist-related spots (hotels, restaurants, etc.), provides a bus routing
function for calculating an optimal bus route between a pair of bus stops and
offers other functions. As it is targeted for mobile use, the focus of develop-
ment mainly lies on two issues pertaining to mobile devices: device resources
and user interface. Since computing power, bandwidth and memory capacity are
restricted, special techniques have been developed to optimize data processing.
Likewise, user interaction is restricted to either a stylus (PDAs) or an alphanu-
meric keypad (mobile phones) the user interface has been adapted accordingly.

4 As of June 2005, Google Maps features road maps for the United States, Puerto
Rico, Canada, and the United Kingdom.

13

The same research group recently developed an SVG-based Web applica-
tion [5] which is similar to our approach regarding the user interface, although
the underlying structures are very different and do not use ontologies.

6 Summary and Outlook

In this work we illustrate a particular use of ontologies for dealing with geo-
graphic data. The geographic data are represented in the OWL data format that
corresponds to the Ontology of Transportation Networks (OTN). Since there is a
certain degree of independence between the data and the ontology, it is possible
to adapt the ontology to the needs of the application and still work with the
same data.

The transformation of the geographic data into SVG is also controlled by
an ontology. The SVG elements are represented as concepts of a transformation
ontology and the particular rules for transforming the data in a particular way are
specified as instances of the concepts of the transformation ontology. By changing
these instances or creating new instances one can change or extend the displayed
maps very easily. Therefore this is an extremely flexible architecture which allows
one to program the generation of maps by specifying the transformation in a
symbolic way.

There are two main differences to other approaches for generating maps:

1. the programming technique is semantic with a significant symbolic specifi-
cation part. This is much more flexible than other programming techniques.
For example, if the presentation of the map is to be changed or extended,
it is usually sufficient to start an OWL editor and change some classes or
instances;

2. behind the displayed map there is always the document object model (DOM),
and the elements of the DOM are still linked to the ontology. This enables
interactive services where the ontology can be invoked.

SVG is a very expressive language with a number of quite powerful features.
The renderers for SVG are therefore quite complicated and still seem not be
optimised for large data sets. The dynamic features of SVG in particular slow
down the rendering considerably. Rendering big maps with a lot of items is still
slower than it could be. We are currently exploring the possibility to write a
renderer in Java, not for full SVG, but for the special constructs needed for
visualising maps. This should give similar performance as for example map24 or
the aforementioned Google Maps.

In contrast to the commercial examples described in section 5 we didn’t
develop yet another set of proprietary languages, interfaces and methods, but
instead use already available open standards. Apart from the obvious advantages,
this makes adaptation to different platforms and devices much easier.

In another ongoing work we want to integrate dynamic data sources into
the visualisation mechanism. A particular dynamic data source is the previously
mentioned TMC which facilitates the broadcast of information about traffic jams

14

and other traffic events digitally over radio. This digital information can also be
turned into SVG documents which can be downloaded into the client to show
the actual status of the information.

The techniques can also be extended in other directions. For example, one
could integrate scrollbars which are to be used to make the graphics dependent
on further parameters, in particular time. This way, time dependent data can
be integrated into the graphics in such a way that the user can choose the time
and the graphics is automatically adapted. Another direction could be to replace
SVG with X3D in order to present 3D graphics. The transformation techniques
are similar to the 2D case.

Acknowledgement

This research has been co-funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

References

1. Adobe SVG Viewer, Version 3.01. http://www.adobe.com/svg/, September 2003.
2. Bernhard Lorenz and Hans Jürgen Ohlbach and Laibing Yang. Ontology of Trans-

portation Networks. REWERSE Deliverable A1-D4, University of Munich, Insti-
tute for Informatics, 2005.

3. Robert P. Biuk-Aghai. Macaumap: A success story – digital geospatial information
for tourists and locals. GIM International, 18(12):77–79, December 2004.

4. Robert P. Biuk-Aghai. Macaumap: Next generation mobile travelling assistant. In
Proceedings Of Map Asia 2004, Beijing, China, August 2004.

5. Robert P. Biuk-Aghai. Web-Based SVG Map System: Design and Implementation.
GIS Development Weekly, 1(9), September 2005.

6. Document Object Model (DOM) Level 2 Core Specification. http://www.w3.org/
TR/DOM-Level-2-Core, November 2000.

7. International Organisation for Standardisation (ISO). Geographic Data Files
3.0 (GDF) Documentation. http://www.ertico.com/en/links/links/gdf_-_

geographic_data_files.htm, 1995.
8. International Organisation for Standardisation (ISO). Intelligent transport systems

- geographic data files 4.0 (gdf) - overall data specification, iso/dis 14825/2004,
February 2004.

9. Geography Markup Language GML, Version 3. http://www.opengis.org/docs/

02-023r4.pdf, (accessed 11/2005).
10. Google Earth. http://earth.google.com, (accessed 11/2005).
11. Google Maps. http://maps.google.com, (accessed 11/2005).
12. Google Sightseeing. http://www.googlesightseeing.com, (accessed 11/2005).
13. Greasemonkey. http://greasemonkey.mozdev.org, (accessed 11/2005).
14. Frank Ipfelkofer. Basisontologie und Anwendungs-Framework für Visualisierung

und Geospatial Reasoning. Diploma thesis, University of Munich, Institute for
Informatics, 2004.

15. Google Earth KML Tutorial. http://www.keyhole.com/kml/kml_tut.html.

15

16. Andreas Kupfer. Visualisierung von GML mit XSLT und SVG. Diploma thesis,
Technical University of Braunschweig, 2003.

17. MyGMaps. http://mygmaps.com/mygmaps.cgi, (accessed 11/2005).
18. Radio data system forum. http://www.rds.org.uk/rds98/rds98.htm.
19. R-tree portal. http://www.rtreeportal.org, Juni 2003.
20. R-tree visualization demo der national technical university of athens. http://www.

dbnet.ece.ntua.gr/~mario/rtree, November 1999.
21. Traffic message channel forum. http://www.tmcforum.com, (accessed 11/2005).
22. Traceroute on Earth. http://tjworld.net/whereisit.php, (accessed 11/2005).
23. Mobile SVG Profiles: SVG Tiny and SVG Basic, W3C Recommendation. http:

//www.w3.org/TR/SVGMobile, January 2003.
24. Scalable Vector Graphics (SVG) 1.1 Specification, W3C Recommendation. http:

//www.w3.org/TR/SVG11, January 2003.
25. SVG Print, W3C Working Draft. http://www.w3.org/TR/SVGPrint/, July 2003.
26. Wikipedia: Google Earth. http://en.wikipedia.org/wiki/Google_Earth.
27. Wikipedia: Google Maps. http://en.wikipedia.org/wiki/Google_Maps.

16

