Probabilistic Logic Programming

Felix Weitkamper
LMU Miinchen

October 19, 2021

For most of its history, artificial intelligence was intimately connected with
the art of automated reasoning. In a classical system of symbolic artificial
intelligence, knowledge is encoded by experts as facts and rules in a suitable
formal language. Using those, new knowledge can be derived by reasoning. Facts
and rules could be highly sophisticated, involving intricate relations between
different entities. Paradigmatic for this approach are expert systems and other
artificial intelligence applications based on logic programming, and in particular
on the language Prolog and its dialects. While this leads to a highly expressive
way of representing knowledge, a major limitation soon emerged: The world is
indeed complex, but it is also uncertain, and general rules hardly hold without
exception.

Although probability theory and statistics are well-developed, time-honoured
parts of science, incorporating probabilistic reasoning into artificial intelligence
was long considered out of the question, since it would be impossible to specify
all conceivable correlations and dependencies between factors. However, with
the introduction of Bayesian Networks in the late 1980s, transparent indepen-
dence assumption suddenly made this viable. Since then, statistical machine
learning has developed into a large area of artificial intelligence. In the process,
the emphasis shifted from reasoning about complex relationships to learning the
dependencies between simple properties.

However, the world has not become any less interconnected since then.
Therefore, since the mid-1990s, the new field of STAtistical Relational Artfi-
cial Intelligence (StarAI) aims to bring those paradigms together. This can be
approached from either direction: Fither, one can expand logic programming
to incorporate probabilities, or one can extend graphical models to incorporate
relational information.

In this short review, we will discuss the former approach to StarAl, proba-
bilistic logic programming. This provides the backdrop to the first column on
What’s hot in statistical relational Al in this same issue, which focuses on re-
cent developments presented at this year’s International Conference for Logic
Programming.

The key idea behind probabilistic logic programming is the distribution se-
mantics, introduced by T. Sato in 1995. The distribution semantics neatly
divides a probabilistic logic program into a simple list of probabilistic facts and



an ordinary logic program which takes those probabilistic facts as input to com-
pute more complex predicates. More precisely, a probabilistic logic program
consists of a list of assertions, each annotated with a probability between 0 and
1, and a logic program whose extensional vocabulary coincides with the signa-
ture of those facts. We illustrate this idea with a common toy example from the
literature:

Example. The probabilistic logic program Smokers and Friends consists of the
probabilistic facts

0.2 :: befriends(X,Y).
0.5 :: influences(X,Y).
0.3 :: stress(X).

and the rules

friends(X) :- befriends(X,Y).

friends(X) :- befriends(Y,X).

smokes (X) :- stress(X).

smokes(X) :- friends(X,Y), smokes(Y), influences(Y,X).

The semantics of this program reads as follows: For every domain entity
(referred to as a person in the following), there is a 30% chance that this per-
son is stressed (that is, stress(person) is true). Similarly, for every pair of
persons, there is a 20% chance that one person befriends the other, and a 50%
chance that one person influences the other. All these random choices are made
independently of one another. After these choices have been made, the rules
of the program are brought to bear. In this case, the binary relation friends
is evaluated as the symmetric closure of befriends, and the smokes relation is
computed as follows: Firstly, every stressed individual smokes. Then, smokes
predicate is spread recursively along friends influencing each other. Once this
process has been completed and no more smokers can be added this way, the
program terminates.

On the first glance, this formalism seems very restrictive, since it confines
probability entirely to independent choices on factual assertions. However, the
ingenuity of the distribution semantics is that probabilistic rules can be ex-
pressed by simply adding additional auxiliary predicates:

Example. The probabilistic rule
0.5 :: smokes(X) :- friends(X,Y), smokes(Y).
is equivalent to the clauses

smokes(X) :- friends(X,Y), smokes(Y), influences(Y,X).
0.5 :: influences(X,Y).

of the program in the first example.



In fact, it has been shown that if only ground (propositional) clauses are
considered, acyclic probabilistic logic programs have the same expressiveness as
Bayesian networks, while general probabilistic logic programs go beyond that
by adding recursion.

However, the real strength of probabilistic logic programs (and StarAl in
general) lies in the ability to specify rules and facts with variables, and therefore
to specify a particular probability distribution for any domain under considera-
tion. From this viewpoint the probabilistic logic program associates with every
domain of people a probability distribution over possible L-structures on this
domain, where L contains all the predicates mentioned in the program.

This framework can be extended to consider as input not just plain domains
but structures in an extensional vocabulary E C L; for instance, the network of
friendships in the examples here could be taken as input rather than generated
probabilistically. In that case, every input structure M gives rise under a proba-
bilistic logic program to a probability distribution over all possible L-structures
extending M. For a more detailed contemporary treatment of probabilistic logic
programming under the distribution semantics, see the comprehensive texbook
by F. Riguzzi (2020:Foundations of Probabilistic Logic Programming, River
Publishers).

The tasks for any probabilistic logic program system can be divided into two
main headers: inference and learning.

Among inference tasks, the most prominent are marginal inference, where
the probabilities of a certain property are computed, and maximum-a-posteriori
(MAP) inference, where the most likely configuration to arise from a probabilis-
tic logic program is computed. In the example above, a marginal query could
compute the probability of a certain individual smoking. MAP inference could
answer the question: What is the most likely smoking behaviour of this group
of individuals given some observations?

Unfortunately, the naive approach to grounding, that is, substituting the
domain individuals into the probabilistic logic program, and then performing
inference on the ground program does not scale well to large datasets. Therefore,
current research is much concerned with lifted inference, which is performed to
varying extent on the level of the original probabilistic logic program (with
variables) rather than on the large grounded program.

The problem of learning probabilistic logic programs from data is posed in
different settings. In parameter learning, the rules of the program are fixed
and an optimal set of probabilities for those rules are sought. In structure
learning, the rules themselves are not given either and have to be found by
the learning algorithm. Structure learning of probabilistic logic programs is
generally considered a difficult problem, since it subsumes and significantly ex-
tends the problem of learning deterministic logic programs, known as Inductive
Logic Programming. Indeed, early structure learning algorithms approached
structure-learning in two parts, applying first an Inductive Logic Programming
system to learn the rules and then a parameter learning algorithm for the prob-
abilities. However, better results have recently been obtaied by interleaving the
two parts.



I would like to close by highlighting two particularly active and well-maintained
systems, both of which have an easy-to-use online interface and tutorial.

ProbLog 2, an implementation of the ProbLog language maintained by the
KU Leuven group available at https://dtai.cs.kuleuven.be/problog/, is a power-
ful Python-based system with many features. Its underlying language, ProbLog,
has been designed particularly with usability and straightforward syntax in
mind, and it has been used extensively in bioinformatics. A variety of aca-
demic and real-world applications are listed at
https://dtai.cs.kuleuven.be/problog/applications.html.

cplint, a SWI-Prolog-based system supporting various languages and main-
tained by the University of Ferrara, is available at https://cplint.ml.unife.it/. It
is particularly rich in configurations and supported algorithms, including state-
of-the-art methods for structure learning and lifted inference (neither of which
are supported by ProbLog 2 at present). On the other hand, it is not quite as
straightforward to use as ProbLog 2.



